Properties

Label 741.2.d.a.740.5
Level $741$
Weight $2$
Character 741.740
Analytic conductor $5.917$
Analytic rank $0$
Dimension $88$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [741,2,Mod(740,741)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("741.740"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(741, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 741 = 3 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 741.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.91691478978\)
Analytic rank: \(0\)
Dimension: \(88\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 740.5
Character \(\chi\) \(=\) 741.740
Dual form 741.2.d.a.740.82

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.62189i q^{2} +(-0.572756 - 1.63461i) q^{3} -4.87431 q^{4} +1.64471 q^{5} +(-4.28577 + 1.50170i) q^{6} +4.37710i q^{7} +7.53612i q^{8} +(-2.34390 + 1.87247i) q^{9} -4.31226i q^{10} -0.200098 q^{11} +(2.79179 + 7.96759i) q^{12} +(0.154753 + 3.60223i) q^{13} +11.4763 q^{14} +(-0.942020 - 2.68847i) q^{15} +10.0103 q^{16} +5.06647i q^{17} +(4.90940 + 6.14545i) q^{18} +(-2.15393 - 3.78954i) q^{19} -8.01684 q^{20} +(7.15486 - 2.50701i) q^{21} +0.524635i q^{22} +4.04516i q^{23} +(12.3186 - 4.31636i) q^{24} -2.29492 q^{25} +(9.44465 - 0.405744i) q^{26} +(4.40324 + 2.75890i) q^{27} -21.3353i q^{28} +4.80265 q^{29} +(-7.04886 + 2.46987i) q^{30} -5.46443 q^{31} -11.1736i q^{32} +(0.114607 + 0.327082i) q^{33} +13.2837 q^{34} +7.19908i q^{35} +(11.4249 - 9.12698i) q^{36} -9.32852 q^{37} +(-9.93575 + 5.64737i) q^{38} +(5.79960 - 2.31616i) q^{39} +12.3948i q^{40} +7.17304i q^{41} +(-6.57311 - 18.7592i) q^{42} +4.54412 q^{43} +0.975340 q^{44} +(-3.85505 + 3.07967i) q^{45} +10.6060 q^{46} -3.20171 q^{47} +(-5.73344 - 16.3629i) q^{48} -12.1590 q^{49} +6.01702i q^{50} +(8.28170 - 2.90185i) q^{51} +(-0.754312 - 17.5584i) q^{52} -7.48265 q^{53} +(7.23352 - 11.5448i) q^{54} -0.329104 q^{55} -32.9864 q^{56} +(-4.96074 + 5.69132i) q^{57} -12.5920i q^{58} -6.13368i q^{59} +(4.59170 + 13.1044i) q^{60} -2.92010 q^{61} +14.3271i q^{62} +(-8.19598 - 10.2595i) q^{63} -9.27536 q^{64} +(0.254524 + 5.92464i) q^{65} +(0.857574 - 0.300488i) q^{66} -0.958106 q^{67} -24.6955i q^{68} +(6.61225 - 2.31689i) q^{69} +18.8752 q^{70} -8.64301i q^{71} +(-14.1111 - 17.6639i) q^{72} +4.64417i q^{73} +24.4584i q^{74} +(1.31443 + 3.75129i) q^{75} +(10.4989 + 18.4714i) q^{76} -0.875850i q^{77} +(-6.07272 - 15.2059i) q^{78} +6.77157i q^{79} +16.4640 q^{80} +(1.98774 - 8.77775i) q^{81} +18.8069 q^{82} +13.2127 q^{83} +(-34.8750 + 12.2200i) q^{84} +8.33289i q^{85} -11.9142i q^{86} +(-2.75075 - 7.85047i) q^{87} -1.50796i q^{88} -14.5724i q^{89} +(8.07456 + 10.1075i) q^{90} +(-15.7673 + 0.677368i) q^{91} -19.7173i q^{92} +(3.12979 + 8.93222i) q^{93} +8.39452i q^{94} +(-3.54260 - 6.23270i) q^{95} +(-18.2644 + 6.39974i) q^{96} +1.71606 q^{97} +31.8796i q^{98} +(0.469010 - 0.374677i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q - 88 q^{4} - 4 q^{9} + 72 q^{16} + 64 q^{25} - 60 q^{30} - 48 q^{36} + 20 q^{39} + 48 q^{42} - 64 q^{43} - 112 q^{49} - 24 q^{55} - 64 q^{61} - 104 q^{64} + 12 q^{66} + 60 q^{81} + 56 q^{82} - 32 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/741\mathbb{Z}\right)^\times\).

\(n\) \(40\) \(248\) \(457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.62189i 1.85396i −0.375115 0.926978i \(-0.622397\pi\)
0.375115 0.926978i \(-0.377603\pi\)
\(3\) −0.572756 1.63461i −0.330681 0.943743i
\(4\) −4.87431 −2.43715
\(5\) 1.64471 0.735538 0.367769 0.929917i \(-0.380122\pi\)
0.367769 + 0.929917i \(0.380122\pi\)
\(6\) −4.28577 + 1.50170i −1.74966 + 0.613068i
\(7\) 4.37710i 1.65439i 0.561916 + 0.827195i \(0.310065\pi\)
−0.561916 + 0.827195i \(0.689935\pi\)
\(8\) 7.53612i 2.66442i
\(9\) −2.34390 + 1.87247i −0.781300 + 0.624156i
\(10\) 4.31226i 1.36366i
\(11\) −0.200098 −0.0603319 −0.0301659 0.999545i \(-0.509604\pi\)
−0.0301659 + 0.999545i \(0.509604\pi\)
\(12\) 2.79179 + 7.96759i 0.805921 + 2.30005i
\(13\) 0.154753 + 3.60223i 0.0429206 + 0.999078i
\(14\) 11.4763 3.06717
\(15\) −0.942020 2.68847i −0.243229 0.694159i
\(16\) 10.0103 2.50257
\(17\) 5.06647i 1.22880i 0.788995 + 0.614400i \(0.210602\pi\)
−0.788995 + 0.614400i \(0.789398\pi\)
\(18\) 4.90940 + 6.14545i 1.15716 + 1.44850i
\(19\) −2.15393 3.78954i −0.494146 0.869379i
\(20\) −8.01684 −1.79262
\(21\) 7.15486 2.50701i 1.56132 0.547075i
\(22\) 0.524635i 0.111853i
\(23\) 4.04516i 0.843474i 0.906718 + 0.421737i \(0.138579\pi\)
−0.906718 + 0.421737i \(0.861421\pi\)
\(24\) 12.3186 4.31636i 2.51453 0.881074i
\(25\) −2.29492 −0.458983
\(26\) 9.44465 0.405744i 1.85225 0.0795730i
\(27\) 4.40324 + 2.75890i 0.847403 + 0.530950i
\(28\) 21.3353i 4.03200i
\(29\) 4.80265 0.891830 0.445915 0.895075i \(-0.352878\pi\)
0.445915 + 0.895075i \(0.352878\pi\)
\(30\) −7.04886 + 2.46987i −1.28694 + 0.450935i
\(31\) −5.46443 −0.981441 −0.490720 0.871317i \(-0.663266\pi\)
−0.490720 + 0.871317i \(0.663266\pi\)
\(32\) 11.1736i 1.97523i
\(33\) 0.114607 + 0.327082i 0.0199506 + 0.0569377i
\(34\) 13.2837 2.27814
\(35\) 7.19908i 1.21687i
\(36\) 11.4249 9.12698i 1.90415 1.52116i
\(37\) −9.32852 −1.53360 −0.766800 0.641887i \(-0.778152\pi\)
−0.766800 + 0.641887i \(0.778152\pi\)
\(38\) −9.93575 + 5.64737i −1.61179 + 0.916124i
\(39\) 5.79960 2.31616i 0.928680 0.370882i
\(40\) 12.3948i 1.95978i
\(41\) 7.17304i 1.12024i 0.828411 + 0.560120i \(0.189245\pi\)
−0.828411 + 0.560120i \(0.810755\pi\)
\(42\) −6.57311 18.7592i −1.01425 2.89461i
\(43\) 4.54412 0.692971 0.346486 0.938055i \(-0.387375\pi\)
0.346486 + 0.938055i \(0.387375\pi\)
\(44\) 0.975340 0.147038
\(45\) −3.85505 + 3.07967i −0.574676 + 0.459090i
\(46\) 10.6060 1.56376
\(47\) −3.20171 −0.467017 −0.233508 0.972355i \(-0.575021\pi\)
−0.233508 + 0.972355i \(0.575021\pi\)
\(48\) −5.73344 16.3629i −0.827551 2.36178i
\(49\) −12.1590 −1.73700
\(50\) 6.01702i 0.850935i
\(51\) 8.28170 2.90185i 1.15967 0.406341i
\(52\) −0.754312 17.5584i −0.104604 2.43491i
\(53\) −7.48265 −1.02782 −0.513911 0.857844i \(-0.671804\pi\)
−0.513911 + 0.857844i \(0.671804\pi\)
\(54\) 7.23352 11.5448i 0.984358 1.57105i
\(55\) −0.329104 −0.0443764
\(56\) −32.9864 −4.40799
\(57\) −4.96074 + 5.69132i −0.657066 + 0.753833i
\(58\) 12.5920i 1.65341i
\(59\) 6.13368i 0.798537i −0.916834 0.399269i \(-0.869264\pi\)
0.916834 0.399269i \(-0.130736\pi\)
\(60\) 4.59170 + 13.1044i 0.592786 + 1.69177i
\(61\) −2.92010 −0.373880 −0.186940 0.982371i \(-0.559857\pi\)
−0.186940 + 0.982371i \(0.559857\pi\)
\(62\) 14.3271i 1.81955i
\(63\) −8.19598 10.2595i −1.03260 1.29257i
\(64\) −9.27536 −1.15942
\(65\) 0.254524 + 5.92464i 0.0315698 + 0.734861i
\(66\) 0.857574 0.300488i 0.105560 0.0369875i
\(67\) −0.958106 −0.117051 −0.0585256 0.998286i \(-0.518640\pi\)
−0.0585256 + 0.998286i \(0.518640\pi\)
\(68\) 24.6955i 2.99477i
\(69\) 6.61225 2.31689i 0.796022 0.278921i
\(70\) 18.8752 2.25602
\(71\) 8.64301i 1.02574i −0.858467 0.512868i \(-0.828583\pi\)
0.858467 0.512868i \(-0.171417\pi\)
\(72\) −14.1111 17.6639i −1.66301 2.08171i
\(73\) 4.64417i 0.543559i 0.962360 + 0.271779i \(0.0876121\pi\)
−0.962360 + 0.271779i \(0.912388\pi\)
\(74\) 24.4584i 2.84323i
\(75\) 1.31443 + 3.75129i 0.151777 + 0.433162i
\(76\) 10.4989 + 18.4714i 1.20431 + 2.11881i
\(77\) 0.875850i 0.0998124i
\(78\) −6.07272 15.2059i −0.687600 1.72173i
\(79\) 6.77157i 0.761861i 0.924604 + 0.380930i \(0.124396\pi\)
−0.924604 + 0.380930i \(0.875604\pi\)
\(80\) 16.4640 1.84073
\(81\) 1.98774 8.77775i 0.220860 0.975306i
\(82\) 18.8069 2.07688
\(83\) 13.2127 1.45028 0.725141 0.688601i \(-0.241775\pi\)
0.725141 + 0.688601i \(0.241775\pi\)
\(84\) −34.8750 + 12.2200i −3.80517 + 1.33331i
\(85\) 8.33289i 0.903829i
\(86\) 11.9142i 1.28474i
\(87\) −2.75075 7.85047i −0.294911 0.841658i
\(88\) 1.50796i 0.160750i
\(89\) 14.5724i 1.54467i −0.635217 0.772334i \(-0.719089\pi\)
0.635217 0.772334i \(-0.280911\pi\)
\(90\) 8.07456 + 10.1075i 0.851134 + 1.06542i
\(91\) −15.7673 + 0.677368i −1.65286 + 0.0710074i
\(92\) 19.7173i 2.05568i
\(93\) 3.12979 + 8.93222i 0.324544 + 0.926228i
\(94\) 8.39452i 0.865829i
\(95\) −3.54260 6.23270i −0.363463 0.639462i
\(96\) −18.2644 + 6.39974i −1.86411 + 0.653171i
\(97\) 1.71606 0.174239 0.0871196 0.996198i \(-0.472234\pi\)
0.0871196 + 0.996198i \(0.472234\pi\)
\(98\) 31.8796i 3.22033i
\(99\) 0.469010 0.374677i 0.0471373 0.0376565i
\(100\) 11.1861 1.11861
\(101\) 15.4047i 1.53283i 0.642347 + 0.766414i \(0.277961\pi\)
−0.642347 + 0.766414i \(0.722039\pi\)
\(102\) −7.60834 21.7137i −0.753338 2.14998i
\(103\) 3.96713i 0.390893i −0.980714 0.195446i \(-0.937384\pi\)
0.980714 0.195446i \(-0.0626156\pi\)
\(104\) −27.1468 + 1.16623i −2.66197 + 0.114359i
\(105\) 11.7677 4.12332i 1.14841 0.402395i
\(106\) 19.6187i 1.90554i
\(107\) 2.00525 0.193855 0.0969276 0.995291i \(-0.469098\pi\)
0.0969276 + 0.995291i \(0.469098\pi\)
\(108\) −21.4627 13.4477i −2.06525 1.29401i
\(109\) 9.54308 0.914061 0.457031 0.889451i \(-0.348913\pi\)
0.457031 + 0.889451i \(0.348913\pi\)
\(110\) 0.862875i 0.0822719i
\(111\) 5.34297 + 15.2485i 0.507132 + 1.44732i
\(112\) 43.8160i 4.14022i
\(113\) 16.6865 1.56973 0.784865 0.619667i \(-0.212732\pi\)
0.784865 + 0.619667i \(0.212732\pi\)
\(114\) 14.9220 + 13.0065i 1.39757 + 1.21817i
\(115\) 6.65313i 0.620407i
\(116\) −23.4096 −2.17353
\(117\) −7.10778 8.15350i −0.657114 0.753791i
\(118\) −16.0818 −1.48045
\(119\) −22.1764 −2.03291
\(120\) 20.2606 7.09918i 1.84953 0.648063i
\(121\) −10.9600 −0.996360
\(122\) 7.65617i 0.693157i
\(123\) 11.7251 4.10840i 1.05722 0.370442i
\(124\) 26.6353 2.39192
\(125\) −11.9981 −1.07314
\(126\) −26.8993 + 21.4890i −2.39638 + 1.91439i
\(127\) 12.8605i 1.14119i 0.821232 + 0.570595i \(0.193287\pi\)
−0.821232 + 0.570595i \(0.806713\pi\)
\(128\) 1.97183i 0.174287i
\(129\) −2.60267 7.42786i −0.229152 0.653987i
\(130\) 15.5337 0.667333i 1.36240 0.0585290i
\(131\) 16.1527i 1.41127i −0.708577 0.705634i \(-0.750662\pi\)
0.708577 0.705634i \(-0.249338\pi\)
\(132\) −0.558632 1.59430i −0.0486227 0.138766i
\(133\) 16.5872 9.42798i 1.43829 0.817509i
\(134\) 2.51205i 0.217008i
\(135\) 7.24206 + 4.53759i 0.623298 + 0.390534i
\(136\) −38.1815 −3.27404
\(137\) 0.526348 0.0449689 0.0224845 0.999747i \(-0.492842\pi\)
0.0224845 + 0.999747i \(0.492842\pi\)
\(138\) −6.07463 17.3366i −0.517107 1.47579i
\(139\) 13.7784 1.16867 0.584335 0.811513i \(-0.301355\pi\)
0.584335 + 0.811513i \(0.301355\pi\)
\(140\) 35.0905i 2.96569i
\(141\) 1.83380 + 5.23354i 0.154434 + 0.440744i
\(142\) −22.6610 −1.90167
\(143\) −0.0309657 0.720799i −0.00258948 0.0602763i
\(144\) −23.4631 + 18.7439i −1.95526 + 1.56199i
\(145\) 7.89899 0.655975
\(146\) 12.1765 1.00773
\(147\) 6.96416 + 19.8753i 0.574394 + 1.63928i
\(148\) 45.4701 3.73762
\(149\) 15.9949 1.31035 0.655176 0.755476i \(-0.272595\pi\)
0.655176 + 0.755476i \(0.272595\pi\)
\(150\) 9.83548 3.44629i 0.803064 0.281388i
\(151\) 2.76186 0.224757 0.112378 0.993665i \(-0.464153\pi\)
0.112378 + 0.993665i \(0.464153\pi\)
\(152\) 28.5584 16.2323i 2.31639 1.31661i
\(153\) −9.48679 11.8753i −0.766962 0.960061i
\(154\) −2.29638 −0.185048
\(155\) −8.98743 −0.721888
\(156\) −28.2691 + 11.2897i −2.26334 + 0.903897i
\(157\) 11.4583 0.914471 0.457236 0.889346i \(-0.348840\pi\)
0.457236 + 0.889346i \(0.348840\pi\)
\(158\) 17.7543 1.41246
\(159\) 4.28574 + 12.2312i 0.339881 + 0.969999i
\(160\) 18.3773i 1.45286i
\(161\) −17.7061 −1.39543
\(162\) −23.0143 5.21163i −1.80817 0.409464i
\(163\) 15.9254i 1.24737i −0.781676 0.623685i \(-0.785635\pi\)
0.781676 0.623685i \(-0.214365\pi\)
\(164\) 34.9636i 2.73020i
\(165\) 0.188497 + 0.537957i 0.0146744 + 0.0418799i
\(166\) 34.6422i 2.68876i
\(167\) 2.70200i 0.209087i 0.994520 + 0.104543i \(0.0333381\pi\)
−0.994520 + 0.104543i \(0.966662\pi\)
\(168\) 18.8932 + 53.9199i 1.45764 + 4.16001i
\(169\) −12.9521 + 1.11491i −0.996316 + 0.0857622i
\(170\) 21.8479 1.67566
\(171\) 12.1444 + 4.84913i 0.928704 + 0.370822i
\(172\) −22.1494 −1.68888
\(173\) 6.45272 0.490591 0.245295 0.969448i \(-0.421115\pi\)
0.245295 + 0.969448i \(0.421115\pi\)
\(174\) −20.5831 + 7.21216i −1.56040 + 0.546753i
\(175\) 10.0451i 0.759337i
\(176\) −2.00304 −0.150985
\(177\) −10.0262 + 3.51310i −0.753613 + 0.264061i
\(178\) −38.2072 −2.86375
\(179\) 11.0181 0.823533 0.411767 0.911289i \(-0.364912\pi\)
0.411767 + 0.911289i \(0.364912\pi\)
\(180\) 18.7907 15.0113i 1.40057 1.11887i
\(181\) 25.1080i 1.86627i 0.359531 + 0.933133i \(0.382937\pi\)
−0.359531 + 0.933133i \(0.617063\pi\)
\(182\) 1.77598 + 41.3402i 0.131645 + 3.06434i
\(183\) 1.67250 + 4.77322i 0.123635 + 0.352846i
\(184\) −30.4848 −2.24737
\(185\) −15.3427 −1.12802
\(186\) 23.4193 8.20596i 1.71719 0.601690i
\(187\) 1.01379i 0.0741357i
\(188\) 15.6061 1.13819
\(189\) −12.0760 + 19.2734i −0.878398 + 1.40193i
\(190\) −16.3415 + 9.28831i −1.18553 + 0.673845i
\(191\) 24.4822i 1.77147i 0.464189 + 0.885736i \(0.346346\pi\)
−0.464189 + 0.885736i \(0.653654\pi\)
\(192\) 5.31252 + 15.1616i 0.383398 + 1.09419i
\(193\) 4.03383 0.290362 0.145181 0.989405i \(-0.453624\pi\)
0.145181 + 0.989405i \(0.453624\pi\)
\(194\) 4.49932i 0.323032i
\(195\) 9.53869 3.80942i 0.683080 0.272798i
\(196\) 59.2668 4.23335
\(197\) −6.59858 −0.470129 −0.235065 0.971980i \(-0.575530\pi\)
−0.235065 + 0.971980i \(0.575530\pi\)
\(198\) −0.982362 1.22969i −0.0698134 0.0873905i
\(199\) −7.51677 −0.532850 −0.266425 0.963856i \(-0.585842\pi\)
−0.266425 + 0.963856i \(0.585842\pi\)
\(200\) 17.2948i 1.22292i
\(201\) 0.548761 + 1.56613i 0.0387066 + 0.110466i
\(202\) 40.3895 2.84180
\(203\) 21.0217i 1.47543i
\(204\) −40.3676 + 14.1445i −2.82629 + 0.990315i
\(205\) 11.7976i 0.823980i
\(206\) −10.4014 −0.724699
\(207\) −7.57442 9.48145i −0.526459 0.659006i
\(208\) 1.54911 + 36.0593i 0.107412 + 2.50026i
\(209\) 0.430998 + 0.758279i 0.0298127 + 0.0524513i
\(210\) −10.8109 30.8536i −0.746022 2.12910i
\(211\) 18.8866i 1.30021i −0.759845 0.650104i \(-0.774725\pi\)
0.759845 0.650104i \(-0.225275\pi\)
\(212\) 36.4728 2.50496
\(213\) −14.1280 + 4.95034i −0.968032 + 0.339192i
\(214\) 5.25755i 0.359399i
\(215\) 7.47377 0.509707
\(216\) −20.7914 + 33.1833i −1.41467 + 2.25784i
\(217\) 23.9184i 1.62369i
\(218\) 25.0209i 1.69463i
\(219\) 7.59141 2.65998i 0.512980 0.179745i
\(220\) 1.60416 0.108152
\(221\) −18.2506 + 0.784049i −1.22767 + 0.0527408i
\(222\) 39.9799 14.0087i 2.68327 0.940201i
\(223\) −8.96039 −0.600032 −0.300016 0.953934i \(-0.596992\pi\)
−0.300016 + 0.953934i \(0.596992\pi\)
\(224\) 48.9079 3.26780
\(225\) 5.37905 4.29715i 0.358604 0.286477i
\(226\) 43.7501i 2.91021i
\(227\) 10.0174i 0.664875i 0.943125 + 0.332437i \(0.107871\pi\)
−0.943125 + 0.332437i \(0.892129\pi\)
\(228\) 24.1802 27.7412i 1.60137 1.83721i
\(229\) 17.2301i 1.13860i 0.822131 + 0.569298i \(0.192785\pi\)
−0.822131 + 0.569298i \(0.807215\pi\)
\(230\) 17.4438 1.15021
\(231\) −1.43167 + 0.501649i −0.0941972 + 0.0330061i
\(232\) 36.1934i 2.37621i
\(233\) 17.3799i 1.13860i 0.822131 + 0.569299i \(0.192785\pi\)
−0.822131 + 0.569299i \(0.807215\pi\)
\(234\) −21.3776 + 18.6358i −1.39750 + 1.21826i
\(235\) −5.26589 −0.343509
\(236\) 29.8974i 1.94616i
\(237\) 11.0689 3.87846i 0.719000 0.251933i
\(238\) 58.1442i 3.76893i
\(239\) 26.8615 1.73752 0.868762 0.495229i \(-0.164916\pi\)
0.868762 + 0.495229i \(0.164916\pi\)
\(240\) −9.42988 26.9123i −0.608696 1.73718i
\(241\) −21.3885 −1.37775 −0.688876 0.724879i \(-0.741896\pi\)
−0.688876 + 0.724879i \(0.741896\pi\)
\(242\) 28.7358i 1.84721i
\(243\) −15.4867 + 1.77834i −0.993472 + 0.114080i
\(244\) 14.2335 0.911203
\(245\) −19.9981 −1.27763
\(246\) −10.7718 30.7420i −0.686784 1.96004i
\(247\) 13.3174 8.34539i 0.847369 0.531005i
\(248\) 41.1806i 2.61497i
\(249\) −7.56765 21.5976i −0.479581 1.36869i
\(250\) 31.4576i 1.98955i
\(251\) 1.58597i 0.100105i −0.998747 0.0500527i \(-0.984061\pi\)
0.998747 0.0500527i \(-0.0159389\pi\)
\(252\) 39.9497 + 50.0079i 2.51660 + 3.15020i
\(253\) 0.809428i 0.0508883i
\(254\) 33.7189 2.11571
\(255\) 13.6210 4.77272i 0.852982 0.298879i
\(256\) −13.3808 −0.836301
\(257\) −0.288137 −0.0179735 −0.00898674 0.999960i \(-0.502861\pi\)
−0.00898674 + 0.999960i \(0.502861\pi\)
\(258\) −19.4750 + 6.82392i −1.21246 + 0.424839i
\(259\) 40.8319i 2.53717i
\(260\) −1.24063 28.8785i −0.0769404 1.79097i
\(261\) −11.2569 + 8.99281i −0.696787 + 0.556641i
\(262\) −42.3506 −2.61643
\(263\) 5.21374i 0.321493i 0.986996 + 0.160746i \(0.0513901\pi\)
−0.986996 + 0.160746i \(0.948610\pi\)
\(264\) −2.46493 + 0.863696i −0.151706 + 0.0531568i
\(265\) −12.3068 −0.756002
\(266\) −24.7191 43.4898i −1.51563 2.66653i
\(267\) −23.8201 + 8.34642i −1.45777 + 0.510792i
\(268\) 4.67010 0.285272
\(269\) −22.1875 −1.35280 −0.676398 0.736536i \(-0.736460\pi\)
−0.676398 + 0.736536i \(0.736460\pi\)
\(270\) 11.8971 18.9879i 0.724033 1.15557i
\(271\) 8.34280i 0.506789i −0.967363 0.253394i \(-0.918453\pi\)
0.967363 0.253394i \(-0.0815471\pi\)
\(272\) 50.7167i 3.07515i
\(273\) 10.1381 + 25.3855i 0.613584 + 1.53640i
\(274\) 1.38003i 0.0833704i
\(275\) 0.459208 0.0276913
\(276\) −32.2302 + 11.2932i −1.94003 + 0.679773i
\(277\) 7.78002 0.467456 0.233728 0.972302i \(-0.424907\pi\)
0.233728 + 0.972302i \(0.424907\pi\)
\(278\) 36.1255i 2.16666i
\(279\) 12.8081 10.2320i 0.766800 0.612572i
\(280\) −54.2532 −3.24225
\(281\) 1.69764i 0.101273i −0.998717 0.0506363i \(-0.983875\pi\)
0.998717 0.0506363i \(-0.0161249\pi\)
\(282\) 13.7218 4.80802i 0.817120 0.286313i
\(283\) 16.7129 0.993476 0.496738 0.867900i \(-0.334531\pi\)
0.496738 + 0.867900i \(0.334531\pi\)
\(284\) 42.1287i 2.49988i
\(285\) −8.15899 + 9.36059i −0.483297 + 0.554473i
\(286\) −1.88986 + 0.0811887i −0.111750 + 0.00480079i
\(287\) −31.3971 −1.85331
\(288\) 20.9222 + 26.1898i 1.23285 + 1.54325i
\(289\) −8.66910 −0.509947
\(290\) 20.7103i 1.21615i
\(291\) −0.982883 2.80509i −0.0576176 0.164437i
\(292\) 22.6371i 1.32474i
\(293\) 17.7530i 1.03714i −0.855034 0.518571i \(-0.826464\pi\)
0.855034 0.518571i \(-0.173536\pi\)
\(294\) 52.1108 18.2593i 3.03916 1.06490i
\(295\) 10.0881i 0.587355i
\(296\) 70.3009i 4.08615i
\(297\) −0.881079 0.552050i −0.0511254 0.0320332i
\(298\) 41.9368i 2.42934i
\(299\) −14.5716 + 0.625998i −0.842696 + 0.0362024i
\(300\) −6.40693 18.2850i −0.369904 1.05568i
\(301\) 19.8901i 1.14644i
\(302\) 7.24128i 0.416689i
\(303\) 25.1807 8.82316i 1.44660 0.506877i
\(304\) −21.5614 37.9343i −1.23663 2.17568i
\(305\) −4.80272 −0.275003
\(306\) −31.1357 + 24.8733i −1.77991 + 1.42191i
\(307\) −29.1887 −1.66589 −0.832945 0.553356i \(-0.813347\pi\)
−0.832945 + 0.553356i \(0.813347\pi\)
\(308\) 4.26916i 0.243258i
\(309\) −6.48471 + 2.27220i −0.368902 + 0.129261i
\(310\) 23.5640i 1.33835i
\(311\) 15.5326i 0.880775i −0.897808 0.440388i \(-0.854841\pi\)
0.897808 0.440388i \(-0.145159\pi\)
\(312\) 17.4549 + 43.7065i 0.988187 + 2.47439i
\(313\) 16.3701 0.925291 0.462646 0.886543i \(-0.346900\pi\)
0.462646 + 0.886543i \(0.346900\pi\)
\(314\) 30.0424i 1.69539i
\(315\) −13.4800 16.8739i −0.759514 0.950738i
\(316\) 33.0067i 1.85677i
\(317\) 14.0146i 0.787138i 0.919295 + 0.393569i \(0.128760\pi\)
−0.919295 + 0.393569i \(0.871240\pi\)
\(318\) 32.0689 11.2367i 1.79834 0.630124i
\(319\) −0.961002 −0.0538058
\(320\) −15.2553 −0.852798
\(321\) −1.14852 3.27781i −0.0641042 0.182949i
\(322\) 46.4234i 2.58707i
\(323\) 19.1996 10.9128i 1.06829 0.607206i
\(324\) −9.68885 + 42.7855i −0.538269 + 2.37697i
\(325\) −0.355144 8.26681i −0.0196999 0.458560i
\(326\) −41.7545 −2.31257
\(327\) −5.46586 15.5992i −0.302263 0.862638i
\(328\) −54.0569 −2.98479
\(329\) 14.0142i 0.772628i
\(330\) 1.41046 0.494217i 0.0776435 0.0272058i
\(331\) −11.2817 −0.620099 −0.310050 0.950720i \(-0.600346\pi\)
−0.310050 + 0.950720i \(0.600346\pi\)
\(332\) −64.4028 −3.53456
\(333\) 21.8651 17.4673i 1.19820 0.957204i
\(334\) 7.08434 0.387638
\(335\) −1.57581 −0.0860957
\(336\) 71.6220 25.0959i 3.90730 1.36909i
\(337\) 9.68227i 0.527427i 0.964601 + 0.263713i \(0.0849473\pi\)
−0.964601 + 0.263713i \(0.915053\pi\)
\(338\) 2.92317 + 33.9590i 0.158999 + 1.84713i
\(339\) −9.55728 27.2759i −0.519080 1.48142i
\(340\) 40.6171i 2.20277i
\(341\) 1.09342 0.0592122
\(342\) 12.7139 31.8412i 0.687488 1.72178i
\(343\) 22.5816i 1.21929i
\(344\) 34.2450i 1.84637i
\(345\) 10.8753 3.81062i 0.585505 0.205157i
\(346\) 16.9183i 0.909534i
\(347\) 22.6659i 1.21677i 0.793643 + 0.608384i \(0.208182\pi\)
−0.793643 + 0.608384i \(0.791818\pi\)
\(348\) 13.4080 + 38.2656i 0.718745 + 2.05125i
\(349\) 21.3254i 1.14152i 0.821115 + 0.570762i \(0.193352\pi\)
−0.821115 + 0.570762i \(0.806648\pi\)
\(350\) −26.3371 −1.40778
\(351\) −9.25676 + 16.2884i −0.494089 + 0.869411i
\(352\) 2.23581i 0.119169i
\(353\) 16.8994 0.899465 0.449732 0.893163i \(-0.351519\pi\)
0.449732 + 0.893163i \(0.351519\pi\)
\(354\) 9.21097 + 26.2875i 0.489558 + 1.39717i
\(355\) 14.2153i 0.754469i
\(356\) 71.0302i 3.76459i
\(357\) 12.7017 + 36.2498i 0.672245 + 1.91855i
\(358\) 28.8883i 1.52679i
\(359\) −19.8463 −1.04745 −0.523724 0.851888i \(-0.675458\pi\)
−0.523724 + 0.851888i \(0.675458\pi\)
\(360\) −23.2088 29.0521i −1.22321 1.53118i
\(361\) −9.72116 + 16.3248i −0.511640 + 0.859200i
\(362\) 65.8306 3.45998
\(363\) 6.27739 + 17.9153i 0.329477 + 0.940307i
\(364\) 76.8548 3.30170i 4.02829 0.173056i
\(365\) 7.63833i 0.399808i
\(366\) 12.5149 4.38512i 0.654162 0.229214i
\(367\) −1.33453 −0.0696622 −0.0348311 0.999393i \(-0.511089\pi\)
−0.0348311 + 0.999393i \(0.511089\pi\)
\(368\) 40.4931i 2.11085i
\(369\) −13.4313 16.8129i −0.699204 0.875244i
\(370\) 40.2270i 2.09130i
\(371\) 32.7523i 1.70042i
\(372\) −15.2556 43.5384i −0.790964 2.25736i
\(373\) 27.4206i 1.41978i 0.704310 + 0.709892i \(0.251256\pi\)
−0.704310 + 0.709892i \(0.748744\pi\)
\(374\) −2.65805 −0.137444
\(375\) 6.87196 + 19.6121i 0.354866 + 1.01277i
\(376\) 24.1285i 1.24433i
\(377\) 0.743223 + 17.3003i 0.0382779 + 0.891008i
\(378\) 50.5328 + 31.6619i 2.59913 + 1.62851i
\(379\) 27.0397 1.38894 0.694469 0.719523i \(-0.255640\pi\)
0.694469 + 0.719523i \(0.255640\pi\)
\(380\) 17.2677 + 30.3801i 0.885816 + 1.55847i
\(381\) 21.0220 7.36596i 1.07699 0.377370i
\(382\) 64.1897 3.28423
\(383\) 3.31429i 0.169352i 0.996409 + 0.0846762i \(0.0269856\pi\)
−0.996409 + 0.0846762i \(0.973014\pi\)
\(384\) 3.22317 1.12938i 0.164482 0.0576333i
\(385\) 1.44052i 0.0734158i
\(386\) 10.5763i 0.538318i
\(387\) −10.6510 + 8.50871i −0.541419 + 0.432522i
\(388\) −8.36460 −0.424648
\(389\) 29.4262i 1.49197i −0.665963 0.745985i \(-0.731979\pi\)
0.665963 0.745985i \(-0.268021\pi\)
\(390\) −9.98788 25.0094i −0.505756 1.26640i
\(391\) −20.4947 −1.03646
\(392\) 91.6319i 4.62811i
\(393\) −26.4034 + 9.25156i −1.33187 + 0.466679i
\(394\) 17.3007i 0.871599i
\(395\) 11.1373i 0.560378i
\(396\) −2.28610 + 1.82629i −0.114881 + 0.0917746i
\(397\) 9.27167i 0.465332i 0.972557 + 0.232666i \(0.0747449\pi\)
−0.972557 + 0.232666i \(0.925255\pi\)
\(398\) 19.7081i 0.987880i
\(399\) −24.9115 21.7136i −1.24713 1.08704i
\(400\) −22.9727 −1.14864
\(401\) 2.27972i 0.113844i 0.998379 + 0.0569219i \(0.0181286\pi\)
−0.998379 + 0.0569219i \(0.981871\pi\)
\(402\) 4.10622 1.43879i 0.204800 0.0717604i
\(403\) −0.845635 19.6841i −0.0421241 0.980537i
\(404\) 75.0874i 3.73574i
\(405\) 3.26926 14.4369i 0.162451 0.717375i
\(406\) 55.1166 2.73539
\(407\) 1.86662 0.0925249
\(408\) 21.8687 + 62.4119i 1.08266 + 3.08985i
\(409\) −3.10323 −0.153445 −0.0767225 0.997052i \(-0.524446\pi\)
−0.0767225 + 0.997052i \(0.524446\pi\)
\(410\) 30.9320 1.52762
\(411\) −0.301469 0.860373i −0.0148704 0.0424391i
\(412\) 19.3370i 0.952666i
\(413\) 26.8477 1.32109
\(414\) −24.8593 + 19.8593i −1.22177 + 0.976031i
\(415\) 21.7311 1.06674
\(416\) 40.2498 1.72914i 1.97341 0.0847781i
\(417\) −7.89168 22.5223i −0.386457 1.10292i
\(418\) 1.98812 1.13003i 0.0972424 0.0552715i
\(419\) 11.6328i 0.568300i −0.958780 0.284150i \(-0.908289\pi\)
0.958780 0.284150i \(-0.0917114\pi\)
\(420\) −57.3594 + 20.0983i −2.79885 + 0.980698i
\(421\) −6.89214 −0.335902 −0.167951 0.985795i \(-0.553715\pi\)
−0.167951 + 0.985795i \(0.553715\pi\)
\(422\) −49.5186 −2.41053
\(423\) 7.50448 5.99509i 0.364880 0.291491i
\(424\) 56.3902i 2.73855i
\(425\) 11.6271i 0.563998i
\(426\) 12.9792 + 37.0420i 0.628847 + 1.79469i
\(427\) 12.7816i 0.618543i
\(428\) −9.77422 −0.472455
\(429\) −1.16049 + 0.463459i −0.0560290 + 0.0223760i
\(430\) 19.5954i 0.944975i
\(431\) 23.9948i 1.15579i 0.816112 + 0.577893i \(0.196125\pi\)
−0.816112 + 0.577893i \(0.803875\pi\)
\(432\) 44.0776 + 27.6173i 2.12068 + 1.32874i
\(433\) 7.41439i 0.356313i −0.984002 0.178156i \(-0.942987\pi\)
0.984002 0.178156i \(-0.0570133\pi\)
\(434\) −62.7114 −3.01024
\(435\) −4.52420 12.9118i −0.216919 0.619072i
\(436\) −46.5159 −2.22771
\(437\) 15.3293 8.71299i 0.733298 0.416799i
\(438\) −6.97417 19.9038i −0.333239 0.951042i
\(439\) 6.20188i 0.296000i −0.988987 0.148000i \(-0.952716\pi\)
0.988987 0.148000i \(-0.0472835\pi\)
\(440\) 2.48017i 0.118237i
\(441\) 28.4995 22.7674i 1.35712 1.08416i
\(442\) 2.05569 + 47.8510i 0.0977792 + 2.27604i
\(443\) 30.7339i 1.46021i −0.683334 0.730106i \(-0.739470\pi\)
0.683334 0.730106i \(-0.260530\pi\)
\(444\) −26.0433 74.3259i −1.23596 3.52735i
\(445\) 23.9674i 1.13616i
\(446\) 23.4932i 1.11243i
\(447\) −9.16117 26.1454i −0.433308 1.23663i
\(448\) 40.5992i 1.91813i
\(449\) 11.6278i 0.548751i 0.961623 + 0.274376i \(0.0884712\pi\)
−0.961623 + 0.274376i \(0.911529\pi\)
\(450\) −11.2667 14.1033i −0.531116 0.664836i
\(451\) 1.43531i 0.0675862i
\(452\) −81.3350 −3.82567
\(453\) −1.58187 4.51456i −0.0743228 0.212112i
\(454\) 26.2644 1.23265
\(455\) −25.9327 + 1.11408i −1.21575 + 0.0522287i
\(456\) −42.8905 37.3847i −2.00853 1.75070i
\(457\) 11.4081i 0.533648i 0.963745 + 0.266824i \(0.0859743\pi\)
−0.963745 + 0.266824i \(0.914026\pi\)
\(458\) 45.1754 2.11091
\(459\) −13.9779 + 22.3089i −0.652431 + 1.04129i
\(460\) 32.4294i 1.51203i
\(461\) −16.4845 −0.767761 −0.383881 0.923383i \(-0.625413\pi\)
−0.383881 + 0.923383i \(0.625413\pi\)
\(462\) 1.31527 + 3.75369i 0.0611918 + 0.174637i
\(463\) 25.5864i 1.18910i −0.804059 0.594550i \(-0.797330\pi\)
0.804059 0.594550i \(-0.202670\pi\)
\(464\) 48.0758 2.23187
\(465\) 5.14761 + 14.6909i 0.238715 + 0.681276i
\(466\) 45.5683 2.11091
\(467\) 14.0957i 0.652271i −0.945323 0.326135i \(-0.894253\pi\)
0.945323 0.326135i \(-0.105747\pi\)
\(468\) 34.6455 + 39.7427i 1.60149 + 1.83710i
\(469\) 4.19373i 0.193648i
\(470\) 13.8066i 0.636850i
\(471\) −6.56281 18.7298i −0.302398 0.863026i
\(472\) 46.2242 2.12764
\(473\) −0.909269 −0.0418082
\(474\) −10.1689 29.0214i −0.467073 1.33300i
\(475\) 4.94309 + 8.69667i 0.226805 + 0.399030i
\(476\) 108.095 4.95452
\(477\) 17.5386 14.0110i 0.803037 0.641520i
\(478\) 70.4279i 3.22130i
\(479\) 36.3199 1.65950 0.829750 0.558135i \(-0.188483\pi\)
0.829750 + 0.558135i \(0.188483\pi\)
\(480\) −30.0398 + 10.5257i −1.37112 + 0.480432i
\(481\) −1.44361 33.6035i −0.0658231 1.53219i
\(482\) 56.0782i 2.55429i
\(483\) 10.1413 + 28.9425i 0.461443 + 1.31693i
\(484\) 53.4222 2.42828
\(485\) 2.82242 0.128160
\(486\) 4.66260 + 40.6044i 0.211500 + 1.84185i
\(487\) −6.99334 −0.316898 −0.158449 0.987367i \(-0.550649\pi\)
−0.158449 + 0.987367i \(0.550649\pi\)
\(488\) 22.0062i 0.996174i
\(489\) −26.0318 + 9.12135i −1.17720 + 0.412482i
\(490\) 52.4329i 2.36868i
\(491\) 20.8013i 0.938750i 0.882999 + 0.469375i \(0.155521\pi\)
−0.882999 + 0.469375i \(0.844479\pi\)
\(492\) −57.1519 + 20.0256i −2.57661 + 0.902825i
\(493\) 24.3325i 1.09588i
\(494\) −21.8807 34.9169i −0.984459 1.57099i
\(495\) 0.771387 0.616237i 0.0346713 0.0276978i
\(496\) −54.7004 −2.45612
\(497\) 37.8314 1.69697
\(498\) −56.6266 + 19.8416i −2.53750 + 0.889122i
\(499\) 2.13525i 0.0955871i −0.998857 0.0477936i \(-0.984781\pi\)
0.998857 0.0477936i \(-0.0152190\pi\)
\(500\) 58.4822 2.61540
\(501\) 4.41671 1.54759i 0.197324 0.0691410i
\(502\) −4.15824 −0.185591
\(503\) 2.93733i 0.130969i 0.997854 + 0.0654846i \(0.0208593\pi\)
−0.997854 + 0.0654846i \(0.979141\pi\)
\(504\) 77.3168 61.7659i 3.44396 2.75127i
\(505\) 25.3364i 1.12745i
\(506\) −2.12223 −0.0943447
\(507\) 9.24084 + 20.5331i 0.410400 + 0.911906i
\(508\) 62.6863i 2.78125i
\(509\) 32.7089i 1.44980i 0.688855 + 0.724899i \(0.258114\pi\)
−0.688855 + 0.724899i \(0.741886\pi\)
\(510\) −12.5135 35.7128i −0.554109 1.58139i
\(511\) −20.3280 −0.899258
\(512\) 39.0267i 1.72475i
\(513\) 0.970669 22.6287i 0.0428561 0.999081i
\(514\) 0.755463i 0.0333221i
\(515\) 6.52479i 0.287517i
\(516\) 12.6862 + 36.2057i 0.558480 + 1.59387i
\(517\) 0.640656 0.0281760
\(518\) −107.057 −4.70380
\(519\) −3.69583 10.5477i −0.162229 0.462992i
\(520\) −44.6488 + 1.91812i −1.95798 + 0.0841152i
\(521\) 16.3337 0.715592 0.357796 0.933800i \(-0.383528\pi\)
0.357796 + 0.933800i \(0.383528\pi\)
\(522\) 23.5782 + 29.5145i 1.03199 + 1.29181i
\(523\) 24.5557i 1.07374i 0.843664 + 0.536872i \(0.180394\pi\)
−0.843664 + 0.536872i \(0.819606\pi\)
\(524\) 78.7332i 3.43948i
\(525\) −16.4198 + 5.75338i −0.716619 + 0.251098i
\(526\) 13.6698 0.596034
\(527\) 27.6854i 1.20599i
\(528\) 1.14725 + 3.27418i 0.0499277 + 0.142491i
\(529\) 6.63670 0.288552
\(530\) 32.2671i 1.40159i
\(531\) 11.4851 + 14.3767i 0.498411 + 0.623897i
\(532\) −80.8511 + 45.9549i −3.50534 + 1.99240i
\(533\) −25.8389 + 1.11005i −1.11921 + 0.0480814i
\(534\) 21.8834 + 62.4538i 0.946987 + 2.70264i
\(535\) 3.29807 0.142588
\(536\) 7.22040i 0.311874i
\(537\) −6.31070 18.0103i −0.272327 0.777204i
\(538\) 58.1732i 2.50803i
\(539\) 2.43300 0.104797
\(540\) −35.3001 22.1176i −1.51907 0.951792i
\(541\) 38.7880i 1.66763i 0.552046 + 0.833814i \(0.313847\pi\)
−0.552046 + 0.833814i \(0.686153\pi\)
\(542\) −21.8739 −0.939565
\(543\) 41.0419 14.3808i 1.76128 0.617139i
\(544\) 56.6106 2.42716
\(545\) 15.6956 0.672327
\(546\) 66.5579 26.5809i 2.84841 1.13756i
\(547\) 2.43017i 0.103907i −0.998650 0.0519533i \(-0.983455\pi\)
0.998650 0.0519533i \(-0.0165447\pi\)
\(548\) −2.56558 −0.109596
\(549\) 6.84441 5.46778i 0.292113 0.233359i
\(550\) 1.20399i 0.0513385i
\(551\) −10.3446 18.1998i −0.440694 0.775339i
\(552\) 17.4604 + 49.8308i 0.743162 + 2.12094i
\(553\) −29.6398 −1.26041
\(554\) 20.3984i 0.866643i
\(555\) 8.78765 + 25.0794i 0.373015 + 1.06456i
\(556\) −67.1603 −2.84823
\(557\) 13.0977 0.554967 0.277483 0.960730i \(-0.410500\pi\)
0.277483 + 0.960730i \(0.410500\pi\)
\(558\) −26.8271 33.5814i −1.13568 1.42161i
\(559\) 0.703214 + 16.3689i 0.0297428 + 0.692333i
\(560\) 72.0647i 3.04529i
\(561\) −1.65715 + 0.580655i −0.0699650 + 0.0245153i
\(562\) −4.45102 −0.187755
\(563\) 26.9813 1.13712 0.568562 0.822640i \(-0.307500\pi\)
0.568562 + 0.822640i \(0.307500\pi\)
\(564\) −8.93850 25.5099i −0.376379 1.07416i
\(565\) 27.4445 1.15460
\(566\) 43.8193i 1.84186i
\(567\) 38.4211 + 8.70053i 1.61353 + 0.365388i
\(568\) 65.1348 2.73300
\(569\) −38.0361 −1.59455 −0.797277 0.603613i \(-0.793727\pi\)
−0.797277 + 0.603613i \(0.793727\pi\)
\(570\) 24.5424 + 21.3920i 1.02797 + 0.896011i
\(571\) 35.2111 1.47354 0.736769 0.676145i \(-0.236351\pi\)
0.736769 + 0.676145i \(0.236351\pi\)
\(572\) 0.150936 + 3.51340i 0.00631097 + 0.146903i
\(573\) 40.0189 14.0224i 1.67181 0.585792i
\(574\) 82.3198i 3.43596i
\(575\) 9.28330i 0.387140i
\(576\) 21.7405 17.3678i 0.905855 0.723659i
\(577\) 3.21463i 0.133827i −0.997759 0.0669134i \(-0.978685\pi\)
0.997759 0.0669134i \(-0.0213151\pi\)
\(578\) 22.7294i 0.945420i
\(579\) −2.31040 6.59374i −0.0960171 0.274027i
\(580\) −38.5021 −1.59871
\(581\) 57.8333i 2.39933i
\(582\) −7.35463 + 2.57701i −0.304859 + 0.106821i
\(583\) 1.49726 0.0620104
\(584\) −34.9990 −1.44827
\(585\) −11.6903 13.4102i −0.483333 0.554442i
\(586\) −46.5465 −1.92282
\(587\) −6.15086 −0.253873 −0.126937 0.991911i \(-0.540515\pi\)
−0.126937 + 0.991911i \(0.540515\pi\)
\(588\) −33.9455 96.8782i −1.39989 3.99519i
\(589\) 11.7700 + 20.7077i 0.484975 + 0.853244i
\(590\) −26.4500 −1.08893
\(591\) 3.77938 + 10.7861i 0.155463 + 0.443681i
\(592\) −93.3810 −3.83793
\(593\) 1.72928 0.0710129 0.0355065 0.999369i \(-0.488696\pi\)
0.0355065 + 0.999369i \(0.488696\pi\)
\(594\) −1.44741 + 2.31009i −0.0593881 + 0.0947843i
\(595\) −36.4739 −1.49528
\(596\) −77.9640 −3.19353
\(597\) 4.30528 + 12.2870i 0.176203 + 0.502873i
\(598\) 1.64130 + 38.2051i 0.0671177 + 1.56232i
\(599\) 2.01370 0.0822776 0.0411388 0.999153i \(-0.486901\pi\)
0.0411388 + 0.999153i \(0.486901\pi\)
\(600\) −28.2702 + 9.90569i −1.15413 + 0.404398i
\(601\) 0.225873i 0.00921354i 0.999989 + 0.00460677i \(0.00146639\pi\)
−0.999989 + 0.00460677i \(0.998534\pi\)
\(602\) 52.1496 2.12546
\(603\) 2.24570 1.79402i 0.0914521 0.0730582i
\(604\) −13.4621 −0.547767
\(605\) −18.0260 −0.732861
\(606\) −23.1334 66.0211i −0.939728 2.68192i
\(607\) 6.43634i 0.261243i 0.991432 + 0.130621i \(0.0416973\pi\)
−0.991432 + 0.130621i \(0.958303\pi\)
\(608\) −42.3427 + 24.0671i −1.71722 + 0.976051i
\(609\) 34.3623 12.0403i 1.39243 0.487898i
\(610\) 12.5922i 0.509844i
\(611\) −0.495472 11.5333i −0.0200447 0.466587i
\(612\) 46.2416 + 57.8839i 1.86920 + 2.33982i
\(613\) 35.2282i 1.42285i −0.702761 0.711426i \(-0.748050\pi\)
0.702761 0.711426i \(-0.251950\pi\)
\(614\) 76.5297i 3.08849i
\(615\) 19.2845 6.75715i 0.777625 0.272475i
\(616\) 6.60051 0.265942
\(617\) 17.4585 0.702851 0.351425 0.936216i \(-0.385697\pi\)
0.351425 + 0.936216i \(0.385697\pi\)
\(618\) 5.95746 + 17.0022i 0.239644 + 0.683929i
\(619\) 26.9285i 1.08235i −0.840910 0.541174i \(-0.817980\pi\)
0.840910 0.541174i \(-0.182020\pi\)
\(620\) 43.8075 1.75935
\(621\) −11.1602 + 17.8118i −0.447842 + 0.714762i
\(622\) −40.7249 −1.63292
\(623\) 63.7847 2.55548
\(624\) 58.0556 23.1854i 2.32408 0.928158i
\(625\) −8.25878 −0.330351
\(626\) 42.9205i 1.71545i
\(627\) 0.992634 1.13882i 0.0396420 0.0454802i
\(628\) −55.8513 −2.22871
\(629\) 47.2626i 1.88449i
\(630\) −44.2416 + 35.3432i −1.76263 + 1.40811i
\(631\) 41.6501i 1.65807i −0.559200 0.829033i \(-0.688892\pi\)
0.559200 0.829033i \(-0.311108\pi\)
\(632\) −51.0313 −2.02992
\(633\) −30.8722 + 10.8174i −1.22706 + 0.429954i
\(634\) 36.7447 1.45932
\(635\) 21.1519i 0.839388i
\(636\) −20.8900 59.6187i −0.828342 2.36404i
\(637\) −1.88164 43.7996i −0.0745533 1.73540i
\(638\) 2.51964i 0.0997536i
\(639\) 16.1838 + 20.2584i 0.640219 + 0.801408i
\(640\) 3.24310i 0.128195i
\(641\) −6.93322 −0.273846 −0.136923 0.990582i \(-0.543721\pi\)
−0.136923 + 0.990582i \(0.543721\pi\)
\(642\) −8.59405 + 3.01130i −0.339180 + 0.118846i
\(643\) 12.0718i 0.476065i −0.971257 0.238033i \(-0.923497\pi\)
0.971257 0.238033i \(-0.0765025\pi\)
\(644\) 86.3048 3.40089
\(645\) −4.28065 12.2167i −0.168550 0.481032i
\(646\) −28.6122 50.3391i −1.12573 1.98057i
\(647\) 41.5438i 1.63325i 0.577165 + 0.816627i \(0.304159\pi\)
−0.577165 + 0.816627i \(0.695841\pi\)
\(648\) 66.1502 + 14.9798i 2.59863 + 0.588464i
\(649\) 1.22734i 0.0481772i
\(650\) −21.6747 + 0.931149i −0.850151 + 0.0365227i
\(651\) −39.0972 + 13.6994i −1.53234 + 0.536922i
\(652\) 77.6251i 3.04003i
\(653\) 21.8931i 0.856743i −0.903603 0.428371i \(-0.859088\pi\)
0.903603 0.428371i \(-0.140912\pi\)
\(654\) −40.8994 + 14.3309i −1.59929 + 0.560382i
\(655\) 26.5666i 1.03804i
\(656\) 71.8040i 2.80348i
\(657\) −8.69605 10.8855i −0.339265 0.424683i
\(658\) −36.7437 −1.43242
\(659\) −45.4897 −1.77203 −0.886013 0.463661i \(-0.846536\pi\)
−0.886013 + 0.463661i \(0.846536\pi\)
\(660\) −0.918790 2.62217i −0.0357639 0.102068i
\(661\) 37.7229 1.46725 0.733625 0.679554i \(-0.237827\pi\)
0.733625 + 0.679554i \(0.237827\pi\)
\(662\) 29.5794i 1.14964i
\(663\) 11.7347 + 29.3835i 0.455740 + 1.14116i
\(664\) 99.5725i 3.86416i
\(665\) 27.2812 15.5063i 1.05792 0.601309i
\(666\) −45.7975 57.3279i −1.77462 2.22141i
\(667\) 19.4275i 0.752235i
\(668\) 13.1704i 0.509577i
\(669\) 5.13212 + 14.6467i 0.198419 + 0.566276i
\(670\) 4.13160i 0.159618i
\(671\) 0.584306 0.0225569
\(672\) −28.0123 79.9454i −1.08060 3.08396i
\(673\) 7.86672i 0.303240i 0.988439 + 0.151620i \(0.0484490\pi\)
−0.988439 + 0.151620i \(0.951551\pi\)
\(674\) 25.3858 0.977826
\(675\) −10.1051 6.33144i −0.388944 0.243697i
\(676\) 63.1325 5.43441i 2.42817 0.209016i
\(677\) −2.06920 −0.0795258 −0.0397629 0.999209i \(-0.512660\pi\)
−0.0397629 + 0.999209i \(0.512660\pi\)
\(678\) −71.5143 + 25.0581i −2.74649 + 0.962352i
\(679\) 7.51136i 0.288260i
\(680\) −62.7977 −2.40818
\(681\) 16.3745 5.73750i 0.627471 0.219862i
\(682\) 2.86683i 0.109777i
\(683\) 0.698532i 0.0267286i −0.999911 0.0133643i \(-0.995746\pi\)
0.999911 0.0133643i \(-0.00425411\pi\)
\(684\) −59.1954 23.6362i −2.26339 0.903751i
\(685\) 0.865692 0.0330764
\(686\) −59.2064 −2.26051
\(687\) 28.1645 9.86865i 1.07454 0.376512i
\(688\) 45.4878 1.73421
\(689\) −1.15796 26.9542i −0.0441147 1.02687i
\(690\) −9.99103 28.5138i −0.380352 1.08550i
\(691\) 39.4568i 1.50101i 0.660865 + 0.750505i \(0.270189\pi\)
−0.660865 + 0.750505i \(0.729811\pi\)
\(692\) −31.4525 −1.19565
\(693\) 1.64000 + 2.05291i 0.0622984 + 0.0779834i
\(694\) 59.4274 2.25583
\(695\) 22.6616 0.859602
\(696\) 59.1621 20.7300i 2.24253 0.785768i
\(697\) −36.3420 −1.37655
\(698\) 55.9130 2.11634
\(699\) 28.4094 9.95447i 1.07454 0.376513i
\(700\) 48.9628i 1.85062i
\(701\) 20.6484i 0.779880i −0.920840 0.389940i \(-0.872496\pi\)
0.920840 0.389940i \(-0.127504\pi\)
\(702\) 42.7064 + 24.2702i 1.61185 + 0.916020i
\(703\) 20.0930 + 35.3508i 0.757821 + 1.33328i
\(704\) 1.85598 0.0699500
\(705\) 3.01607 + 8.60768i 0.113592 + 0.324184i
\(706\) 44.3084i 1.66757i
\(707\) −67.4281 −2.53589
\(708\) 48.8707 17.1240i 1.83667 0.643557i
\(709\) 18.6287i 0.699615i −0.936822 0.349807i \(-0.886247\pi\)
0.936822 0.349807i \(-0.113753\pi\)
\(710\) −37.2709 −1.39875
\(711\) −12.6795 15.8719i −0.475520 0.595242i
\(712\) 109.819 4.11565
\(713\) 22.1045i 0.827820i
\(714\) 95.0431 33.3025i 3.55690 1.24631i
\(715\) −0.0509297 1.18551i −0.00190466 0.0443355i
\(716\) −53.7057 −2.00708
\(717\) −15.3851 43.9080i −0.574566 1.63978i
\(718\) 52.0348i 1.94192i
\(719\) 39.3725i 1.46835i 0.678962 + 0.734173i \(0.262430\pi\)
−0.678962 + 0.734173i \(0.737570\pi\)
\(720\) −38.5900 + 30.8283i −1.43817 + 1.14890i
\(721\) 17.3645 0.646689
\(722\) 42.8018 + 25.4878i 1.59292 + 0.948559i
\(723\) 12.2504 + 34.9618i 0.455597 + 1.30024i
\(724\) 122.384i 4.54838i
\(725\) −11.0217 −0.409335
\(726\) 46.9719 16.4586i 1.74329 0.610837i
\(727\) −4.04586 −0.150053 −0.0750263 0.997182i \(-0.523904\pi\)
−0.0750263 + 0.997182i \(0.523904\pi\)
\(728\) −5.10473 118.824i −0.189194 4.40393i
\(729\) 11.7770 + 24.2961i 0.436185 + 0.899857i
\(730\) 20.0269 0.741227
\(731\) 23.0226i 0.851522i
\(732\) −8.15230 23.2661i −0.301318 0.859941i
\(733\) 27.6392i 1.02088i 0.859914 + 0.510439i \(0.170517\pi\)
−0.859914 + 0.510439i \(0.829483\pi\)
\(734\) 3.49900i 0.129151i
\(735\) 11.4540 + 32.6891i 0.422489 + 1.20576i
\(736\) 45.1989 1.66605
\(737\) 0.191715 0.00706192
\(738\) −44.0816 + 35.2153i −1.62266 + 1.29629i
\(739\) 13.5031i 0.496718i −0.968668 0.248359i \(-0.920109\pi\)
0.968668 0.248359i \(-0.0798913\pi\)
\(740\) 74.7853 2.74916
\(741\) −21.2691 16.9890i −0.781340 0.624105i
\(742\) −85.8730 −3.15250
\(743\) 6.28226i 0.230474i 0.993338 + 0.115237i \(0.0367627\pi\)
−0.993338 + 0.115237i \(0.963237\pi\)
\(744\) −67.3143 + 23.5865i −2.46786 + 0.864722i
\(745\) 26.3070 0.963814
\(746\) 71.8938 2.63222
\(747\) −30.9692 + 24.7403i −1.13311 + 0.905201i
\(748\) 4.94153i 0.180680i
\(749\) 8.77720i 0.320712i
\(750\) 51.4209 18.0175i 1.87762 0.657907i
\(751\) 37.9476i 1.38473i −0.721548 0.692364i \(-0.756569\pi\)
0.721548 0.692364i \(-0.243431\pi\)
\(752\) −32.0499 −1.16874
\(753\) −2.59244 + 0.908374i −0.0944738 + 0.0331030i
\(754\) 45.3594 1.94865i 1.65189 0.0709656i
\(755\) 4.54246 0.165317
\(756\) 58.8620 93.9446i 2.14079 3.41673i
\(757\) −42.3041 −1.53757 −0.768784 0.639509i \(-0.779138\pi\)
−0.768784 + 0.639509i \(0.779138\pi\)
\(758\) 70.8952i 2.57503i
\(759\) −1.32310 + 0.463605i −0.0480255 + 0.0168278i
\(760\) 46.9704 26.6975i 1.70380 0.968419i
\(761\) −37.0723 −1.34387 −0.671934 0.740611i \(-0.734536\pi\)
−0.671934 + 0.740611i \(0.734536\pi\)
\(762\) −19.3127 55.1173i −0.699627 1.99669i
\(763\) 41.7710i 1.51221i
\(764\) 119.334i 4.31735i
\(765\) −15.6031 19.5315i −0.564130 0.706162i
\(766\) 8.68971 0.313972
\(767\) 22.0949 0.949203i 0.797801 0.0342737i
\(768\) 7.66394 + 21.8724i 0.276549 + 0.789252i
\(769\) 27.4962i 0.991539i −0.868454 0.495769i \(-0.834886\pi\)
0.868454 0.495769i \(-0.165114\pi\)
\(770\) −3.77689 −0.136110
\(771\) 0.165032 + 0.470991i 0.00594349 + 0.0169623i
\(772\) −19.6621 −0.707656
\(773\) 44.4041i 1.59710i 0.601926 + 0.798552i \(0.294400\pi\)
−0.601926 + 0.798552i \(0.705600\pi\)
\(774\) 22.3089 + 27.9256i 0.801877 + 1.00377i
\(775\) 12.5404 0.450465
\(776\) 12.9324i 0.464247i
\(777\) −66.7442 + 23.3867i −2.39444 + 0.838994i
\(778\) −77.1524 −2.76605
\(779\) 27.1825 15.4502i 0.973914 0.553562i
\(780\) −46.4945 + 18.5683i −1.66477 + 0.664851i
\(781\) 1.72945i 0.0618846i
\(782\) 53.7348i 1.92155i
\(783\) 21.1472 + 13.2500i 0.755740 + 0.473517i
\(784\) −121.715 −4.34697
\(785\) 18.8456 0.672629
\(786\) 24.2566 + 69.2267i 0.865203 + 2.46924i
\(787\) 0.272964 0.00973010 0.00486505 0.999988i \(-0.498451\pi\)
0.00486505 + 0.999988i \(0.498451\pi\)
\(788\) 32.1635 1.14578
\(789\) 8.52243 2.98620i 0.303406 0.106312i
\(790\) 29.2007 1.03892
\(791\) 73.0383i 2.59694i
\(792\) 2.82361 + 3.53452i 0.100333 + 0.125594i
\(793\) −0.451892 10.5189i −0.0160472 0.373535i
\(794\) 24.3093 0.862705
\(795\) 7.04881 + 20.1169i 0.249996 + 0.713471i
\(796\) 36.6391 1.29864
\(797\) 13.0454 0.462093 0.231046 0.972943i \(-0.425785\pi\)
0.231046 + 0.972943i \(0.425785\pi\)
\(798\) −56.9308 + 65.3152i −2.01533 + 2.31213i
\(799\) 16.2213i 0.573870i
\(800\) 25.6424i 0.906597i
\(801\) 27.2863 + 34.1562i 0.964113 + 1.20685i
\(802\) 5.97718 0.211061
\(803\) 0.929290i 0.0327939i
\(804\) −2.67483 7.63380i −0.0943340 0.269223i
\(805\) −29.1214 −1.02639
\(806\) −51.6096 + 2.21716i −1.81787 + 0.0780962i
\(807\) 12.7080 + 36.2679i 0.447344 + 1.27669i
\(808\) −116.092 −4.08410
\(809\) 7.28056i 0.255971i 0.991776 + 0.127985i \(0.0408511\pi\)
−0.991776 + 0.127985i \(0.959149\pi\)
\(810\) −37.8519 8.57164i −1.32998 0.301177i
\(811\) 5.35557 0.188059 0.0940297 0.995569i \(-0.470025\pi\)
0.0940297 + 0.995569i \(0.470025\pi\)
\(812\) 102.466i 3.59586i
\(813\) −13.6372 + 4.77839i −0.478278 + 0.167585i
\(814\) 4.89407i 0.171537i
\(815\) 26.1927i 0.917489i
\(816\) 82.9020 29.0483i 2.90215 1.01689i
\(817\) −9.78771 17.2201i −0.342429 0.602455i
\(818\) 8.13634i 0.284481i
\(819\) 35.6887 31.1115i 1.24706 1.08712i
\(820\) 57.5051i 2.00817i
\(821\) 12.3157 0.429821 0.214910 0.976634i \(-0.431054\pi\)
0.214910 + 0.976634i \(0.431054\pi\)
\(822\) −2.25580 + 0.790419i −0.0786802 + 0.0275690i
\(823\) −35.6620 −1.24310 −0.621550 0.783374i \(-0.713497\pi\)
−0.621550 + 0.783374i \(0.713497\pi\)
\(824\) 29.8968 1.04150
\(825\) −0.263015 0.750627i −0.00915699 0.0261335i
\(826\) 70.3918i 2.44925i
\(827\) 3.53789i 0.123024i −0.998106 0.0615122i \(-0.980408\pi\)
0.998106 0.0615122i \(-0.0195923\pi\)
\(828\) 36.9201 + 46.2155i 1.28306 + 1.60610i
\(829\) 1.90288i 0.0660897i 0.999454 + 0.0330448i \(0.0105204\pi\)
−0.999454 + 0.0330448i \(0.989480\pi\)
\(830\) 56.9766i 1.97769i
\(831\) −4.45606 12.7173i −0.154579 0.441158i
\(832\) −1.43539 33.4120i −0.0497631 1.15835i
\(833\) 61.6033i 2.13443i
\(834\) −59.0511 + 20.6911i −2.04477 + 0.716474i
\(835\) 4.44401i 0.153791i
\(836\) −2.10082 3.69609i −0.0726582 0.127832i
\(837\) −24.0612 15.0758i −0.831676 0.521096i
\(838\) −30.5000 −1.05360
\(839\) 48.0197i 1.65782i 0.559379 + 0.828912i \(0.311040\pi\)
−0.559379 + 0.828912i \(0.688960\pi\)
\(840\) 31.0738 + 88.6828i 1.07215 + 3.05985i
\(841\) −5.93452 −0.204639
\(842\) 18.0704i 0.622748i
\(843\) −2.77498 + 0.972333i −0.0955753 + 0.0334889i
\(844\) 92.0591i 3.16881i
\(845\) −21.3025 + 1.83370i −0.732828 + 0.0630814i
\(846\) −15.7185 19.6759i −0.540412 0.676472i
\(847\) 47.9729i 1.64837i
\(848\) −74.9033 −2.57219
\(849\) −9.57239 27.3190i −0.328524 0.937586i
\(850\) −30.4850 −1.04563
\(851\) 37.7353i 1.29355i
\(852\) 68.8640 24.1295i 2.35924 0.826663i
\(853\) 10.7449i 0.367897i 0.982936 + 0.183949i \(0.0588880\pi\)
−0.982936 + 0.183949i \(0.941112\pi\)
\(854\) −33.5118 −1.14675
\(855\) 19.9740 + 7.97543i 0.683097 + 0.272754i
\(856\) 15.1118i 0.516512i
\(857\) 46.8330 1.59979 0.799893 0.600143i \(-0.204890\pi\)
0.799893 + 0.600143i \(0.204890\pi\)
\(858\) 1.21514 + 3.04268i 0.0414842 + 0.103875i
\(859\) 26.4532 0.902571 0.451286 0.892380i \(-0.350966\pi\)
0.451286 + 0.892380i \(0.350966\pi\)
\(860\) −36.4295 −1.24223
\(861\) 17.9829 + 51.3221i 0.612856 + 1.74905i
\(862\) 62.9116 2.14278
\(863\) 1.14474i 0.0389674i −0.999810 0.0194837i \(-0.993798\pi\)
0.999810 0.0194837i \(-0.00620225\pi\)
\(864\) 30.8267 49.1999i 1.04875 1.67382i
\(865\) 10.6129 0.360848
\(866\) −19.4397 −0.660588
\(867\) 4.96528 + 14.1706i 0.168630 + 0.481259i
\(868\) 116.586i 3.95717i
\(869\) 1.35498i 0.0459645i
\(870\) −33.8532 + 11.8619i −1.14773 + 0.402158i
\(871\) −0.148269 3.45132i −0.00502391 0.116943i
\(872\) 71.9178i 2.43544i
\(873\) −4.02227 + 3.21326i −0.136133 + 0.108752i
\(874\) −22.8445 40.1917i −0.772727 1.35950i
\(875\) 52.5167i 1.77539i
\(876\) −37.0029 + 12.9655i −1.25021 + 0.438065i
\(877\) −2.43491 −0.0822211 −0.0411106 0.999155i \(-0.513090\pi\)
−0.0411106 + 0.999155i \(0.513090\pi\)
\(878\) −16.2607 −0.548771
\(879\) −29.0193 + 10.1682i −0.978795 + 0.342963i
\(880\) −3.29442 −0.111055
\(881\) 18.9422i 0.638180i 0.947724 + 0.319090i \(0.103377\pi\)
−0.947724 + 0.319090i \(0.896623\pi\)
\(882\) −59.6935 74.7227i −2.00999 2.51604i
\(883\) 19.6779 0.662215 0.331107 0.943593i \(-0.392578\pi\)
0.331107 + 0.943593i \(0.392578\pi\)
\(884\) 88.9589 3.82170i 2.99201 0.128538i
\(885\) −16.4902 + 5.77805i −0.554312 + 0.194227i
\(886\) −80.5810 −2.70717
\(887\) 6.04610 0.203008 0.101504 0.994835i \(-0.467635\pi\)
0.101504 + 0.994835i \(0.467635\pi\)
\(888\) −114.914 + 40.2653i −3.85628 + 1.35121i
\(889\) −56.2919 −1.88797
\(890\) −62.8398 −2.10640
\(891\) −0.397743 + 1.75641i −0.0133249 + 0.0588420i
\(892\) 43.6757 1.46237
\(893\) 6.89625 + 12.1330i 0.230774 + 0.406015i
\(894\) −68.5504 + 24.0196i −2.29267 + 0.803335i
\(895\) 18.1217 0.605740
\(896\) −8.63090 −0.288338
\(897\) 9.36923 + 23.4603i 0.312829 + 0.783317i
\(898\) 30.4869 1.01736
\(899\) −26.2438 −0.875279
\(900\) −26.2192 + 20.9457i −0.873972 + 0.698188i
\(901\) 37.9106i 1.26299i
\(902\) −3.76323 −0.125302
\(903\) 32.5125 11.3922i 1.08195 0.379107i
\(904\) 125.751i 4.18242i
\(905\) 41.2956i 1.37271i
\(906\) −11.8367 + 4.14749i −0.393247 + 0.137791i
\(907\) 49.4781i 1.64289i −0.570285 0.821447i \(-0.693167\pi\)
0.570285 0.821447i \(-0.306833\pi\)
\(908\) 48.8277i 1.62040i
\(909\) −28.8449 36.1072i −0.956723 1.19760i
\(910\) 2.92099 + 67.9928i 0.0968297 + 2.25394i
\(911\) −15.9225 −0.527537 −0.263769 0.964586i \(-0.584966\pi\)
−0.263769 + 0.964586i \(0.584966\pi\)
\(912\) −49.6583 + 56.9716i −1.64435 + 1.88652i
\(913\) −2.64384 −0.0874982
\(914\) 29.9108 0.989360
\(915\) 2.75079 + 7.85058i 0.0909383 + 0.259532i
\(916\) 83.9848i 2.77494i
\(917\) 70.7020 2.33479
\(918\) 58.4914 + 36.6484i 1.93050 + 1.20958i
\(919\) −37.1925 −1.22687 −0.613433 0.789746i \(-0.710212\pi\)
−0.613433 + 0.789746i \(0.710212\pi\)
\(920\) −50.1388 −1.65303
\(921\) 16.7180 + 47.7122i 0.550878 + 1.57217i
\(922\) 43.2206i 1.42340i
\(923\) 31.1341 1.33753i 1.02479 0.0440253i
\(924\) 6.97842 2.44519i 0.229573 0.0804409i
\(925\) 21.4082 0.703896
\(926\) −67.0847 −2.20454
\(927\) 7.42832 + 9.29856i 0.243978 + 0.305405i
\(928\) 53.6628i 1.76157i
\(929\) 10.9536 0.359376 0.179688 0.983724i \(-0.442491\pi\)
0.179688 + 0.983724i \(0.442491\pi\)
\(930\) 38.5180 13.4965i 1.26306 0.442566i
\(931\) 26.1897 + 46.0771i 0.858333 + 1.51011i
\(932\) 84.7152i 2.77494i
\(933\) −25.3898 + 8.89642i −0.831225 + 0.291256i
\(934\) −36.9574 −1.20928
\(935\) 1.66740i 0.0545297i
\(936\) 61.4457 53.5651i 2.00842 1.75083i
\(937\) 53.4084 1.74478 0.872388 0.488814i \(-0.162570\pi\)
0.872388 + 0.488814i \(0.162570\pi\)
\(938\) −10.9955 −0.359015
\(939\) −9.37606 26.7587i −0.305976 0.873237i
\(940\) 25.6676 0.837184
\(941\) 2.19490i 0.0715517i 0.999360 + 0.0357759i \(0.0113902\pi\)
−0.999360 + 0.0357759i \(0.988610\pi\)
\(942\) −49.1076 + 17.2070i −1.60001 + 0.560633i
\(943\) −29.0161 −0.944893
\(944\) 61.3998i 1.99839i
\(945\) −19.8615 + 31.6993i −0.646095 + 1.03118i
\(946\) 2.38400i 0.0775107i
\(947\) 18.1652 0.590289 0.295145 0.955453i \(-0.404632\pi\)
0.295145 + 0.955453i \(0.404632\pi\)
\(948\) −53.9531 + 18.9048i −1.75231 + 0.613999i
\(949\) −16.7294 + 0.718697i −0.543058 + 0.0233299i
\(950\) 22.8017 12.9602i 0.739785 0.420486i
\(951\) 22.9084 8.02695i 0.742856 0.260292i
\(952\) 167.124i 5.41653i
\(953\) −0.828396 −0.0268344 −0.0134172 0.999910i \(-0.504271\pi\)
−0.0134172 + 0.999910i \(0.504271\pi\)
\(954\) −36.7353 45.9843i −1.18935 1.48880i
\(955\) 40.2663i 1.30299i
\(956\) −130.931 −4.23462
\(957\) 0.550420 + 1.57086i 0.0177926 + 0.0507788i
\(958\) 95.2269i 3.07664i
\(959\) 2.30388i 0.0743961i
\(960\) 8.73758 + 24.9365i 0.282004 + 0.804822i
\(961\) −1.13998 −0.0367736
\(962\) −88.1046 + 3.78499i −2.84061 + 0.122033i
\(963\) −4.70011 + 3.75477i −0.151459 + 0.120996i
\(964\) 104.254 3.35780
\(965\) 6.63450 0.213572
\(966\) 75.8841 26.5893i 2.44153 0.855496i
\(967\) 10.0449i 0.323023i −0.986871 0.161512i \(-0.948363\pi\)
0.986871 0.161512i \(-0.0516369\pi\)
\(968\) 82.5956i 2.65472i
\(969\) −28.8349 25.1334i −0.926310 0.807401i
\(970\) 7.40009i 0.237602i
\(971\) 46.4409 1.49036 0.745180 0.666863i \(-0.232363\pi\)
0.745180 + 0.666863i \(0.232363\pi\)
\(972\) 75.4869 8.66816i 2.42124 0.278031i
\(973\) 60.3095i 1.93344i
\(974\) 18.3358i 0.587516i
\(975\) −13.3096 + 5.31539i −0.426248 + 0.170229i
\(976\) −29.2309 −0.935660
\(977\) 49.8562i 1.59504i −0.603291 0.797521i \(-0.706144\pi\)
0.603291 0.797521i \(-0.293856\pi\)
\(978\) 23.9152 + 68.2524i 0.764723 + 2.18247i
\(979\) 2.91590i 0.0931927i
\(980\) 97.4770 3.11379
\(981\) −22.3680 + 17.8691i −0.714156 + 0.570516i
\(982\) 54.5387 1.74040
\(983\) 19.3921i 0.618512i −0.950979 0.309256i \(-0.899920\pi\)
0.950979 0.309256i \(-0.100080\pi\)
\(984\) 30.9614 + 88.3620i 0.987014 + 2.81688i
\(985\) −10.8528 −0.345798
\(986\) 63.7971 2.03171
\(987\) −22.9077 + 8.02672i −0.729162 + 0.255493i
\(988\) −64.9134 + 40.6780i −2.06517 + 1.29414i
\(989\) 18.3817i 0.584503i
\(990\) −1.61570 2.02249i −0.0513505 0.0642791i
\(991\) 38.5600i 1.22490i 0.790509 + 0.612450i \(0.209816\pi\)
−0.790509 + 0.612450i \(0.790184\pi\)
\(992\) 61.0573i 1.93857i
\(993\) 6.46167 + 18.4412i 0.205055 + 0.585214i
\(994\) 99.1897i 3.14610i
\(995\) −12.3629 −0.391931
\(996\) 36.8871 + 105.273i 1.16881 + 3.33572i
\(997\) −11.5470 −0.365699 −0.182849 0.983141i \(-0.558532\pi\)
−0.182849 + 0.983141i \(0.558532\pi\)
\(998\) −5.59840 −0.177214
\(999\) −41.0757 25.7364i −1.29958 0.814264i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 741.2.d.a.740.5 88
3.2 odd 2 inner 741.2.d.a.740.83 yes 88
13.12 even 2 inner 741.2.d.a.740.81 yes 88
19.18 odd 2 inner 741.2.d.a.740.84 yes 88
39.38 odd 2 inner 741.2.d.a.740.7 yes 88
57.56 even 2 inner 741.2.d.a.740.6 yes 88
247.246 odd 2 inner 741.2.d.a.740.8 yes 88
741.740 even 2 inner 741.2.d.a.740.82 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
741.2.d.a.740.5 88 1.1 even 1 trivial
741.2.d.a.740.6 yes 88 57.56 even 2 inner
741.2.d.a.740.7 yes 88 39.38 odd 2 inner
741.2.d.a.740.8 yes 88 247.246 odd 2 inner
741.2.d.a.740.81 yes 88 13.12 even 2 inner
741.2.d.a.740.82 yes 88 741.740 even 2 inner
741.2.d.a.740.83 yes 88 3.2 odd 2 inner
741.2.d.a.740.84 yes 88 19.18 odd 2 inner