Properties

Label 741.2.d.a.740.73
Level $741$
Weight $2$
Character 741.740
Analytic conductor $5.917$
Analytic rank $0$
Dimension $88$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [741,2,Mod(740,741)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("741.740"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(741, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 741 = 3 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 741.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.91691478978\)
Analytic rank: \(0\)
Dimension: \(88\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 740.73
Character \(\chi\) \(=\) 741.740
Dual form 741.2.d.a.740.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.15821i q^{2} +(-0.966847 - 1.43708i) q^{3} -2.65789 q^{4} -0.857839 q^{5} +(3.10153 - 2.08666i) q^{6} +1.81675i q^{7} -1.41987i q^{8} +(-1.13041 + 2.77888i) q^{9} -1.85140i q^{10} +3.67285 q^{11} +(2.56977 + 3.81961i) q^{12} +(1.36529 - 3.33706i) q^{13} -3.92095 q^{14} +(0.829399 + 1.23279i) q^{15} -2.25140 q^{16} +3.08928i q^{17} +(-5.99742 - 2.43968i) q^{18} +(-4.14735 + 1.34145i) q^{19} +2.28004 q^{20} +(2.61083 - 1.75652i) q^{21} +7.92680i q^{22} +3.67504i q^{23} +(-2.04047 + 1.37280i) q^{24} -4.26411 q^{25} +(7.20210 + 2.94659i) q^{26} +(5.08642 - 1.06225i) q^{27} -4.82874i q^{28} -9.35435 q^{29} +(-2.66062 + 1.79002i) q^{30} -0.267933 q^{31} -7.69874i q^{32} +(-3.55108 - 5.27819i) q^{33} -6.66733 q^{34} -1.55848i q^{35} +(3.00452 - 7.38595i) q^{36} -3.40248 q^{37} +(-2.89513 - 8.95087i) q^{38} +(-6.11566 + 1.26439i) q^{39} +1.21802i q^{40} +9.43096i q^{41} +(3.79096 + 5.63473i) q^{42} -1.50171 q^{43} -9.76203 q^{44} +(0.969713 - 2.38383i) q^{45} -7.93152 q^{46} -10.2072 q^{47} +(2.17676 + 3.23545i) q^{48} +3.69940 q^{49} -9.20287i q^{50} +(4.43955 - 2.98686i) q^{51} +(-3.62879 + 8.86955i) q^{52} -12.0534 q^{53} +(2.29256 + 10.9776i) q^{54} -3.15071 q^{55} +2.57955 q^{56} +(5.93762 + 4.66311i) q^{57} -20.1887i q^{58} -6.46120i q^{59} +(-2.20445 - 3.27661i) q^{60} +7.91653 q^{61} -0.578257i q^{62} +(-5.04854 - 2.05369i) q^{63} +12.1127 q^{64} +(-1.17120 + 2.86266i) q^{65} +(11.3915 - 7.66400i) q^{66} +2.15781 q^{67} -8.21097i q^{68} +(5.28134 - 3.55320i) q^{69} +3.36354 q^{70} +9.01484i q^{71} +(3.94564 + 1.60504i) q^{72} +10.5104i q^{73} -7.34328i q^{74} +(4.12274 + 6.12788i) q^{75} +(11.0232 - 3.56542i) q^{76} +6.67267i q^{77} +(-2.72883 - 13.1989i) q^{78} -8.11738i q^{79} +1.93134 q^{80} +(-6.44433 - 6.28257i) q^{81} -20.3540 q^{82} -3.06269 q^{83} +(-6.93929 + 4.66865i) q^{84} -2.65010i q^{85} -3.24101i q^{86} +(9.04422 + 13.4430i) q^{87} -5.21497i q^{88} +6.17584i q^{89} +(5.14482 + 2.09285i) q^{90} +(6.06262 + 2.48040i) q^{91} -9.76785i q^{92} +(0.259050 + 0.385042i) q^{93} -22.0293i q^{94} +(3.55776 - 1.15075i) q^{95} +(-11.0637 + 7.44350i) q^{96} +19.1257 q^{97} +7.98410i q^{98} +(-4.15184 + 10.2064i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q - 88 q^{4} - 4 q^{9} + 72 q^{16} + 64 q^{25} - 60 q^{30} - 48 q^{36} + 20 q^{39} + 48 q^{42} - 64 q^{43} - 112 q^{49} - 24 q^{55} - 64 q^{61} - 104 q^{64} + 12 q^{66} + 60 q^{81} + 56 q^{82} - 32 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/741\mathbb{Z}\right)^\times\).

\(n\) \(40\) \(248\) \(457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.15821i 1.52609i 0.646346 + 0.763044i \(0.276296\pi\)
−0.646346 + 0.763044i \(0.723704\pi\)
\(3\) −0.966847 1.43708i −0.558209 0.829700i
\(4\) −2.65789 −1.32895
\(5\) −0.857839 −0.383637 −0.191819 0.981430i \(-0.561439\pi\)
−0.191819 + 0.981430i \(0.561439\pi\)
\(6\) 3.10153 2.08666i 1.26620 0.851877i
\(7\) 1.81675i 0.686669i 0.939213 + 0.343334i \(0.111556\pi\)
−0.939213 + 0.343334i \(0.888444\pi\)
\(8\) 1.41987i 0.502000i
\(9\) −1.13041 + 2.77888i −0.376805 + 0.926293i
\(10\) 1.85140i 0.585464i
\(11\) 3.67285 1.10741 0.553703 0.832714i \(-0.313214\pi\)
0.553703 + 0.832714i \(0.313214\pi\)
\(12\) 2.56977 + 3.81961i 0.741830 + 1.10263i
\(13\) 1.36529 3.33706i 0.378663 0.925535i
\(14\) −3.92095 −1.04792
\(15\) 0.829399 + 1.23279i 0.214150 + 0.318304i
\(16\) −2.25140 −0.562850
\(17\) 3.08928i 0.749260i 0.927174 + 0.374630i \(0.122230\pi\)
−0.927174 + 0.374630i \(0.877770\pi\)
\(18\) −5.99742 2.43968i −1.41360 0.575037i
\(19\) −4.14735 + 1.34145i −0.951467 + 0.307749i
\(20\) 2.28004 0.509833
\(21\) 2.61083 1.75652i 0.569729 0.383305i
\(22\) 7.92680i 1.69000i
\(23\) 3.67504i 0.766299i 0.923686 + 0.383149i \(0.125161\pi\)
−0.923686 + 0.383149i \(0.874839\pi\)
\(24\) −2.04047 + 1.37280i −0.416509 + 0.280221i
\(25\) −4.26411 −0.852822
\(26\) 7.20210 + 2.94659i 1.41245 + 0.577873i
\(27\) 5.08642 1.06225i 0.978881 0.204430i
\(28\) 4.82874i 0.912545i
\(29\) −9.35435 −1.73706 −0.868529 0.495637i \(-0.834934\pi\)
−0.868529 + 0.495637i \(0.834934\pi\)
\(30\) −2.66062 + 1.79002i −0.485760 + 0.326812i
\(31\) −0.267933 −0.0481222 −0.0240611 0.999710i \(-0.507660\pi\)
−0.0240611 + 0.999710i \(0.507660\pi\)
\(32\) 7.69874i 1.36096i
\(33\) −3.55108 5.27819i −0.618164 0.918815i
\(34\) −6.66733 −1.14344
\(35\) 1.55848i 0.263432i
\(36\) 3.00452 7.38595i 0.500753 1.23099i
\(37\) −3.40248 −0.559364 −0.279682 0.960093i \(-0.590229\pi\)
−0.279682 + 0.960093i \(0.590229\pi\)
\(38\) −2.89513 8.95087i −0.469653 1.45202i
\(39\) −6.11566 + 1.26439i −0.979289 + 0.202465i
\(40\) 1.21802i 0.192586i
\(41\) 9.43096i 1.47287i 0.676509 + 0.736434i \(0.263492\pi\)
−0.676509 + 0.736434i \(0.736508\pi\)
\(42\) 3.79096 + 5.63473i 0.584957 + 0.869457i
\(43\) −1.50171 −0.229008 −0.114504 0.993423i \(-0.536528\pi\)
−0.114504 + 0.993423i \(0.536528\pi\)
\(44\) −9.76203 −1.47168
\(45\) 0.969713 2.38383i 0.144556 0.355360i
\(46\) −7.93152 −1.16944
\(47\) −10.2072 −1.48887 −0.744435 0.667695i \(-0.767281\pi\)
−0.744435 + 0.667695i \(0.767281\pi\)
\(48\) 2.17676 + 3.23545i 0.314188 + 0.466996i
\(49\) 3.69940 0.528486
\(50\) 9.20287i 1.30148i
\(51\) 4.43955 2.98686i 0.621661 0.418244i
\(52\) −3.62879 + 8.86955i −0.503223 + 1.22998i
\(53\) −12.0534 −1.65566 −0.827830 0.560979i \(-0.810425\pi\)
−0.827830 + 0.560979i \(0.810425\pi\)
\(54\) 2.29256 + 10.9776i 0.311978 + 1.49386i
\(55\) −3.15071 −0.424842
\(56\) 2.57955 0.344707
\(57\) 5.93762 + 4.66311i 0.786458 + 0.617644i
\(58\) 20.1887i 2.65091i
\(59\) 6.46120i 0.841176i −0.907252 0.420588i \(-0.861824\pi\)
0.907252 0.420588i \(-0.138176\pi\)
\(60\) −2.20445 3.27661i −0.284593 0.423008i
\(61\) 7.91653 1.01361 0.506804 0.862061i \(-0.330827\pi\)
0.506804 + 0.862061i \(0.330827\pi\)
\(62\) 0.578257i 0.0734387i
\(63\) −5.04854 2.05369i −0.636056 0.258740i
\(64\) 12.1127 1.51409
\(65\) −1.17120 + 2.86266i −0.145269 + 0.355069i
\(66\) 11.3915 7.66400i 1.40219 0.943373i
\(67\) 2.15781 0.263618 0.131809 0.991275i \(-0.457921\pi\)
0.131809 + 0.991275i \(0.457921\pi\)
\(68\) 8.21097i 0.995726i
\(69\) 5.28134 3.55320i 0.635798 0.427755i
\(70\) 3.36354 0.402020
\(71\) 9.01484i 1.06986i 0.844895 + 0.534932i \(0.179663\pi\)
−0.844895 + 0.534932i \(0.820337\pi\)
\(72\) 3.94564 + 1.60504i 0.464999 + 0.189156i
\(73\) 10.5104i 1.23015i 0.788468 + 0.615076i \(0.210875\pi\)
−0.788468 + 0.615076i \(0.789125\pi\)
\(74\) 7.34328i 0.853639i
\(75\) 4.12274 + 6.12788i 0.476053 + 0.707587i
\(76\) 11.0232 3.56542i 1.26445 0.408982i
\(77\) 6.67267i 0.760421i
\(78\) −2.72883 13.1989i −0.308980 1.49448i
\(79\) 8.11738i 0.913277i −0.889652 0.456638i \(-0.849053\pi\)
0.889652 0.456638i \(-0.150947\pi\)
\(80\) 1.93134 0.215930
\(81\) −6.44433 6.28257i −0.716036 0.698063i
\(82\) −20.3540 −2.24773
\(83\) −3.06269 −0.336174 −0.168087 0.985772i \(-0.553759\pi\)
−0.168087 + 0.985772i \(0.553759\pi\)
\(84\) −6.93929 + 4.66865i −0.757139 + 0.509391i
\(85\) 2.65010i 0.287444i
\(86\) 3.24101i 0.349487i
\(87\) 9.04422 + 13.4430i 0.969642 + 1.44124i
\(88\) 5.21497i 0.555917i
\(89\) 6.17584i 0.654637i 0.944914 + 0.327319i \(0.106145\pi\)
−0.944914 + 0.327319i \(0.893855\pi\)
\(90\) 5.14482 + 2.09285i 0.542311 + 0.220606i
\(91\) 6.06262 + 2.48040i 0.635536 + 0.260016i
\(92\) 9.76785i 1.01837i
\(93\) 0.259050 + 0.385042i 0.0268622 + 0.0399270i
\(94\) 22.0293i 2.27215i
\(95\) 3.55776 1.15075i 0.365018 0.118064i
\(96\) −11.0637 + 7.44350i −1.12919 + 0.759699i
\(97\) 19.1257 1.94192 0.970962 0.239232i \(-0.0768956\pi\)
0.970962 + 0.239232i \(0.0768956\pi\)
\(98\) 7.98410i 0.806516i
\(99\) −4.15184 + 10.2064i −0.417276 + 1.02578i
\(100\) 11.3335 1.13335
\(101\) 10.8013i 1.07477i −0.843336 0.537386i \(-0.819412\pi\)
0.843336 0.537386i \(-0.180588\pi\)
\(102\) 6.44628 + 9.58150i 0.638277 + 0.948710i
\(103\) 16.6893i 1.64445i 0.569163 + 0.822225i \(0.307267\pi\)
−0.569163 + 0.822225i \(0.692733\pi\)
\(104\) −4.73819 1.93853i −0.464618 0.190089i
\(105\) −2.23967 + 1.50681i −0.218569 + 0.147050i
\(106\) 26.0138i 2.52668i
\(107\) −8.63674 −0.834945 −0.417473 0.908689i \(-0.637084\pi\)
−0.417473 + 0.908689i \(0.637084\pi\)
\(108\) −13.5191 + 2.82334i −1.30088 + 0.271676i
\(109\) 15.6648 1.50042 0.750208 0.661202i \(-0.229953\pi\)
0.750208 + 0.661202i \(0.229953\pi\)
\(110\) 6.79991i 0.648346i
\(111\) 3.28968 + 4.88964i 0.312242 + 0.464105i
\(112\) 4.09024i 0.386491i
\(113\) 18.1242 1.70498 0.852491 0.522742i \(-0.175091\pi\)
0.852491 + 0.522742i \(0.175091\pi\)
\(114\) −10.0640 + 12.8147i −0.942580 + 1.20020i
\(115\) 3.15259i 0.293981i
\(116\) 24.8628 2.30846
\(117\) 7.72995 + 7.56624i 0.714634 + 0.699499i
\(118\) 13.9447 1.28371
\(119\) −5.61246 −0.514494
\(120\) 1.75039 1.17764i 0.159788 0.107503i
\(121\) 2.48982 0.226347
\(122\) 17.0856i 1.54686i
\(123\) 13.5531 9.11829i 1.22204 0.822168i
\(124\) 0.712136 0.0639517
\(125\) 7.94712 0.710812
\(126\) 4.43230 10.8958i 0.394860 0.970678i
\(127\) 2.77249i 0.246019i 0.992406 + 0.123009i \(0.0392545\pi\)
−0.992406 + 0.123009i \(0.960746\pi\)
\(128\) 10.7444i 0.949680i
\(129\) 1.45192 + 2.15808i 0.127835 + 0.190008i
\(130\) −6.17824 2.52770i −0.541867 0.221694i
\(131\) 3.46241i 0.302512i 0.988495 + 0.151256i \(0.0483318\pi\)
−0.988495 + 0.151256i \(0.951668\pi\)
\(132\) 9.43839 + 14.0288i 0.821506 + 1.22105i
\(133\) −2.43708 7.53472i −0.211322 0.653343i
\(134\) 4.65702i 0.402305i
\(135\) −4.36333 + 0.911239i −0.375535 + 0.0784270i
\(136\) 4.38637 0.376128
\(137\) 4.30210 0.367554 0.183777 0.982968i \(-0.441168\pi\)
0.183777 + 0.982968i \(0.441168\pi\)
\(138\) 7.66857 + 11.3983i 0.652792 + 0.970284i
\(139\) −16.3045 −1.38293 −0.691467 0.722408i \(-0.743035\pi\)
−0.691467 + 0.722408i \(0.743035\pi\)
\(140\) 4.14228i 0.350086i
\(141\) 9.86878 + 14.6686i 0.831101 + 1.23532i
\(142\) −19.4560 −1.63271
\(143\) 5.01450 12.2565i 0.419334 1.02494i
\(144\) 2.54501 6.25636i 0.212084 0.521363i
\(145\) 8.02452 0.666400
\(146\) −22.6837 −1.87732
\(147\) −3.57675 5.31635i −0.295006 0.438485i
\(148\) 9.04342 0.743364
\(149\) 8.58110 0.702991 0.351496 0.936190i \(-0.385673\pi\)
0.351496 + 0.936190i \(0.385673\pi\)
\(150\) −13.2253 + 8.89777i −1.07984 + 0.726500i
\(151\) −13.6493 −1.11077 −0.555384 0.831594i \(-0.687429\pi\)
−0.555384 + 0.831594i \(0.687429\pi\)
\(152\) 1.90468 + 5.88870i 0.154490 + 0.477636i
\(153\) −8.58473 3.49217i −0.694034 0.282325i
\(154\) −14.4010 −1.16047
\(155\) 0.229843 0.0184615
\(156\) 16.2548 3.36062i 1.30142 0.269065i
\(157\) −4.36973 −0.348742 −0.174371 0.984680i \(-0.555789\pi\)
−0.174371 + 0.984680i \(0.555789\pi\)
\(158\) 17.5190 1.39374
\(159\) 11.6538 + 17.3217i 0.924205 + 1.37370i
\(160\) 6.60428i 0.522114i
\(161\) −6.67665 −0.526193
\(162\) 13.5591 13.9082i 1.06531 1.09273i
\(163\) 10.8164i 0.847206i 0.905848 + 0.423603i \(0.139235\pi\)
−0.905848 + 0.423603i \(0.860765\pi\)
\(164\) 25.0664i 1.95736i
\(165\) 3.04626 + 4.52784i 0.237151 + 0.352491i
\(166\) 6.60995i 0.513032i
\(167\) 11.2698i 0.872083i 0.899927 + 0.436042i \(0.143620\pi\)
−0.899927 + 0.436042i \(0.856380\pi\)
\(168\) −2.49403 3.70703i −0.192419 0.286004i
\(169\) −9.27197 9.11211i −0.713228 0.700932i
\(170\) 5.71949 0.438665
\(171\) 0.960504 13.0414i 0.0734516 0.997299i
\(172\) 3.99138 0.304340
\(173\) −4.99832 −0.380015 −0.190008 0.981783i \(-0.560851\pi\)
−0.190008 + 0.981783i \(0.560851\pi\)
\(174\) −29.0128 + 19.5194i −2.19946 + 1.47976i
\(175\) 7.74685i 0.585607i
\(176\) −8.26905 −0.623303
\(177\) −9.28528 + 6.24699i −0.697924 + 0.469552i
\(178\) −13.3288 −0.999034
\(179\) −12.0113 −0.897766 −0.448883 0.893591i \(-0.648178\pi\)
−0.448883 + 0.893591i \(0.648178\pi\)
\(180\) −2.57739 + 6.33596i −0.192107 + 0.472254i
\(181\) 11.5353i 0.857413i −0.903444 0.428706i \(-0.858969\pi\)
0.903444 0.428706i \(-0.141031\pi\)
\(182\) −5.35323 + 13.0844i −0.396808 + 0.969884i
\(183\) −7.65407 11.3767i −0.565805 0.840991i
\(184\) 5.21808 0.384682
\(185\) 2.91878 0.214593
\(186\) −0.831003 + 0.559086i −0.0609321 + 0.0409942i
\(187\) 11.3465i 0.829735i
\(188\) 27.1296 1.97863
\(189\) 1.92985 + 9.24077i 0.140376 + 0.672167i
\(190\) 2.48356 + 7.67841i 0.180176 + 0.557050i
\(191\) 6.21912i 0.449999i −0.974359 0.225000i \(-0.927762\pi\)
0.974359 0.225000i \(-0.0722381\pi\)
\(192\) −11.7112 17.4070i −0.845180 1.25624i
\(193\) −24.2066 −1.74243 −0.871214 0.490904i \(-0.836667\pi\)
−0.871214 + 0.490904i \(0.836667\pi\)
\(194\) 41.2775i 2.96355i
\(195\) 5.24625 1.08465i 0.375692 0.0776731i
\(196\) −9.83261 −0.702329
\(197\) 8.86090 0.631313 0.315656 0.948874i \(-0.397775\pi\)
0.315656 + 0.948874i \(0.397775\pi\)
\(198\) −22.0276 8.96057i −1.56543 0.636800i
\(199\) 22.0238 1.56123 0.780613 0.625015i \(-0.214907\pi\)
0.780613 + 0.625015i \(0.214907\pi\)
\(200\) 6.05448i 0.428117i
\(201\) −2.08627 3.10095i −0.147154 0.218724i
\(202\) 23.3116 1.64020
\(203\) 16.9946i 1.19278i
\(204\) −11.7998 + 7.93875i −0.826154 + 0.555823i
\(205\) 8.09024i 0.565047i
\(206\) −36.0192 −2.50958
\(207\) −10.2125 4.15432i −0.709817 0.288745i
\(208\) −3.07381 + 7.51306i −0.213130 + 0.520937i
\(209\) −15.2326 + 4.92694i −1.05366 + 0.340803i
\(210\) −3.25203 4.83369i −0.224411 0.333556i
\(211\) 9.55622i 0.657877i −0.944351 0.328939i \(-0.893309\pi\)
0.944351 0.328939i \(-0.106691\pi\)
\(212\) 32.0366 2.20028
\(213\) 12.9551 8.71597i 0.887667 0.597208i
\(214\) 18.6399i 1.27420i
\(215\) 1.28822 0.0878561
\(216\) −1.50826 7.22205i −0.102624 0.491398i
\(217\) 0.486768i 0.0330440i
\(218\) 33.8080i 2.28977i
\(219\) 15.1043 10.1620i 1.02066 0.686682i
\(220\) 8.37425 0.564592
\(221\) 10.3091 + 4.21776i 0.693466 + 0.283717i
\(222\) −10.5529 + 7.09983i −0.708264 + 0.476509i
\(223\) −8.90623 −0.596405 −0.298203 0.954503i \(-0.596387\pi\)
−0.298203 + 0.954503i \(0.596387\pi\)
\(224\) 13.9867 0.934527
\(225\) 4.82021 11.8494i 0.321348 0.789963i
\(226\) 39.1159i 2.60195i
\(227\) 16.4499i 1.09182i 0.837845 + 0.545909i \(0.183816\pi\)
−0.837845 + 0.545909i \(0.816184\pi\)
\(228\) −15.7816 12.3940i −1.04516 0.820815i
\(229\) 17.2830i 1.14209i −0.820918 0.571046i \(-0.806538\pi\)
0.820918 0.571046i \(-0.193462\pi\)
\(230\) 6.80397 0.448640
\(231\) 9.58917 6.45145i 0.630921 0.424474i
\(232\) 13.2820i 0.872003i
\(233\) 8.74673i 0.573017i 0.958078 + 0.286509i \(0.0924947\pi\)
−0.958078 + 0.286509i \(0.907505\pi\)
\(234\) −16.3296 + 16.6829i −1.06750 + 1.09059i
\(235\) 8.75612 0.571186
\(236\) 17.1732i 1.11788i
\(237\) −11.6653 + 7.84826i −0.757746 + 0.509799i
\(238\) 12.1129i 0.785163i
\(239\) 1.12075 0.0724955 0.0362478 0.999343i \(-0.488459\pi\)
0.0362478 + 0.999343i \(0.488459\pi\)
\(240\) −1.86731 2.77549i −0.120534 0.179157i
\(241\) 18.9514 1.22076 0.610382 0.792107i \(-0.291016\pi\)
0.610382 + 0.792107i \(0.291016\pi\)
\(242\) 5.37357i 0.345426i
\(243\) −2.79789 + 15.3353i −0.179485 + 0.983761i
\(244\) −21.0413 −1.34703
\(245\) −3.17349 −0.202747
\(246\) 19.6792 + 29.2504i 1.25470 + 1.86494i
\(247\) −1.18584 + 15.6714i −0.0754530 + 0.997149i
\(248\) 0.380430i 0.0241573i
\(249\) 2.96116 + 4.40135i 0.187656 + 0.278924i
\(250\) 17.1516i 1.08476i
\(251\) 8.04287i 0.507661i −0.967249 0.253831i \(-0.918309\pi\)
0.967249 0.253831i \(-0.0816906\pi\)
\(252\) 13.4185 + 5.45847i 0.845284 + 0.343851i
\(253\) 13.4979i 0.848603i
\(254\) −5.98363 −0.375446
\(255\) −3.80842 + 2.56224i −0.238492 + 0.160454i
\(256\) 1.03674 0.0647961
\(257\) 6.77157 0.422399 0.211199 0.977443i \(-0.432263\pi\)
0.211199 + 0.977443i \(0.432263\pi\)
\(258\) −4.65760 + 3.13356i −0.289969 + 0.195087i
\(259\) 6.18147i 0.384098i
\(260\) 3.11292 7.60864i 0.193055 0.471868i
\(261\) 10.5743 25.9946i 0.654532 1.60903i
\(262\) −7.47262 −0.461660
\(263\) 28.4700i 1.75553i −0.479087 0.877767i \(-0.659032\pi\)
0.479087 0.877767i \(-0.340968\pi\)
\(264\) −7.49434 + 5.04207i −0.461245 + 0.310318i
\(265\) 10.3399 0.635173
\(266\) 16.2615 5.25975i 0.997059 0.322496i
\(267\) 8.87519 5.97109i 0.543153 0.365425i
\(268\) −5.73522 −0.350334
\(269\) 16.7218 1.01955 0.509773 0.860309i \(-0.329730\pi\)
0.509773 + 0.860309i \(0.329730\pi\)
\(270\) −1.96665 9.41699i −0.119687 0.573100i
\(271\) 18.0043i 1.09368i 0.837237 + 0.546840i \(0.184170\pi\)
−0.837237 + 0.546840i \(0.815830\pi\)
\(272\) 6.95520i 0.421721i
\(273\) −2.29709 11.1107i −0.139026 0.672448i
\(274\) 9.28486i 0.560919i
\(275\) −15.6614 −0.944420
\(276\) −14.0372 + 9.44402i −0.844941 + 0.568463i
\(277\) 26.1355 1.57033 0.785164 0.619288i \(-0.212579\pi\)
0.785164 + 0.619288i \(0.212579\pi\)
\(278\) 35.1887i 2.11048i
\(279\) 0.302875 0.744553i 0.0181327 0.0445752i
\(280\) −2.21284 −0.132243
\(281\) 13.1761i 0.786020i 0.919534 + 0.393010i \(0.128566\pi\)
−0.919534 + 0.393010i \(0.871434\pi\)
\(282\) −31.6579 + 21.2990i −1.88520 + 1.26833i
\(283\) 13.7919 0.819846 0.409923 0.912120i \(-0.365556\pi\)
0.409923 + 0.912120i \(0.365556\pi\)
\(284\) 23.9605i 1.42179i
\(285\) −5.09353 4.00020i −0.301714 0.236951i
\(286\) 26.4522 + 10.8224i 1.56415 + 0.639940i
\(287\) −17.1337 −1.01137
\(288\) 21.3939 + 8.70277i 1.26065 + 0.512815i
\(289\) 7.45636 0.438609
\(290\) 17.3186i 1.01699i
\(291\) −18.4917 27.4853i −1.08400 1.61122i
\(292\) 27.9355i 1.63480i
\(293\) 16.3002i 0.952270i 0.879372 + 0.476135i \(0.157963\pi\)
−0.879372 + 0.476135i \(0.842037\pi\)
\(294\) 11.4738 7.71940i 0.669167 0.450205i
\(295\) 5.54267i 0.322707i
\(296\) 4.83108i 0.280801i
\(297\) 18.6816 3.90148i 1.08402 0.226387i
\(298\) 18.5199i 1.07283i
\(299\) 12.2638 + 5.01749i 0.709236 + 0.290169i
\(300\) −10.9578 16.2872i −0.632649 0.940344i
\(301\) 2.72824i 0.157253i
\(302\) 29.4582i 1.69513i
\(303\) −15.5224 + 10.4432i −0.891738 + 0.599948i
\(304\) 9.33734 3.02013i 0.535533 0.173217i
\(305\) −6.79111 −0.388858
\(306\) 7.53684 18.5277i 0.430853 1.05916i
\(307\) −1.88021 −0.107309 −0.0536546 0.998560i \(-0.517087\pi\)
−0.0536546 + 0.998560i \(0.517087\pi\)
\(308\) 17.7352i 1.01056i
\(309\) 23.9840 16.1360i 1.36440 0.917947i
\(310\) 0.496051i 0.0281738i
\(311\) 9.88672i 0.560624i −0.959909 0.280312i \(-0.909562\pi\)
0.959909 0.280312i \(-0.0904380\pi\)
\(312\) 1.79527 + 8.68344i 0.101637 + 0.491603i
\(313\) −9.06669 −0.512480 −0.256240 0.966613i \(-0.582484\pi\)
−0.256240 + 0.966613i \(0.582484\pi\)
\(314\) 9.43081i 0.532211i
\(315\) 4.33083 + 1.76173i 0.244015 + 0.0992623i
\(316\) 21.5751i 1.21369i
\(317\) 12.3078i 0.691277i 0.938368 + 0.345638i \(0.112338\pi\)
−0.938368 + 0.345638i \(0.887662\pi\)
\(318\) −37.3840 + 25.1514i −2.09639 + 1.41042i
\(319\) −34.3571 −1.92363
\(320\) −10.3908 −0.580862
\(321\) 8.35041 + 12.4117i 0.466074 + 0.692754i
\(322\) 14.4096i 0.803018i
\(323\) −4.14411 12.8123i −0.230584 0.712897i
\(324\) 17.1283 + 16.6984i 0.951573 + 0.927688i
\(325\) −5.82175 + 14.2296i −0.322932 + 0.789317i
\(326\) −23.3441 −1.29291
\(327\) −15.1455 22.5116i −0.837546 1.24490i
\(328\) 13.3907 0.739379
\(329\) 18.5439i 1.02236i
\(330\) −9.77204 + 6.57448i −0.537933 + 0.361913i
\(331\) −0.996948 −0.0547972 −0.0273986 0.999625i \(-0.508722\pi\)
−0.0273986 + 0.999625i \(0.508722\pi\)
\(332\) 8.14031 0.446757
\(333\) 3.84621 9.45507i 0.210771 0.518135i
\(334\) −24.3226 −1.33088
\(335\) −1.85105 −0.101134
\(336\) −5.87801 + 3.95463i −0.320672 + 0.215743i
\(337\) 7.23122i 0.393910i 0.980413 + 0.196955i \(0.0631052\pi\)
−0.980413 + 0.196955i \(0.936895\pi\)
\(338\) 19.6659 20.0109i 1.06968 1.08845i
\(339\) −17.5233 26.0460i −0.951737 1.41462i
\(340\) 7.04369i 0.381997i
\(341\) −0.984077 −0.0532908
\(342\) 28.1461 + 2.07297i 1.52197 + 0.112094i
\(343\) 19.4382i 1.04956i
\(344\) 2.13223i 0.114962i
\(345\) −4.53054 + 3.04807i −0.243916 + 0.164103i
\(346\) 10.7875i 0.579937i
\(347\) 5.57916i 0.299505i 0.988724 + 0.149752i \(0.0478477\pi\)
−0.988724 + 0.149752i \(0.952152\pi\)
\(348\) −24.0386 35.7300i −1.28860 1.91533i
\(349\) 20.1829i 1.08037i 0.841548 + 0.540183i \(0.181645\pi\)
−0.841548 + 0.540183i \(0.818355\pi\)
\(350\) 16.7194 0.893687
\(351\) 3.39963 18.4240i 0.181459 0.983398i
\(352\) 28.2763i 1.50713i
\(353\) 15.6090 0.830781 0.415390 0.909643i \(-0.363645\pi\)
0.415390 + 0.909643i \(0.363645\pi\)
\(354\) −13.4823 20.0396i −0.716578 1.06509i
\(355\) 7.73328i 0.410440i
\(356\) 16.4147i 0.869977i
\(357\) 5.42639 + 8.06557i 0.287195 + 0.426875i
\(358\) 25.9229i 1.37007i
\(359\) 16.3148 0.861060 0.430530 0.902576i \(-0.358327\pi\)
0.430530 + 0.902576i \(0.358327\pi\)
\(360\) −3.38473 1.37687i −0.178391 0.0725672i
\(361\) 15.4010 11.1269i 0.810581 0.585627i
\(362\) 24.8957 1.30849
\(363\) −2.40727 3.57808i −0.126349 0.187800i
\(364\) −16.1138 6.59262i −0.844592 0.345547i
\(365\) 9.01624i 0.471932i
\(366\) 24.5534 16.5191i 1.28343 0.863469i
\(367\) 9.03812 0.471786 0.235893 0.971779i \(-0.424198\pi\)
0.235893 + 0.971779i \(0.424198\pi\)
\(368\) 8.27398i 0.431311i
\(369\) −26.2075 10.6609i −1.36431 0.554984i
\(370\) 6.29935i 0.327488i
\(371\) 21.8981i 1.13689i
\(372\) −0.688527 1.02340i −0.0356985 0.0530608i
\(373\) 24.9763i 1.29322i 0.762819 + 0.646612i \(0.223815\pi\)
−0.762819 + 0.646612i \(0.776185\pi\)
\(374\) −24.4881 −1.26625
\(375\) −7.68364 11.4207i −0.396782 0.589761i
\(376\) 14.4929i 0.747413i
\(377\) −12.7714 + 31.2160i −0.657760 + 1.60771i
\(378\) −19.9436 + 4.16503i −1.02579 + 0.214226i
\(379\) −27.6507 −1.42032 −0.710161 0.704039i \(-0.751378\pi\)
−0.710161 + 0.704039i \(0.751378\pi\)
\(380\) −9.45613 + 3.05856i −0.485089 + 0.156901i
\(381\) 3.98430 2.68057i 0.204122 0.137330i
\(382\) 13.4222 0.686739
\(383\) 8.36436i 0.427399i −0.976899 0.213700i \(-0.931449\pi\)
0.976899 0.213700i \(-0.0685513\pi\)
\(384\) 15.4406 10.3882i 0.787950 0.530120i
\(385\) 5.72407i 0.291726i
\(386\) 52.2430i 2.65910i
\(387\) 1.69755 4.17306i 0.0862914 0.212129i
\(388\) −50.8341 −2.58071
\(389\) 19.5268i 0.990049i −0.868879 0.495025i \(-0.835159\pi\)
0.868879 0.495025i \(-0.164841\pi\)
\(390\) 2.34090 + 11.3225i 0.118536 + 0.573339i
\(391\) −11.3532 −0.574157
\(392\) 5.25267i 0.265300i
\(393\) 4.97577 3.34762i 0.250994 0.168865i
\(394\) 19.1237i 0.963439i
\(395\) 6.96340i 0.350367i
\(396\) 11.0351 27.1275i 0.554537 1.36321i
\(397\) 30.8413i 1.54788i −0.633257 0.773941i \(-0.718282\pi\)
0.633257 0.773941i \(-0.281718\pi\)
\(398\) 47.5321i 2.38257i
\(399\) −8.47173 + 10.7872i −0.424117 + 0.540036i
\(400\) 9.60022 0.480011
\(401\) 2.05184i 0.102464i −0.998687 0.0512320i \(-0.983685\pi\)
0.998687 0.0512320i \(-0.0163148\pi\)
\(402\) 6.69252 4.50262i 0.333792 0.224570i
\(403\) −0.365806 + 0.894109i −0.0182221 + 0.0445387i
\(404\) 28.7087i 1.42831i
\(405\) 5.52819 + 5.38943i 0.274698 + 0.267803i
\(406\) 36.6779 1.82029
\(407\) −12.4968 −0.619443
\(408\) −4.24095 6.30358i −0.209958 0.312074i
\(409\) 24.9857 1.23546 0.617732 0.786388i \(-0.288051\pi\)
0.617732 + 0.786388i \(0.288051\pi\)
\(410\) 17.4605 0.862311
\(411\) −4.15948 6.18248i −0.205172 0.304959i
\(412\) 44.3584i 2.18538i
\(413\) 11.7384 0.577610
\(414\) 8.96591 22.0407i 0.440650 1.08324i
\(415\) 2.62730 0.128969
\(416\) −25.6912 10.5110i −1.25961 0.515345i
\(417\) 15.7640 + 23.4310i 0.771966 + 1.14742i
\(418\) −10.6334 32.8752i −0.520096 1.60798i
\(419\) 12.7988i 0.625261i −0.949875 0.312630i \(-0.898790\pi\)
0.949875 0.312630i \(-0.101210\pi\)
\(420\) 5.95280 4.00495i 0.290467 0.195421i
\(421\) 2.56762 0.125138 0.0625692 0.998041i \(-0.480071\pi\)
0.0625692 + 0.998041i \(0.480071\pi\)
\(422\) 20.6244 1.00398
\(423\) 11.5383 28.3645i 0.561014 1.37913i
\(424\) 17.1142i 0.831141i
\(425\) 13.1730i 0.638986i
\(426\) 18.8109 + 27.9598i 0.911393 + 1.35466i
\(427\) 14.3824i 0.696013i
\(428\) 22.9555 1.10960
\(429\) −22.4619 + 4.64393i −1.08447 + 0.224211i
\(430\) 2.78026i 0.134076i
\(431\) 14.5986i 0.703188i −0.936153 0.351594i \(-0.885640\pi\)
0.936153 0.351594i \(-0.114360\pi\)
\(432\) −11.4515 + 2.39155i −0.550963 + 0.115063i
\(433\) 10.7949i 0.518769i 0.965774 + 0.259384i \(0.0835197\pi\)
−0.965774 + 0.259384i \(0.916480\pi\)
\(434\) 1.05055 0.0504281
\(435\) −7.75849 11.5319i −0.371991 0.552913i
\(436\) −41.6353 −1.99397
\(437\) −4.92987 15.2417i −0.235828 0.729108i
\(438\) 21.9317 + 32.5984i 1.04794 + 1.55761i
\(439\) 34.9387i 1.66753i 0.552119 + 0.833765i \(0.313819\pi\)
−0.552119 + 0.833765i \(0.686181\pi\)
\(440\) 4.47360i 0.213271i
\(441\) −4.18186 + 10.2802i −0.199136 + 0.489533i
\(442\) −9.10283 + 22.2493i −0.432978 + 1.05829i
\(443\) 40.3072i 1.91505i 0.288344 + 0.957527i \(0.406895\pi\)
−0.288344 + 0.957527i \(0.593105\pi\)
\(444\) −8.74360 12.9961i −0.414953 0.616770i
\(445\) 5.29787i 0.251143i
\(446\) 19.2216i 0.910167i
\(447\) −8.29661 12.3318i −0.392416 0.583272i
\(448\) 22.0059i 1.03968i
\(449\) 16.7190i 0.789018i −0.918892 0.394509i \(-0.870915\pi\)
0.918892 0.394509i \(-0.129085\pi\)
\(450\) 25.5737 + 10.4031i 1.20555 + 0.490405i
\(451\) 34.6385i 1.63106i
\(452\) −48.1722 −2.26583
\(453\) 13.1968 + 19.6152i 0.620041 + 0.921605i
\(454\) −35.5024 −1.66621
\(455\) −5.20075 2.12778i −0.243815 0.0997519i
\(456\) 6.62101 8.43065i 0.310057 0.394801i
\(457\) 29.4340i 1.37687i 0.725300 + 0.688433i \(0.241701\pi\)
−0.725300 + 0.688433i \(0.758299\pi\)
\(458\) 37.3004 1.74293
\(459\) 3.28159 + 15.7134i 0.153171 + 0.733437i
\(460\) 8.37924i 0.390684i
\(461\) −13.4731 −0.627503 −0.313752 0.949505i \(-0.601586\pi\)
−0.313752 + 0.949505i \(0.601586\pi\)
\(462\) 13.9236 + 20.6955i 0.647785 + 0.962842i
\(463\) 19.8337i 0.921748i −0.887465 0.460874i \(-0.847536\pi\)
0.887465 0.460874i \(-0.152464\pi\)
\(464\) 21.0604 0.977703
\(465\) −0.222223 0.330304i −0.0103054 0.0153175i
\(466\) −18.8773 −0.874475
\(467\) 16.6061i 0.768439i 0.923242 + 0.384220i \(0.125529\pi\)
−0.923242 + 0.384220i \(0.874471\pi\)
\(468\) −20.5454 20.1102i −0.949709 0.929596i
\(469\) 3.92021i 0.181018i
\(470\) 18.8976i 0.871681i
\(471\) 4.22486 + 6.27966i 0.194671 + 0.289351i
\(472\) −9.17406 −0.422270
\(473\) −5.51555 −0.253605
\(474\) −16.9382 25.1763i −0.777999 1.15639i
\(475\) 17.6848 5.72009i 0.811433 0.262456i
\(476\) 14.9173 0.683734
\(477\) 13.6253 33.4949i 0.623861 1.53363i
\(478\) 2.41883i 0.110635i
\(479\) −39.7954 −1.81830 −0.909148 0.416473i \(-0.863266\pi\)
−0.909148 + 0.416473i \(0.863266\pi\)
\(480\) 9.49090 6.38533i 0.433198 0.291449i
\(481\) −4.64537 + 11.3543i −0.211811 + 0.517711i
\(482\) 40.9011i 1.86299i
\(483\) 6.45529 + 9.59489i 0.293726 + 0.436583i
\(484\) −6.61767 −0.300803
\(485\) −16.4068 −0.744995
\(486\) −33.0969 6.03846i −1.50131 0.273910i
\(487\) −15.8530 −0.718367 −0.359184 0.933267i \(-0.616945\pi\)
−0.359184 + 0.933267i \(0.616945\pi\)
\(488\) 11.2404i 0.508831i
\(489\) 15.5441 10.4578i 0.702927 0.472918i
\(490\) 6.84907i 0.309410i
\(491\) 4.80604i 0.216894i −0.994102 0.108447i \(-0.965412\pi\)
0.994102 0.108447i \(-0.0345877\pi\)
\(492\) −36.0226 + 24.2354i −1.62402 + 1.09262i
\(493\) 28.8982i 1.30151i
\(494\) −33.8223 2.55929i −1.52174 0.115148i
\(495\) 3.56161 8.75545i 0.160083 0.393528i
\(496\) 0.603224 0.0270856
\(497\) −16.3778 −0.734643
\(498\) −9.49905 + 6.39081i −0.425663 + 0.286379i
\(499\) 37.4295i 1.67558i −0.545996 0.837788i \(-0.683849\pi\)
0.545996 0.837788i \(-0.316151\pi\)
\(500\) −21.1226 −0.944630
\(501\) 16.1956 10.8962i 0.723568 0.486805i
\(502\) 17.3582 0.774736
\(503\) 3.96345i 0.176721i 0.996089 + 0.0883607i \(0.0281628\pi\)
−0.996089 + 0.0883607i \(0.971837\pi\)
\(504\) −2.91597 + 7.16827i −0.129887 + 0.319300i
\(505\) 9.26579i 0.412322i
\(506\) −29.1313 −1.29504
\(507\) −4.13028 + 22.1346i −0.183432 + 0.983032i
\(508\) 7.36897i 0.326945i
\(509\) 14.4113i 0.638770i 0.947625 + 0.319385i \(0.103476\pi\)
−0.947625 + 0.319385i \(0.896524\pi\)
\(510\) −5.52987 8.21938i −0.244867 0.363960i
\(511\) −19.0949 −0.844707
\(512\) 23.7263i 1.04856i
\(513\) −19.6702 + 11.2287i −0.868460 + 0.495759i
\(514\) 14.6145i 0.644618i
\(515\) 14.3168i 0.630872i
\(516\) −3.85905 5.73594i −0.169885 0.252511i
\(517\) −37.4894 −1.64878
\(518\) 13.3409 0.586167
\(519\) 4.83261 + 7.18300i 0.212128 + 0.315299i
\(520\) 4.06461 + 1.66295i 0.178245 + 0.0729251i
\(521\) −2.11238 −0.0925449 −0.0462725 0.998929i \(-0.514734\pi\)
−0.0462725 + 0.998929i \(0.514734\pi\)
\(522\) 56.1019 + 22.8216i 2.45551 + 0.998874i
\(523\) 8.40511i 0.367530i −0.982970 0.183765i \(-0.941172\pi\)
0.982970 0.183765i \(-0.0588285\pi\)
\(524\) 9.20271i 0.402022i
\(525\) −11.1329 + 7.49001i −0.485878 + 0.326891i
\(526\) 61.4443 2.67910
\(527\) 0.827720i 0.0360560i
\(528\) 7.99490 + 11.8833i 0.347933 + 0.517154i
\(529\) 9.49409 0.412786
\(530\) 22.3157i 0.969330i
\(531\) 17.9549 + 7.30383i 0.779176 + 0.316959i
\(532\) 6.47750 + 20.0265i 0.280835 + 0.868257i
\(533\) 31.4717 + 12.8760i 1.36319 + 0.557721i
\(534\) 12.8869 + 19.1546i 0.557670 + 0.828899i
\(535\) 7.40893 0.320316
\(536\) 3.06381i 0.132336i
\(537\) 11.6131 + 17.2612i 0.501141 + 0.744877i
\(538\) 36.0892i 1.55592i
\(539\) 13.5873 0.585248
\(540\) 11.5972 2.42197i 0.499066 0.104225i
\(541\) 2.64466i 0.113703i 0.998383 + 0.0568515i \(0.0181061\pi\)
−0.998383 + 0.0568515i \(0.981894\pi\)
\(542\) −38.8571 −1.66905
\(543\) −16.5772 + 11.1529i −0.711396 + 0.478616i
\(544\) 23.7836 1.01971
\(545\) −13.4379 −0.575615
\(546\) 23.9792 4.95762i 1.02621 0.212167i
\(547\) 4.78305i 0.204508i −0.994758 0.102254i \(-0.967394\pi\)
0.994758 0.102254i \(-0.0326055\pi\)
\(548\) −11.4345 −0.488459
\(549\) −8.94896 + 21.9991i −0.381932 + 0.938898i
\(550\) 33.8008i 1.44127i
\(551\) 38.7958 12.5484i 1.65276 0.534579i
\(552\) −5.04508 7.49881i −0.214733 0.319170i
\(553\) 14.7473 0.627119
\(554\) 56.4059i 2.39646i
\(555\) −2.82201 4.19453i −0.119788 0.178048i
\(556\) 43.3357 1.83784
\(557\) −9.41694 −0.399009 −0.199504 0.979897i \(-0.563933\pi\)
−0.199504 + 0.979897i \(0.563933\pi\)
\(558\) 1.60691 + 0.653670i 0.0680257 + 0.0276721i
\(559\) −2.05027 + 5.01129i −0.0867170 + 0.211955i
\(560\) 3.50877i 0.148272i
\(561\) 16.3058 10.9703i 0.688431 0.463166i
\(562\) −28.4368 −1.19954
\(563\) 5.62182 0.236932 0.118466 0.992958i \(-0.462202\pi\)
0.118466 + 0.992958i \(0.462202\pi\)
\(564\) −26.2301 38.9875i −1.10449 1.64167i
\(565\) −15.5477 −0.654095
\(566\) 29.7660i 1.25116i
\(567\) 11.4139 11.7078i 0.479338 0.491680i
\(568\) 12.7999 0.537072
\(569\) 9.26480 0.388401 0.194200 0.980962i \(-0.437789\pi\)
0.194200 + 0.980962i \(0.437789\pi\)
\(570\) 8.63329 10.9929i 0.361609 0.460443i
\(571\) 10.6847 0.447140 0.223570 0.974688i \(-0.428229\pi\)
0.223570 + 0.974688i \(0.428229\pi\)
\(572\) −13.3280 + 32.5765i −0.557272 + 1.36209i
\(573\) −8.93739 + 6.01293i −0.373365 + 0.251194i
\(574\) 36.9783i 1.54344i
\(575\) 15.6708i 0.653517i
\(576\) −13.6924 + 33.6598i −0.570517 + 1.40249i
\(577\) 11.3439i 0.472252i 0.971722 + 0.236126i \(0.0758778\pi\)
−0.971722 + 0.236126i \(0.924122\pi\)
\(578\) 16.0924i 0.669356i
\(579\) 23.4041 + 34.7869i 0.972639 + 1.44569i
\(580\) −21.3283 −0.885610
\(581\) 5.56417i 0.230840i
\(582\) 59.3191 39.9090i 2.45886 1.65428i
\(583\) −44.2703 −1.83349
\(584\) 14.9234 0.617535
\(585\) −6.63105 6.49061i −0.274160 0.268354i
\(586\) −35.1794 −1.45325
\(587\) 8.07861 0.333440 0.166720 0.986004i \(-0.446682\pi\)
0.166720 + 0.986004i \(0.446682\pi\)
\(588\) 9.50662 + 14.1303i 0.392047 + 0.582722i
\(589\) 1.11121 0.359418i 0.0457867 0.0148096i
\(590\) −11.9623 −0.492479
\(591\) −8.56713 12.7338i −0.352405 0.523800i
\(592\) 7.66034 0.314838
\(593\) −15.8318 −0.650133 −0.325066 0.945691i \(-0.605387\pi\)
−0.325066 + 0.945691i \(0.605387\pi\)
\(594\) 8.42024 + 40.3190i 0.345487 + 1.65431i
\(595\) 4.81459 0.197379
\(596\) −22.8076 −0.934237
\(597\) −21.2936 31.6500i −0.871491 1.29535i
\(598\) −10.8288 + 26.4680i −0.442824 + 1.08236i
\(599\) −17.6984 −0.723138 −0.361569 0.932345i \(-0.617759\pi\)
−0.361569 + 0.932345i \(0.617759\pi\)
\(600\) 8.70079 5.85376i 0.355208 0.238979i
\(601\) 2.15360i 0.0878473i −0.999035 0.0439236i \(-0.986014\pi\)
0.999035 0.0439236i \(-0.0139858\pi\)
\(602\) 5.88812 0.239982
\(603\) −2.43922 + 5.99629i −0.0993327 + 0.244188i
\(604\) 36.2785 1.47615
\(605\) −2.13586 −0.0868352
\(606\) −22.5387 33.5007i −0.915573 1.36087i
\(607\) 27.2405i 1.10566i −0.833294 0.552829i \(-0.813548\pi\)
0.833294 0.552829i \(-0.186452\pi\)
\(608\) 10.3275 + 31.9294i 0.418834 + 1.29491i
\(609\) −24.4226 + 16.4311i −0.989653 + 0.665823i
\(610\) 14.6567i 0.593431i
\(611\) −13.9358 + 34.0620i −0.563780 + 1.37800i
\(612\) 22.8173 + 9.28179i 0.922334 + 0.375194i
\(613\) 13.7766i 0.556432i −0.960519 0.278216i \(-0.910257\pi\)
0.960519 0.278216i \(-0.0897431\pi\)
\(614\) 4.05789i 0.163763i
\(615\) −11.6263 + 7.82202i −0.468820 + 0.315414i
\(616\) 9.47431 0.381731
\(617\) −41.3065 −1.66294 −0.831469 0.555571i \(-0.812500\pi\)
−0.831469 + 0.555571i \(0.812500\pi\)
\(618\) 34.8250 + 51.7626i 1.40087 + 2.08220i
\(619\) 34.8380i 1.40026i 0.714017 + 0.700129i \(0.246874\pi\)
−0.714017 + 0.700129i \(0.753126\pi\)
\(620\) −0.610898 −0.0245343
\(621\) 3.90381 + 18.6928i 0.156655 + 0.750115i
\(622\) 21.3377 0.855562
\(623\) −11.2200 −0.449519
\(624\) 13.7688 2.84665i 0.551193 0.113957i
\(625\) 14.5032 0.580129
\(626\) 19.5679i 0.782089i
\(627\) 21.8080 + 17.1269i 0.870928 + 0.683983i
\(628\) 11.6143 0.463459
\(629\) 10.5112i 0.419109i
\(630\) −3.80220 + 9.34687i −0.151483 + 0.372388i
\(631\) 8.39841i 0.334335i −0.985928 0.167168i \(-0.946538\pi\)
0.985928 0.167168i \(-0.0534621\pi\)
\(632\) −11.5256 −0.458464
\(633\) −13.7331 + 9.23940i −0.545841 + 0.367233i
\(634\) −26.5629 −1.05495
\(635\) 2.37835i 0.0943819i
\(636\) −30.9745 46.0392i −1.22822 1.82557i
\(637\) 5.05075 12.3451i 0.200118 0.489132i
\(638\) 74.1500i 2.93563i
\(639\) −25.0511 10.1905i −0.991008 0.403130i
\(640\) 9.21697i 0.364333i
\(641\) −20.7795 −0.820742 −0.410371 0.911919i \(-0.634601\pi\)
−0.410371 + 0.911919i \(0.634601\pi\)
\(642\) −26.7871 + 18.0220i −1.05720 + 0.711271i
\(643\) 27.1734i 1.07161i 0.844340 + 0.535807i \(0.179993\pi\)
−0.844340 + 0.535807i \(0.820007\pi\)
\(644\) 17.7458 0.699282
\(645\) −1.24551 1.85128i −0.0490421 0.0728942i
\(646\) 27.6517 8.94387i 1.08794 0.351892i
\(647\) 5.74840i 0.225993i 0.993595 + 0.112996i \(0.0360448\pi\)
−0.993595 + 0.112996i \(0.963955\pi\)
\(648\) −8.92043 + 9.15010i −0.350427 + 0.359450i
\(649\) 23.7310i 0.931523i
\(650\) −30.7106 12.5646i −1.20457 0.492823i
\(651\) −0.699527 + 0.470631i −0.0274166 + 0.0184455i
\(652\) 28.7488i 1.12589i
\(653\) 40.3384i 1.57856i 0.614031 + 0.789282i \(0.289547\pi\)
−0.614031 + 0.789282i \(0.710453\pi\)
\(654\) 48.5849 32.6872i 1.89982 1.27817i
\(655\) 2.97019i 0.116055i
\(656\) 21.2328i 0.829003i
\(657\) −29.2072 11.8811i −1.13948 0.463527i
\(658\) 40.0218 1.56021
\(659\) 21.2889 0.829299 0.414649 0.909981i \(-0.363904\pi\)
0.414649 + 0.909981i \(0.363904\pi\)
\(660\) −8.09662 12.0345i −0.315160 0.468442i
\(661\) −3.67929 −0.143108 −0.0715539 0.997437i \(-0.522796\pi\)
−0.0715539 + 0.997437i \(0.522796\pi\)
\(662\) 2.15163i 0.0836254i
\(663\) −3.90607 18.8930i −0.151699 0.733743i
\(664\) 4.34863i 0.168759i
\(665\) 2.09062 + 6.46358i 0.0810709 + 0.250647i
\(666\) 20.4061 + 8.30095i 0.790720 + 0.321655i
\(667\) 34.3776i 1.33111i
\(668\) 29.9539i 1.15895i
\(669\) 8.61096 + 12.7990i 0.332919 + 0.494838i
\(670\) 3.99497i 0.154339i
\(671\) 29.0762 1.12248
\(672\) −13.5230 20.1001i −0.521662 0.775377i
\(673\) 30.1463i 1.16206i 0.813884 + 0.581028i \(0.197349\pi\)
−0.813884 + 0.581028i \(0.802651\pi\)
\(674\) −15.6065 −0.601141
\(675\) −21.6890 + 4.52955i −0.834812 + 0.174343i
\(676\) 24.6439 + 24.2190i 0.947842 + 0.931500i
\(677\) −0.634202 −0.0243744 −0.0121872 0.999926i \(-0.503879\pi\)
−0.0121872 + 0.999926i \(0.503879\pi\)
\(678\) 56.2128 37.8191i 2.15884 1.45243i
\(679\) 34.7468i 1.33346i
\(680\) −3.76280 −0.144297
\(681\) 23.6399 15.9045i 0.905881 0.609463i
\(682\) 2.12385i 0.0813264i
\(683\) 11.1644i 0.427195i 0.976922 + 0.213597i \(0.0685181\pi\)
−0.976922 + 0.213597i \(0.931482\pi\)
\(684\) −2.55291 + 34.6625i −0.0976131 + 1.32536i
\(685\) −3.69051 −0.141007
\(686\) −41.9518 −1.60173
\(687\) −24.8371 + 16.7100i −0.947594 + 0.637526i
\(688\) 3.38094 0.128897
\(689\) −16.4564 + 40.2229i −0.626938 + 1.53237i
\(690\) −6.57840 9.77787i −0.250435 0.372237i
\(691\) 23.0728i 0.877732i 0.898552 + 0.438866i \(0.144620\pi\)
−0.898552 + 0.438866i \(0.855380\pi\)
\(692\) 13.2850 0.505020
\(693\) −18.5425 7.54288i −0.704372 0.286530i
\(694\) −12.0410 −0.457071
\(695\) 13.9867 0.530545
\(696\) 19.0873 12.8416i 0.723501 0.486760i
\(697\) −29.1349 −1.10356
\(698\) −43.5590 −1.64873
\(699\) 12.5698 8.45675i 0.475432 0.319864i
\(700\) 20.5903i 0.778239i
\(701\) 29.7860i 1.12500i −0.826796 0.562501i \(-0.809839\pi\)
0.826796 0.562501i \(-0.190161\pi\)
\(702\) 39.7629 + 7.33714i 1.50075 + 0.276923i
\(703\) 14.1113 4.56425i 0.532217 0.172144i
\(704\) 44.4883 1.67671
\(705\) −8.46583 12.5833i −0.318841 0.473913i
\(706\) 33.6875i 1.26784i
\(707\) 19.6234 0.738012
\(708\) 24.6793 16.6038i 0.927503 0.624010i
\(709\) 14.3758i 0.539893i −0.962875 0.269947i \(-0.912994\pi\)
0.962875 0.269947i \(-0.0870061\pi\)
\(710\) 16.6901 0.626368
\(711\) 22.5572 + 9.17600i 0.845961 + 0.344127i
\(712\) 8.76888 0.328628
\(713\) 0.984664i 0.0368760i
\(714\) −17.4072 + 11.7113i −0.651450 + 0.438285i
\(715\) −4.30163 + 10.5141i −0.160872 + 0.393206i
\(716\) 31.9247 1.19308
\(717\) −1.08360 1.61062i −0.0404677 0.0601496i
\(718\) 35.2108i 1.31405i
\(719\) 21.3182i 0.795036i 0.917594 + 0.397518i \(0.130128\pi\)
−0.917594 + 0.397518i \(0.869872\pi\)
\(720\) −2.18321 + 5.36695i −0.0813635 + 0.200014i
\(721\) −30.3204 −1.12919
\(722\) 24.0143 + 33.2387i 0.893718 + 1.23702i
\(723\) −18.3231 27.2347i −0.681442 1.01287i
\(724\) 30.6596i 1.13945i
\(725\) 39.8880 1.48140
\(726\) 7.72226 5.19541i 0.286600 0.192820i
\(727\) 35.9481 1.33324 0.666621 0.745397i \(-0.267740\pi\)
0.666621 + 0.745397i \(0.267740\pi\)
\(728\) 3.52184 8.60813i 0.130528 0.319039i
\(729\) 24.7432 10.8061i 0.916417 0.400226i
\(730\) 19.4590 0.720210
\(731\) 4.63919i 0.171587i
\(732\) 20.3437 + 30.2381i 0.751925 + 1.11763i
\(733\) 17.2584i 0.637452i −0.947847 0.318726i \(-0.896745\pi\)
0.947847 0.318726i \(-0.103255\pi\)
\(734\) 19.5062i 0.719987i
\(735\) 3.06828 + 4.56057i 0.113175 + 0.168219i
\(736\) 28.2932 1.04290
\(737\) 7.92531 0.291932
\(738\) 23.0085 56.5614i 0.846954 2.08205i
\(739\) 11.7619i 0.432670i 0.976319 + 0.216335i \(0.0694104\pi\)
−0.976319 + 0.216335i \(0.930590\pi\)
\(740\) −7.75779 −0.285182
\(741\) 23.6677 13.4477i 0.869454 0.494015i
\(742\) 47.2607 1.73500
\(743\) 49.4580i 1.81444i −0.420658 0.907219i \(-0.638201\pi\)
0.420658 0.907219i \(-0.361799\pi\)
\(744\) 0.546709 0.367817i 0.0200433 0.0134848i
\(745\) −7.36120 −0.269694
\(746\) −53.9043 −1.97357
\(747\) 3.46211 8.51086i 0.126672 0.311396i
\(748\) 30.1576i 1.10267i
\(749\) 15.6908i 0.573331i
\(750\) 24.6482 16.5830i 0.900027 0.605524i
\(751\) 37.9459i 1.38466i −0.721579 0.692332i \(-0.756583\pi\)
0.721579 0.692332i \(-0.243417\pi\)
\(752\) 22.9804 0.838010
\(753\) −11.5583 + 7.77622i −0.421207 + 0.283381i
\(754\) −67.3709 27.5634i −2.45350 1.00380i
\(755\) 11.7089 0.426132
\(756\) −5.12932 24.5610i −0.186552 0.893273i
\(757\) −36.0703 −1.31100 −0.655498 0.755197i \(-0.727541\pi\)
−0.655498 + 0.755197i \(0.727541\pi\)
\(758\) 59.6762i 2.16754i
\(759\) 19.3975 13.0504i 0.704086 0.473698i
\(760\) −1.63391 5.05155i −0.0592681 0.183239i
\(761\) 26.8339 0.972730 0.486365 0.873756i \(-0.338323\pi\)
0.486365 + 0.873756i \(0.338323\pi\)
\(762\) 5.78525 + 8.59897i 0.209577 + 0.311508i
\(763\) 28.4591i 1.03029i
\(764\) 16.5297i 0.598025i
\(765\) 7.36431 + 2.99572i 0.266257 + 0.108310i
\(766\) 18.0521 0.652249
\(767\) −21.5614 8.82141i −0.778538 0.318522i
\(768\) −1.00237 1.48988i −0.0361698 0.0537613i
\(769\) 3.49339i 0.125975i −0.998014 0.0629874i \(-0.979937\pi\)
0.998014 0.0629874i \(-0.0200628\pi\)
\(770\) 12.3538 0.445199
\(771\) −6.54707 9.73131i −0.235787 0.350464i
\(772\) 64.3384 2.31559
\(773\) 37.5373i 1.35012i 0.737761 + 0.675062i \(0.235883\pi\)
−0.737761 + 0.675062i \(0.764117\pi\)
\(774\) 9.00637 + 3.66368i 0.323727 + 0.131688i
\(775\) 1.14250 0.0410397
\(776\) 27.1561i 0.974846i
\(777\) −8.88329 + 5.97653i −0.318686 + 0.214407i
\(778\) 42.1431 1.51090
\(779\) −12.6511 39.1135i −0.453274 1.40139i
\(780\) −13.9440 + 2.88287i −0.499274 + 0.103223i
\(781\) 33.1101i 1.18477i
\(782\) 24.5027i 0.876214i
\(783\) −47.5801 + 9.93666i −1.70037 + 0.355107i
\(784\) −8.32883 −0.297458
\(785\) 3.74852 0.133790
\(786\) 7.22488 + 10.7388i 0.257703 + 0.383040i
\(787\) −26.0445 −0.928387 −0.464194 0.885734i \(-0.653656\pi\)
−0.464194 + 0.885734i \(0.653656\pi\)
\(788\) −23.5513 −0.838980
\(789\) −40.9137 + 27.5261i −1.45657 + 0.979956i
\(790\) −15.0285 −0.534691
\(791\) 32.9272i 1.17076i
\(792\) 14.4918 + 5.89507i 0.514942 + 0.209472i
\(793\) 10.8084 26.4180i 0.383816 0.938129i
\(794\) 66.5622 2.36221
\(795\) −9.99707 14.8592i −0.354559 0.527003i
\(796\) −58.5369 −2.07478
\(797\) 18.9794 0.672284 0.336142 0.941811i \(-0.390878\pi\)
0.336142 + 0.941811i \(0.390878\pi\)
\(798\) −23.2811 18.2838i −0.824142 0.647240i
\(799\) 31.5328i 1.11555i
\(800\) 32.8283i 1.16066i
\(801\) −17.1619 6.98125i −0.606386 0.246670i
\(802\) 4.42831 0.156369
\(803\) 38.6032i 1.36228i
\(804\) 5.54508 + 8.24199i 0.195560 + 0.290672i
\(805\) 5.72749 0.201867
\(806\) −1.92968 0.789488i −0.0679700 0.0278085i
\(807\) −16.1674 24.0306i −0.569120 0.845917i
\(808\) −15.3365 −0.539535
\(809\) 45.7368i 1.60802i −0.594616 0.804010i \(-0.702696\pi\)
0.594616 0.804010i \(-0.297304\pi\)
\(810\) −11.6315 + 11.9310i −0.408691 + 0.419214i
\(811\) −2.70738 −0.0950689 −0.0475344 0.998870i \(-0.515136\pi\)
−0.0475344 + 0.998870i \(0.515136\pi\)
\(812\) 45.1697i 1.58514i
\(813\) 25.8736 17.4074i 0.907427 0.610503i
\(814\) 26.9708i 0.945325i
\(815\) 9.27873i 0.325020i
\(816\) −9.99520 + 6.72461i −0.349902 + 0.235408i
\(817\) 6.22811 2.01446i 0.217894 0.0704772i
\(818\) 53.9246i 1.88543i
\(819\) −13.7460 + 14.0434i −0.480324 + 0.490717i
\(820\) 21.5030i 0.750916i
\(821\) 15.2253 0.531366 0.265683 0.964061i \(-0.414403\pi\)
0.265683 + 0.964061i \(0.414403\pi\)
\(822\) 13.3431 8.97704i 0.465395 0.313110i
\(823\) −24.0896 −0.839712 −0.419856 0.907591i \(-0.637919\pi\)
−0.419856 + 0.907591i \(0.637919\pi\)
\(824\) 23.6967 0.825513
\(825\) 15.1422 + 22.5068i 0.527184 + 0.783586i
\(826\) 25.3340i 0.881483i
\(827\) 16.9309i 0.588747i 0.955691 + 0.294373i \(0.0951109\pi\)
−0.955691 + 0.294373i \(0.904889\pi\)
\(828\) 27.1437 + 11.0417i 0.943308 + 0.383726i
\(829\) 27.5950i 0.958415i 0.877702 + 0.479207i \(0.159076\pi\)
−0.877702 + 0.479207i \(0.840924\pi\)
\(830\) 5.67027i 0.196818i
\(831\) −25.2690 37.5588i −0.876571 1.30290i
\(832\) 16.5374 40.4210i 0.573331 1.40134i
\(833\) 11.4285i 0.395973i
\(834\) −50.5691 + 34.0221i −1.75106 + 1.17809i
\(835\) 9.66767i 0.334564i
\(836\) 40.4866 13.0953i 1.40026 0.452909i
\(837\) −1.36282 + 0.284612i −0.0471059 + 0.00983762i
\(838\) 27.6225 0.954203
\(839\) 25.0645i 0.865321i −0.901557 0.432661i \(-0.857575\pi\)
0.901557 0.432661i \(-0.142425\pi\)
\(840\) 2.13948 + 3.18004i 0.0738190 + 0.109722i
\(841\) 58.5038 2.01737
\(842\) 5.54148i 0.190972i
\(843\) 18.9351 12.7393i 0.652161 0.438763i
\(844\) 25.3994i 0.874283i
\(845\) 7.95386 + 7.81672i 0.273621 + 0.268903i
\(846\) 61.2167 + 24.9022i 2.10467 + 0.856156i
\(847\) 4.52339i 0.155426i
\(848\) 27.1370 0.931888
\(849\) −13.3347 19.8202i −0.457646 0.680226i
\(850\) 28.4302 0.975149
\(851\) 12.5042i 0.428640i
\(852\) −34.4332 + 23.1661i −1.17966 + 0.793657i
\(853\) 44.4341i 1.52140i 0.649106 + 0.760698i \(0.275143\pi\)
−0.649106 + 0.760698i \(0.724857\pi\)
\(854\) −31.0403 −1.06218
\(855\) −0.823958 + 11.1874i −0.0281788 + 0.382601i
\(856\) 12.2630i 0.419142i
\(857\) −12.3062 −0.420371 −0.210186 0.977662i \(-0.567407\pi\)
−0.210186 + 0.977662i \(0.567407\pi\)
\(858\) −10.0226 48.4776i −0.342166 1.65500i
\(859\) −7.51594 −0.256441 −0.128220 0.991746i \(-0.540926\pi\)
−0.128220 + 0.991746i \(0.540926\pi\)
\(860\) −3.42396 −0.116756
\(861\) 16.5657 + 24.6226i 0.564557 + 0.839136i
\(862\) 31.5068 1.07313
\(863\) 18.1537i 0.617960i −0.951069 0.308980i \(-0.900012\pi\)
0.951069 0.308980i \(-0.0999876\pi\)
\(864\) −8.17799 39.1590i −0.278221 1.33222i
\(865\) 4.28776 0.145788
\(866\) −23.2977 −0.791687
\(867\) −7.20915 10.7154i −0.244836 0.363914i
\(868\) 1.29378i 0.0439137i
\(869\) 29.8139i 1.01137i
\(870\) 24.8883 16.7445i 0.843793 0.567691i
\(871\) 2.94603 7.20074i 0.0998225 0.243988i
\(872\) 22.2420i 0.753208i
\(873\) −21.6200 + 53.1481i −0.731727 + 1.79879i
\(874\) 32.8948 10.6397i 1.11268 0.359894i
\(875\) 14.4380i 0.488092i
\(876\) −40.1457 + 27.0094i −1.35640 + 0.912563i
\(877\) 40.6939 1.37413 0.687067 0.726594i \(-0.258898\pi\)
0.687067 + 0.726594i \(0.258898\pi\)
\(878\) −75.4051 −2.54480
\(879\) 23.4248 15.7598i 0.790099 0.531566i
\(880\) 7.09351 0.239122
\(881\) 5.77172i 0.194454i 0.995262 + 0.0972271i \(0.0309973\pi\)
−0.995262 + 0.0972271i \(0.969003\pi\)
\(882\) −22.1868 9.02535i −0.747070 0.303899i
\(883\) −8.40361 −0.282804 −0.141402 0.989952i \(-0.545161\pi\)
−0.141402 + 0.989952i \(0.545161\pi\)
\(884\) −27.4005 11.2103i −0.921579 0.377045i
\(885\) 7.96527 5.35891i 0.267750 0.180138i
\(886\) −86.9916 −2.92254
\(887\) 46.5170 1.56189 0.780944 0.624601i \(-0.214739\pi\)
0.780944 + 0.624601i \(0.214739\pi\)
\(888\) 6.94266 4.67091i 0.232980 0.156745i
\(889\) −5.03693 −0.168933
\(890\) 11.4339 0.383267
\(891\) −23.6690 23.0749i −0.792943 0.773039i
\(892\) 23.6718 0.792590
\(893\) 42.3328 13.6924i 1.41661 0.458199i
\(894\) 26.6146 17.9059i 0.890124 0.598862i
\(895\) 10.3038 0.344416
\(896\) −19.5200 −0.652116
\(897\) −4.64670 22.4753i −0.155149 0.750428i
\(898\) 36.0832 1.20411
\(899\) 2.50634 0.0835911
\(900\) −12.8116 + 31.4945i −0.427053 + 1.04982i
\(901\) 37.2363i 1.24052i
\(902\) −74.7573 −2.48914
\(903\) −3.92070 + 2.63779i −0.130473 + 0.0877800i
\(904\) 25.7340i 0.855901i
\(905\) 9.89544i 0.328935i
\(906\) −42.3339 + 28.4816i −1.40645 + 0.946238i
\(907\) 18.5854i 0.617117i −0.951205 0.308559i \(-0.900153\pi\)
0.951205 0.308559i \(-0.0998466\pi\)
\(908\) 43.7220i 1.45097i
\(909\) 30.0156 + 12.2100i 0.995553 + 0.404979i
\(910\) 4.59221 11.2243i 0.152230 0.372083i
\(911\) −23.0943 −0.765149 −0.382575 0.923925i \(-0.624963\pi\)
−0.382575 + 0.923925i \(0.624963\pi\)
\(912\) −13.3680 10.4985i −0.442657 0.347641i
\(913\) −11.2488 −0.372281
\(914\) −63.5250 −2.10122
\(915\) 6.56596 + 9.75939i 0.217064 + 0.322635i
\(916\) 45.9363i 1.51778i
\(917\) −6.29035 −0.207726
\(918\) −33.9128 + 7.08237i −1.11929 + 0.233753i
\(919\) −4.92461 −0.162448 −0.0812239 0.996696i \(-0.525883\pi\)
−0.0812239 + 0.996696i \(0.525883\pi\)
\(920\) −4.47627 −0.147578
\(921\) 1.81787 + 2.70202i 0.0599010 + 0.0890344i
\(922\) 29.0778i 0.957625i
\(923\) 30.0831 + 12.3079i 0.990197 + 0.405118i
\(924\) −25.4870 + 17.1472i −0.838460 + 0.564103i
\(925\) 14.5086 0.477038
\(926\) 42.8053 1.40667
\(927\) −46.3776 18.8659i −1.52324 0.619637i
\(928\) 72.0167i 2.36406i
\(929\) −1.28750 −0.0422416 −0.0211208 0.999777i \(-0.506723\pi\)
−0.0211208 + 0.999777i \(0.506723\pi\)
\(930\) 0.712867 0.479606i 0.0233758 0.0157269i
\(931\) −15.3427 + 4.96256i −0.502837 + 0.162641i
\(932\) 23.2478i 0.761509i
\(933\) −14.2080 + 9.55894i −0.465150 + 0.312946i
\(934\) −35.8396 −1.17271
\(935\) 9.73343i 0.318317i
\(936\) 10.7431 10.9755i 0.351148 0.358746i
\(937\) 13.3116 0.434872 0.217436 0.976075i \(-0.430231\pi\)
0.217436 + 0.976075i \(0.430231\pi\)
\(938\) −8.46065 −0.276250
\(939\) 8.76610 + 13.0296i 0.286071 + 0.425205i
\(940\) −23.2728 −0.759075
\(941\) 2.87618i 0.0937608i −0.998901 0.0468804i \(-0.985072\pi\)
0.998901 0.0468804i \(-0.0149280\pi\)
\(942\) −13.5529 + 9.11815i −0.441576 + 0.297085i
\(943\) −34.6591 −1.12866
\(944\) 14.5467i 0.473456i
\(945\) −1.65550 7.92709i −0.0538534 0.257868i
\(946\) 11.9037i 0.387024i
\(947\) −23.7631 −0.772197 −0.386098 0.922458i \(-0.626177\pi\)
−0.386098 + 0.922458i \(0.626177\pi\)
\(948\) 31.0052 20.8598i 1.00700 0.677496i
\(949\) 35.0739 + 14.3498i 1.13855 + 0.465813i
\(950\) 12.3452 + 38.1675i 0.400530 + 1.23832i
\(951\) 17.6874 11.8998i 0.573552 0.385877i
\(952\) 7.96896i 0.258276i
\(953\) −25.0414 −0.811170 −0.405585 0.914057i \(-0.632932\pi\)
−0.405585 + 0.914057i \(0.632932\pi\)
\(954\) 72.2892 + 29.4064i 2.34045 + 0.952067i
\(955\) 5.33500i 0.172637i
\(956\) −2.97884 −0.0963426
\(957\) 33.2181 + 49.3740i 1.07379 + 1.59604i
\(958\) 85.8869i 2.77488i
\(959\) 7.81587i 0.252388i
\(960\) 10.0463 + 14.9324i 0.324243 + 0.481941i
\(961\) −30.9282 −0.997684
\(962\) −24.5050 10.0257i −0.790072 0.323242i
\(963\) 9.76310 24.0005i 0.314611 0.773404i
\(964\) −50.3706 −1.62233
\(965\) 20.7653 0.668460
\(966\) −20.7078 + 13.9319i −0.666264 + 0.448252i
\(967\) 6.13314i 0.197228i −0.995126 0.0986142i \(-0.968559\pi\)
0.995126 0.0986142i \(-0.0314410\pi\)
\(968\) 3.53522i 0.113626i
\(969\) −14.4057 + 18.3430i −0.462776 + 0.589261i
\(970\) 35.4094i 1.13693i
\(971\) 13.5663 0.435362 0.217681 0.976020i \(-0.430151\pi\)
0.217681 + 0.976020i \(0.430151\pi\)
\(972\) 7.43650 40.7596i 0.238526 1.30736i
\(973\) 29.6214i 0.949617i
\(974\) 34.2141i 1.09629i
\(975\) 26.0779 5.39152i 0.835160 0.172667i
\(976\) −17.8233 −0.570509
\(977\) 5.06439i 0.162024i −0.996713 0.0810121i \(-0.974185\pi\)
0.996713 0.0810121i \(-0.0258152\pi\)
\(978\) 22.5702 + 33.5474i 0.721715 + 1.07273i
\(979\) 22.6829i 0.724949i
\(980\) 8.43479 0.269440
\(981\) −17.7077 + 43.5306i −0.565364 + 1.38982i
\(982\) 10.3725 0.330999
\(983\) 39.6366i 1.26421i −0.774882 0.632106i \(-0.782191\pi\)
0.774882 0.632106i \(-0.217809\pi\)
\(984\) −12.9468 19.2436i −0.412728 0.613463i
\(985\) −7.60122 −0.242195
\(986\) 62.3685 1.98622
\(987\) −26.6492 + 17.9292i −0.848253 + 0.570691i
\(988\) 3.15183 41.6530i 0.100273 1.32516i
\(989\) 5.51884i 0.175489i
\(990\) 18.8961 + 7.68672i 0.600559 + 0.244300i
\(991\) 28.7752i 0.914074i 0.889448 + 0.457037i \(0.151089\pi\)
−0.889448 + 0.457037i \(0.848911\pi\)
\(992\) 2.06275i 0.0654923i
\(993\) 0.963896 + 1.43270i 0.0305883 + 0.0454653i
\(994\) 35.3467i 1.12113i
\(995\) −18.8929 −0.598944
\(996\) −7.87043 11.6983i −0.249384 0.370675i
\(997\) −55.6956 −1.76390 −0.881948 0.471347i \(-0.843768\pi\)
−0.881948 + 0.471347i \(0.843768\pi\)
\(998\) 80.7810 2.55708
\(999\) −17.3064 + 3.61428i −0.547551 + 0.114351i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 741.2.d.a.740.73 yes 88
3.2 odd 2 inner 741.2.d.a.740.15 yes 88
13.12 even 2 inner 741.2.d.a.740.13 88
19.18 odd 2 inner 741.2.d.a.740.16 yes 88
39.38 odd 2 inner 741.2.d.a.740.75 yes 88
57.56 even 2 inner 741.2.d.a.740.74 yes 88
247.246 odd 2 inner 741.2.d.a.740.76 yes 88
741.740 even 2 inner 741.2.d.a.740.14 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
741.2.d.a.740.13 88 13.12 even 2 inner
741.2.d.a.740.14 yes 88 741.740 even 2 inner
741.2.d.a.740.15 yes 88 3.2 odd 2 inner
741.2.d.a.740.16 yes 88 19.18 odd 2 inner
741.2.d.a.740.73 yes 88 1.1 even 1 trivial
741.2.d.a.740.74 yes 88 57.56 even 2 inner
741.2.d.a.740.75 yes 88 39.38 odd 2 inner
741.2.d.a.740.76 yes 88 247.246 odd 2 inner