Properties

Label 741.2.d.a.740.15
Level $741$
Weight $2$
Character 741.740
Analytic conductor $5.917$
Analytic rank $0$
Dimension $88$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [741,2,Mod(740,741)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("741.740"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(741, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 741 = 3 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 741.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.91691478978\)
Analytic rank: \(0\)
Dimension: \(88\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 740.15
Character \(\chi\) \(=\) 741.740
Dual form 741.2.d.a.740.76

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.15821i q^{2} +(0.966847 - 1.43708i) q^{3} -2.65789 q^{4} +0.857839 q^{5} +(-3.10153 - 2.08666i) q^{6} +1.81675i q^{7} +1.41987i q^{8} +(-1.13041 - 2.77888i) q^{9} -1.85140i q^{10} -3.67285 q^{11} +(-2.56977 + 3.81961i) q^{12} +(1.36529 - 3.33706i) q^{13} +3.92095 q^{14} +(0.829399 - 1.23279i) q^{15} -2.25140 q^{16} -3.08928i q^{17} +(-5.99742 + 2.43968i) q^{18} +(-4.14735 + 1.34145i) q^{19} -2.28004 q^{20} +(2.61083 + 1.75652i) q^{21} +7.92680i q^{22} -3.67504i q^{23} +(2.04047 + 1.37280i) q^{24} -4.26411 q^{25} +(-7.20210 - 2.94659i) q^{26} +(-5.08642 - 1.06225i) q^{27} -4.82874i q^{28} +9.35435 q^{29} +(-2.66062 - 1.79002i) q^{30} -0.267933 q^{31} +7.69874i q^{32} +(-3.55108 + 5.27819i) q^{33} -6.66733 q^{34} +1.55848i q^{35} +(3.00452 + 7.38595i) q^{36} -3.40248 q^{37} +(2.89513 + 8.95087i) q^{38} +(-3.47561 - 5.18846i) q^{39} +1.21802i q^{40} -9.43096i q^{41} +(3.79096 - 5.63473i) q^{42} -1.50171 q^{43} +9.76203 q^{44} +(-0.969713 - 2.38383i) q^{45} -7.93152 q^{46} +10.2072 q^{47} +(-2.17676 + 3.23545i) q^{48} +3.69940 q^{49} +9.20287i q^{50} +(-4.43955 - 2.98686i) q^{51} +(-3.62879 + 8.86955i) q^{52} +12.0534 q^{53} +(-2.29256 + 10.9776i) q^{54} -3.15071 q^{55} -2.57955 q^{56} +(-2.08208 + 7.25706i) q^{57} -20.1887i q^{58} +6.46120i q^{59} +(-2.20445 + 3.27661i) q^{60} +7.91653 q^{61} +0.578257i q^{62} +(5.04854 - 2.05369i) q^{63} +12.1127 q^{64} +(1.17120 - 2.86266i) q^{65} +(11.3915 + 7.66400i) q^{66} +2.15781 q^{67} +8.21097i q^{68} +(-5.28134 - 3.55320i) q^{69} +3.36354 q^{70} -9.01484i q^{71} +(3.94564 - 1.60504i) q^{72} +10.5104i q^{73} +7.34328i q^{74} +(-4.12274 + 6.12788i) q^{75} +(11.0232 - 3.56542i) q^{76} -6.67267i q^{77} +(-11.1978 + 7.50111i) q^{78} -8.11738i q^{79} -1.93134 q^{80} +(-6.44433 + 6.28257i) q^{81} -20.3540 q^{82} +3.06269 q^{83} +(-6.93929 - 4.66865i) q^{84} -2.65010i q^{85} +3.24101i q^{86} +(9.04422 - 13.4430i) q^{87} -5.21497i q^{88} -6.17584i q^{89} +(-5.14482 + 2.09285i) q^{90} +(6.06262 + 2.48040i) q^{91} +9.76785i q^{92} +(-0.259050 + 0.385042i) q^{93} -22.0293i q^{94} +(-3.55776 + 1.15075i) q^{95} +(11.0637 + 7.44350i) q^{96} +19.1257 q^{97} -7.98410i q^{98} +(4.15184 + 10.2064i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q - 88 q^{4} - 4 q^{9} + 72 q^{16} + 64 q^{25} - 60 q^{30} - 48 q^{36} + 20 q^{39} + 48 q^{42} - 64 q^{43} - 112 q^{49} - 24 q^{55} - 64 q^{61} - 104 q^{64} + 12 q^{66} + 60 q^{81} + 56 q^{82} - 32 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/741\mathbb{Z}\right)^\times\).

\(n\) \(40\) \(248\) \(457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.15821i 1.52609i −0.646346 0.763044i \(-0.723704\pi\)
0.646346 0.763044i \(-0.276296\pi\)
\(3\) 0.966847 1.43708i 0.558209 0.829700i
\(4\) −2.65789 −1.32895
\(5\) 0.857839 0.383637 0.191819 0.981430i \(-0.438561\pi\)
0.191819 + 0.981430i \(0.438561\pi\)
\(6\) −3.10153 2.08666i −1.26620 0.851877i
\(7\) 1.81675i 0.686669i 0.939213 + 0.343334i \(0.111556\pi\)
−0.939213 + 0.343334i \(0.888444\pi\)
\(8\) 1.41987i 0.502000i
\(9\) −1.13041 2.77888i −0.376805 0.926293i
\(10\) 1.85140i 0.585464i
\(11\) −3.67285 −1.10741 −0.553703 0.832714i \(-0.686786\pi\)
−0.553703 + 0.832714i \(0.686786\pi\)
\(12\) −2.56977 + 3.81961i −0.741830 + 1.10263i
\(13\) 1.36529 3.33706i 0.378663 0.925535i
\(14\) 3.92095 1.04792
\(15\) 0.829399 1.23279i 0.214150 0.318304i
\(16\) −2.25140 −0.562850
\(17\) 3.08928i 0.749260i −0.927174 0.374630i \(-0.877770\pi\)
0.927174 0.374630i \(-0.122230\pi\)
\(18\) −5.99742 + 2.43968i −1.41360 + 0.575037i
\(19\) −4.14735 + 1.34145i −0.951467 + 0.307749i
\(20\) −2.28004 −0.509833
\(21\) 2.61083 + 1.75652i 0.569729 + 0.383305i
\(22\) 7.92680i 1.69000i
\(23\) 3.67504i 0.766299i −0.923686 0.383149i \(-0.874839\pi\)
0.923686 0.383149i \(-0.125161\pi\)
\(24\) 2.04047 + 1.37280i 0.416509 + 0.280221i
\(25\) −4.26411 −0.852822
\(26\) −7.20210 2.94659i −1.41245 0.577873i
\(27\) −5.08642 1.06225i −0.978881 0.204430i
\(28\) 4.82874i 0.912545i
\(29\) 9.35435 1.73706 0.868529 0.495637i \(-0.165066\pi\)
0.868529 + 0.495637i \(0.165066\pi\)
\(30\) −2.66062 1.79002i −0.485760 0.326812i
\(31\) −0.267933 −0.0481222 −0.0240611 0.999710i \(-0.507660\pi\)
−0.0240611 + 0.999710i \(0.507660\pi\)
\(32\) 7.69874i 1.36096i
\(33\) −3.55108 + 5.27819i −0.618164 + 0.918815i
\(34\) −6.66733 −1.14344
\(35\) 1.55848i 0.263432i
\(36\) 3.00452 + 7.38595i 0.500753 + 1.23099i
\(37\) −3.40248 −0.559364 −0.279682 0.960093i \(-0.590229\pi\)
−0.279682 + 0.960093i \(0.590229\pi\)
\(38\) 2.89513 + 8.95087i 0.469653 + 1.45202i
\(39\) −3.47561 5.18846i −0.556543 0.830819i
\(40\) 1.21802i 0.192586i
\(41\) 9.43096i 1.47287i −0.676509 0.736434i \(-0.736508\pi\)
0.676509 0.736434i \(-0.263492\pi\)
\(42\) 3.79096 5.63473i 0.584957 0.869457i
\(43\) −1.50171 −0.229008 −0.114504 0.993423i \(-0.536528\pi\)
−0.114504 + 0.993423i \(0.536528\pi\)
\(44\) 9.76203 1.47168
\(45\) −0.969713 2.38383i −0.144556 0.355360i
\(46\) −7.93152 −1.16944
\(47\) 10.2072 1.48887 0.744435 0.667695i \(-0.232719\pi\)
0.744435 + 0.667695i \(0.232719\pi\)
\(48\) −2.17676 + 3.23545i −0.314188 + 0.466996i
\(49\) 3.69940 0.528486
\(50\) 9.20287i 1.30148i
\(51\) −4.43955 2.98686i −0.621661 0.418244i
\(52\) −3.62879 + 8.86955i −0.503223 + 1.22998i
\(53\) 12.0534 1.65566 0.827830 0.560979i \(-0.189575\pi\)
0.827830 + 0.560979i \(0.189575\pi\)
\(54\) −2.29256 + 10.9776i −0.311978 + 1.49386i
\(55\) −3.15071 −0.424842
\(56\) −2.57955 −0.344707
\(57\) −2.08208 + 7.25706i −0.275778 + 0.961221i
\(58\) 20.1887i 2.65091i
\(59\) 6.46120i 0.841176i 0.907252 + 0.420588i \(0.138176\pi\)
−0.907252 + 0.420588i \(0.861824\pi\)
\(60\) −2.20445 + 3.27661i −0.284593 + 0.423008i
\(61\) 7.91653 1.01361 0.506804 0.862061i \(-0.330827\pi\)
0.506804 + 0.862061i \(0.330827\pi\)
\(62\) 0.578257i 0.0734387i
\(63\) 5.04854 2.05369i 0.636056 0.258740i
\(64\) 12.1127 1.51409
\(65\) 1.17120 2.86266i 0.145269 0.355069i
\(66\) 11.3915 + 7.66400i 1.40219 + 0.943373i
\(67\) 2.15781 0.263618 0.131809 0.991275i \(-0.457921\pi\)
0.131809 + 0.991275i \(0.457921\pi\)
\(68\) 8.21097i 0.995726i
\(69\) −5.28134 3.55320i −0.635798 0.427755i
\(70\) 3.36354 0.402020
\(71\) 9.01484i 1.06986i −0.844895 0.534932i \(-0.820337\pi\)
0.844895 0.534932i \(-0.179663\pi\)
\(72\) 3.94564 1.60504i 0.464999 0.189156i
\(73\) 10.5104i 1.23015i 0.788468 + 0.615076i \(0.210875\pi\)
−0.788468 + 0.615076i \(0.789125\pi\)
\(74\) 7.34328i 0.853639i
\(75\) −4.12274 + 6.12788i −0.476053 + 0.707587i
\(76\) 11.0232 3.56542i 1.26445 0.408982i
\(77\) 6.67267i 0.760421i
\(78\) −11.1978 + 7.50111i −1.26790 + 0.849334i
\(79\) 8.11738i 0.913277i −0.889652 0.456638i \(-0.849053\pi\)
0.889652 0.456638i \(-0.150947\pi\)
\(80\) −1.93134 −0.215930
\(81\) −6.44433 + 6.28257i −0.716036 + 0.698063i
\(82\) −20.3540 −2.24773
\(83\) 3.06269 0.336174 0.168087 0.985772i \(-0.446241\pi\)
0.168087 + 0.985772i \(0.446241\pi\)
\(84\) −6.93929 4.66865i −0.757139 0.509391i
\(85\) 2.65010i 0.287444i
\(86\) 3.24101i 0.349487i
\(87\) 9.04422 13.4430i 0.969642 1.44124i
\(88\) 5.21497i 0.555917i
\(89\) 6.17584i 0.654637i −0.944914 0.327319i \(-0.893855\pi\)
0.944914 0.327319i \(-0.106145\pi\)
\(90\) −5.14482 + 2.09285i −0.542311 + 0.220606i
\(91\) 6.06262 + 2.48040i 0.635536 + 0.260016i
\(92\) 9.76785i 1.01837i
\(93\) −0.259050 + 0.385042i −0.0268622 + 0.0399270i
\(94\) 22.0293i 2.27215i
\(95\) −3.55776 + 1.15075i −0.365018 + 0.118064i
\(96\) 11.0637 + 7.44350i 1.12919 + 0.759699i
\(97\) 19.1257 1.94192 0.970962 0.239232i \(-0.0768956\pi\)
0.970962 + 0.239232i \(0.0768956\pi\)
\(98\) 7.98410i 0.806516i
\(99\) 4.15184 + 10.2064i 0.417276 + 1.02578i
\(100\) 11.3335 1.13335
\(101\) 10.8013i 1.07477i 0.843336 + 0.537386i \(0.180588\pi\)
−0.843336 + 0.537386i \(0.819412\pi\)
\(102\) −6.44628 + 9.58150i −0.638277 + 0.948710i
\(103\) 16.6893i 1.64445i 0.569163 + 0.822225i \(0.307267\pi\)
−0.569163 + 0.822225i \(0.692733\pi\)
\(104\) 4.73819 + 1.93853i 0.464618 + 0.190089i
\(105\) 2.23967 + 1.50681i 0.218569 + 0.147050i
\(106\) 26.0138i 2.52668i
\(107\) 8.63674 0.834945 0.417473 0.908689i \(-0.362916\pi\)
0.417473 + 0.908689i \(0.362916\pi\)
\(108\) 13.5191 + 2.82334i 1.30088 + 0.271676i
\(109\) 15.6648 1.50042 0.750208 0.661202i \(-0.229953\pi\)
0.750208 + 0.661202i \(0.229953\pi\)
\(110\) 6.79991i 0.648346i
\(111\) −3.28968 + 4.88964i −0.312242 + 0.464105i
\(112\) 4.09024i 0.386491i
\(113\) −18.1242 −1.70498 −0.852491 0.522742i \(-0.824909\pi\)
−0.852491 + 0.522742i \(0.824909\pi\)
\(114\) 15.6623 + 4.49358i 1.46691 + 0.420862i
\(115\) 3.15259i 0.293981i
\(116\) −24.8628 −2.30846
\(117\) −10.8166 0.0217089i −0.999998 0.00200699i
\(118\) 13.9447 1.28371
\(119\) 5.61246 0.514494
\(120\) 1.75039 + 1.17764i 0.159788 + 0.107503i
\(121\) 2.48982 0.226347
\(122\) 17.0856i 1.54686i
\(123\) −13.5531 9.11829i −1.22204 0.822168i
\(124\) 0.712136 0.0639517
\(125\) −7.94712 −0.710812
\(126\) −4.43230 10.8958i −0.394860 0.970678i
\(127\) 2.77249i 0.246019i 0.992406 + 0.123009i \(0.0392545\pi\)
−0.992406 + 0.123009i \(0.960746\pi\)
\(128\) 10.7444i 0.949680i
\(129\) −1.45192 + 2.15808i −0.127835 + 0.190008i
\(130\) −6.17824 2.52770i −0.541867 0.221694i
\(131\) 3.46241i 0.302512i −0.988495 0.151256i \(-0.951668\pi\)
0.988495 0.151256i \(-0.0483318\pi\)
\(132\) 9.43839 14.0288i 0.821506 1.22105i
\(133\) −2.43708 7.53472i −0.211322 0.653343i
\(134\) 4.65702i 0.402305i
\(135\) −4.36333 0.911239i −0.375535 0.0784270i
\(136\) 4.38637 0.376128
\(137\) −4.30210 −0.367554 −0.183777 0.982968i \(-0.558832\pi\)
−0.183777 + 0.982968i \(0.558832\pi\)
\(138\) −7.66857 + 11.3983i −0.652792 + 0.970284i
\(139\) −16.3045 −1.38293 −0.691467 0.722408i \(-0.743035\pi\)
−0.691467 + 0.722408i \(0.743035\pi\)
\(140\) 4.14228i 0.350086i
\(141\) 9.86878 14.6686i 0.831101 1.23532i
\(142\) −19.4560 −1.63271
\(143\) −5.01450 + 12.2565i −0.419334 + 1.02494i
\(144\) 2.54501 + 6.25636i 0.212084 + 0.521363i
\(145\) 8.02452 0.666400
\(146\) 22.6837 1.87732
\(147\) 3.57675 5.31635i 0.295006 0.438485i
\(148\) 9.04342 0.743364
\(149\) −8.58110 −0.702991 −0.351496 0.936190i \(-0.614327\pi\)
−0.351496 + 0.936190i \(0.614327\pi\)
\(150\) 13.2253 + 8.89777i 1.07984 + 0.726500i
\(151\) −13.6493 −1.11077 −0.555384 0.831594i \(-0.687429\pi\)
−0.555384 + 0.831594i \(0.687429\pi\)
\(152\) −1.90468 5.88870i −0.154490 0.477636i
\(153\) −8.58473 + 3.49217i −0.694034 + 0.282325i
\(154\) −14.4010 −1.16047
\(155\) −0.229843 −0.0184615
\(156\) 9.23779 + 13.7904i 0.739615 + 1.10411i
\(157\) −4.36973 −0.348742 −0.174371 0.984680i \(-0.555789\pi\)
−0.174371 + 0.984680i \(0.555789\pi\)
\(158\) −17.5190 −1.39374
\(159\) 11.6538 17.3217i 0.924205 1.37370i
\(160\) 6.60428i 0.522114i
\(161\) 6.67665 0.526193
\(162\) 13.5591 + 13.9082i 1.06531 + 1.09273i
\(163\) 10.8164i 0.847206i 0.905848 + 0.423603i \(0.139235\pi\)
−0.905848 + 0.423603i \(0.860765\pi\)
\(164\) 25.0664i 1.95736i
\(165\) −3.04626 + 4.52784i −0.237151 + 0.352491i
\(166\) 6.60995i 0.513032i
\(167\) 11.2698i 0.872083i −0.899927 0.436042i \(-0.856380\pi\)
0.899927 0.436042i \(-0.143620\pi\)
\(168\) −2.49403 + 3.70703i −0.192419 + 0.286004i
\(169\) −9.27197 9.11211i −0.713228 0.700932i
\(170\) −5.71949 −0.438665
\(171\) 8.41595 + 10.0086i 0.643584 + 0.765376i
\(172\) 3.99138 0.304340
\(173\) 4.99832 0.380015 0.190008 0.981783i \(-0.439149\pi\)
0.190008 + 0.981783i \(0.439149\pi\)
\(174\) −29.0128 19.5194i −2.19946 1.47976i
\(175\) 7.74685i 0.585607i
\(176\) 8.26905 0.623303
\(177\) 9.28528 + 6.24699i 0.697924 + 0.469552i
\(178\) −13.3288 −0.999034
\(179\) 12.0113 0.897766 0.448883 0.893591i \(-0.351822\pi\)
0.448883 + 0.893591i \(0.351822\pi\)
\(180\) 2.57739 + 6.33596i 0.192107 + 0.472254i
\(181\) 11.5353i 0.857413i −0.903444 0.428706i \(-0.858969\pi\)
0.903444 0.428706i \(-0.141031\pi\)
\(182\) 5.35323 13.0844i 0.396808 0.969884i
\(183\) 7.65407 11.3767i 0.565805 0.840991i
\(184\) 5.21808 0.384682
\(185\) −2.91878 −0.214593
\(186\) 0.831003 + 0.559086i 0.0609321 + 0.0409942i
\(187\) 11.3465i 0.829735i
\(188\) −27.1296 −1.97863
\(189\) 1.92985 9.24077i 0.140376 0.672167i
\(190\) 2.48356 + 7.67841i 0.180176 + 0.557050i
\(191\) 6.21912i 0.449999i 0.974359 + 0.225000i \(0.0722381\pi\)
−0.974359 + 0.225000i \(0.927762\pi\)
\(192\) 11.7112 17.4070i 0.845180 1.25624i
\(193\) −24.2066 −1.74243 −0.871214 0.490904i \(-0.836667\pi\)
−0.871214 + 0.490904i \(0.836667\pi\)
\(194\) 41.2775i 2.96355i
\(195\) −2.98151 4.45086i −0.213511 0.318733i
\(196\) −9.83261 −0.702329
\(197\) −8.86090 −0.631313 −0.315656 0.948874i \(-0.602225\pi\)
−0.315656 + 0.948874i \(0.602225\pi\)
\(198\) 22.0276 8.96057i 1.56543 0.636800i
\(199\) 22.0238 1.56123 0.780613 0.625015i \(-0.214907\pi\)
0.780613 + 0.625015i \(0.214907\pi\)
\(200\) 6.05448i 0.428117i
\(201\) 2.08627 3.10095i 0.147154 0.218724i
\(202\) 23.3116 1.64020
\(203\) 16.9946i 1.19278i
\(204\) 11.7998 + 7.93875i 0.826154 + 0.555823i
\(205\) 8.09024i 0.565047i
\(206\) 36.0192 2.50958
\(207\) −10.2125 + 4.15432i −0.709817 + 0.288745i
\(208\) −3.07381 + 7.51306i −0.213130 + 0.520937i
\(209\) 15.2326 4.92694i 1.05366 0.340803i
\(210\) 3.25203 4.83369i 0.224411 0.333556i
\(211\) 9.55622i 0.657877i −0.944351 0.328939i \(-0.893309\pi\)
0.944351 0.328939i \(-0.106691\pi\)
\(212\) −32.0366 −2.20028
\(213\) −12.9551 8.71597i −0.887667 0.597208i
\(214\) 18.6399i 1.27420i
\(215\) −1.28822 −0.0878561
\(216\) 1.50826 7.22205i 0.102624 0.491398i
\(217\) 0.486768i 0.0330440i
\(218\) 33.8080i 2.28977i
\(219\) 15.1043 + 10.1620i 1.02066 + 0.686682i
\(220\) 8.37425 0.564592
\(221\) −10.3091 4.21776i −0.693466 0.283717i
\(222\) 10.5529 + 7.09983i 0.708264 + 0.476509i
\(223\) −8.90623 −0.596405 −0.298203 0.954503i \(-0.596387\pi\)
−0.298203 + 0.954503i \(0.596387\pi\)
\(224\) −13.9867 −0.934527
\(225\) 4.82021 + 11.8494i 0.321348 + 0.789963i
\(226\) 39.1159i 2.60195i
\(227\) 16.4499i 1.09182i −0.837845 0.545909i \(-0.816184\pi\)
0.837845 0.545909i \(-0.183816\pi\)
\(228\) 5.53394 19.2885i 0.366494 1.27741i
\(229\) 17.2830i 1.14209i −0.820918 0.571046i \(-0.806538\pi\)
0.820918 0.571046i \(-0.193462\pi\)
\(230\) −6.80397 −0.448640
\(231\) −9.58917 6.45145i −0.630921 0.424474i
\(232\) 13.2820i 0.872003i
\(233\) 8.74673i 0.573017i −0.958078 0.286509i \(-0.907505\pi\)
0.958078 0.286509i \(-0.0924947\pi\)
\(234\) −0.0468525 + 23.3446i −0.00306284 + 1.52609i
\(235\) 8.75612 0.571186
\(236\) 17.1732i 1.11788i
\(237\) −11.6653 7.84826i −0.757746 0.509799i
\(238\) 12.1129i 0.785163i
\(239\) −1.12075 −0.0724955 −0.0362478 0.999343i \(-0.511541\pi\)
−0.0362478 + 0.999343i \(0.511541\pi\)
\(240\) −1.86731 + 2.77549i −0.120534 + 0.179157i
\(241\) 18.9514 1.22076 0.610382 0.792107i \(-0.291016\pi\)
0.610382 + 0.792107i \(0.291016\pi\)
\(242\) 5.37357i 0.345426i
\(243\) 2.79789 + 15.3353i 0.179485 + 0.983761i
\(244\) −21.0413 −1.34703
\(245\) 3.17349 0.202747
\(246\) −19.6792 + 29.2504i −1.25470 + 1.86494i
\(247\) −1.18584 + 15.6714i −0.0754530 + 0.997149i
\(248\) 0.380430i 0.0241573i
\(249\) 2.96116 4.40135i 0.187656 0.278924i
\(250\) 17.1516i 1.08476i
\(251\) 8.04287i 0.507661i 0.967249 + 0.253831i \(0.0816906\pi\)
−0.967249 + 0.253831i \(0.918309\pi\)
\(252\) −13.4185 + 5.45847i −0.845284 + 0.343851i
\(253\) 13.4979i 0.848603i
\(254\) 5.98363 0.375446
\(255\) −3.80842 2.56224i −0.238492 0.160454i
\(256\) 1.03674 0.0647961
\(257\) −6.77157 −0.422399 −0.211199 0.977443i \(-0.567737\pi\)
−0.211199 + 0.977443i \(0.567737\pi\)
\(258\) 4.65760 + 3.13356i 0.289969 + 0.195087i
\(259\) 6.18147i 0.384098i
\(260\) −3.11292 + 7.60864i −0.193055 + 0.471868i
\(261\) −10.5743 25.9946i −0.654532 1.60903i
\(262\) −7.47262 −0.461660
\(263\) 28.4700i 1.75553i 0.479087 + 0.877767i \(0.340968\pi\)
−0.479087 + 0.877767i \(0.659032\pi\)
\(264\) −7.49434 5.04207i −0.461245 0.310318i
\(265\) 10.3399 0.635173
\(266\) −16.2615 + 5.25975i −0.997059 + 0.322496i
\(267\) −8.87519 5.97109i −0.543153 0.365425i
\(268\) −5.73522 −0.350334
\(269\) −16.7218 −1.01955 −0.509773 0.860309i \(-0.670270\pi\)
−0.509773 + 0.860309i \(0.670270\pi\)
\(270\) −1.96665 + 9.41699i −0.119687 + 0.573100i
\(271\) 18.0043i 1.09368i 0.837237 + 0.546840i \(0.184170\pi\)
−0.837237 + 0.546840i \(0.815830\pi\)
\(272\) 6.95520i 0.421721i
\(273\) 9.42616 6.31433i 0.570497 0.382161i
\(274\) 9.28486i 0.560919i
\(275\) 15.6614 0.944420
\(276\) 14.0372 + 9.44402i 0.844941 + 0.568463i
\(277\) 26.1355 1.57033 0.785164 0.619288i \(-0.212579\pi\)
0.785164 + 0.619288i \(0.212579\pi\)
\(278\) 35.1887i 2.11048i
\(279\) 0.302875 + 0.744553i 0.0181327 + 0.0445752i
\(280\) −2.21284 −0.132243
\(281\) 13.1761i 0.786020i −0.919534 0.393010i \(-0.871434\pi\)
0.919534 0.393010i \(-0.128566\pi\)
\(282\) −31.6579 21.2990i −1.88520 1.26833i
\(283\) 13.7919 0.819846 0.409923 0.912120i \(-0.365556\pi\)
0.409923 + 0.912120i \(0.365556\pi\)
\(284\) 23.9605i 1.42179i
\(285\) −1.78609 + 6.22539i −0.105799 + 0.368760i
\(286\) 26.4522 + 10.8224i 1.56415 + 0.639940i
\(287\) 17.1337 1.01137
\(288\) 21.3939 8.70277i 1.26065 0.512815i
\(289\) 7.45636 0.438609
\(290\) 17.3186i 1.01699i
\(291\) 18.4917 27.4853i 1.08400 1.61122i
\(292\) 27.9355i 1.63480i
\(293\) 16.3002i 0.952270i −0.879372 0.476135i \(-0.842037\pi\)
0.879372 0.476135i \(-0.157963\pi\)
\(294\) −11.4738 7.71940i −0.669167 0.450205i
\(295\) 5.54267i 0.322707i
\(296\) 4.83108i 0.280801i
\(297\) 18.6816 + 3.90148i 1.08402 + 0.226387i
\(298\) 18.5199i 1.07283i
\(299\) −12.2638 5.01749i −0.709236 0.290169i
\(300\) 10.9578 16.2872i 0.632649 0.940344i
\(301\) 2.72824i 0.157253i
\(302\) 29.4582i 1.69513i
\(303\) 15.5224 + 10.4432i 0.891738 + 0.599948i
\(304\) 9.33734 3.02013i 0.535533 0.173217i
\(305\) 6.79111 0.388858
\(306\) 7.53684 + 18.5277i 0.430853 + 1.05916i
\(307\) −1.88021 −0.107309 −0.0536546 0.998560i \(-0.517087\pi\)
−0.0536546 + 0.998560i \(0.517087\pi\)
\(308\) 17.7352i 1.01056i
\(309\) 23.9840 + 16.1360i 1.36440 + 0.917947i
\(310\) 0.496051i 0.0281738i
\(311\) 9.88672i 0.560624i 0.959909 + 0.280312i \(0.0904380\pi\)
−0.959909 + 0.280312i \(0.909562\pi\)
\(312\) 7.36694 4.93491i 0.417071 0.279384i
\(313\) −9.06669 −0.512480 −0.256240 0.966613i \(-0.582484\pi\)
−0.256240 + 0.966613i \(0.582484\pi\)
\(314\) 9.43081i 0.532211i
\(315\) 4.33083 1.76173i 0.244015 0.0992623i
\(316\) 21.5751i 1.21369i
\(317\) 12.3078i 0.691277i −0.938368 0.345638i \(-0.887662\pi\)
0.938368 0.345638i \(-0.112338\pi\)
\(318\) −37.3840 25.1514i −2.09639 1.41042i
\(319\) −34.3571 −1.92363
\(320\) 10.3908 0.580862
\(321\) 8.35041 12.4117i 0.466074 0.692754i
\(322\) 14.4096i 0.803018i
\(323\) 4.14411 + 12.8123i 0.230584 + 0.712897i
\(324\) 17.1283 16.6984i 0.951573 0.927688i
\(325\) −5.82175 + 14.2296i −0.322932 + 0.789317i
\(326\) 23.3441 1.29291
\(327\) 15.1455 22.5116i 0.837546 1.24490i
\(328\) 13.3907 0.739379
\(329\) 18.5439i 1.02236i
\(330\) 9.77204 + 6.57448i 0.537933 + 0.361913i
\(331\) −0.996948 −0.0547972 −0.0273986 0.999625i \(-0.508722\pi\)
−0.0273986 + 0.999625i \(0.508722\pi\)
\(332\) −8.14031 −0.446757
\(333\) 3.84621 + 9.45507i 0.210771 + 0.518135i
\(334\) −24.3226 −1.33088
\(335\) 1.85105 0.101134
\(336\) −5.87801 3.95463i −0.320672 0.215743i
\(337\) 7.23122i 0.393910i 0.980413 + 0.196955i \(0.0631052\pi\)
−0.980413 + 0.196955i \(0.936895\pi\)
\(338\) −19.6659 + 20.0109i −1.06968 + 1.08845i
\(339\) −17.5233 + 26.0460i −0.951737 + 1.41462i
\(340\) 7.04369i 0.381997i
\(341\) 0.984077 0.0532908
\(342\) 21.6007 18.1634i 1.16803 0.982165i
\(343\) 19.4382i 1.04956i
\(344\) 2.13223i 0.114962i
\(345\) −4.53054 3.04807i −0.243916 0.164103i
\(346\) 10.7875i 0.579937i
\(347\) 5.57916i 0.299505i −0.988724 0.149752i \(-0.952152\pi\)
0.988724 0.149752i \(-0.0478477\pi\)
\(348\) −24.0386 + 35.7300i −1.28860 + 1.91533i
\(349\) 20.1829i 1.08037i 0.841548 + 0.540183i \(0.181645\pi\)
−0.841548 + 0.540183i \(0.818355\pi\)
\(350\) −16.7194 −0.893687
\(351\) −10.4892 + 15.5234i −0.559873 + 0.828578i
\(352\) 28.2763i 1.50713i
\(353\) −15.6090 −0.830781 −0.415390 0.909643i \(-0.636355\pi\)
−0.415390 + 0.909643i \(0.636355\pi\)
\(354\) 13.4823 20.0396i 0.716578 1.06509i
\(355\) 7.73328i 0.410440i
\(356\) 16.4147i 0.869977i
\(357\) 5.42639 8.06557i 0.287195 0.426875i
\(358\) 25.9229i 1.37007i
\(359\) −16.3148 −0.861060 −0.430530 0.902576i \(-0.641673\pi\)
−0.430530 + 0.902576i \(0.641673\pi\)
\(360\) 3.38473 1.37687i 0.178391 0.0725672i
\(361\) 15.4010 11.1269i 0.810581 0.585627i
\(362\) −24.8957 −1.30849
\(363\) 2.40727 3.57808i 0.126349 0.187800i
\(364\) −16.1138 6.59262i −0.844592 0.345547i
\(365\) 9.01624i 0.471932i
\(366\) −24.5534 16.5191i −1.28343 0.863469i
\(367\) 9.03812 0.471786 0.235893 0.971779i \(-0.424198\pi\)
0.235893 + 0.971779i \(0.424198\pi\)
\(368\) 8.27398i 0.431311i
\(369\) −26.2075 + 10.6609i −1.36431 + 0.554984i
\(370\) 6.29935i 0.327488i
\(371\) 21.8981i 1.13689i
\(372\) 0.688527 1.02340i 0.0356985 0.0530608i
\(373\) 24.9763i 1.29322i 0.762819 + 0.646612i \(0.223815\pi\)
−0.762819 + 0.646612i \(0.776185\pi\)
\(374\) 24.4881 1.26625
\(375\) −7.68364 + 11.4207i −0.396782 + 0.589761i
\(376\) 14.4929i 0.747413i
\(377\) 12.7714 31.2160i 0.657760 1.60771i
\(378\) −19.9436 4.16503i −1.02579 0.214226i
\(379\) −27.6507 −1.42032 −0.710161 0.704039i \(-0.751378\pi\)
−0.710161 + 0.704039i \(0.751378\pi\)
\(380\) 9.45613 3.05856i 0.485089 0.156901i
\(381\) 3.98430 + 2.68057i 0.204122 + 0.137330i
\(382\) 13.4222 0.686739
\(383\) 8.36436i 0.427399i 0.976899 + 0.213700i \(0.0685513\pi\)
−0.976899 + 0.213700i \(0.931449\pi\)
\(384\) −15.4406 10.3882i −0.787950 0.530120i
\(385\) 5.72407i 0.291726i
\(386\) 52.2430i 2.65910i
\(387\) 1.69755 + 4.17306i 0.0862914 + 0.212129i
\(388\) −50.8341 −2.58071
\(389\) 19.5268i 0.990049i 0.868879 + 0.495025i \(0.164841\pi\)
−0.868879 + 0.495025i \(0.835159\pi\)
\(390\) −9.60592 + 6.43475i −0.486415 + 0.325836i
\(391\) −11.3532 −0.574157
\(392\) 5.25267i 0.265300i
\(393\) −4.97577 3.34762i −0.250994 0.168865i
\(394\) 19.1237i 0.963439i
\(395\) 6.96340i 0.350367i
\(396\) −11.0351 27.1275i −0.554537 1.36321i
\(397\) 30.8413i 1.54788i −0.633257 0.773941i \(-0.718282\pi\)
0.633257 0.773941i \(-0.281718\pi\)
\(398\) 47.5321i 2.38257i
\(399\) −13.1843 3.78263i −0.660041 0.189368i
\(400\) 9.60022 0.480011
\(401\) 2.05184i 0.102464i 0.998687 + 0.0512320i \(0.0163148\pi\)
−0.998687 + 0.0512320i \(0.983685\pi\)
\(402\) −6.69252 4.50262i −0.333792 0.224570i
\(403\) −0.365806 + 0.894109i −0.0182221 + 0.0445387i
\(404\) 28.7087i 1.42831i
\(405\) −5.52819 + 5.38943i −0.274698 + 0.267803i
\(406\) 36.6779 1.82029
\(407\) 12.4968 0.619443
\(408\) 4.24095 6.30358i 0.209958 0.312074i
\(409\) 24.9857 1.23546 0.617732 0.786388i \(-0.288051\pi\)
0.617732 + 0.786388i \(0.288051\pi\)
\(410\) −17.4605 −0.862311
\(411\) −4.15948 + 6.18248i −0.205172 + 0.304959i
\(412\) 44.3584i 2.18538i
\(413\) −11.7384 −0.577610
\(414\) 8.96591 + 22.0407i 0.440650 + 1.08324i
\(415\) 2.62730 0.128969
\(416\) 25.6912 + 10.5110i 1.25961 + 0.515345i
\(417\) −15.7640 + 23.4310i −0.771966 + 1.14742i
\(418\) −10.6334 32.8752i −0.520096 1.60798i
\(419\) 12.7988i 0.625261i 0.949875 + 0.312630i \(0.101210\pi\)
−0.949875 + 0.312630i \(0.898790\pi\)
\(420\) −5.95280 4.00495i −0.290467 0.195421i
\(421\) 2.56762 0.125138 0.0625692 0.998041i \(-0.480071\pi\)
0.0625692 + 0.998041i \(0.480071\pi\)
\(422\) −20.6244 −1.00398
\(423\) −11.5383 28.3645i −0.561014 1.37913i
\(424\) 17.1142i 0.831141i
\(425\) 13.1730i 0.638986i
\(426\) −18.8109 + 27.9598i −0.911393 + 1.35466i
\(427\) 14.3824i 0.696013i
\(428\) −22.9555 −1.10960
\(429\) 12.7654 + 19.0564i 0.616319 + 0.920053i
\(430\) 2.78026i 0.134076i
\(431\) 14.5986i 0.703188i 0.936153 + 0.351594i \(0.114360\pi\)
−0.936153 + 0.351594i \(0.885640\pi\)
\(432\) 11.4515 + 2.39155i 0.550963 + 0.115063i
\(433\) 10.7949i 0.518769i 0.965774 + 0.259384i \(0.0835197\pi\)
−0.965774 + 0.259384i \(0.916480\pi\)
\(434\) −1.05055 −0.0504281
\(435\) 7.75849 11.5319i 0.371991 0.552913i
\(436\) −41.6353 −1.99397
\(437\) 4.92987 + 15.2417i 0.235828 + 0.729108i
\(438\) 21.9317 32.5984i 1.04794 1.55761i
\(439\) 34.9387i 1.66753i 0.552119 + 0.833765i \(0.313819\pi\)
−0.552119 + 0.833765i \(0.686181\pi\)
\(440\) 4.47360i 0.213271i
\(441\) −4.18186 10.2802i −0.199136 0.489533i
\(442\) −9.10283 + 22.2493i −0.432978 + 1.05829i
\(443\) 40.3072i 1.91505i −0.288344 0.957527i \(-0.593105\pi\)
0.288344 0.957527i \(-0.406895\pi\)
\(444\) 8.74360 12.9961i 0.414953 0.616770i
\(445\) 5.29787i 0.251143i
\(446\) 19.2216i 0.910167i
\(447\) −8.29661 + 12.3318i −0.392416 + 0.583272i
\(448\) 22.0059i 1.03968i
\(449\) 16.7190i 0.789018i 0.918892 + 0.394509i \(0.129085\pi\)
−0.918892 + 0.394509i \(0.870915\pi\)
\(450\) 25.5737 10.4031i 1.20555 0.490405i
\(451\) 34.6385i 1.63106i
\(452\) 48.1722 2.26583
\(453\) −13.1968 + 19.6152i −0.620041 + 0.921605i
\(454\) −35.5024 −1.66621
\(455\) 5.20075 + 2.12778i 0.243815 + 0.0997519i
\(456\) −10.3041 2.95628i −0.482533 0.138441i
\(457\) 29.4340i 1.37687i 0.725300 + 0.688433i \(0.241701\pi\)
−0.725300 + 0.688433i \(0.758299\pi\)
\(458\) −37.3004 −1.74293
\(459\) −3.28159 + 15.7134i −0.153171 + 0.733437i
\(460\) 8.37924i 0.390684i
\(461\) 13.4731 0.627503 0.313752 0.949505i \(-0.398414\pi\)
0.313752 + 0.949505i \(0.398414\pi\)
\(462\) −13.9236 + 20.6955i −0.647785 + 0.962842i
\(463\) 19.8337i 0.921748i −0.887465 0.460874i \(-0.847536\pi\)
0.887465 0.460874i \(-0.152464\pi\)
\(464\) −21.0604 −0.977703
\(465\) −0.222223 + 0.330304i −0.0103054 + 0.0153175i
\(466\) −18.8773 −0.874475
\(467\) 16.6061i 0.768439i −0.923242 0.384220i \(-0.874471\pi\)
0.923242 0.384220i \(-0.125529\pi\)
\(468\) 28.7494 + 0.0576999i 1.32894 + 0.00266718i
\(469\) 3.92021i 0.181018i
\(470\) 18.8976i 0.871681i
\(471\) −4.22486 + 6.27966i −0.194671 + 0.289351i
\(472\) −9.17406 −0.422270
\(473\) 5.51555 0.253605
\(474\) −16.9382 + 25.1763i −0.777999 + 1.15639i
\(475\) 17.6848 5.72009i 0.811433 0.262456i
\(476\) −14.9173 −0.683734
\(477\) −13.6253 33.4949i −0.623861 1.53363i
\(478\) 2.41883i 0.110635i
\(479\) 39.7954 1.81830 0.909148 0.416473i \(-0.136734\pi\)
0.909148 + 0.416473i \(0.136734\pi\)
\(480\) 9.49090 + 6.38533i 0.433198 + 0.291449i
\(481\) −4.64537 + 11.3543i −0.211811 + 0.517711i
\(482\) 40.9011i 1.86299i
\(483\) 6.45529 9.59489i 0.293726 0.436583i
\(484\) −6.61767 −0.300803
\(485\) 16.4068 0.744995
\(486\) 33.0969 6.03846i 1.50131 0.273910i
\(487\) −15.8530 −0.718367 −0.359184 0.933267i \(-0.616945\pi\)
−0.359184 + 0.933267i \(0.616945\pi\)
\(488\) 11.2404i 0.508831i
\(489\) 15.5441 + 10.4578i 0.702927 + 0.472918i
\(490\) 6.84907i 0.309410i
\(491\) 4.80604i 0.216894i 0.994102 + 0.108447i \(0.0345877\pi\)
−0.994102 + 0.108447i \(0.965412\pi\)
\(492\) 36.0226 + 24.2354i 1.62402 + 1.09262i
\(493\) 28.8982i 1.30151i
\(494\) 33.8223 + 2.55929i 1.52174 + 0.115148i
\(495\) 3.56161 + 8.75545i 0.160083 + 0.393528i
\(496\) 0.603224 0.0270856
\(497\) 16.3778 0.734643
\(498\) −9.49905 6.39081i −0.425663 0.286379i
\(499\) 37.4295i 1.67558i −0.545996 0.837788i \(-0.683849\pi\)
0.545996 0.837788i \(-0.316151\pi\)
\(500\) 21.1226 0.944630
\(501\) −16.1956 10.8962i −0.723568 0.486805i
\(502\) 17.3582 0.774736
\(503\) 3.96345i 0.176721i −0.996089 0.0883607i \(-0.971837\pi\)
0.996089 0.0883607i \(-0.0281628\pi\)
\(504\) 2.91597 + 7.16827i 0.129887 + 0.319300i
\(505\) 9.26579i 0.412322i
\(506\) 29.1313 1.29504
\(507\) −22.0594 + 4.51457i −0.979694 + 0.200499i
\(508\) 7.36897i 0.326945i
\(509\) 14.4113i 0.638770i −0.947625 0.319385i \(-0.896524\pi\)
0.947625 0.319385i \(-0.103476\pi\)
\(510\) −5.52987 + 8.21938i −0.244867 + 0.363960i
\(511\) −19.0949 −0.844707
\(512\) 23.7263i 1.04856i
\(513\) 22.5201 2.41764i 0.994287 0.106741i
\(514\) 14.6145i 0.644618i
\(515\) 14.3168i 0.630872i
\(516\) 3.85905 5.73594i 0.169885 0.252511i
\(517\) −37.4894 −1.64878
\(518\) −13.3409 −0.586167
\(519\) 4.83261 7.18300i 0.212128 0.315299i
\(520\) 4.06461 + 1.66295i 0.178245 + 0.0729251i
\(521\) 2.11238 0.0925449 0.0462725 0.998929i \(-0.485266\pi\)
0.0462725 + 0.998929i \(0.485266\pi\)
\(522\) −56.1019 + 22.8216i −2.45551 + 0.998874i
\(523\) 8.40511i 0.367530i −0.982970 0.183765i \(-0.941172\pi\)
0.982970 0.183765i \(-0.0588285\pi\)
\(524\) 9.20271i 0.402022i
\(525\) −11.1329 7.49001i −0.485878 0.326891i
\(526\) 61.4443 2.67910
\(527\) 0.827720i 0.0360560i
\(528\) 7.99490 11.8833i 0.347933 0.517154i
\(529\) 9.49409 0.412786
\(530\) 22.3157i 0.969330i
\(531\) 17.9549 7.30383i 0.779176 0.316959i
\(532\) 6.47750 + 20.0265i 0.280835 + 0.868257i
\(533\) −31.4717 12.8760i −1.36319 0.557721i
\(534\) −12.8869 + 19.1546i −0.557670 + 0.828899i
\(535\) 7.40893 0.320316
\(536\) 3.06381i 0.132336i
\(537\) 11.6131 17.2612i 0.501141 0.744877i
\(538\) 36.0892i 1.55592i
\(539\) −13.5873 −0.585248
\(540\) 11.5972 + 2.42197i 0.499066 + 0.104225i
\(541\) 2.64466i 0.113703i 0.998383 + 0.0568515i \(0.0181061\pi\)
−0.998383 + 0.0568515i \(0.981894\pi\)
\(542\) 38.8571 1.66905
\(543\) −16.5772 11.1529i −0.711396 0.478616i
\(544\) 23.7836 1.01971
\(545\) 13.4379 0.575615
\(546\) −13.6277 20.3437i −0.583211 0.870629i
\(547\) 4.78305i 0.204508i −0.994758 0.102254i \(-0.967394\pi\)
0.994758 0.102254i \(-0.0326055\pi\)
\(548\) 11.4345 0.488459
\(549\) −8.94896 21.9991i −0.381932 0.938898i
\(550\) 33.8008i 1.44127i
\(551\) −38.7958 + 12.5484i −1.65276 + 0.534579i
\(552\) 5.04508 7.49881i 0.214733 0.319170i
\(553\) 14.7473 0.627119
\(554\) 56.4059i 2.39646i
\(555\) −2.82201 + 4.19453i −0.119788 + 0.178048i
\(556\) 43.3357 1.83784
\(557\) 9.41694 0.399009 0.199504 0.979897i \(-0.436067\pi\)
0.199504 + 0.979897i \(0.436067\pi\)
\(558\) 1.60691 0.653670i 0.0680257 0.0276721i
\(559\) −2.05027 + 5.01129i −0.0867170 + 0.211955i
\(560\) 3.50877i 0.148272i
\(561\) 16.3058 + 10.9703i 0.688431 + 0.463166i
\(562\) −28.4368 −1.19954
\(563\) −5.62182 −0.236932 −0.118466 0.992958i \(-0.537798\pi\)
−0.118466 + 0.992958i \(0.537798\pi\)
\(564\) −26.2301 + 38.9875i −1.10449 + 1.64167i
\(565\) −15.5477 −0.654095
\(566\) 29.7660i 1.25116i
\(567\) −11.4139 11.7078i −0.479338 0.491680i
\(568\) 12.7999 0.537072
\(569\) −9.26480 −0.388401 −0.194200 0.980962i \(-0.562211\pi\)
−0.194200 + 0.980962i \(0.562211\pi\)
\(570\) 13.4357 + 3.85476i 0.562761 + 0.161458i
\(571\) 10.6847 0.447140 0.223570 0.974688i \(-0.428229\pi\)
0.223570 + 0.974688i \(0.428229\pi\)
\(572\) 13.3280 32.5765i 0.557272 1.36209i
\(573\) 8.93739 + 6.01293i 0.373365 + 0.251194i
\(574\) 36.9783i 1.54344i
\(575\) 15.6708i 0.653517i
\(576\) −13.6924 33.6598i −0.570517 1.40249i
\(577\) 11.3439i 0.472252i 0.971722 + 0.236126i \(0.0758778\pi\)
−0.971722 + 0.236126i \(0.924122\pi\)
\(578\) 16.0924i 0.669356i
\(579\) −23.4041 + 34.7869i −0.972639 + 1.44569i
\(580\) −21.3283 −0.885610
\(581\) 5.56417i 0.230840i
\(582\) −59.3191 39.9090i −2.45886 1.65428i
\(583\) −44.2703 −1.83349
\(584\) −14.9234 −0.617535
\(585\) −9.27893 0.0186228i −0.383636 0.000769956i
\(586\) −35.1794 −1.45325
\(587\) −8.07861 −0.333440 −0.166720 0.986004i \(-0.553318\pi\)
−0.166720 + 0.986004i \(0.553318\pi\)
\(588\) −9.50662 + 14.1303i −0.392047 + 0.582722i
\(589\) 1.11121 0.359418i 0.0457867 0.0148096i
\(590\) 11.9623 0.492479
\(591\) −8.56713 + 12.7338i −0.352405 + 0.523800i
\(592\) 7.66034 0.314838
\(593\) 15.8318 0.650133 0.325066 0.945691i \(-0.394613\pi\)
0.325066 + 0.945691i \(0.394613\pi\)
\(594\) 8.42024 40.3190i 0.345487 1.65431i
\(595\) 4.81459 0.197379
\(596\) 22.8076 0.934237
\(597\) 21.2936 31.6500i 0.871491 1.29535i
\(598\) −10.8288 + 26.4680i −0.442824 + 1.08236i
\(599\) 17.6984 0.723138 0.361569 0.932345i \(-0.382241\pi\)
0.361569 + 0.932345i \(0.382241\pi\)
\(600\) −8.70079 5.85376i −0.355208 0.238979i
\(601\) 2.15360i 0.0878473i −0.999035 0.0439236i \(-0.986014\pi\)
0.999035 0.0439236i \(-0.0139858\pi\)
\(602\) −5.88812 −0.239982
\(603\) −2.43922 5.99629i −0.0993327 0.244188i
\(604\) 36.2785 1.47615
\(605\) 2.13586 0.0868352
\(606\) 22.5387 33.5007i 0.915573 1.36087i
\(607\) 27.2405i 1.10566i −0.833294 0.552829i \(-0.813548\pi\)
0.833294 0.552829i \(-0.186452\pi\)
\(608\) −10.3275 31.9294i −0.418834 1.29491i
\(609\) 24.4226 + 16.4311i 0.989653 + 0.665823i
\(610\) 14.6567i 0.593431i
\(611\) 13.9358 34.0620i 0.563780 1.37800i
\(612\) 22.8173 9.28179i 0.922334 0.375194i
\(613\) 13.7766i 0.556432i −0.960519 0.278216i \(-0.910257\pi\)
0.960519 0.278216i \(-0.0897431\pi\)
\(614\) 4.05789i 0.163763i
\(615\) −11.6263 7.82202i −0.468820 0.315414i
\(616\) 9.47431 0.381731
\(617\) 41.3065 1.66294 0.831469 0.555571i \(-0.187500\pi\)
0.831469 + 0.555571i \(0.187500\pi\)
\(618\) 34.8250 51.7626i 1.40087 2.08220i
\(619\) 34.8380i 1.40026i 0.714017 + 0.700129i \(0.246874\pi\)
−0.714017 + 0.700129i \(0.753126\pi\)
\(620\) 0.610898 0.0245343
\(621\) −3.90381 + 18.6928i −0.156655 + 0.750115i
\(622\) 21.3377 0.855562
\(623\) 11.2200 0.449519
\(624\) 7.82498 + 11.6813i 0.313250 + 0.467626i
\(625\) 14.5032 0.580129
\(626\) 19.5679i 0.782089i
\(627\) 7.64717 26.6541i 0.305398 1.06446i
\(628\) 11.6143 0.463459
\(629\) 10.5112i 0.419109i
\(630\) −3.80220 9.34687i −0.151483 0.372388i
\(631\) 8.39841i 0.334335i −0.985928 0.167168i \(-0.946538\pi\)
0.985928 0.167168i \(-0.0534621\pi\)
\(632\) 11.5256 0.458464
\(633\) −13.7331 9.23940i −0.545841 0.367233i
\(634\) −26.5629 −1.05495
\(635\) 2.37835i 0.0943819i
\(636\) −30.9745 + 46.0392i −1.22822 + 1.82557i
\(637\) 5.05075 12.3451i 0.200118 0.489132i
\(638\) 74.1500i 2.93563i
\(639\) −25.0511 + 10.1905i −0.991008 + 0.403130i
\(640\) 9.21697i 0.364333i
\(641\) 20.7795 0.820742 0.410371 0.911919i \(-0.365399\pi\)
0.410371 + 0.911919i \(0.365399\pi\)
\(642\) −26.7871 18.0220i −1.05720 0.711271i
\(643\) 27.1734i 1.07161i 0.844340 + 0.535807i \(0.179993\pi\)
−0.844340 + 0.535807i \(0.820007\pi\)
\(644\) −17.7458 −0.699282
\(645\) −1.24551 + 1.85128i −0.0490421 + 0.0728942i
\(646\) 27.6517 8.94387i 1.08794 0.351892i
\(647\) 5.74840i 0.225993i −0.993595 0.112996i \(-0.963955\pi\)
0.993595 0.112996i \(-0.0360448\pi\)
\(648\) −8.92043 9.15010i −0.350427 0.359450i
\(649\) 23.7310i 0.931523i
\(650\) 30.7106 + 12.5646i 1.20457 + 0.492823i
\(651\) −0.699527 0.470631i −0.0274166 0.0184455i
\(652\) 28.7488i 1.12589i
\(653\) 40.3384i 1.57856i −0.614031 0.789282i \(-0.710453\pi\)
0.614031 0.789282i \(-0.289547\pi\)
\(654\) −48.5849 32.6872i −1.89982 1.27817i
\(655\) 2.97019i 0.116055i
\(656\) 21.2328i 0.829003i
\(657\) 29.2072 11.8811i 1.13948 0.463527i
\(658\) 40.0218 1.56021
\(659\) −21.2889 −0.829299 −0.414649 0.909981i \(-0.636096\pi\)
−0.414649 + 0.909981i \(0.636096\pi\)
\(660\) 8.09662 12.0345i 0.315160 0.468442i
\(661\) −3.67929 −0.143108 −0.0715539 0.997437i \(-0.522796\pi\)
−0.0715539 + 0.997437i \(0.522796\pi\)
\(662\) 2.15163i 0.0836254i
\(663\) −16.0286 + 10.7371i −0.622499 + 0.416995i
\(664\) 4.34863i 0.168759i
\(665\) −2.09062 6.46358i −0.0810709 0.250647i
\(666\) 20.4061 8.30095i 0.790720 0.321655i
\(667\) 34.3776i 1.33111i
\(668\) 29.9539i 1.15895i
\(669\) −8.61096 + 12.7990i −0.332919 + 0.494838i
\(670\) 3.99497i 0.154339i
\(671\) −29.0762 −1.12248
\(672\) −13.5230 + 20.1001i −0.521662 + 0.775377i
\(673\) 30.1463i 1.16206i 0.813884 + 0.581028i \(0.197349\pi\)
−0.813884 + 0.581028i \(0.802651\pi\)
\(674\) 15.6065 0.601141
\(675\) 21.6890 + 4.52955i 0.834812 + 0.174343i
\(676\) 24.6439 + 24.2190i 0.947842 + 0.931500i
\(677\) 0.634202 0.0243744 0.0121872 0.999926i \(-0.496121\pi\)
0.0121872 + 0.999926i \(0.496121\pi\)
\(678\) 56.2128 + 37.8191i 2.15884 + 1.45243i
\(679\) 34.7468i 1.33346i
\(680\) 3.76280 0.144297
\(681\) −23.6399 15.9045i −0.905881 0.609463i
\(682\) 2.12385i 0.0813264i
\(683\) 11.1644i 0.427195i −0.976922 0.213597i \(-0.931482\pi\)
0.976922 0.213597i \(-0.0685181\pi\)
\(684\) −22.3687 26.6017i −0.855287 1.01714i
\(685\) −3.69051 −0.141007
\(686\) 41.9518 1.60173
\(687\) −24.8371 16.7100i −0.947594 0.637526i
\(688\) 3.38094 0.128897
\(689\) 16.4564 40.2229i 0.626938 1.53237i
\(690\) −6.57840 + 9.77787i −0.250435 + 0.372237i
\(691\) 23.0728i 0.877732i 0.898552 + 0.438866i \(0.144620\pi\)
−0.898552 + 0.438866i \(0.855380\pi\)
\(692\) −13.2850 −0.505020
\(693\) −18.5425 + 7.54288i −0.704372 + 0.286530i
\(694\) −12.0410 −0.457071
\(695\) −13.9867 −0.530545
\(696\) 19.0873 + 12.8416i 0.723501 + 0.486760i
\(697\) −29.1349 −1.10356
\(698\) 43.5590 1.64873
\(699\) −12.5698 8.45675i −0.475432 0.319864i
\(700\) 20.5903i 0.778239i
\(701\) 29.7860i 1.12500i 0.826796 + 0.562501i \(0.190161\pi\)
−0.826796 + 0.562501i \(0.809839\pi\)
\(702\) 33.5028 + 22.6380i 1.26448 + 0.854416i
\(703\) 14.1113 4.56425i 0.532217 0.172144i
\(704\) −44.4883 −1.67671
\(705\) 8.46583 12.5833i 0.318841 0.473913i
\(706\) 33.6875i 1.26784i
\(707\) −19.6234 −0.738012
\(708\) −24.6793 16.6038i −0.927503 0.624010i
\(709\) 14.3758i 0.539893i −0.962875 0.269947i \(-0.912994\pi\)
0.962875 0.269947i \(-0.0870061\pi\)
\(710\) −16.6901 −0.626368
\(711\) −22.5572 + 9.17600i −0.845961 + 0.344127i
\(712\) 8.76888 0.328628
\(713\) 0.984664i 0.0368760i
\(714\) −17.4072 11.7113i −0.651450 0.438285i
\(715\) −4.30163 + 10.5141i −0.160872 + 0.393206i
\(716\) −31.9247 −1.19308
\(717\) −1.08360 + 1.61062i −0.0404677 + 0.0601496i
\(718\) 35.2108i 1.31405i
\(719\) 21.3182i 0.795036i −0.917594 0.397518i \(-0.869872\pi\)
0.917594 0.397518i \(-0.130128\pi\)
\(720\) 2.18321 + 5.36695i 0.0813635 + 0.200014i
\(721\) −30.3204 −1.12919
\(722\) −24.0143 33.2387i −0.893718 1.23702i
\(723\) 18.3231 27.2347i 0.681442 1.01287i
\(724\) 30.6596i 1.13945i
\(725\) −39.8880 −1.48140
\(726\) −7.72226 5.19541i −0.286600 0.192820i
\(727\) 35.9481 1.33324 0.666621 0.745397i \(-0.267740\pi\)
0.666621 + 0.745397i \(0.267740\pi\)
\(728\) −3.52184 + 8.60813i −0.130528 + 0.319039i
\(729\) 24.7432 + 10.8061i 0.916417 + 0.400226i
\(730\) 19.4590 0.720210
\(731\) 4.63919i 0.171587i
\(732\) −20.3437 + 30.2381i −0.751925 + 1.11763i
\(733\) 17.2584i 0.637452i −0.947847 0.318726i \(-0.896745\pi\)
0.947847 0.318726i \(-0.103255\pi\)
\(734\) 19.5062i 0.719987i
\(735\) 3.06828 4.56057i 0.113175 0.168219i
\(736\) 28.2932 1.04290
\(737\) −7.92531 −0.291932
\(738\) 23.0085 + 56.5614i 0.846954 + 2.08205i
\(739\) 11.7619i 0.432670i 0.976319 + 0.216335i \(0.0694104\pi\)
−0.976319 + 0.216335i \(0.930590\pi\)
\(740\) 7.75779 0.285182
\(741\) 21.3746 + 16.8560i 0.785216 + 0.619221i
\(742\) 47.2607 1.73500
\(743\) 49.4580i 1.81444i 0.420658 + 0.907219i \(0.361799\pi\)
−0.420658 + 0.907219i \(0.638201\pi\)
\(744\) −0.546709 0.367817i −0.0200433 0.0134848i
\(745\) −7.36120 −0.269694
\(746\) 53.9043 1.97357
\(747\) −3.46211 8.51086i −0.126672 0.311396i
\(748\) 30.1576i 1.10267i
\(749\) 15.6908i 0.573331i
\(750\) 24.6482 + 16.5830i 0.900027 + 0.605524i
\(751\) 37.9459i 1.38466i −0.721579 0.692332i \(-0.756583\pi\)
0.721579 0.692332i \(-0.243417\pi\)
\(752\) −22.9804 −0.838010
\(753\) 11.5583 + 7.77622i 0.421207 + 0.283381i
\(754\) −67.3709 27.5634i −2.45350 1.00380i
\(755\) −11.7089 −0.426132
\(756\) −5.12932 + 24.5610i −0.186552 + 0.893273i
\(757\) −36.0703 −1.31100 −0.655498 0.755197i \(-0.727541\pi\)
−0.655498 + 0.755197i \(0.727541\pi\)
\(758\) 59.6762i 2.16754i
\(759\) 19.3975 + 13.0504i 0.704086 + 0.473698i
\(760\) −1.63391 5.05155i −0.0592681 0.183239i
\(761\) −26.8339 −0.972730 −0.486365 0.873756i \(-0.661677\pi\)
−0.486365 + 0.873756i \(0.661677\pi\)
\(762\) 5.78525 8.59897i 0.209577 0.311508i
\(763\) 28.4591i 1.03029i
\(764\) 16.5297i 0.598025i
\(765\) −7.36431 + 2.99572i −0.266257 + 0.108310i
\(766\) 18.0521 0.652249
\(767\) 21.5614 + 8.82141i 0.778538 + 0.318522i
\(768\) 1.00237 1.48988i 0.0361698 0.0537613i
\(769\) 3.49339i 0.125975i −0.998014 0.0629874i \(-0.979937\pi\)
0.998014 0.0629874i \(-0.0200628\pi\)
\(770\) −12.3538 −0.445199
\(771\) −6.54707 + 9.73131i −0.235787 + 0.350464i
\(772\) 64.3384 2.31559
\(773\) 37.5373i 1.35012i −0.737761 0.675062i \(-0.764117\pi\)
0.737761 0.675062i \(-0.235883\pi\)
\(774\) 9.00637 3.66368i 0.323727 0.131688i
\(775\) 1.14250 0.0410397
\(776\) 27.1561i 0.974846i
\(777\) −8.88329 5.97653i −0.318686 0.214407i
\(778\) 42.1431 1.51090
\(779\) 12.6511 + 39.1135i 0.453274 + 1.40139i
\(780\) 7.92454 + 11.8299i 0.283744 + 0.423579i
\(781\) 33.1101i 1.18477i
\(782\) 24.5027i 0.876214i
\(783\) −47.5801 9.93666i −1.70037 0.355107i
\(784\) −8.32883 −0.297458
\(785\) −3.74852 −0.133790
\(786\) −7.22488 + 10.7388i −0.257703 + 0.383040i
\(787\) −26.0445 −0.928387 −0.464194 0.885734i \(-0.653656\pi\)
−0.464194 + 0.885734i \(0.653656\pi\)
\(788\) 23.5513 0.838980
\(789\) 40.9137 + 27.5261i 1.45657 + 0.979956i
\(790\) −15.0285 −0.534691
\(791\) 32.9272i 1.17076i
\(792\) −14.4918 + 5.89507i −0.514942 + 0.209472i
\(793\) 10.8084 26.4180i 0.383816 0.938129i
\(794\) −66.5622 −2.36221
\(795\) 9.99707 14.8592i 0.354559 0.527003i
\(796\) −58.5369 −2.07478
\(797\) −18.9794 −0.672284 −0.336142 0.941811i \(-0.609122\pi\)
−0.336142 + 0.941811i \(0.609122\pi\)
\(798\) −8.16373 + 28.4546i −0.288993 + 1.00728i
\(799\) 31.5328i 1.11555i
\(800\) 32.8283i 1.16066i
\(801\) −17.1619 + 6.98125i −0.606386 + 0.246670i
\(802\) 4.42831 0.156369
\(803\) 38.6032i 1.36228i
\(804\) −5.54508 + 8.24199i −0.195560 + 0.290672i
\(805\) 5.72749 0.201867
\(806\) 1.92968 + 0.789488i 0.0679700 + 0.0278085i
\(807\) −16.1674 + 24.0306i −0.569120 + 0.845917i
\(808\) −15.3365 −0.539535
\(809\) 45.7368i 1.60802i 0.594616 + 0.804010i \(0.297304\pi\)
−0.594616 + 0.804010i \(0.702696\pi\)
\(810\) 11.6315 + 11.9310i 0.408691 + 0.419214i
\(811\) −2.70738 −0.0950689 −0.0475344 0.998870i \(-0.515136\pi\)
−0.0475344 + 0.998870i \(0.515136\pi\)
\(812\) 45.1697i 1.58514i
\(813\) 25.8736 + 17.4074i 0.907427 + 0.610503i
\(814\) 26.9708i 0.945325i
\(815\) 9.27873i 0.325020i
\(816\) 9.99520 + 6.72461i 0.349902 + 0.235408i
\(817\) 6.22811 2.01446i 0.217894 0.0704772i
\(818\) 53.9246i 1.88543i
\(819\) 0.0394398 19.6512i 0.00137814 0.686667i
\(820\) 21.5030i 0.750916i
\(821\) −15.2253 −0.531366 −0.265683 0.964061i \(-0.585597\pi\)
−0.265683 + 0.964061i \(0.585597\pi\)
\(822\) 13.3431 + 8.97704i 0.465395 + 0.313110i
\(823\) −24.0896 −0.839712 −0.419856 0.907591i \(-0.637919\pi\)
−0.419856 + 0.907591i \(0.637919\pi\)
\(824\) −23.6967 −0.825513
\(825\) 15.1422 22.5068i 0.527184 0.783586i
\(826\) 25.3340i 0.881483i
\(827\) 16.9309i 0.588747i −0.955691 0.294373i \(-0.904889\pi\)
0.955691 0.294373i \(-0.0951109\pi\)
\(828\) 27.1437 11.0417i 0.943308 0.383726i
\(829\) 27.5950i 0.958415i 0.877702 + 0.479207i \(0.159076\pi\)
−0.877702 + 0.479207i \(0.840924\pi\)
\(830\) 5.67027i 0.196818i
\(831\) 25.2690 37.5588i 0.876571 1.30290i
\(832\) 16.5374 40.4210i 0.573331 1.40134i
\(833\) 11.4285i 0.395973i
\(834\) 50.5691 + 34.0221i 1.75106 + 1.17809i
\(835\) 9.66767i 0.334564i
\(836\) −40.4866 + 13.0953i −1.40026 + 0.452909i
\(837\) 1.36282 + 0.284612i 0.0471059 + 0.00983762i
\(838\) 27.6225 0.954203
\(839\) 25.0645i 0.865321i 0.901557 + 0.432661i \(0.142425\pi\)
−0.901557 + 0.432661i \(0.857575\pi\)
\(840\) −2.13948 + 3.18004i −0.0738190 + 0.109722i
\(841\) 58.5038 2.01737
\(842\) 5.54148i 0.190972i
\(843\) −18.9351 12.7393i −0.652161 0.438763i
\(844\) 25.3994i 0.874283i
\(845\) −7.95386 7.81672i −0.273621 0.268903i
\(846\) −61.2167 + 24.9022i −2.10467 + 0.856156i
\(847\) 4.52339i 0.155426i
\(848\) −27.1370 −0.931888
\(849\) 13.3347 19.8202i 0.457646 0.680226i
\(850\) 28.4302 0.975149
\(851\) 12.5042i 0.428640i
\(852\) 34.4332 + 23.1661i 1.17966 + 0.793657i
\(853\) 44.4341i 1.52140i 0.649106 + 0.760698i \(0.275143\pi\)
−0.649106 + 0.760698i \(0.724857\pi\)
\(854\) 31.0403 1.06218
\(855\) 7.21953 + 8.58576i 0.246903 + 0.293627i
\(856\) 12.2630i 0.419142i
\(857\) 12.3062 0.420371 0.210186 0.977662i \(-0.432593\pi\)
0.210186 + 0.977662i \(0.432593\pi\)
\(858\) 41.1279 27.5505i 1.40408 0.940557i
\(859\) −7.51594 −0.256441 −0.128220 0.991746i \(-0.540926\pi\)
−0.128220 + 0.991746i \(0.540926\pi\)
\(860\) 3.42396 0.116756
\(861\) 16.5657 24.6226i 0.564557 0.839136i
\(862\) 31.5068 1.07313
\(863\) 18.1537i 0.617960i 0.951069 + 0.308980i \(0.0999876\pi\)
−0.951069 + 0.308980i \(0.900012\pi\)
\(864\) 8.17799 39.1590i 0.278221 1.33222i
\(865\) 4.28776 0.145788
\(866\) 23.2977 0.791687
\(867\) 7.20915 10.7154i 0.244836 0.363914i
\(868\) 1.29378i 0.0439137i
\(869\) 29.8139i 1.01137i
\(870\) −24.8883 16.7445i −0.843793 0.567691i
\(871\) 2.94603 7.20074i 0.0998225 0.243988i
\(872\) 22.2420i 0.753208i
\(873\) −21.6200 53.1481i −0.731727 1.79879i
\(874\) 32.8948 10.6397i 1.11268 0.359894i
\(875\) 14.4380i 0.488092i
\(876\) −40.1457 27.0094i −1.35640 0.912563i
\(877\) 40.6939 1.37413 0.687067 0.726594i \(-0.258898\pi\)
0.687067 + 0.726594i \(0.258898\pi\)
\(878\) 75.4051 2.54480
\(879\) −23.4248 15.7598i −0.790099 0.531566i
\(880\) 7.09351 0.239122
\(881\) 5.77172i 0.194454i −0.995262 0.0972271i \(-0.969003\pi\)
0.995262 0.0972271i \(-0.0309973\pi\)
\(882\) −22.1868 + 9.02535i −0.747070 + 0.303899i
\(883\) −8.40361 −0.282804 −0.141402 0.989952i \(-0.545161\pi\)
−0.141402 + 0.989952i \(0.545161\pi\)
\(884\) 27.4005 + 11.2103i 0.921579 + 0.377045i
\(885\) 7.96527 + 5.35891i 0.267750 + 0.180138i
\(886\) −86.9916 −2.92254
\(887\) −46.5170 −1.56189 −0.780944 0.624601i \(-0.785261\pi\)
−0.780944 + 0.624601i \(0.785261\pi\)
\(888\) −6.94266 4.67091i −0.232980 0.156745i
\(889\) −5.03693 −0.168933
\(890\) −11.4339 −0.383267
\(891\) 23.6690 23.0749i 0.792943 0.773039i
\(892\) 23.6718 0.792590
\(893\) −42.3328 + 13.6924i −1.41661 + 0.458199i
\(894\) 26.6146 + 17.9059i 0.890124 + 0.598862i
\(895\) 10.3038 0.344416
\(896\) 19.5200 0.652116
\(897\) −19.0678 + 12.7730i −0.636655 + 0.426478i
\(898\) 36.0832 1.20411
\(899\) −2.50634 −0.0835911
\(900\) −12.8116 31.4945i −0.427053 1.04982i
\(901\) 37.2363i 1.24052i
\(902\) 74.7573 2.48914
\(903\) −3.92070 2.63779i −0.130473 0.0877800i
\(904\) 25.7340i 0.855901i
\(905\) 9.89544i 0.328935i
\(906\) 42.3339 + 28.4816i 1.40645 + 0.946238i
\(907\) 18.5854i 0.617117i −0.951205 0.308559i \(-0.900153\pi\)
0.951205 0.308559i \(-0.0998466\pi\)
\(908\) 43.7220i 1.45097i
\(909\) 30.0156 12.2100i 0.995553 0.404979i
\(910\) 4.59221 11.2243i 0.152230 0.372083i
\(911\) 23.0943 0.765149 0.382575 0.923925i \(-0.375037\pi\)
0.382575 + 0.923925i \(0.375037\pi\)
\(912\) 4.68759 16.3385i 0.155222 0.541023i
\(913\) −11.2488 −0.372281
\(914\) 63.5250 2.10122
\(915\) 6.56596 9.75939i 0.217064 0.322635i
\(916\) 45.9363i 1.51778i
\(917\) 6.29035 0.207726
\(918\) 33.9128 + 7.08237i 1.11929 + 0.233753i
\(919\) −4.92461 −0.162448 −0.0812239 0.996696i \(-0.525883\pi\)
−0.0812239 + 0.996696i \(0.525883\pi\)
\(920\) 4.47627 0.147578
\(921\) −1.81787 + 2.70202i −0.0599010 + 0.0890344i
\(922\) 29.0778i 0.957625i
\(923\) −30.0831 12.3079i −0.990197 0.405118i
\(924\) 25.4870 + 17.1472i 0.838460 + 0.564103i
\(925\) 14.5086 0.477038
\(926\) −42.8053 −1.40667
\(927\) 46.3776 18.8659i 1.52324 0.619637i
\(928\) 72.0167i 2.36406i
\(929\) 1.28750 0.0422416 0.0211208 0.999777i \(-0.493277\pi\)
0.0211208 + 0.999777i \(0.493277\pi\)
\(930\) 0.712867 + 0.479606i 0.0233758 + 0.0157269i
\(931\) −15.3427 + 4.96256i −0.502837 + 0.162641i
\(932\) 23.2478i 0.761509i
\(933\) 14.2080 + 9.55894i 0.465150 + 0.312946i
\(934\) −35.8396 −1.17271
\(935\) 9.73343i 0.318317i
\(936\) 0.0308238 15.3582i 0.00100751 0.501999i
\(937\) 13.3116 0.434872 0.217436 0.976075i \(-0.430231\pi\)
0.217436 + 0.976075i \(0.430231\pi\)
\(938\) 8.46065 0.276250
\(939\) −8.76610 + 13.0296i −0.286071 + 0.425205i
\(940\) −23.2728 −0.759075
\(941\) 2.87618i 0.0937608i 0.998901 + 0.0468804i \(0.0149280\pi\)
−0.998901 + 0.0468804i \(0.985072\pi\)
\(942\) 13.5529 + 9.11815i 0.441576 + 0.297085i
\(943\) −34.6591 −1.12866
\(944\) 14.5467i 0.473456i
\(945\) 1.65550 7.92709i 0.0538534 0.257868i
\(946\) 11.9037i 0.387024i
\(947\) 23.7631 0.772197 0.386098 0.922458i \(-0.373823\pi\)
0.386098 + 0.922458i \(0.373823\pi\)
\(948\) 31.0052 + 20.8598i 1.00700 + 0.677496i
\(949\) 35.0739 + 14.3498i 1.13855 + 0.465813i
\(950\) −12.3452 38.1675i −0.400530 1.23832i
\(951\) −17.6874 11.8998i −0.573552 0.385877i
\(952\) 7.96896i 0.258276i
\(953\) 25.0414 0.811170 0.405585 0.914057i \(-0.367068\pi\)
0.405585 + 0.914057i \(0.367068\pi\)
\(954\) −72.2892 + 29.4064i −2.34045 + 0.952067i
\(955\) 5.33500i 0.172637i
\(956\) 2.97884 0.0963426
\(957\) −33.2181 + 49.3740i −1.07379 + 1.59604i
\(958\) 85.8869i 2.77488i
\(959\) 7.81587i 0.252388i
\(960\) 10.0463 14.9324i 0.324243 0.481941i
\(961\) −30.9282 −0.997684
\(962\) 24.5050 + 10.0257i 0.790072 + 0.323242i
\(963\) −9.76310 24.0005i −0.314611 0.773404i
\(964\) −50.3706 −1.62233
\(965\) −20.7653 −0.668460
\(966\) −20.7078 13.9319i −0.666264 0.448252i
\(967\) 6.13314i 0.197228i −0.995126 0.0986142i \(-0.968559\pi\)
0.995126 0.0986142i \(-0.0314410\pi\)
\(968\) 3.53522i 0.113626i
\(969\) 22.4191 + 6.43213i 0.720205 + 0.206630i
\(970\) 35.4094i 1.13693i
\(971\) −13.5663 −0.435362 −0.217681 0.976020i \(-0.569849\pi\)
−0.217681 + 0.976020i \(0.569849\pi\)
\(972\) −7.43650 40.7596i −0.238526 1.30736i
\(973\) 29.6214i 0.949617i
\(974\) 34.2141i 1.09629i
\(975\) 14.8204 + 22.1242i 0.474632 + 0.708541i
\(976\) −17.8233 −0.570509
\(977\) 5.06439i 0.162024i 0.996713 + 0.0810121i \(0.0258152\pi\)
−0.996713 + 0.0810121i \(0.974185\pi\)
\(978\) 22.5702 33.5474i 0.721715 1.07273i
\(979\) 22.6829i 0.724949i
\(980\) −8.43479 −0.269440
\(981\) −17.7077 43.5306i −0.565364 1.38982i
\(982\) 10.3725 0.330999
\(983\) 39.6366i 1.26421i 0.774882 + 0.632106i \(0.217809\pi\)
−0.774882 + 0.632106i \(0.782191\pi\)
\(984\) 12.9468 19.2436i 0.412728 0.613463i
\(985\) −7.60122 −0.242195
\(986\) −62.3685 −1.98622
\(987\) 26.6492 + 17.9292i 0.848253 + 0.570691i
\(988\) 3.15183 41.6530i 0.100273 1.32516i
\(989\) 5.51884i 0.175489i
\(990\) 18.8961 7.68672i 0.600559 0.244300i
\(991\) 28.7752i 0.914074i 0.889448 + 0.457037i \(0.151089\pi\)
−0.889448 + 0.457037i \(0.848911\pi\)
\(992\) 2.06275i 0.0654923i
\(993\) −0.963896 + 1.43270i −0.0305883 + 0.0454653i
\(994\) 35.3467i 1.12113i
\(995\) 18.8929 0.598944
\(996\) −7.87043 + 11.6983i −0.249384 + 0.370675i
\(997\) −55.6956 −1.76390 −0.881948 0.471347i \(-0.843768\pi\)
−0.881948 + 0.471347i \(0.843768\pi\)
\(998\) −80.7810 −2.55708
\(999\) 17.3064 + 3.61428i 0.547551 + 0.114351i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 741.2.d.a.740.15 yes 88
3.2 odd 2 inner 741.2.d.a.740.73 yes 88
13.12 even 2 inner 741.2.d.a.740.75 yes 88
19.18 odd 2 inner 741.2.d.a.740.74 yes 88
39.38 odd 2 inner 741.2.d.a.740.13 88
57.56 even 2 inner 741.2.d.a.740.16 yes 88
247.246 odd 2 inner 741.2.d.a.740.14 yes 88
741.740 even 2 inner 741.2.d.a.740.76 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
741.2.d.a.740.13 88 39.38 odd 2 inner
741.2.d.a.740.14 yes 88 247.246 odd 2 inner
741.2.d.a.740.15 yes 88 1.1 even 1 trivial
741.2.d.a.740.16 yes 88 57.56 even 2 inner
741.2.d.a.740.73 yes 88 3.2 odd 2 inner
741.2.d.a.740.74 yes 88 19.18 odd 2 inner
741.2.d.a.740.75 yes 88 13.12 even 2 inner
741.2.d.a.740.76 yes 88 741.740 even 2 inner