Properties

Label 741.2.d.a.740.6
Level $741$
Weight $2$
Character 741.740
Analytic conductor $5.917$
Analytic rank $0$
Dimension $88$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [741,2,Mod(740,741)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("741.740"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(741, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 741 = 3 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 741.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.91691478978\)
Analytic rank: \(0\)
Dimension: \(88\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 740.6
Character \(\chi\) \(=\) 741.740
Dual form 741.2.d.a.740.81

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.62189i q^{2} +(-0.572756 + 1.63461i) q^{3} -4.87431 q^{4} -1.64471 q^{5} +(4.28577 + 1.50170i) q^{6} +4.37710i q^{7} +7.53612i q^{8} +(-2.34390 - 1.87247i) q^{9} +4.31226i q^{10} +0.200098 q^{11} +(2.79179 - 7.96759i) q^{12} +(-0.154753 - 3.60223i) q^{13} +11.4763 q^{14} +(0.942020 - 2.68847i) q^{15} +10.0103 q^{16} -5.06647i q^{17} +(-4.90940 + 6.14545i) q^{18} +(2.15393 - 3.78954i) q^{19} +8.01684 q^{20} +(-7.15486 - 2.50701i) q^{21} -0.524635i q^{22} -4.04516i q^{23} +(-12.3186 - 4.31636i) q^{24} -2.29492 q^{25} +(-9.44465 + 0.405744i) q^{26} +(4.40324 - 2.75890i) q^{27} -21.3353i q^{28} +4.80265 q^{29} +(-7.04886 - 2.46987i) q^{30} +5.46443 q^{31} -11.1736i q^{32} +(-0.114607 + 0.327082i) q^{33} -13.2837 q^{34} -7.19908i q^{35} +(11.4249 + 9.12698i) q^{36} +9.32852 q^{37} +(-9.93575 - 5.64737i) q^{38} +(5.97687 + 1.81024i) q^{39} -12.3948i q^{40} +7.17304i q^{41} +(-6.57311 + 18.7592i) q^{42} +4.54412 q^{43} -0.975340 q^{44} +(3.85505 + 3.07967i) q^{45} -10.6060 q^{46} +3.20171 q^{47} +(-5.73344 + 16.3629i) q^{48} -12.1590 q^{49} +6.01702i q^{50} +(8.28170 + 2.90185i) q^{51} +(0.754312 + 17.5584i) q^{52} -7.48265 q^{53} +(-7.23352 - 11.5448i) q^{54} -0.329104 q^{55} -32.9864 q^{56} +(4.96074 + 5.69132i) q^{57} -12.5920i q^{58} -6.13368i q^{59} +(-4.59170 + 13.1044i) q^{60} -2.92010 q^{61} -14.3271i q^{62} +(8.19598 - 10.2595i) q^{63} -9.27536 q^{64} +(0.254524 + 5.92464i) q^{65} +(0.857574 + 0.300488i) q^{66} +0.958106 q^{67} +24.6955i q^{68} +(6.61225 + 2.31689i) q^{69} -18.8752 q^{70} -8.64301i q^{71} +(14.1111 - 17.6639i) q^{72} +4.64417i q^{73} -24.4584i q^{74} +(1.31443 - 3.75129i) q^{75} +(-10.4989 + 18.4714i) q^{76} +0.875850i q^{77} +(4.74625 - 15.6707i) q^{78} -6.77157i q^{79} -16.4640 q^{80} +(1.98774 + 8.77775i) q^{81} +18.8069 q^{82} -13.2127 q^{83} +(34.8750 + 12.2200i) q^{84} +8.33289i q^{85} -11.9142i q^{86} +(-2.75075 + 7.85047i) q^{87} +1.50796i q^{88} -14.5724i q^{89} +(8.07456 - 10.1075i) q^{90} +(15.7673 - 0.677368i) q^{91} +19.7173i q^{92} +(-3.12979 + 8.93222i) q^{93} -8.39452i q^{94} +(-3.54260 + 6.23270i) q^{95} +(18.2644 + 6.39974i) q^{96} -1.71606 q^{97} +31.8796i q^{98} +(-0.469010 - 0.374677i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q - 88 q^{4} - 4 q^{9} + 72 q^{16} + 64 q^{25} - 60 q^{30} - 48 q^{36} + 20 q^{39} + 48 q^{42} - 64 q^{43} - 112 q^{49} - 24 q^{55} - 64 q^{61} - 104 q^{64} + 12 q^{66} + 60 q^{81} + 56 q^{82} - 32 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/741\mathbb{Z}\right)^\times\).

\(n\) \(40\) \(248\) \(457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.62189i 1.85396i −0.375115 0.926978i \(-0.622397\pi\)
0.375115 0.926978i \(-0.377603\pi\)
\(3\) −0.572756 + 1.63461i −0.330681 + 0.943743i
\(4\) −4.87431 −2.43715
\(5\) −1.64471 −0.735538 −0.367769 0.929917i \(-0.619878\pi\)
−0.367769 + 0.929917i \(0.619878\pi\)
\(6\) 4.28577 + 1.50170i 1.74966 + 0.613068i
\(7\) 4.37710i 1.65439i 0.561916 + 0.827195i \(0.310065\pi\)
−0.561916 + 0.827195i \(0.689935\pi\)
\(8\) 7.53612i 2.66442i
\(9\) −2.34390 1.87247i −0.781300 0.624156i
\(10\) 4.31226i 1.36366i
\(11\) 0.200098 0.0603319 0.0301659 0.999545i \(-0.490396\pi\)
0.0301659 + 0.999545i \(0.490396\pi\)
\(12\) 2.79179 7.96759i 0.805921 2.30005i
\(13\) −0.154753 3.60223i −0.0429206 0.999078i
\(14\) 11.4763 3.06717
\(15\) 0.942020 2.68847i 0.243229 0.694159i
\(16\) 10.0103 2.50257
\(17\) 5.06647i 1.22880i −0.788995 0.614400i \(-0.789398\pi\)
0.788995 0.614400i \(-0.210602\pi\)
\(18\) −4.90940 + 6.14545i −1.15716 + 1.44850i
\(19\) 2.15393 3.78954i 0.494146 0.869379i
\(20\) 8.01684 1.79262
\(21\) −7.15486 2.50701i −1.56132 0.547075i
\(22\) 0.524635i 0.111853i
\(23\) 4.04516i 0.843474i −0.906718 0.421737i \(-0.861421\pi\)
0.906718 0.421737i \(-0.138579\pi\)
\(24\) −12.3186 4.31636i −2.51453 0.881074i
\(25\) −2.29492 −0.458983
\(26\) −9.44465 + 0.405744i −1.85225 + 0.0795730i
\(27\) 4.40324 2.75890i 0.847403 0.530950i
\(28\) 21.3353i 4.03200i
\(29\) 4.80265 0.891830 0.445915 0.895075i \(-0.352878\pi\)
0.445915 + 0.895075i \(0.352878\pi\)
\(30\) −7.04886 2.46987i −1.28694 0.450935i
\(31\) 5.46443 0.981441 0.490720 0.871317i \(-0.336734\pi\)
0.490720 + 0.871317i \(0.336734\pi\)
\(32\) 11.1736i 1.97523i
\(33\) −0.114607 + 0.327082i −0.0199506 + 0.0569377i
\(34\) −13.2837 −2.27814
\(35\) 7.19908i 1.21687i
\(36\) 11.4249 + 9.12698i 1.90415 + 1.52116i
\(37\) 9.32852 1.53360 0.766800 0.641887i \(-0.221848\pi\)
0.766800 + 0.641887i \(0.221848\pi\)
\(38\) −9.93575 5.64737i −1.61179 0.916124i
\(39\) 5.97687 + 1.81024i 0.957066 + 0.289870i
\(40\) 12.3948i 1.95978i
\(41\) 7.17304i 1.12024i 0.828411 + 0.560120i \(0.189245\pi\)
−0.828411 + 0.560120i \(0.810755\pi\)
\(42\) −6.57311 + 18.7592i −1.01425 + 2.89461i
\(43\) 4.54412 0.692971 0.346486 0.938055i \(-0.387375\pi\)
0.346486 + 0.938055i \(0.387375\pi\)
\(44\) −0.975340 −0.147038
\(45\) 3.85505 + 3.07967i 0.574676 + 0.459090i
\(46\) −10.6060 −1.56376
\(47\) 3.20171 0.467017 0.233508 0.972355i \(-0.424979\pi\)
0.233508 + 0.972355i \(0.424979\pi\)
\(48\) −5.73344 + 16.3629i −0.827551 + 2.36178i
\(49\) −12.1590 −1.73700
\(50\) 6.01702i 0.850935i
\(51\) 8.28170 + 2.90185i 1.15967 + 0.406341i
\(52\) 0.754312 + 17.5584i 0.104604 + 2.43491i
\(53\) −7.48265 −1.02782 −0.513911 0.857844i \(-0.671804\pi\)
−0.513911 + 0.857844i \(0.671804\pi\)
\(54\) −7.23352 11.5448i −0.984358 1.57105i
\(55\) −0.329104 −0.0443764
\(56\) −32.9864 −4.40799
\(57\) 4.96074 + 5.69132i 0.657066 + 0.753833i
\(58\) 12.5920i 1.65341i
\(59\) 6.13368i 0.798537i −0.916834 0.399269i \(-0.869264\pi\)
0.916834 0.399269i \(-0.130736\pi\)
\(60\) −4.59170 + 13.1044i −0.592786 + 1.69177i
\(61\) −2.92010 −0.373880 −0.186940 0.982371i \(-0.559857\pi\)
−0.186940 + 0.982371i \(0.559857\pi\)
\(62\) 14.3271i 1.81955i
\(63\) 8.19598 10.2595i 1.03260 1.29257i
\(64\) −9.27536 −1.15942
\(65\) 0.254524 + 5.92464i 0.0315698 + 0.734861i
\(66\) 0.857574 + 0.300488i 0.105560 + 0.0369875i
\(67\) 0.958106 0.117051 0.0585256 0.998286i \(-0.481360\pi\)
0.0585256 + 0.998286i \(0.481360\pi\)
\(68\) 24.6955i 2.99477i
\(69\) 6.61225 + 2.31689i 0.796022 + 0.278921i
\(70\) −18.8752 −2.25602
\(71\) 8.64301i 1.02574i −0.858467 0.512868i \(-0.828583\pi\)
0.858467 0.512868i \(-0.171417\pi\)
\(72\) 14.1111 17.6639i 1.66301 2.08171i
\(73\) 4.64417i 0.543559i 0.962360 + 0.271779i \(0.0876121\pi\)
−0.962360 + 0.271779i \(0.912388\pi\)
\(74\) 24.4584i 2.84323i
\(75\) 1.31443 3.75129i 0.151777 0.433162i
\(76\) −10.4989 + 18.4714i −1.20431 + 2.11881i
\(77\) 0.875850i 0.0998124i
\(78\) 4.74625 15.6707i 0.537407 1.77436i
\(79\) 6.77157i 0.761861i −0.924604 0.380930i \(-0.875604\pi\)
0.924604 0.380930i \(-0.124396\pi\)
\(80\) −16.4640 −1.84073
\(81\) 1.98774 + 8.77775i 0.220860 + 0.975306i
\(82\) 18.8069 2.07688
\(83\) −13.2127 −1.45028 −0.725141 0.688601i \(-0.758225\pi\)
−0.725141 + 0.688601i \(0.758225\pi\)
\(84\) 34.8750 + 12.2200i 3.80517 + 1.33331i
\(85\) 8.33289i 0.903829i
\(86\) 11.9142i 1.28474i
\(87\) −2.75075 + 7.85047i −0.294911 + 0.841658i
\(88\) 1.50796i 0.160750i
\(89\) 14.5724i 1.54467i −0.635217 0.772334i \(-0.719089\pi\)
0.635217 0.772334i \(-0.280911\pi\)
\(90\) 8.07456 10.1075i 0.851134 1.06542i
\(91\) 15.7673 0.677368i 1.65286 0.0710074i
\(92\) 19.7173i 2.05568i
\(93\) −3.12979 + 8.93222i −0.324544 + 0.926228i
\(94\) 8.39452i 0.865829i
\(95\) −3.54260 + 6.23270i −0.363463 + 0.639462i
\(96\) 18.2644 + 6.39974i 1.86411 + 0.653171i
\(97\) −1.71606 −0.174239 −0.0871196 0.996198i \(-0.527766\pi\)
−0.0871196 + 0.996198i \(0.527766\pi\)
\(98\) 31.8796i 3.22033i
\(99\) −0.469010 0.374677i −0.0471373 0.0376565i
\(100\) 11.1861 1.11861
\(101\) 15.4047i 1.53283i −0.642347 0.766414i \(-0.722039\pi\)
0.642347 0.766414i \(-0.277961\pi\)
\(102\) 7.60834 21.7137i 0.753338 2.14998i
\(103\) 3.96713i 0.390893i 0.980714 + 0.195446i \(0.0626156\pi\)
−0.980714 + 0.195446i \(0.937384\pi\)
\(104\) 27.1468 1.16623i 2.66197 0.114359i
\(105\) 11.7677 + 4.12332i 1.14841 + 0.402395i
\(106\) 19.6187i 1.90554i
\(107\) 2.00525 0.193855 0.0969276 0.995291i \(-0.469098\pi\)
0.0969276 + 0.995291i \(0.469098\pi\)
\(108\) −21.4627 + 13.4477i −2.06525 + 1.29401i
\(109\) −9.54308 −0.914061 −0.457031 0.889451i \(-0.651087\pi\)
−0.457031 + 0.889451i \(0.651087\pi\)
\(110\) 0.862875i 0.0822719i
\(111\) −5.34297 + 15.2485i −0.507132 + 1.44732i
\(112\) 43.8160i 4.14022i
\(113\) 16.6865 1.56973 0.784865 0.619667i \(-0.212732\pi\)
0.784865 + 0.619667i \(0.212732\pi\)
\(114\) 14.9220 13.0065i 1.39757 1.21817i
\(115\) 6.65313i 0.620407i
\(116\) −23.4096 −2.17353
\(117\) −6.38233 + 8.73303i −0.590046 + 0.807369i
\(118\) −16.0818 −1.48045
\(119\) 22.1764 2.03291
\(120\) 20.2606 + 7.09918i 1.84953 + 0.648063i
\(121\) −10.9600 −0.996360
\(122\) 7.65617i 0.693157i
\(123\) −11.7251 4.10840i −1.05722 0.370442i
\(124\) −26.6353 −2.39192
\(125\) 11.9981 1.07314
\(126\) −26.8993 21.4890i −2.39638 1.91439i
\(127\) 12.8605i 1.14119i −0.821232 0.570595i \(-0.806713\pi\)
0.821232 0.570595i \(-0.193287\pi\)
\(128\) 1.97183i 0.174287i
\(129\) −2.60267 + 7.42786i −0.229152 + 0.653987i
\(130\) 15.5337 0.667333i 1.36240 0.0585290i
\(131\) 16.1527i 1.41127i 0.708577 + 0.705634i \(0.249338\pi\)
−0.708577 + 0.705634i \(0.750662\pi\)
\(132\) 0.558632 1.59430i 0.0486227 0.138766i
\(133\) 16.5872 + 9.42798i 1.43829 + 0.817509i
\(134\) 2.51205i 0.217008i
\(135\) −7.24206 + 4.53759i −0.623298 + 0.390534i
\(136\) 38.1815 3.27404
\(137\) −0.526348 −0.0449689 −0.0224845 0.999747i \(-0.507158\pi\)
−0.0224845 + 0.999747i \(0.507158\pi\)
\(138\) 6.07463 17.3366i 0.517107 1.47579i
\(139\) 13.7784 1.16867 0.584335 0.811513i \(-0.301355\pi\)
0.584335 + 0.811513i \(0.301355\pi\)
\(140\) 35.0905i 2.96569i
\(141\) −1.83380 + 5.23354i −0.154434 + 0.440744i
\(142\) −22.6610 −1.90167
\(143\) −0.0309657 0.720799i −0.00258948 0.0602763i
\(144\) −23.4631 18.7439i −1.95526 1.56199i
\(145\) −7.89899 −0.655975
\(146\) 12.1765 1.00773
\(147\) 6.96416 19.8753i 0.574394 1.63928i
\(148\) −45.4701 −3.73762
\(149\) −15.9949 −1.31035 −0.655176 0.755476i \(-0.727405\pi\)
−0.655176 + 0.755476i \(0.727405\pi\)
\(150\) −9.83548 3.44629i −0.803064 0.281388i
\(151\) −2.76186 −0.224757 −0.112378 0.993665i \(-0.535847\pi\)
−0.112378 + 0.993665i \(0.535847\pi\)
\(152\) 28.5584 + 16.2323i 2.31639 + 1.31661i
\(153\) −9.48679 + 11.8753i −0.766962 + 0.960061i
\(154\) 2.29638 0.185048
\(155\) −8.98743 −0.721888
\(156\) −29.1331 8.82366i −2.33252 0.706459i
\(157\) 11.4583 0.914471 0.457236 0.889346i \(-0.348840\pi\)
0.457236 + 0.889346i \(0.348840\pi\)
\(158\) −17.7543 −1.41246
\(159\) 4.28574 12.2312i 0.339881 0.969999i
\(160\) 18.3773i 1.45286i
\(161\) 17.7061 1.39543
\(162\) 23.0143 5.21163i 1.80817 0.409464i
\(163\) 15.9254i 1.24737i −0.781676 0.623685i \(-0.785635\pi\)
0.781676 0.623685i \(-0.214365\pi\)
\(164\) 34.9636i 2.73020i
\(165\) 0.188497 0.537957i 0.0146744 0.0418799i
\(166\) 34.6422i 2.68876i
\(167\) 2.70200i 0.209087i 0.994520 + 0.104543i \(0.0333381\pi\)
−0.994520 + 0.104543i \(0.966662\pi\)
\(168\) 18.8932 53.9199i 1.45764 4.16001i
\(169\) −12.9521 + 1.11491i −0.996316 + 0.0857622i
\(170\) 21.8479 1.67566
\(171\) −12.1444 + 4.84913i −0.928704 + 0.370822i
\(172\) −22.1494 −1.68888
\(173\) 6.45272 0.490591 0.245295 0.969448i \(-0.421115\pi\)
0.245295 + 0.969448i \(0.421115\pi\)
\(174\) 20.5831 + 7.21216i 1.56040 + 0.546753i
\(175\) 10.0451i 0.759337i
\(176\) 2.00304 0.150985
\(177\) 10.0262 + 3.51310i 0.753613 + 0.264061i
\(178\) −38.2072 −2.86375
\(179\) 11.0181 0.823533 0.411767 0.911289i \(-0.364912\pi\)
0.411767 + 0.911289i \(0.364912\pi\)
\(180\) −18.7907 15.0113i −1.40057 1.11887i
\(181\) 25.1080i 1.86627i −0.359531 0.933133i \(-0.617063\pi\)
0.359531 0.933133i \(-0.382937\pi\)
\(182\) −1.77598 41.3402i −0.131645 3.06434i
\(183\) 1.67250 4.77322i 0.123635 0.352846i
\(184\) 30.4848 2.24737
\(185\) −15.3427 −1.12802
\(186\) 23.4193 + 8.20596i 1.71719 + 0.601690i
\(187\) 1.01379i 0.0741357i
\(188\) −15.6061 −1.13819
\(189\) 12.0760 + 19.2734i 0.878398 + 1.40193i
\(190\) 16.3415 + 9.28831i 1.18553 + 0.673845i
\(191\) 24.4822i 1.77147i −0.464189 0.885736i \(-0.653654\pi\)
0.464189 0.885736i \(-0.346346\pi\)
\(192\) 5.31252 15.1616i 0.383398 1.09419i
\(193\) −4.03383 −0.290362 −0.145181 0.989405i \(-0.546376\pi\)
−0.145181 + 0.989405i \(0.546376\pi\)
\(194\) 4.49932i 0.323032i
\(195\) −9.83025 2.97733i −0.703959 0.213211i
\(196\) 59.2668 4.23335
\(197\) 6.59858 0.470129 0.235065 0.971980i \(-0.424470\pi\)
0.235065 + 0.971980i \(0.424470\pi\)
\(198\) −0.982362 + 1.22969i −0.0698134 + 0.0873905i
\(199\) −7.51677 −0.532850 −0.266425 0.963856i \(-0.585842\pi\)
−0.266425 + 0.963856i \(0.585842\pi\)
\(200\) 17.2948i 1.22292i
\(201\) −0.548761 + 1.56613i −0.0387066 + 0.110466i
\(202\) −40.3895 −2.84180
\(203\) 21.0217i 1.47543i
\(204\) −40.3676 14.1445i −2.82629 0.990315i
\(205\) 11.7976i 0.823980i
\(206\) 10.4014 0.724699
\(207\) −7.57442 + 9.48145i −0.526459 + 0.659006i
\(208\) −1.54911 36.0593i −0.107412 2.50026i
\(209\) 0.430998 0.758279i 0.0298127 0.0524513i
\(210\) 10.8109 30.8536i 0.746022 2.12910i
\(211\) 18.8866i 1.30021i 0.759845 + 0.650104i \(0.225275\pi\)
−0.759845 + 0.650104i \(0.774725\pi\)
\(212\) 36.4728 2.50496
\(213\) 14.1280 + 4.95034i 0.968032 + 0.339192i
\(214\) 5.25755i 0.359399i
\(215\) −7.47377 −0.509707
\(216\) 20.7914 + 33.1833i 1.41467 + 2.25784i
\(217\) 23.9184i 1.62369i
\(218\) 25.0209i 1.69463i
\(219\) −7.59141 2.65998i −0.512980 0.179745i
\(220\) 1.60416 0.108152
\(221\) −18.2506 + 0.784049i −1.22767 + 0.0527408i
\(222\) 39.9799 + 14.0087i 2.68327 + 0.940201i
\(223\) 8.96039 0.600032 0.300016 0.953934i \(-0.403008\pi\)
0.300016 + 0.953934i \(0.403008\pi\)
\(224\) 48.9079 3.26780
\(225\) 5.37905 + 4.29715i 0.358604 + 0.286477i
\(226\) 43.7501i 2.91021i
\(227\) 10.0174i 0.664875i 0.943125 + 0.332437i \(0.107871\pi\)
−0.943125 + 0.332437i \(0.892129\pi\)
\(228\) −24.1802 27.7412i −1.60137 1.83721i
\(229\) 17.2301i 1.13860i 0.822131 + 0.569298i \(0.192785\pi\)
−0.822131 + 0.569298i \(0.807215\pi\)
\(230\) 17.4438 1.15021
\(231\) −1.43167 0.501649i −0.0941972 0.0330061i
\(232\) 36.1934i 2.37621i
\(233\) 17.3799i 1.13860i −0.822131 0.569299i \(-0.807215\pi\)
0.822131 0.569299i \(-0.192785\pi\)
\(234\) 22.8971 + 16.7338i 1.49683 + 1.09392i
\(235\) −5.26589 −0.343509
\(236\) 29.8974i 1.94616i
\(237\) 11.0689 + 3.87846i 0.719000 + 0.251933i
\(238\) 58.1442i 3.76893i
\(239\) −26.8615 −1.73752 −0.868762 0.495229i \(-0.835084\pi\)
−0.868762 + 0.495229i \(0.835084\pi\)
\(240\) 9.42988 26.9123i 0.608696 1.73718i
\(241\) 21.3885 1.37775 0.688876 0.724879i \(-0.258104\pi\)
0.688876 + 0.724879i \(0.258104\pi\)
\(242\) 28.7358i 1.84721i
\(243\) −15.4867 1.77834i −0.993472 0.114080i
\(244\) 14.2335 0.911203
\(245\) 19.9981 1.27763
\(246\) −10.7718 + 30.7420i −0.686784 + 1.96004i
\(247\) −13.9841 7.17251i −0.889787 0.456376i
\(248\) 41.1806i 2.61497i
\(249\) 7.56765 21.5976i 0.479581 1.36869i
\(250\) 31.4576i 1.98955i
\(251\) 1.58597i 0.100105i 0.998747 + 0.0500527i \(0.0159389\pi\)
−0.998747 + 0.0500527i \(0.984061\pi\)
\(252\) −39.9497 + 50.0079i −2.51660 + 3.15020i
\(253\) 0.809428i 0.0508883i
\(254\) −33.7189 −2.11571
\(255\) −13.6210 4.77272i −0.852982 0.298879i
\(256\) −13.3808 −0.836301
\(257\) −0.288137 −0.0179735 −0.00898674 0.999960i \(-0.502861\pi\)
−0.00898674 + 0.999960i \(0.502861\pi\)
\(258\) 19.4750 + 6.82392i 1.21246 + 0.424839i
\(259\) 40.8319i 2.53717i
\(260\) −1.24063 28.8785i −0.0769404 1.79097i
\(261\) −11.2569 8.99281i −0.696787 0.556641i
\(262\) 42.3506 2.61643
\(263\) 5.21374i 0.321493i −0.986996 0.160746i \(-0.948610\pi\)
0.986996 0.160746i \(-0.0513901\pi\)
\(264\) −2.46493 0.863696i −0.151706 0.0531568i
\(265\) 12.3068 0.756002
\(266\) 24.7191 43.4898i 1.51563 2.66653i
\(267\) 23.8201 + 8.34642i 1.45777 + 0.510792i
\(268\) −4.67010 −0.285272
\(269\) −22.1875 −1.35280 −0.676398 0.736536i \(-0.736460\pi\)
−0.676398 + 0.736536i \(0.736460\pi\)
\(270\) 11.8971 + 18.9879i 0.724033 + 1.15557i
\(271\) 8.34280i 0.506789i −0.967363 0.253394i \(-0.918453\pi\)
0.967363 0.253394i \(-0.0815471\pi\)
\(272\) 50.7167i 3.07515i
\(273\) −7.92360 + 26.1614i −0.479558 + 1.58336i
\(274\) 1.38003i 0.0833704i
\(275\) −0.459208 −0.0276913
\(276\) −32.2302 11.2932i −1.94003 0.679773i
\(277\) 7.78002 0.467456 0.233728 0.972302i \(-0.424907\pi\)
0.233728 + 0.972302i \(0.424907\pi\)
\(278\) 36.1255i 2.16666i
\(279\) −12.8081 10.2320i −0.766800 0.612572i
\(280\) 54.2532 3.24225
\(281\) 1.69764i 0.101273i −0.998717 0.0506363i \(-0.983875\pi\)
0.998717 0.0506363i \(-0.0161249\pi\)
\(282\) 13.7218 + 4.80802i 0.817120 + 0.286313i
\(283\) 16.7129 0.993476 0.496738 0.867900i \(-0.334531\pi\)
0.496738 + 0.867900i \(0.334531\pi\)
\(284\) 42.1287i 2.49988i
\(285\) −8.15899 9.36059i −0.483297 0.554473i
\(286\) −1.88986 + 0.0811887i −0.111750 + 0.00480079i
\(287\) −31.3971 −1.85331
\(288\) −20.9222 + 26.1898i −1.23285 + 1.54325i
\(289\) −8.66910 −0.509947
\(290\) 20.7103i 1.21615i
\(291\) 0.982883 2.80509i 0.0576176 0.164437i
\(292\) 22.6371i 1.32474i
\(293\) 17.7530i 1.03714i −0.855034 0.518571i \(-0.826464\pi\)
0.855034 0.518571i \(-0.173536\pi\)
\(294\) −52.1108 18.2593i −3.03916 1.06490i
\(295\) 10.0881i 0.587355i
\(296\) 70.3009i 4.08615i
\(297\) 0.881079 0.552050i 0.0511254 0.0320332i
\(298\) 41.9368i 2.42934i
\(299\) −14.5716 + 0.625998i −0.842696 + 0.0362024i
\(300\) −6.40693 + 18.2850i −0.369904 + 1.05568i
\(301\) 19.8901i 1.14644i
\(302\) 7.24128i 0.416689i
\(303\) 25.1807 + 8.82316i 1.44660 + 0.506877i
\(304\) 21.5614 37.9343i 1.23663 2.17568i
\(305\) 4.80272 0.275003
\(306\) 31.1357 + 24.8733i 1.77991 + 1.42191i
\(307\) 29.1887 1.66589 0.832945 0.553356i \(-0.186653\pi\)
0.832945 + 0.553356i \(0.186653\pi\)
\(308\) 4.26916i 0.243258i
\(309\) −6.48471 2.27220i −0.368902 0.129261i
\(310\) 23.5640i 1.33835i
\(311\) 15.5326i 0.880775i 0.897808 + 0.440388i \(0.145159\pi\)
−0.897808 + 0.440388i \(0.854841\pi\)
\(312\) −13.6422 + 45.0425i −0.772337 + 2.55003i
\(313\) 16.3701 0.925291 0.462646 0.886543i \(-0.346900\pi\)
0.462646 + 0.886543i \(0.346900\pi\)
\(314\) 30.0424i 1.69539i
\(315\) −13.4800 + 16.8739i −0.759514 + 0.950738i
\(316\) 33.0067i 1.85677i
\(317\) 14.0146i 0.787138i 0.919295 + 0.393569i \(0.128760\pi\)
−0.919295 + 0.393569i \(0.871240\pi\)
\(318\) −32.0689 11.2367i −1.79834 0.630124i
\(319\) 0.961002 0.0538058
\(320\) 15.2553 0.852798
\(321\) −1.14852 + 3.27781i −0.0641042 + 0.182949i
\(322\) 46.4234i 2.58707i
\(323\) −19.1996 10.9128i −1.06829 0.607206i
\(324\) −9.68885 42.7855i −0.538269 2.37697i
\(325\) 0.355144 + 8.26681i 0.0196999 + 0.458560i
\(326\) −41.7545 −2.31257
\(327\) 5.46586 15.5992i 0.302263 0.862638i
\(328\) −54.0569 −2.98479
\(329\) 14.0142i 0.772628i
\(330\) −1.41046 0.494217i −0.0776435 0.0272058i
\(331\) 11.2817 0.620099 0.310050 0.950720i \(-0.399654\pi\)
0.310050 + 0.950720i \(0.399654\pi\)
\(332\) 64.4028 3.53456
\(333\) −21.8651 17.4673i −1.19820 0.957204i
\(334\) 7.08434 0.387638
\(335\) −1.57581 −0.0860957
\(336\) −71.6220 25.0959i −3.90730 1.36909i
\(337\) 9.68227i 0.527427i −0.964601 0.263713i \(-0.915053\pi\)
0.964601 0.263713i \(-0.0849473\pi\)
\(338\) 2.92317 + 33.9590i 0.158999 + 1.84713i
\(339\) −9.55728 + 27.2759i −0.519080 + 1.48142i
\(340\) 40.6171i 2.20277i
\(341\) 1.09342 0.0592122
\(342\) 12.7139 + 31.8412i 0.687488 + 1.72178i
\(343\) 22.5816i 1.21929i
\(344\) 34.2450i 1.84637i
\(345\) −10.8753 3.81062i −0.585505 0.205157i
\(346\) 16.9183i 0.909534i
\(347\) 22.6659i 1.21677i −0.793643 0.608384i \(-0.791818\pi\)
0.793643 0.608384i \(-0.208182\pi\)
\(348\) 13.4080 38.2656i 0.718745 2.05125i
\(349\) 21.3254i 1.14152i 0.821115 + 0.570762i \(0.193352\pi\)
−0.821115 + 0.570762i \(0.806648\pi\)
\(350\) −26.3371 −1.40778
\(351\) −10.6196 15.4345i −0.566832 0.823834i
\(352\) 2.23581i 0.119169i
\(353\) −16.8994 −0.899465 −0.449732 0.893163i \(-0.648481\pi\)
−0.449732 + 0.893163i \(0.648481\pi\)
\(354\) 9.21097 26.2875i 0.489558 1.39717i
\(355\) 14.2153i 0.754469i
\(356\) 71.0302i 3.76459i
\(357\) −12.7017 + 36.2498i −0.672245 + 1.91855i
\(358\) 28.8883i 1.52679i
\(359\) 19.8463 1.04745 0.523724 0.851888i \(-0.324542\pi\)
0.523724 + 0.851888i \(0.324542\pi\)
\(360\) −23.2088 + 29.0521i −1.22321 + 1.53118i
\(361\) −9.72116 16.3248i −0.511640 0.859200i
\(362\) −65.8306 −3.45998
\(363\) 6.27739 17.9153i 0.329477 0.940307i
\(364\) −76.8548 + 3.30170i −4.02829 + 0.173056i
\(365\) 7.63833i 0.399808i
\(366\) −12.5149 4.38512i −0.654162 0.229214i
\(367\) −1.33453 −0.0696622 −0.0348311 0.999393i \(-0.511089\pi\)
−0.0348311 + 0.999393i \(0.511089\pi\)
\(368\) 40.4931i 2.11085i
\(369\) 13.4313 16.8129i 0.699204 0.875244i
\(370\) 40.2270i 2.09130i
\(371\) 32.7523i 1.70042i
\(372\) 15.2556 43.5384i 0.790964 2.25736i
\(373\) 27.4206i 1.41978i −0.704310 0.709892i \(-0.748744\pi\)
0.704310 0.709892i \(-0.251256\pi\)
\(374\) −2.65805 −0.137444
\(375\) −6.87196 + 19.6121i −0.354866 + 1.01277i
\(376\) 24.1285i 1.24433i
\(377\) −0.743223 17.3003i −0.0382779 0.891008i
\(378\) 50.5328 31.6619i 2.59913 1.62851i
\(379\) −27.0397 −1.38894 −0.694469 0.719523i \(-0.744360\pi\)
−0.694469 + 0.719523i \(0.744360\pi\)
\(380\) 17.2677 30.3801i 0.885816 1.55847i
\(381\) 21.0220 + 7.36596i 1.07699 + 0.377370i
\(382\) −64.1897 −3.28423
\(383\) 3.31429i 0.169352i 0.996409 + 0.0846762i \(0.0269856\pi\)
−0.996409 + 0.0846762i \(0.973014\pi\)
\(384\) −3.22317 1.12938i −0.164482 0.0576333i
\(385\) 1.44052i 0.0734158i
\(386\) 10.5763i 0.538318i
\(387\) −10.6510 8.50871i −0.541419 0.432522i
\(388\) 8.36460 0.424648
\(389\) 29.4262i 1.49197i 0.665963 + 0.745985i \(0.268021\pi\)
−0.665963 + 0.745985i \(0.731979\pi\)
\(390\) −7.80622 + 25.7738i −0.395283 + 1.30511i
\(391\) −20.4947 −1.03646
\(392\) 91.6319i 4.62811i
\(393\) −26.4034 9.25156i −1.33187 0.466679i
\(394\) 17.3007i 0.871599i
\(395\) 11.1373i 0.560378i
\(396\) 2.28610 + 1.82629i 0.114881 + 0.0917746i
\(397\) 9.27167i 0.465332i 0.972557 + 0.232666i \(0.0747449\pi\)
−0.972557 + 0.232666i \(0.925255\pi\)
\(398\) 19.7081i 0.987880i
\(399\) −24.9115 + 21.7136i −1.24713 + 1.08704i
\(400\) −22.9727 −1.14864
\(401\) 2.27972i 0.113844i 0.998379 + 0.0569219i \(0.0181286\pi\)
−0.998379 + 0.0569219i \(0.981871\pi\)
\(402\) 4.10622 + 1.43879i 0.204800 + 0.0717604i
\(403\) −0.845635 19.6841i −0.0421241 0.980537i
\(404\) 75.0874i 3.73574i
\(405\) −3.26926 14.4369i −0.162451 0.717375i
\(406\) 55.1166 2.73539
\(407\) 1.86662 0.0925249
\(408\) −21.8687 + 62.4119i −1.08266 + 3.08985i
\(409\) 3.10323 0.153445 0.0767225 0.997052i \(-0.475554\pi\)
0.0767225 + 0.997052i \(0.475554\pi\)
\(410\) −30.9320 −1.52762
\(411\) 0.301469 0.860373i 0.0148704 0.0424391i
\(412\) 19.3370i 0.952666i
\(413\) 26.8477 1.32109
\(414\) 24.8593 + 19.8593i 1.22177 + 0.976031i
\(415\) 21.7311 1.06674
\(416\) −40.2498 + 1.72914i −1.97341 + 0.0847781i
\(417\) −7.89168 + 22.5223i −0.386457 + 1.10292i
\(418\) −1.98812 1.13003i −0.0972424 0.0552715i
\(419\) 11.6328i 0.568300i 0.958780 + 0.284150i \(0.0917114\pi\)
−0.958780 + 0.284150i \(0.908289\pi\)
\(420\) −57.3594 20.0983i −2.79885 0.980698i
\(421\) 6.89214 0.335902 0.167951 0.985795i \(-0.446285\pi\)
0.167951 + 0.985795i \(0.446285\pi\)
\(422\) 49.5186 2.41053
\(423\) −7.50448 5.99509i −0.364880 0.291491i
\(424\) 56.3902i 2.73855i
\(425\) 11.6271i 0.563998i
\(426\) 12.9792 37.0420i 0.628847 1.79469i
\(427\) 12.7816i 0.618543i
\(428\) −9.77422 −0.472455
\(429\) 1.19596 + 0.362226i 0.0577416 + 0.0174884i
\(430\) 19.5954i 0.944975i
\(431\) 23.9948i 1.15579i 0.816112 + 0.577893i \(0.196125\pi\)
−0.816112 + 0.577893i \(0.803875\pi\)
\(432\) 44.0776 27.6173i 2.12068 1.32874i
\(433\) 7.41439i 0.356313i 0.984002 + 0.178156i \(0.0570133\pi\)
−0.984002 + 0.178156i \(0.942987\pi\)
\(434\) 62.7114 3.01024
\(435\) 4.52420 12.9118i 0.216919 0.619072i
\(436\) 46.5159 2.22771
\(437\) −15.3293 8.71299i −0.733298 0.416799i
\(438\) −6.97417 + 19.9038i −0.333239 + 0.951042i
\(439\) 6.20188i 0.296000i 0.988987 + 0.148000i \(0.0472835\pi\)
−0.988987 + 0.148000i \(0.952716\pi\)
\(440\) 2.48017i 0.118237i
\(441\) 28.4995 + 22.7674i 1.35712 + 1.08416i
\(442\) 2.05569 + 47.8510i 0.0977792 + 2.27604i
\(443\) 30.7339i 1.46021i 0.683334 + 0.730106i \(0.260530\pi\)
−0.683334 + 0.730106i \(0.739470\pi\)
\(444\) 26.0433 74.3259i 1.23596 3.52735i
\(445\) 23.9674i 1.13616i
\(446\) 23.4932i 1.11243i
\(447\) 9.16117 26.1454i 0.433308 1.23663i
\(448\) 40.5992i 1.91813i
\(449\) 11.6278i 0.548751i 0.961623 + 0.274376i \(0.0884712\pi\)
−0.961623 + 0.274376i \(0.911529\pi\)
\(450\) 11.2667 14.1033i 0.531116 0.664836i
\(451\) 1.43531i 0.0675862i
\(452\) −81.3350 −3.82567
\(453\) 1.58187 4.51456i 0.0743228 0.212112i
\(454\) 26.2644 1.23265
\(455\) −25.9327 + 1.11408i −1.21575 + 0.0522287i
\(456\) −42.8905 + 37.3847i −2.00853 + 1.75070i
\(457\) 11.4081i 0.533648i 0.963745 + 0.266824i \(0.0859743\pi\)
−0.963745 + 0.266824i \(0.914026\pi\)
\(458\) 45.1754 2.11091
\(459\) −13.9779 22.3089i −0.652431 1.04129i
\(460\) 32.4294i 1.51203i
\(461\) 16.4845 0.767761 0.383881 0.923383i \(-0.374587\pi\)
0.383881 + 0.923383i \(0.374587\pi\)
\(462\) −1.31527 + 3.75369i −0.0611918 + 0.174637i
\(463\) 25.5864i 1.18910i −0.804059 0.594550i \(-0.797330\pi\)
0.804059 0.594550i \(-0.202670\pi\)
\(464\) 48.0758 2.23187
\(465\) 5.14761 14.6909i 0.238715 0.681276i
\(466\) −45.5683 −2.11091
\(467\) 14.0957i 0.652271i 0.945323 + 0.326135i \(0.105747\pi\)
−0.945323 + 0.326135i \(0.894253\pi\)
\(468\) 31.1094 42.5675i 1.43803 1.96768i
\(469\) 4.19373i 0.193648i
\(470\) 13.8066i 0.636850i
\(471\) −6.56281 + 18.7298i −0.302398 + 0.863026i
\(472\) 46.2242 2.12764
\(473\) 0.909269 0.0418082
\(474\) 10.1689 29.0214i 0.467073 1.33300i
\(475\) −4.94309 + 8.69667i −0.226805 + 0.399030i
\(476\) −108.095 −4.95452
\(477\) 17.5386 + 14.0110i 0.803037 + 0.641520i
\(478\) 70.4279i 3.22130i
\(479\) −36.3199 −1.65950 −0.829750 0.558135i \(-0.811517\pi\)
−0.829750 + 0.558135i \(0.811517\pi\)
\(480\) −30.0398 10.5257i −1.37112 0.480432i
\(481\) −1.44361 33.6035i −0.0658231 1.53219i
\(482\) 56.0782i 2.55429i
\(483\) −10.1413 + 28.9425i −0.461443 + 1.31693i
\(484\) 53.4222 2.42828
\(485\) 2.82242 0.128160
\(486\) −4.66260 + 40.6044i −0.211500 + 1.84185i
\(487\) 6.99334 0.316898 0.158449 0.987367i \(-0.449351\pi\)
0.158449 + 0.987367i \(0.449351\pi\)
\(488\) 22.0062i 0.996174i
\(489\) 26.0318 + 9.12135i 1.17720 + 0.412482i
\(490\) 52.4329i 2.36868i
\(491\) 20.8013i 0.938750i −0.882999 0.469375i \(-0.844479\pi\)
0.882999 0.469375i \(-0.155521\pi\)
\(492\) 57.1519 + 20.0256i 2.57661 + 0.902825i
\(493\) 24.3325i 1.09588i
\(494\) −18.8055 + 36.6648i −0.846101 + 1.64963i
\(495\) 0.771387 + 0.616237i 0.0346713 + 0.0276978i
\(496\) 54.7004 2.45612
\(497\) 37.8314 1.69697
\(498\) −56.6266 19.8416i −2.53750 0.889122i
\(499\) 2.13525i 0.0955871i −0.998857 0.0477936i \(-0.984781\pi\)
0.998857 0.0477936i \(-0.0152190\pi\)
\(500\) −58.4822 −2.61540
\(501\) −4.41671 1.54759i −0.197324 0.0691410i
\(502\) 4.15824 0.185591
\(503\) 2.93733i 0.130969i −0.997854 0.0654846i \(-0.979141\pi\)
0.997854 0.0654846i \(-0.0208593\pi\)
\(504\) 77.3168 + 61.7659i 3.44396 + 2.75127i
\(505\) 25.3364i 1.12745i
\(506\) −2.12223 −0.0943447
\(507\) 5.59596 21.8102i 0.248525 0.968625i
\(508\) 62.6863i 2.78125i
\(509\) 32.7089i 1.44980i 0.688855 + 0.724899i \(0.258114\pi\)
−0.688855 + 0.724899i \(0.741886\pi\)
\(510\) −12.5135 + 35.7128i −0.554109 + 1.58139i
\(511\) −20.3280 −0.899258
\(512\) 39.0267i 1.72475i
\(513\) −0.970669 22.6287i −0.0428561 0.999081i
\(514\) 0.755463i 0.0333221i
\(515\) 6.52479i 0.287517i
\(516\) 12.6862 36.2057i 0.558480 1.59387i
\(517\) 0.640656 0.0281760
\(518\) 107.057 4.70380
\(519\) −3.69583 + 10.5477i −0.162229 + 0.462992i
\(520\) −44.6488 + 1.91812i −1.95798 + 0.0841152i
\(521\) 16.3337 0.715592 0.357796 0.933800i \(-0.383528\pi\)
0.357796 + 0.933800i \(0.383528\pi\)
\(522\) −23.5782 + 29.5145i −1.03199 + 1.29181i
\(523\) 24.5557i 1.07374i −0.843664 0.536872i \(-0.819606\pi\)
0.843664 0.536872i \(-0.180394\pi\)
\(524\) 78.7332i 3.43948i
\(525\) 16.4198 + 5.75338i 0.716619 + 0.251098i
\(526\) −13.6698 −0.596034
\(527\) 27.6854i 1.20599i
\(528\) −1.14725 + 3.27418i −0.0499277 + 0.142491i
\(529\) 6.63670 0.288552
\(530\) 32.2671i 1.40159i
\(531\) −11.4851 + 14.3767i −0.498411 + 0.623897i
\(532\) −80.8511 45.9549i −3.50534 1.99240i
\(533\) 25.8389 1.11005i 1.11921 0.0480814i
\(534\) 21.8834 62.4538i 0.946987 2.70264i
\(535\) −3.29807 −0.142588
\(536\) 7.22040i 0.311874i
\(537\) −6.31070 + 18.0103i −0.272327 + 0.777204i
\(538\) 58.1732i 2.50803i
\(539\) −2.43300 −0.104797
\(540\) 35.3001 22.1176i 1.51907 0.951792i
\(541\) 38.7880i 1.66763i 0.552046 + 0.833814i \(0.313847\pi\)
−0.552046 + 0.833814i \(0.686153\pi\)
\(542\) −21.8739 −0.939565
\(543\) 41.0419 + 14.3808i 1.76128 + 0.617139i
\(544\) −56.6106 −2.42716
\(545\) 15.6956 0.672327
\(546\) 68.5923 + 20.7748i 2.93548 + 0.889080i
\(547\) 2.43017i 0.103907i 0.998650 + 0.0519533i \(0.0165447\pi\)
−0.998650 + 0.0519533i \(0.983455\pi\)
\(548\) 2.56558 0.109596
\(549\) 6.84441 + 5.46778i 0.292113 + 0.233359i
\(550\) 1.20399i 0.0513385i
\(551\) 10.3446 18.1998i 0.440694 0.775339i
\(552\) −17.4604 + 49.8308i −0.743162 + 2.12094i
\(553\) 29.6398 1.26041
\(554\) 20.3984i 0.866643i
\(555\) 8.78765 25.0794i 0.373015 1.06456i
\(556\) −67.1603 −2.84823
\(557\) −13.0977 −0.554967 −0.277483 0.960730i \(-0.589500\pi\)
−0.277483 + 0.960730i \(0.589500\pi\)
\(558\) −26.8271 + 33.5814i −1.13568 + 1.42161i
\(559\) −0.703214 16.3689i −0.0297428 0.692333i
\(560\) 72.0647i 3.04529i
\(561\) 1.65715 + 0.580655i 0.0699650 + 0.0245153i
\(562\) −4.45102 −0.187755
\(563\) 26.9813 1.13712 0.568562 0.822640i \(-0.307500\pi\)
0.568562 + 0.822640i \(0.307500\pi\)
\(564\) 8.93850 25.5099i 0.376379 1.07416i
\(565\) −27.4445 −1.15460
\(566\) 43.8193i 1.84186i
\(567\) −38.4211 + 8.70053i −1.61353 + 0.365388i
\(568\) 65.1348 2.73300
\(569\) −38.0361 −1.59455 −0.797277 0.603613i \(-0.793727\pi\)
−0.797277 + 0.603613i \(0.793727\pi\)
\(570\) −24.5424 + 21.3920i −1.02797 + 0.896011i
\(571\) 35.2111 1.47354 0.736769 0.676145i \(-0.236351\pi\)
0.736769 + 0.676145i \(0.236351\pi\)
\(572\) 0.150936 + 3.51340i 0.00631097 + 0.146903i
\(573\) 40.0189 + 14.0224i 1.67181 + 0.585792i
\(574\) 82.3198i 3.43596i
\(575\) 9.28330i 0.387140i
\(576\) 21.7405 + 17.3678i 0.905855 + 0.723659i
\(577\) 3.21463i 0.133827i −0.997759 0.0669134i \(-0.978685\pi\)
0.997759 0.0669134i \(-0.0213151\pi\)
\(578\) 22.7294i 0.945420i
\(579\) 2.31040 6.59374i 0.0960171 0.274027i
\(580\) 38.5021 1.59871
\(581\) 57.8333i 2.39933i
\(582\) −7.35463 2.57701i −0.304859 0.106821i
\(583\) −1.49726 −0.0620104
\(584\) −34.9990 −1.44827
\(585\) 10.4971 14.3633i 0.434002 0.593851i
\(586\) −46.5465 −1.92282
\(587\) 6.15086 0.253873 0.126937 0.991911i \(-0.459485\pi\)
0.126937 + 0.991911i \(0.459485\pi\)
\(588\) −33.9455 + 96.8782i −1.39989 + 3.99519i
\(589\) 11.7700 20.7077i 0.484975 0.853244i
\(590\) 26.4500 1.08893
\(591\) −3.77938 + 10.7861i −0.155463 + 0.443681i
\(592\) 93.3810 3.83793
\(593\) −1.72928 −0.0710129 −0.0355065 0.999369i \(-0.511304\pi\)
−0.0355065 + 0.999369i \(0.511304\pi\)
\(594\) −1.44741 2.31009i −0.0593881 0.0947843i
\(595\) −36.4739 −1.49528
\(596\) 77.9640 3.19353
\(597\) 4.30528 12.2870i 0.176203 0.502873i
\(598\) 1.64130 + 38.2051i 0.0671177 + 1.56232i
\(599\) 2.01370 0.0822776 0.0411388 0.999153i \(-0.486901\pi\)
0.0411388 + 0.999153i \(0.486901\pi\)
\(600\) 28.2702 + 9.90569i 1.15413 + 0.404398i
\(601\) 0.225873i 0.00921354i −0.999989 0.00460677i \(-0.998534\pi\)
0.999989 0.00460677i \(-0.00146639\pi\)
\(602\) 52.1496 2.12546
\(603\) −2.24570 1.79402i −0.0914521 0.0730582i
\(604\) 13.4621 0.547767
\(605\) 18.0260 0.732861
\(606\) 23.1334 66.0211i 0.939728 2.68192i
\(607\) 6.43634i 0.261243i −0.991432 0.130621i \(-0.958303\pi\)
0.991432 0.130621i \(-0.0416973\pi\)
\(608\) −42.3427 24.0671i −1.71722 0.976051i
\(609\) −34.3623 12.0403i −1.39243 0.487898i
\(610\) 12.5922i 0.509844i
\(611\) −0.495472 11.5333i −0.0200447 0.466587i
\(612\) 46.2416 57.8839i 1.86920 2.33982i
\(613\) 35.2282i 1.42285i −0.702761 0.711426i \(-0.748050\pi\)
0.702761 0.711426i \(-0.251950\pi\)
\(614\) 76.5297i 3.08849i
\(615\) 19.2845 + 6.75715i 0.777625 + 0.272475i
\(616\) −6.60051 −0.265942
\(617\) −17.4585 −0.702851 −0.351425 0.936216i \(-0.614303\pi\)
−0.351425 + 0.936216i \(0.614303\pi\)
\(618\) −5.95746 + 17.0022i −0.239644 + 0.683929i
\(619\) 26.9285i 1.08235i −0.840910 0.541174i \(-0.817980\pi\)
0.840910 0.541174i \(-0.182020\pi\)
\(620\) 43.8075 1.75935
\(621\) −11.1602 17.8118i −0.447842 0.714762i
\(622\) 40.7249 1.63292
\(623\) 63.7847 2.55548
\(624\) 59.8301 + 18.1210i 2.39512 + 0.725420i
\(625\) −8.25878 −0.330351
\(626\) 42.9205i 1.71545i
\(627\) 0.992634 + 1.13882i 0.0396420 + 0.0454802i
\(628\) −55.8513 −2.22871
\(629\) 47.2626i 1.88449i
\(630\) 44.2416 + 35.3432i 1.76263 + 1.40811i
\(631\) 41.6501i 1.65807i −0.559200 0.829033i \(-0.688892\pi\)
0.559200 0.829033i \(-0.311108\pi\)
\(632\) 51.0313 2.02992
\(633\) −30.8722 10.8174i −1.22706 0.429954i
\(634\) 36.7447 1.45932
\(635\) 21.1519i 0.839388i
\(636\) −20.8900 + 59.6187i −0.828342 + 2.36404i
\(637\) 1.88164 + 43.7996i 0.0745533 + 1.73540i
\(638\) 2.51964i 0.0997536i
\(639\) −16.1838 + 20.2584i −0.640219 + 0.801408i
\(640\) 3.24310i 0.128195i
\(641\) −6.93322 −0.273846 −0.136923 0.990582i \(-0.543721\pi\)
−0.136923 + 0.990582i \(0.543721\pi\)
\(642\) 8.59405 + 3.01130i 0.339180 + 0.118846i
\(643\) 12.0718i 0.476065i −0.971257 0.238033i \(-0.923497\pi\)
0.971257 0.238033i \(-0.0765025\pi\)
\(644\) −86.3048 −3.40089
\(645\) 4.28065 12.2167i 0.168550 0.481032i
\(646\) −28.6122 + 50.3391i −1.12573 + 1.98057i
\(647\) 41.5438i 1.63325i −0.577165 0.816627i \(-0.695841\pi\)
0.577165 0.816627i \(-0.304159\pi\)
\(648\) −66.1502 + 14.9798i −2.59863 + 0.588464i
\(649\) 1.22734i 0.0481772i
\(650\) 21.6747 0.931149i 0.850151 0.0365227i
\(651\) −39.0972 13.6994i −1.53234 0.536922i
\(652\) 77.6251i 3.04003i
\(653\) 21.8931i 0.856743i 0.903603 + 0.428371i \(0.140912\pi\)
−0.903603 + 0.428371i \(0.859088\pi\)
\(654\) −40.8994 14.3309i −1.59929 0.560382i
\(655\) 26.5666i 1.03804i
\(656\) 71.8040i 2.80348i
\(657\) 8.69605 10.8855i 0.339265 0.424683i
\(658\) 36.7437 1.43242
\(659\) −45.4897 −1.77203 −0.886013 0.463661i \(-0.846536\pi\)
−0.886013 + 0.463661i \(0.846536\pi\)
\(660\) −0.918790 + 2.62217i −0.0357639 + 0.102068i
\(661\) −37.7229 −1.46725 −0.733625 0.679554i \(-0.762173\pi\)
−0.733625 + 0.679554i \(0.762173\pi\)
\(662\) 29.5794i 1.14964i
\(663\) 9.17152 30.2816i 0.356192 1.17604i
\(664\) 99.5725i 3.86416i
\(665\) −27.2812 15.5063i −1.05792 0.601309i
\(666\) −45.7975 + 57.3279i −1.77462 + 2.22141i
\(667\) 19.4275i 0.752235i
\(668\) 13.1704i 0.509577i
\(669\) −5.13212 + 14.6467i −0.198419 + 0.566276i
\(670\) 4.13160i 0.159618i
\(671\) −0.584306 −0.0225569
\(672\) −28.0123 + 79.9454i −1.08060 + 3.08396i
\(673\) 7.86672i 0.303240i −0.988439 0.151620i \(-0.951551\pi\)
0.988439 0.151620i \(-0.0484490\pi\)
\(674\) −25.3858 −0.977826
\(675\) −10.1051 + 6.33144i −0.388944 + 0.243697i
\(676\) 63.1325 5.43441i 2.42817 0.209016i
\(677\) −2.06920 −0.0795258 −0.0397629 0.999209i \(-0.512660\pi\)
−0.0397629 + 0.999209i \(0.512660\pi\)
\(678\) 71.5143 + 25.0581i 2.74649 + 0.962352i
\(679\) 7.51136i 0.288260i
\(680\) −62.7977 −2.40818
\(681\) −16.3745 5.73750i −0.627471 0.219862i
\(682\) 2.86683i 0.109777i
\(683\) 0.698532i 0.0267286i −0.999911 0.0133643i \(-0.995746\pi\)
0.999911 0.0133643i \(-0.00425411\pi\)
\(684\) 59.1954 23.6362i 2.26339 0.903751i
\(685\) 0.865692 0.0330764
\(686\) −59.2064 −2.26051
\(687\) −28.1645 9.86865i −1.07454 0.376512i
\(688\) 45.4878 1.73421
\(689\) 1.15796 + 26.9542i 0.0441147 + 1.02687i
\(690\) −9.99103 + 28.5138i −0.380352 + 1.08550i
\(691\) 39.4568i 1.50101i 0.660865 + 0.750505i \(0.270189\pi\)
−0.660865 + 0.750505i \(0.729811\pi\)
\(692\) −31.4525 −1.19565
\(693\) 1.64000 2.05291i 0.0622984 0.0779834i
\(694\) −59.4274 −2.25583
\(695\) −22.6616 −0.859602
\(696\) −59.1621 20.7300i −2.24253 0.785768i
\(697\) 36.3420 1.37655
\(698\) 55.9130 2.11634
\(699\) 28.4094 + 9.95447i 1.07454 + 0.376513i
\(700\) 48.9628i 1.85062i
\(701\) 20.6484i 0.779880i 0.920840 + 0.389940i \(0.127504\pi\)
−0.920840 + 0.389940i \(0.872496\pi\)
\(702\) −40.4676 + 27.8434i −1.52735 + 1.05088i
\(703\) 20.0930 35.3508i 0.757821 1.33328i
\(704\) −1.85598 −0.0699500
\(705\) 3.01607 8.60768i 0.113592 0.324184i
\(706\) 44.3084i 1.66757i
\(707\) 67.4281 2.53589
\(708\) −48.8707 17.1240i −1.83667 0.643557i
\(709\) 18.6287i 0.699615i −0.936822 0.349807i \(-0.886247\pi\)
0.936822 0.349807i \(-0.113753\pi\)
\(710\) 37.2709 1.39875
\(711\) −12.6795 + 15.8719i −0.475520 + 0.595242i
\(712\) 109.819 4.11565
\(713\) 22.1045i 0.827820i
\(714\) 95.0431 + 33.3025i 3.55690 + 1.24631i
\(715\) 0.0509297 + 1.18551i 0.00190466 + 0.0443355i
\(716\) −53.7057 −2.00708
\(717\) 15.3851 43.9080i 0.574566 1.63978i
\(718\) 52.0348i 1.94192i
\(719\) 39.3725i 1.46835i −0.678962 0.734173i \(-0.737570\pi\)
0.678962 0.734173i \(-0.262430\pi\)
\(720\) 38.5900 + 30.8283i 1.43817 + 1.14890i
\(721\) −17.3645 −0.646689
\(722\) −42.8018 + 25.4878i −1.59292 + 0.948559i
\(723\) −12.2504 + 34.9618i −0.455597 + 1.30024i
\(724\) 122.384i 4.54838i
\(725\) −11.0217 −0.409335
\(726\) −46.9719 16.4586i −1.74329 0.610837i
\(727\) −4.04586 −0.150053 −0.0750263 0.997182i \(-0.523904\pi\)
−0.0750263 + 0.997182i \(0.523904\pi\)
\(728\) 5.10473 + 118.824i 0.189194 + 4.40393i
\(729\) 11.7770 24.2961i 0.436185 0.899857i
\(730\) −20.0269 −0.741227
\(731\) 23.0226i 0.851522i
\(732\) −8.15230 + 23.2661i −0.301318 + 0.859941i
\(733\) 27.6392i 1.02088i 0.859914 + 0.510439i \(0.170517\pi\)
−0.859914 + 0.510439i \(0.829483\pi\)
\(734\) 3.49900i 0.129151i
\(735\) −11.4540 + 32.6891i −0.422489 + 1.20576i
\(736\) −45.1989 −1.66605
\(737\) 0.191715 0.00706192
\(738\) −44.0816 35.2153i −1.62266 1.29629i
\(739\) 13.5031i 0.496718i −0.968668 0.248359i \(-0.920109\pi\)
0.968668 0.248359i \(-0.0798913\pi\)
\(740\) 74.7853 2.74916
\(741\) 19.7337 18.7505i 0.724937 0.688815i
\(742\) −85.8730 −3.15250
\(743\) 6.28226i 0.230474i 0.993338 + 0.115237i \(0.0367627\pi\)
−0.993338 + 0.115237i \(0.963237\pi\)
\(744\) −67.3143 23.5865i −2.46786 0.864722i
\(745\) 26.3070 0.963814
\(746\) −71.8938 −2.63222
\(747\) 30.9692 + 24.7403i 1.13311 + 0.905201i
\(748\) 4.94153i 0.180680i
\(749\) 8.77720i 0.320712i
\(750\) 51.4209 + 18.0175i 1.87762 + 0.657907i
\(751\) 37.9476i 1.38473i 0.721548 + 0.692364i \(0.243431\pi\)
−0.721548 + 0.692364i \(0.756569\pi\)
\(752\) 32.0499 1.16874
\(753\) −2.59244 0.908374i −0.0944738 0.0331030i
\(754\) −45.3594 + 1.94865i −1.65189 + 0.0709656i
\(755\) 4.54246 0.165317
\(756\) −58.8620 93.9446i −2.14079 3.41673i
\(757\) −42.3041 −1.53757 −0.768784 0.639509i \(-0.779138\pi\)
−0.768784 + 0.639509i \(0.779138\pi\)
\(758\) 70.8952i 2.57503i
\(759\) 1.32310 + 0.463605i 0.0480255 + 0.0168278i
\(760\) −46.9704 26.6975i −1.70380 0.968419i
\(761\) 37.0723 1.34387 0.671934 0.740611i \(-0.265464\pi\)
0.671934 + 0.740611i \(0.265464\pi\)
\(762\) 19.3127 55.1173i 0.699627 1.99669i
\(763\) 41.7710i 1.51221i
\(764\) 119.334i 4.31735i
\(765\) 15.6031 19.5315i 0.564130 0.706162i
\(766\) 8.68971 0.313972
\(767\) −22.0949 + 0.949203i −0.797801 + 0.0342737i
\(768\) 7.66394 21.8724i 0.276549 0.789252i
\(769\) 27.4962i 0.991539i −0.868454 0.495769i \(-0.834886\pi\)
0.868454 0.495769i \(-0.165114\pi\)
\(770\) −3.77689 −0.136110
\(771\) 0.165032 0.470991i 0.00594349 0.0169623i
\(772\) 19.6621 0.707656
\(773\) 44.4041i 1.59710i 0.601926 + 0.798552i \(0.294400\pi\)
−0.601926 + 0.798552i \(0.705600\pi\)
\(774\) −22.3089 + 27.9256i −0.801877 + 1.00377i
\(775\) −12.5404 −0.450465
\(776\) 12.9324i 0.464247i
\(777\) −66.7442 23.3867i −2.39444 0.838994i
\(778\) 77.1524 2.76605
\(779\) 27.1825 + 15.4502i 0.973914 + 0.553562i
\(780\) 47.9157 + 14.5124i 1.71566 + 0.519627i
\(781\) 1.72945i 0.0618846i
\(782\) 53.7348i 1.92155i
\(783\) 21.1472 13.2500i 0.755740 0.473517i
\(784\) −121.715 −4.34697
\(785\) −18.8456 −0.672629
\(786\) −24.2566 + 69.2267i −0.865203 + 2.46924i
\(787\) −0.272964 −0.00973010 −0.00486505 0.999988i \(-0.501549\pi\)
−0.00486505 + 0.999988i \(0.501549\pi\)
\(788\) −32.1635 −1.14578
\(789\) 8.52243 + 2.98620i 0.303406 + 0.106312i
\(790\) 29.2007 1.03892
\(791\) 73.0383i 2.59694i
\(792\) 2.82361 3.53452i 0.100333 0.125594i
\(793\) 0.451892 + 10.5189i 0.0160472 + 0.373535i
\(794\) 24.3093 0.862705
\(795\) −7.04881 + 20.1169i −0.249996 + 0.713471i
\(796\) 36.6391 1.29864
\(797\) 13.0454 0.462093 0.231046 0.972943i \(-0.425785\pi\)
0.231046 + 0.972943i \(0.425785\pi\)
\(798\) 56.9308 + 65.3152i 2.01533 + 2.31213i
\(799\) 16.2213i 0.573870i
\(800\) 25.6424i 0.906597i
\(801\) −27.2863 + 34.1562i −0.964113 + 1.20685i
\(802\) 5.97718 0.211061
\(803\) 0.929290i 0.0327939i
\(804\) 2.67483 7.63380i 0.0943340 0.269223i
\(805\) −29.1214 −1.02639
\(806\) −51.6096 + 2.21716i −1.81787 + 0.0780962i
\(807\) 12.7080 36.2679i 0.447344 1.27669i
\(808\) 116.092 4.08410
\(809\) 7.28056i 0.255971i −0.991776 0.127985i \(-0.959149\pi\)
0.991776 0.127985i \(-0.0408511\pi\)
\(810\) −37.8519 + 8.57164i −1.32998 + 0.301177i
\(811\) −5.35557 −0.188059 −0.0940297 0.995569i \(-0.529975\pi\)
−0.0940297 + 0.995569i \(0.529975\pi\)
\(812\) 102.466i 3.59586i
\(813\) 13.6372 + 4.77839i 0.478278 + 0.167585i
\(814\) 4.89407i 0.171537i
\(815\) 26.1927i 0.917489i
\(816\) 82.9020 + 29.0483i 2.90215 + 1.01689i
\(817\) 9.78771 17.2201i 0.342429 0.602455i
\(818\) 8.13634i 0.284481i
\(819\) −38.2254 27.9361i −1.33570 0.976166i
\(820\) 57.5051i 2.00817i
\(821\) −12.3157 −0.429821 −0.214910 0.976634i \(-0.568946\pi\)
−0.214910 + 0.976634i \(0.568946\pi\)
\(822\) −2.25580 0.790419i −0.0786802 0.0275690i
\(823\) −35.6620 −1.24310 −0.621550 0.783374i \(-0.713497\pi\)
−0.621550 + 0.783374i \(0.713497\pi\)
\(824\) −29.8968 −1.04150
\(825\) 0.263015 0.750627i 0.00915699 0.0261335i
\(826\) 70.3918i 2.44925i
\(827\) 3.53789i 0.123024i −0.998106 0.0615122i \(-0.980408\pi\)
0.998106 0.0615122i \(-0.0195923\pi\)
\(828\) 36.9201 46.2155i 1.28306 1.60610i
\(829\) 1.90288i 0.0660897i −0.999454 0.0330448i \(-0.989480\pi\)
0.999454 0.0330448i \(-0.0105204\pi\)
\(830\) 56.9766i 1.97769i
\(831\) −4.45606 + 12.7173i −0.154579 + 0.441158i
\(832\) 1.43539 + 33.4120i 0.0497631 + 1.15835i
\(833\) 61.6033i 2.13443i
\(834\) 59.0511 + 20.6911i 2.04477 + 0.716474i
\(835\) 4.44401i 0.153791i
\(836\) −2.10082 + 3.69609i −0.0726582 + 0.127832i
\(837\) 24.0612 15.0758i 0.831676 0.521096i
\(838\) 30.5000 1.05360
\(839\) 48.0197i 1.65782i 0.559379 + 0.828912i \(0.311040\pi\)
−0.559379 + 0.828912i \(0.688960\pi\)
\(840\) −31.0738 + 88.6828i −1.07215 + 3.05985i
\(841\) −5.93452 −0.204639
\(842\) 18.0704i 0.622748i
\(843\) 2.77498 + 0.972333i 0.0955753 + 0.0334889i
\(844\) 92.0591i 3.16881i
\(845\) 21.3025 1.83370i 0.732828 0.0630814i
\(846\) −15.7185 + 19.6759i −0.540412 + 0.676472i
\(847\) 47.9729i 1.64837i
\(848\) −74.9033 −2.57219
\(849\) −9.57239 + 27.3190i −0.328524 + 0.937586i
\(850\) 30.4850 1.04563
\(851\) 37.7353i 1.29355i
\(852\) −68.8640 24.1295i −2.35924 0.826663i
\(853\) 10.7449i 0.367897i 0.982936 + 0.183949i \(0.0588880\pi\)
−0.982936 + 0.183949i \(0.941112\pi\)
\(854\) −33.5118 −1.14675
\(855\) 19.9740 7.97543i 0.683097 0.272754i
\(856\) 15.1118i 0.516512i
\(857\) 46.8330 1.59979 0.799893 0.600143i \(-0.204890\pi\)
0.799893 + 0.600143i \(0.204890\pi\)
\(858\) 0.949716 3.13568i 0.0324228 0.107050i
\(859\) 26.4532 0.902571 0.451286 0.892380i \(-0.350966\pi\)
0.451286 + 0.892380i \(0.350966\pi\)
\(860\) 36.4295 1.24223
\(861\) 17.9829 51.3221i 0.612856 1.74905i
\(862\) 62.9116 2.14278
\(863\) 1.14474i 0.0389674i −0.999810 0.0194837i \(-0.993798\pi\)
0.999810 0.0194837i \(-0.00620225\pi\)
\(864\) −30.8267 49.1999i −1.04875 1.67382i
\(865\) −10.6129 −0.360848
\(866\) 19.4397 0.660588
\(867\) 4.96528 14.1706i 0.168630 0.481259i
\(868\) 116.586i 3.95717i
\(869\) 1.35498i 0.0459645i
\(870\) −33.8532 11.8619i −1.14773 0.402158i
\(871\) −0.148269 3.45132i −0.00502391 0.116943i
\(872\) 71.9178i 2.43544i
\(873\) 4.02227 + 3.21326i 0.136133 + 0.108752i
\(874\) −22.8445 + 40.1917i −0.772727 + 1.35950i
\(875\) 52.5167i 1.77539i
\(876\) 37.0029 + 12.9655i 1.25021 + 0.438065i
\(877\) 2.43491 0.0822211 0.0411106 0.999155i \(-0.486910\pi\)
0.0411106 + 0.999155i \(0.486910\pi\)
\(878\) 16.2607 0.548771
\(879\) 29.0193 + 10.1682i 0.978795 + 0.342963i
\(880\) −3.29442 −0.111055
\(881\) 18.9422i 0.638180i −0.947724 0.319090i \(-0.896623\pi\)
0.947724 0.319090i \(-0.103377\pi\)
\(882\) 59.6935 74.7227i 2.00999 2.51604i
\(883\) 19.6779 0.662215 0.331107 0.943593i \(-0.392578\pi\)
0.331107 + 0.943593i \(0.392578\pi\)
\(884\) 88.9589 3.82170i 2.99201 0.128538i
\(885\) −16.4902 5.77805i −0.554312 0.194227i
\(886\) 80.5810 2.70717
\(887\) 6.04610 0.203008 0.101504 0.994835i \(-0.467635\pi\)
0.101504 + 0.994835i \(0.467635\pi\)
\(888\) −114.914 40.2653i −3.85628 1.35121i
\(889\) 56.2919 1.88797
\(890\) 62.8398 2.10640
\(891\) 0.397743 + 1.75641i 0.0133249 + 0.0588420i
\(892\) −43.6757 −1.46237
\(893\) 6.89625 12.1330i 0.230774 0.406015i
\(894\) −68.5504 24.0196i −2.29267 0.803335i
\(895\) −18.1217 −0.605740
\(896\) −8.63090 −0.288338
\(897\) 7.32270 24.1774i 0.244498 0.807260i
\(898\) 30.4869 1.01736
\(899\) 26.2438 0.875279
\(900\) −26.2192 20.9457i −0.873972 0.698188i
\(901\) 37.9106i 1.26299i
\(902\) 3.76323 0.125302
\(903\) −32.5125 11.3922i −1.08195 0.379107i
\(904\) 125.751i 4.18242i
\(905\) 41.2956i 1.37271i
\(906\) −11.8367 4.14749i −0.393247 0.137791i
\(907\) 49.4781i 1.64289i 0.570285 + 0.821447i \(0.306833\pi\)
−0.570285 + 0.821447i \(0.693167\pi\)
\(908\) 48.8277i 1.62040i
\(909\) −28.8449 + 36.1072i −0.956723 + 1.19760i
\(910\) 2.92099 + 67.9928i 0.0968297 + 2.25394i
\(911\) −15.9225 −0.527537 −0.263769 0.964586i \(-0.584966\pi\)
−0.263769 + 0.964586i \(0.584966\pi\)
\(912\) 49.6583 + 56.9716i 1.64435 + 1.88652i
\(913\) −2.64384 −0.0874982
\(914\) 29.9108 0.989360
\(915\) −2.75079 + 7.85058i −0.0909383 + 0.259532i
\(916\) 83.9848i 2.77494i
\(917\) −70.7020 −2.33479
\(918\) −58.4914 + 36.6484i −1.93050 + 1.20958i
\(919\) −37.1925 −1.22687 −0.613433 0.789746i \(-0.710212\pi\)
−0.613433 + 0.789746i \(0.710212\pi\)
\(920\) −50.1388 −1.65303
\(921\) −16.7180 + 47.7122i −0.550878 + 1.57217i
\(922\) 43.2206i 1.42340i
\(923\) −31.1341 + 1.33753i −1.02479 + 0.0440253i
\(924\) 6.97842 + 2.44519i 0.229573 + 0.0804409i
\(925\) −21.4082 −0.703896
\(926\) −67.0847 −2.20454
\(927\) 7.42832 9.29856i 0.243978 0.305405i
\(928\) 53.6628i 1.76157i
\(929\) −10.9536 −0.359376 −0.179688 0.983724i \(-0.557509\pi\)
−0.179688 + 0.983724i \(0.557509\pi\)
\(930\) −38.5180 13.4965i −1.26306 0.442566i
\(931\) −26.1897 + 46.0771i −0.858333 + 1.51011i
\(932\) 84.7152i 2.77494i
\(933\) −25.3898 8.89642i −0.831225 0.291256i
\(934\) 36.9574 1.20928
\(935\) 1.66740i 0.0545297i
\(936\) −65.8132 48.0980i −2.15117 1.57213i
\(937\) 53.4084 1.74478 0.872388 0.488814i \(-0.162570\pi\)
0.872388 + 0.488814i \(0.162570\pi\)
\(938\) 10.9955 0.359015
\(939\) −9.37606 + 26.7587i −0.305976 + 0.873237i
\(940\) 25.6676 0.837184
\(941\) 2.19490i 0.0715517i 0.999360 + 0.0357759i \(0.0113902\pi\)
−0.999360 + 0.0357759i \(0.988610\pi\)
\(942\) 49.1076 + 17.2070i 1.60001 + 0.560633i
\(943\) 29.0161 0.944893
\(944\) 61.3998i 1.99839i
\(945\) −19.8615 31.6993i −0.646095 1.03118i
\(946\) 2.38400i 0.0775107i
\(947\) −18.1652 −0.590289 −0.295145 0.955453i \(-0.595368\pi\)
−0.295145 + 0.955453i \(0.595368\pi\)
\(948\) −53.9531 18.9048i −1.75231 0.613999i
\(949\) 16.7294 0.718697i 0.543058 0.0233299i
\(950\) 22.8017 + 12.9602i 0.739785 + 0.420486i
\(951\) −22.9084 8.02695i −0.742856 0.260292i
\(952\) 167.124i 5.41653i
\(953\) −0.828396 −0.0268344 −0.0134172 0.999910i \(-0.504271\pi\)
−0.0134172 + 0.999910i \(0.504271\pi\)
\(954\) 36.7353 45.9843i 1.18935 1.48880i
\(955\) 40.2663i 1.30299i
\(956\) 130.931 4.23462
\(957\) −0.550420 + 1.57086i −0.0177926 + 0.0507788i
\(958\) 95.2269i 3.07664i
\(959\) 2.30388i 0.0743961i
\(960\) −8.73758 + 24.9365i −0.282004 + 0.804822i
\(961\) −1.13998 −0.0367736
\(962\) −88.1046 + 3.78499i −2.84061 + 0.122033i
\(963\) −4.70011 3.75477i −0.151459 0.120996i
\(964\) −104.254 −3.35780
\(965\) 6.63450 0.213572
\(966\) 75.8841 + 26.5893i 2.44153 + 0.855496i
\(967\) 10.0449i 0.323023i −0.986871 0.161512i \(-0.948363\pi\)
0.986871 0.161512i \(-0.0516369\pi\)
\(968\) 82.5956i 2.65472i
\(969\) 28.8349 25.1334i 0.926310 0.807401i
\(970\) 7.40009i 0.237602i
\(971\) 46.4409 1.49036 0.745180 0.666863i \(-0.232363\pi\)
0.745180 + 0.666863i \(0.232363\pi\)
\(972\) 75.4869 + 8.66816i 2.42124 + 0.278031i
\(973\) 60.3095i 1.93344i
\(974\) 18.3358i 0.587516i
\(975\) −13.7164 4.15435i −0.439277 0.133046i
\(976\) −29.2309 −0.935660
\(977\) 49.8562i 1.59504i −0.603291 0.797521i \(-0.706144\pi\)
0.603291 0.797521i \(-0.293856\pi\)
\(978\) 23.9152 68.2524i 0.764723 2.18247i
\(979\) 2.91590i 0.0931927i
\(980\) −97.4770 −3.11379
\(981\) 22.3680 + 17.8691i 0.714156 + 0.570516i
\(982\) −54.5387 −1.74040
\(983\) 19.3921i 0.618512i −0.950979 0.309256i \(-0.899920\pi\)
0.950979 0.309256i \(-0.100080\pi\)
\(984\) 30.9614 88.3620i 0.987014 2.81688i
\(985\) −10.8528 −0.345798
\(986\) −63.7971 −2.03171
\(987\) −22.9077 8.02672i −0.729162 0.255493i
\(988\) 68.1628 + 34.9610i 2.16855 + 1.11226i
\(989\) 18.3817i 0.584503i
\(990\) 1.61570 2.02249i 0.0513505 0.0642791i
\(991\) 38.5600i 1.22490i −0.790509 0.612450i \(-0.790184\pi\)
0.790509 0.612450i \(-0.209816\pi\)
\(992\) 61.0573i 1.93857i
\(993\) −6.46167 + 18.4412i −0.205055 + 0.585214i
\(994\) 99.1897i 3.14610i
\(995\) 12.3629 0.391931
\(996\) −36.8871 + 105.273i −1.16881 + 3.33572i
\(997\) −11.5470 −0.365699 −0.182849 0.983141i \(-0.558532\pi\)
−0.182849 + 0.983141i \(0.558532\pi\)
\(998\) −5.59840 −0.177214
\(999\) 41.0757 25.7364i 1.29958 0.814264i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 741.2.d.a.740.6 yes 88
3.2 odd 2 inner 741.2.d.a.740.84 yes 88
13.12 even 2 inner 741.2.d.a.740.82 yes 88
19.18 odd 2 inner 741.2.d.a.740.83 yes 88
39.38 odd 2 inner 741.2.d.a.740.8 yes 88
57.56 even 2 inner 741.2.d.a.740.5 88
247.246 odd 2 inner 741.2.d.a.740.7 yes 88
741.740 even 2 inner 741.2.d.a.740.81 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
741.2.d.a.740.5 88 57.56 even 2 inner
741.2.d.a.740.6 yes 88 1.1 even 1 trivial
741.2.d.a.740.7 yes 88 247.246 odd 2 inner
741.2.d.a.740.8 yes 88 39.38 odd 2 inner
741.2.d.a.740.81 yes 88 741.740 even 2 inner
741.2.d.a.740.82 yes 88 13.12 even 2 inner
741.2.d.a.740.83 yes 88 19.18 odd 2 inner
741.2.d.a.740.84 yes 88 3.2 odd 2 inner