Newspace parameters
| Level: | \( N \) | \(=\) | \( 741 = 3 \cdot 13 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 741.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.91691478978\) |
| Analytic rank: | \(0\) |
| Dimension: | \(88\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 740.1 | − | 2.65210i | −1.73061 | − | 0.0705726i | −5.03365 | 2.98448 | −0.187166 | + | 4.58976i | − | 2.41210i | 8.04555i | 2.99004 | + | 0.244268i | − | 7.91516i | |||||||||
| 740.2 | − | 2.65210i | −1.73061 | + | 0.0705726i | −5.03365 | −2.98448 | 0.187166 | + | 4.58976i | − | 2.41210i | 8.04555i | 2.99004 | − | 0.244268i | 7.91516i | ||||||||||
| 740.3 | − | 2.65210i | 1.73061 | − | 0.0705726i | −5.03365 | 2.98448 | −0.187166 | − | 4.58976i | 2.41210i | 8.04555i | 2.99004 | − | 0.244268i | − | 7.91516i | ||||||||||
| 740.4 | − | 2.65210i | 1.73061 | + | 0.0705726i | −5.03365 | −2.98448 | 0.187166 | − | 4.58976i | 2.41210i | 8.04555i | 2.99004 | + | 0.244268i | 7.91516i | |||||||||||
| 740.5 | − | 2.62189i | −0.572756 | − | 1.63461i | −4.87431 | 1.64471 | −4.28577 | + | 1.50170i | 4.37710i | 7.53612i | −2.34390 | + | 1.87247i | − | 4.31226i | ||||||||||
| 740.6 | − | 2.62189i | −0.572756 | + | 1.63461i | −4.87431 | −1.64471 | 4.28577 | + | 1.50170i | 4.37710i | 7.53612i | −2.34390 | − | 1.87247i | 4.31226i | |||||||||||
| 740.7 | − | 2.62189i | 0.572756 | − | 1.63461i | −4.87431 | 1.64471 | −4.28577 | − | 1.50170i | − | 4.37710i | 7.53612i | −2.34390 | − | 1.87247i | − | 4.31226i | |||||||||
| 740.8 | − | 2.62189i | 0.572756 | + | 1.63461i | −4.87431 | −1.64471 | 4.28577 | − | 1.50170i | − | 4.37710i | 7.53612i | −2.34390 | + | 1.87247i | 4.31226i | ||||||||||
| 740.9 | − | 2.19415i | −1.62296 | − | 0.604979i | −2.81428 | −1.77589 | −1.32741 | + | 3.56101i | 2.44560i | 1.78666i | 2.26800 | + | 1.96372i | 3.89657i | |||||||||||
| 740.10 | − | 2.19415i | −1.62296 | + | 0.604979i | −2.81428 | 1.77589 | 1.32741 | + | 3.56101i | 2.44560i | 1.78666i | 2.26800 | − | 1.96372i | − | 3.89657i | ||||||||||
| 740.11 | − | 2.19415i | 1.62296 | − | 0.604979i | −2.81428 | −1.77589 | −1.32741 | − | 3.56101i | − | 2.44560i | 1.78666i | 2.26800 | − | 1.96372i | 3.89657i | ||||||||||
| 740.12 | − | 2.19415i | 1.62296 | + | 0.604979i | −2.81428 | 1.77589 | 1.32741 | − | 3.56101i | − | 2.44560i | 1.78666i | 2.26800 | + | 1.96372i | − | 3.89657i | |||||||||
| 740.13 | − | 2.15821i | −0.966847 | − | 1.43708i | −2.65789 | 0.857839 | −3.10153 | + | 2.08666i | − | 1.81675i | 1.41987i | −1.13041 | + | 2.77888i | − | 1.85140i | |||||||||
| 740.14 | − | 2.15821i | −0.966847 | + | 1.43708i | −2.65789 | −0.857839 | 3.10153 | + | 2.08666i | − | 1.81675i | 1.41987i | −1.13041 | − | 2.77888i | 1.85140i | ||||||||||
| 740.15 | − | 2.15821i | 0.966847 | − | 1.43708i | −2.65789 | 0.857839 | −3.10153 | − | 2.08666i | 1.81675i | 1.41987i | −1.13041 | − | 2.77888i | − | 1.85140i | ||||||||||
| 740.16 | − | 2.15821i | 0.966847 | + | 1.43708i | −2.65789 | −0.857839 | 3.10153 | − | 2.08666i | 1.81675i | 1.41987i | −1.13041 | + | 2.77888i | 1.85140i | |||||||||||
| 740.17 | − | 1.74803i | −0.589028 | − | 1.62882i | −1.05561 | −3.20148 | −2.84722 | + | 1.02964i | − | 2.86061i | − | 1.65082i | −2.30609 | + | 1.91884i | 5.59629i | |||||||||
| 740.18 | − | 1.74803i | −0.589028 | + | 1.62882i | −1.05561 | 3.20148 | 2.84722 | + | 1.02964i | − | 2.86061i | − | 1.65082i | −2.30609 | − | 1.91884i | − | 5.59629i | ||||||||
| 740.19 | − | 1.74803i | 0.589028 | − | 1.62882i | −1.05561 | −3.20148 | −2.84722 | − | 1.02964i | 2.86061i | − | 1.65082i | −2.30609 | − | 1.91884i | 5.59629i | ||||||||||
| 740.20 | − | 1.74803i | 0.589028 | + | 1.62882i | −1.05561 | 3.20148 | 2.84722 | − | 1.02964i | 2.86061i | − | 1.65082i | −2.30609 | + | 1.91884i | − | 5.59629i | |||||||||
| See all 88 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 13.b | even | 2 | 1 | inner |
| 19.b | odd | 2 | 1 | inner |
| 39.d | odd | 2 | 1 | inner |
| 57.d | even | 2 | 1 | inner |
| 247.d | odd | 2 | 1 | inner |
| 741.d | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 741.2.d.a | ✓ | 88 |
| 3.b | odd | 2 | 1 | inner | 741.2.d.a | ✓ | 88 |
| 13.b | even | 2 | 1 | inner | 741.2.d.a | ✓ | 88 |
| 19.b | odd | 2 | 1 | inner | 741.2.d.a | ✓ | 88 |
| 39.d | odd | 2 | 1 | inner | 741.2.d.a | ✓ | 88 |
| 57.d | even | 2 | 1 | inner | 741.2.d.a | ✓ | 88 |
| 247.d | odd | 2 | 1 | inner | 741.2.d.a | ✓ | 88 |
| 741.d | even | 2 | 1 | inner | 741.2.d.a | ✓ | 88 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 741.2.d.a | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
| 741.2.d.a | ✓ | 88 | 3.b | odd | 2 | 1 | inner |
| 741.2.d.a | ✓ | 88 | 13.b | even | 2 | 1 | inner |
| 741.2.d.a | ✓ | 88 | 19.b | odd | 2 | 1 | inner |
| 741.2.d.a | ✓ | 88 | 39.d | odd | 2 | 1 | inner |
| 741.2.d.a | ✓ | 88 | 57.d | even | 2 | 1 | inner |
| 741.2.d.a | ✓ | 88 | 247.d | odd | 2 | 1 | inner |
| 741.2.d.a | ✓ | 88 | 741.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(741, [\chi])\).