Properties

Label 740.2.i.a.121.3
Level $740$
Weight $2$
Character 740.121
Analytic conductor $5.909$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(121,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 24x^{12} + 204x^{10} + 727x^{8} + 1008x^{6} + 426x^{4} + 64x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.3
Root \(2.12787i\) of defining polynomial
Character \(\chi\) \(=\) 740.121
Dual form 740.2.i.a.581.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.795627 - 1.37807i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(-1.53626 - 2.66088i) q^{7} +(0.233956 - 0.405224i) q^{9} +3.41859 q^{11} +(0.945375 + 1.63744i) q^{13} +(-0.795627 + 1.37807i) q^{15} +(1.96654 - 3.40615i) q^{17} +(-0.897417 - 1.55437i) q^{19} +(-2.44458 + 4.23414i) q^{21} -9.16334 q^{23} +(-0.500000 + 0.866025i) q^{25} -5.51833 q^{27} -2.24244 q^{29} -3.62938 q^{31} +(-2.71992 - 4.71105i) q^{33} +(-1.53626 + 2.66088i) q^{35} +(-6.03924 + 0.726378i) q^{37} +(1.50433 - 2.60558i) q^{39} +(3.30993 + 5.73297i) q^{41} +6.37644 q^{43} -0.467912 q^{45} -3.32122 q^{47} +(-1.22020 + 2.11345i) q^{49} -6.25853 q^{51} +(1.41367 - 2.44855i) q^{53} +(-1.70930 - 2.96059i) q^{55} +(-1.42802 + 2.47340i) q^{57} +(5.10819 - 8.84764i) q^{59} +(3.65748 + 6.33494i) q^{61} -1.43767 q^{63} +(0.945375 - 1.63744i) q^{65} +(-6.34541 - 10.9906i) q^{67} +(7.29060 + 12.6277i) q^{69} +(-2.10924 - 3.65331i) q^{71} +4.74475 q^{73} +1.59125 q^{75} +(-5.25185 - 9.09648i) q^{77} +(-0.346287 - 0.599786i) q^{79} +(3.68866 + 6.38895i) q^{81} +(-5.27689 + 9.13984i) q^{83} -3.93308 q^{85} +(1.78414 + 3.09023i) q^{87} +(-4.29386 + 7.43719i) q^{89} +(2.90469 - 5.03107i) q^{91} +(2.88763 + 5.00152i) q^{93} +(-0.897417 + 1.55437i) q^{95} -3.39878 q^{97} +(0.799801 - 1.38530i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 7 q^{5} + 4 q^{7} - 13 q^{9} + 14 q^{11} + 4 q^{13} + q^{17} + 4 q^{19} - 3 q^{21} + 12 q^{23} - 7 q^{25} - 6 q^{27} - 4 q^{29} - 24 q^{31} + 13 q^{33} + 4 q^{35} + 10 q^{37} + 21 q^{39} + 5 q^{41}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.795627 1.37807i −0.459355 0.795627i 0.539572 0.841940i \(-0.318586\pi\)
−0.998927 + 0.0463129i \(0.985253\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −1.53626 2.66088i −0.580652 1.00572i −0.995402 0.0957839i \(-0.969464\pi\)
0.414750 0.909935i \(-0.363869\pi\)
\(8\) 0 0
\(9\) 0.233956 0.405224i 0.0779853 0.135075i
\(10\) 0 0
\(11\) 3.41859 1.03074 0.515372 0.856966i \(-0.327654\pi\)
0.515372 + 0.856966i \(0.327654\pi\)
\(12\) 0 0
\(13\) 0.945375 + 1.63744i 0.262200 + 0.454144i 0.966826 0.255435i \(-0.0822187\pi\)
−0.704626 + 0.709579i \(0.748885\pi\)
\(14\) 0 0
\(15\) −0.795627 + 1.37807i −0.205430 + 0.355815i
\(16\) 0 0
\(17\) 1.96654 3.40615i 0.476956 0.826112i −0.522695 0.852520i \(-0.675073\pi\)
0.999651 + 0.0264077i \(0.00840681\pi\)
\(18\) 0 0
\(19\) −0.897417 1.55437i −0.205882 0.356597i 0.744532 0.667587i \(-0.232673\pi\)
−0.950413 + 0.310990i \(0.899339\pi\)
\(20\) 0 0
\(21\) −2.44458 + 4.23414i −0.533452 + 0.923965i
\(22\) 0 0
\(23\) −9.16334 −1.91069 −0.955345 0.295494i \(-0.904516\pi\)
−0.955345 + 0.295494i \(0.904516\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −5.51833 −1.06200
\(28\) 0 0
\(29\) −2.24244 −0.416410 −0.208205 0.978085i \(-0.566762\pi\)
−0.208205 + 0.978085i \(0.566762\pi\)
\(30\) 0 0
\(31\) −3.62938 −0.651855 −0.325928 0.945395i \(-0.605677\pi\)
−0.325928 + 0.945395i \(0.605677\pi\)
\(32\) 0 0
\(33\) −2.71992 4.71105i −0.473478 0.820088i
\(34\) 0 0
\(35\) −1.53626 + 2.66088i −0.259676 + 0.449771i
\(36\) 0 0
\(37\) −6.03924 + 0.726378i −0.992844 + 0.119416i
\(38\) 0 0
\(39\) 1.50433 2.60558i 0.240886 0.417227i
\(40\) 0 0
\(41\) 3.30993 + 5.73297i 0.516924 + 0.895339i 0.999807 + 0.0196541i \(0.00625650\pi\)
−0.482882 + 0.875685i \(0.660410\pi\)
\(42\) 0 0
\(43\) 6.37644 0.972398 0.486199 0.873848i \(-0.338383\pi\)
0.486199 + 0.873848i \(0.338383\pi\)
\(44\) 0 0
\(45\) −0.467912 −0.0697522
\(46\) 0 0
\(47\) −3.32122 −0.484449 −0.242225 0.970220i \(-0.577877\pi\)
−0.242225 + 0.970220i \(0.577877\pi\)
\(48\) 0 0
\(49\) −1.22020 + 2.11345i −0.174314 + 0.301921i
\(50\) 0 0
\(51\) −6.25853 −0.876369
\(52\) 0 0
\(53\) 1.41367 2.44855i 0.194183 0.336334i −0.752450 0.658650i \(-0.771128\pi\)
0.946632 + 0.322316i \(0.104461\pi\)
\(54\) 0 0
\(55\) −1.70930 2.96059i −0.230482 0.399206i
\(56\) 0 0
\(57\) −1.42802 + 2.47340i −0.189146 + 0.327610i
\(58\) 0 0
\(59\) 5.10819 8.84764i 0.665029 1.15186i −0.314248 0.949341i \(-0.601752\pi\)
0.979277 0.202523i \(-0.0649142\pi\)
\(60\) 0 0
\(61\) 3.65748 + 6.33494i 0.468292 + 0.811106i 0.999343 0.0362336i \(-0.0115360\pi\)
−0.531051 + 0.847340i \(0.678203\pi\)
\(62\) 0 0
\(63\) −1.43767 −0.181129
\(64\) 0 0
\(65\) 0.945375 1.63744i 0.117259 0.203099i
\(66\) 0 0
\(67\) −6.34541 10.9906i −0.775215 1.34271i −0.934673 0.355508i \(-0.884308\pi\)
0.159458 0.987205i \(-0.449025\pi\)
\(68\) 0 0
\(69\) 7.29060 + 12.6277i 0.877685 + 1.52020i
\(70\) 0 0
\(71\) −2.10924 3.65331i −0.250321 0.433569i 0.713293 0.700866i \(-0.247203\pi\)
−0.963614 + 0.267297i \(0.913869\pi\)
\(72\) 0 0
\(73\) 4.74475 0.555331 0.277665 0.960678i \(-0.410439\pi\)
0.277665 + 0.960678i \(0.410439\pi\)
\(74\) 0 0
\(75\) 1.59125 0.183742
\(76\) 0 0
\(77\) −5.25185 9.09648i −0.598504 1.03664i
\(78\) 0 0
\(79\) −0.346287 0.599786i −0.0389603 0.0674813i 0.845888 0.533361i \(-0.179071\pi\)
−0.884848 + 0.465880i \(0.845738\pi\)
\(80\) 0 0
\(81\) 3.68866 + 6.38895i 0.409851 + 0.709883i
\(82\) 0 0
\(83\) −5.27689 + 9.13984i −0.579214 + 1.00323i 0.416356 + 0.909202i \(0.363307\pi\)
−0.995570 + 0.0940261i \(0.970026\pi\)
\(84\) 0 0
\(85\) −3.93308 −0.426602
\(86\) 0 0
\(87\) 1.78414 + 3.09023i 0.191280 + 0.331307i
\(88\) 0 0
\(89\) −4.29386 + 7.43719i −0.455149 + 0.788341i −0.998697 0.0510374i \(-0.983747\pi\)
0.543548 + 0.839378i \(0.317081\pi\)
\(90\) 0 0
\(91\) 2.90469 5.03107i 0.304494 0.527399i
\(92\) 0 0
\(93\) 2.88763 + 5.00152i 0.299433 + 0.518634i
\(94\) 0 0
\(95\) −0.897417 + 1.55437i −0.0920730 + 0.159475i
\(96\) 0 0
\(97\) −3.39878 −0.345094 −0.172547 0.985001i \(-0.555200\pi\)
−0.172547 + 0.985001i \(0.555200\pi\)
\(98\) 0 0
\(99\) 0.799801 1.38530i 0.0803830 0.139227i
\(100\) 0 0
\(101\) −4.86232 −0.483819 −0.241909 0.970299i \(-0.577774\pi\)
−0.241909 + 0.970299i \(0.577774\pi\)
\(102\) 0 0
\(103\) 15.3756 1.51500 0.757501 0.652834i \(-0.226420\pi\)
0.757501 + 0.652834i \(0.226420\pi\)
\(104\) 0 0
\(105\) 4.88916 0.477134
\(106\) 0 0
\(107\) −2.68098 4.64360i −0.259181 0.448914i 0.706842 0.707371i \(-0.250119\pi\)
−0.966023 + 0.258458i \(0.916786\pi\)
\(108\) 0 0
\(109\) 6.83392 11.8367i 0.654571 1.13375i −0.327431 0.944875i \(-0.606183\pi\)
0.982001 0.188874i \(-0.0604838\pi\)
\(110\) 0 0
\(111\) 5.80597 + 7.74454i 0.551079 + 0.735079i
\(112\) 0 0
\(113\) −0.661446 + 1.14566i −0.0622236 + 0.107774i −0.895459 0.445144i \(-0.853153\pi\)
0.833235 + 0.552918i \(0.186486\pi\)
\(114\) 0 0
\(115\) 4.58167 + 7.93569i 0.427243 + 0.740007i
\(116\) 0 0
\(117\) 0.884705 0.0817910
\(118\) 0 0
\(119\) −12.0845 −1.10778
\(120\) 0 0
\(121\) 0.686783 0.0624348
\(122\) 0 0
\(123\) 5.26694 9.12261i 0.474904 0.822558i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.22159 14.2402i 0.729548 1.26361i −0.227527 0.973772i \(-0.573064\pi\)
0.957075 0.289842i \(-0.0936028\pi\)
\(128\) 0 0
\(129\) −5.07327 8.78715i −0.446676 0.773666i
\(130\) 0 0
\(131\) 0.854721 1.48042i 0.0746773 0.129345i −0.826269 0.563276i \(-0.809541\pi\)
0.900946 + 0.433931i \(0.142874\pi\)
\(132\) 0 0
\(133\) −2.75733 + 4.77584i −0.239091 + 0.414118i
\(134\) 0 0
\(135\) 2.75916 + 4.77901i 0.237471 + 0.411312i
\(136\) 0 0
\(137\) 8.81030 0.752715 0.376357 0.926475i \(-0.377177\pi\)
0.376357 + 0.926475i \(0.377177\pi\)
\(138\) 0 0
\(139\) 6.21342 10.7620i 0.527015 0.912817i −0.472489 0.881337i \(-0.656644\pi\)
0.999504 0.0314808i \(-0.0100223\pi\)
\(140\) 0 0
\(141\) 2.64245 + 4.57686i 0.222534 + 0.385441i
\(142\) 0 0
\(143\) 3.23185 + 5.59774i 0.270261 + 0.468106i
\(144\) 0 0
\(145\) 1.12122 + 1.94201i 0.0931122 + 0.161275i
\(146\) 0 0
\(147\) 3.88330 0.320289
\(148\) 0 0
\(149\) 21.1302 1.73105 0.865527 0.500862i \(-0.166984\pi\)
0.865527 + 0.500862i \(0.166984\pi\)
\(150\) 0 0
\(151\) 6.83612 + 11.8405i 0.556315 + 0.963567i 0.997800 + 0.0662977i \(0.0211187\pi\)
−0.441484 + 0.897269i \(0.645548\pi\)
\(152\) 0 0
\(153\) −0.920168 1.59378i −0.0743911 0.128849i
\(154\) 0 0
\(155\) 1.81469 + 3.14313i 0.145759 + 0.252463i
\(156\) 0 0
\(157\) 5.87158 10.1699i 0.468603 0.811645i −0.530753 0.847527i \(-0.678091\pi\)
0.999356 + 0.0358821i \(0.0114241\pi\)
\(158\) 0 0
\(159\) −4.49902 −0.356795
\(160\) 0 0
\(161\) 14.0773 + 24.3826i 1.10945 + 1.92162i
\(162\) 0 0
\(163\) 11.2095 19.4154i 0.877993 1.52073i 0.0244524 0.999701i \(-0.492216\pi\)
0.853540 0.521027i \(-0.174451\pi\)
\(164\) 0 0
\(165\) −2.71992 + 4.71105i −0.211746 + 0.366755i
\(166\) 0 0
\(167\) 8.48577 + 14.6978i 0.656648 + 1.13735i 0.981478 + 0.191576i \(0.0613598\pi\)
−0.324829 + 0.945773i \(0.605307\pi\)
\(168\) 0 0
\(169\) 4.71253 8.16234i 0.362502 0.627873i
\(170\) 0 0
\(171\) −0.839824 −0.0642230
\(172\) 0 0
\(173\) −2.77348 + 4.80381i −0.210864 + 0.365227i −0.951985 0.306144i \(-0.900961\pi\)
0.741121 + 0.671371i \(0.234294\pi\)
\(174\) 0 0
\(175\) 3.07252 0.232261
\(176\) 0 0
\(177\) −16.2568 −1.22194
\(178\) 0 0
\(179\) −21.3631 −1.59675 −0.798375 0.602161i \(-0.794307\pi\)
−0.798375 + 0.602161i \(0.794307\pi\)
\(180\) 0 0
\(181\) 1.13711 + 1.96954i 0.0845209 + 0.146395i 0.905187 0.425014i \(-0.139731\pi\)
−0.820666 + 0.571408i \(0.806397\pi\)
\(182\) 0 0
\(183\) 5.81998 10.0805i 0.430225 0.745172i
\(184\) 0 0
\(185\) 3.64868 + 4.86694i 0.268256 + 0.357825i
\(186\) 0 0
\(187\) 6.72280 11.6442i 0.491620 0.851510i
\(188\) 0 0
\(189\) 8.47760 + 14.6836i 0.616654 + 1.06808i
\(190\) 0 0
\(191\) −16.2866 −1.17846 −0.589230 0.807965i \(-0.700569\pi\)
−0.589230 + 0.807965i \(0.700569\pi\)
\(192\) 0 0
\(193\) −8.30630 −0.597900 −0.298950 0.954269i \(-0.596636\pi\)
−0.298950 + 0.954269i \(0.596636\pi\)
\(194\) 0 0
\(195\) −3.00866 −0.215455
\(196\) 0 0
\(197\) 10.5862 18.3359i 0.754238 1.30638i −0.191515 0.981490i \(-0.561340\pi\)
0.945752 0.324888i \(-0.105327\pi\)
\(198\) 0 0
\(199\) −0.218524 −0.0154908 −0.00774539 0.999970i \(-0.502465\pi\)
−0.00774539 + 0.999970i \(0.502465\pi\)
\(200\) 0 0
\(201\) −10.0972 + 17.4888i −0.712199 + 1.23356i
\(202\) 0 0
\(203\) 3.44497 + 5.96687i 0.241790 + 0.418792i
\(204\) 0 0
\(205\) 3.30993 5.73297i 0.231176 0.400408i
\(206\) 0 0
\(207\) −2.14382 + 3.71320i −0.149006 + 0.258086i
\(208\) 0 0
\(209\) −3.06790 5.31376i −0.212211 0.367561i
\(210\) 0 0
\(211\) 10.7208 0.738047 0.369024 0.929420i \(-0.379692\pi\)
0.369024 + 0.929420i \(0.379692\pi\)
\(212\) 0 0
\(213\) −3.35634 + 5.81335i −0.229973 + 0.398324i
\(214\) 0 0
\(215\) −3.18822 5.52216i −0.217435 0.376608i
\(216\) 0 0
\(217\) 5.57567 + 9.65735i 0.378501 + 0.655584i
\(218\) 0 0
\(219\) −3.77505 6.53858i −0.255094 0.441836i
\(220\) 0 0
\(221\) 7.43647 0.500231
\(222\) 0 0
\(223\) −10.5363 −0.705563 −0.352782 0.935706i \(-0.614764\pi\)
−0.352782 + 0.935706i \(0.614764\pi\)
\(224\) 0 0
\(225\) 0.233956 + 0.405224i 0.0155971 + 0.0270149i
\(226\) 0 0
\(227\) −6.61481 11.4572i −0.439041 0.760441i 0.558575 0.829454i \(-0.311348\pi\)
−0.997616 + 0.0690133i \(0.978015\pi\)
\(228\) 0 0
\(229\) −9.73906 16.8685i −0.643575 1.11470i −0.984629 0.174661i \(-0.944117\pi\)
0.341054 0.940044i \(-0.389216\pi\)
\(230\) 0 0
\(231\) −8.35703 + 14.4748i −0.549852 + 0.952372i
\(232\) 0 0
\(233\) 9.18392 0.601659 0.300829 0.953678i \(-0.402737\pi\)
0.300829 + 0.953678i \(0.402737\pi\)
\(234\) 0 0
\(235\) 1.66061 + 2.87626i 0.108326 + 0.187626i
\(236\) 0 0
\(237\) −0.551030 + 0.954412i −0.0357933 + 0.0619957i
\(238\) 0 0
\(239\) −14.3816 + 24.9096i −0.930267 + 1.61127i −0.147405 + 0.989076i \(0.547092\pi\)
−0.782863 + 0.622194i \(0.786241\pi\)
\(240\) 0 0
\(241\) 4.95684 + 8.58550i 0.319298 + 0.553041i 0.980342 0.197307i \(-0.0632195\pi\)
−0.661044 + 0.750348i \(0.729886\pi\)
\(242\) 0 0
\(243\) −2.40790 + 4.17060i −0.154467 + 0.267544i
\(244\) 0 0
\(245\) 2.44040 0.155911
\(246\) 0 0
\(247\) 1.69679 2.93893i 0.107964 0.187000i
\(248\) 0 0
\(249\) 16.7937 1.06426
\(250\) 0 0
\(251\) 25.8573 1.63210 0.816048 0.577984i \(-0.196160\pi\)
0.816048 + 0.577984i \(0.196160\pi\)
\(252\) 0 0
\(253\) −31.3257 −1.96943
\(254\) 0 0
\(255\) 3.12926 + 5.42004i 0.195962 + 0.339416i
\(256\) 0 0
\(257\) −7.36563 + 12.7576i −0.459455 + 0.795800i −0.998932 0.0462004i \(-0.985289\pi\)
0.539477 + 0.842000i \(0.318622\pi\)
\(258\) 0 0
\(259\) 11.2107 + 14.9538i 0.696596 + 0.929184i
\(260\) 0 0
\(261\) −0.524632 + 0.908689i −0.0324739 + 0.0562464i
\(262\) 0 0
\(263\) −7.37269 12.7699i −0.454620 0.787424i 0.544047 0.839055i \(-0.316891\pi\)
−0.998666 + 0.0516307i \(0.983558\pi\)
\(264\) 0 0
\(265\) −2.82734 −0.173682
\(266\) 0 0
\(267\) 13.6653 0.836300
\(268\) 0 0
\(269\) −25.4861 −1.55391 −0.776957 0.629554i \(-0.783238\pi\)
−0.776957 + 0.629554i \(0.783238\pi\)
\(270\) 0 0
\(271\) 11.5506 20.0062i 0.701646 1.21529i −0.266242 0.963906i \(-0.585782\pi\)
0.967888 0.251381i \(-0.0808847\pi\)
\(272\) 0 0
\(273\) −9.24419 −0.559484
\(274\) 0 0
\(275\) −1.70930 + 2.96059i −0.103074 + 0.178530i
\(276\) 0 0
\(277\) 8.60893 + 14.9111i 0.517260 + 0.895921i 0.999799 + 0.0200466i \(0.00638145\pi\)
−0.482539 + 0.875875i \(0.660285\pi\)
\(278\) 0 0
\(279\) −0.849115 + 1.47071i −0.0508352 + 0.0880491i
\(280\) 0 0
\(281\) −8.87242 + 15.3675i −0.529284 + 0.916747i 0.470132 + 0.882596i \(0.344206\pi\)
−0.999417 + 0.0341515i \(0.989127\pi\)
\(282\) 0 0
\(283\) −0.0985752 0.170737i −0.00585969 0.0101493i 0.863081 0.505066i \(-0.168532\pi\)
−0.868940 + 0.494917i \(0.835199\pi\)
\(284\) 0 0
\(285\) 2.85604 0.169177
\(286\) 0 0
\(287\) 10.1698 17.6147i 0.600307 1.03976i
\(288\) 0 0
\(289\) 0.765445 + 1.32579i 0.0450261 + 0.0779876i
\(290\) 0 0
\(291\) 2.70416 + 4.68374i 0.158521 + 0.274566i
\(292\) 0 0
\(293\) 2.17638 + 3.76961i 0.127146 + 0.220223i 0.922570 0.385831i \(-0.126085\pi\)
−0.795424 + 0.606053i \(0.792752\pi\)
\(294\) 0 0
\(295\) −10.2164 −0.594820
\(296\) 0 0
\(297\) −18.8649 −1.09465
\(298\) 0 0
\(299\) −8.66280 15.0044i −0.500983 0.867727i
\(300\) 0 0
\(301\) −9.79588 16.9670i −0.564625 0.977959i
\(302\) 0 0
\(303\) 3.86859 + 6.70059i 0.222245 + 0.384939i
\(304\) 0 0
\(305\) 3.65748 6.33494i 0.209427 0.362738i
\(306\) 0 0
\(307\) −7.86608 −0.448941 −0.224470 0.974481i \(-0.572065\pi\)
−0.224470 + 0.974481i \(0.572065\pi\)
\(308\) 0 0
\(309\) −12.2332 21.1886i −0.695924 1.20538i
\(310\) 0 0
\(311\) 9.13790 15.8273i 0.518163 0.897485i −0.481614 0.876383i \(-0.659949\pi\)
0.999777 0.0211013i \(-0.00671726\pi\)
\(312\) 0 0
\(313\) 7.14105 12.3687i 0.403636 0.699118i −0.590526 0.807019i \(-0.701080\pi\)
0.994162 + 0.107901i \(0.0344129\pi\)
\(314\) 0 0
\(315\) 0.718835 + 1.24506i 0.0405018 + 0.0701511i
\(316\) 0 0
\(317\) 13.1300 22.7419i 0.737457 1.27731i −0.216180 0.976354i \(-0.569360\pi\)
0.953637 0.300959i \(-0.0973069\pi\)
\(318\) 0 0
\(319\) −7.66599 −0.429213
\(320\) 0 0
\(321\) −4.26613 + 7.38915i −0.238112 + 0.412422i
\(322\) 0 0
\(323\) −7.05922 −0.392786
\(324\) 0 0
\(325\) −1.89075 −0.104880
\(326\) 0 0
\(327\) −21.7490 −1.20272
\(328\) 0 0
\(329\) 5.10226 + 8.83737i 0.281297 + 0.487220i
\(330\) 0 0
\(331\) 8.76995 15.1900i 0.482040 0.834918i −0.517748 0.855533i \(-0.673229\pi\)
0.999787 + 0.0206159i \(0.00656270\pi\)
\(332\) 0 0
\(333\) −1.11857 + 2.61718i −0.0612973 + 0.143421i
\(334\) 0 0
\(335\) −6.34541 + 10.9906i −0.346687 + 0.600479i
\(336\) 0 0
\(337\) 7.22756 + 12.5185i 0.393710 + 0.681926i 0.992936 0.118654i \(-0.0378579\pi\)
−0.599225 + 0.800580i \(0.704525\pi\)
\(338\) 0 0
\(339\) 2.10506 0.114331
\(340\) 0 0
\(341\) −12.4074 −0.671897
\(342\) 0 0
\(343\) −14.0095 −0.756441
\(344\) 0 0
\(345\) 7.29060 12.6277i 0.392513 0.679852i
\(346\) 0 0
\(347\) 13.5011 0.724778 0.362389 0.932027i \(-0.381961\pi\)
0.362389 + 0.932027i \(0.381961\pi\)
\(348\) 0 0
\(349\) 5.98136 10.3600i 0.320175 0.554559i −0.660349 0.750959i \(-0.729592\pi\)
0.980524 + 0.196400i \(0.0629251\pi\)
\(350\) 0 0
\(351\) −5.21689 9.03592i −0.278457 0.482302i
\(352\) 0 0
\(353\) −2.27786 + 3.94536i −0.121238 + 0.209990i −0.920256 0.391317i \(-0.872020\pi\)
0.799018 + 0.601307i \(0.205353\pi\)
\(354\) 0 0
\(355\) −2.10924 + 3.65331i −0.111947 + 0.193898i
\(356\) 0 0
\(357\) 9.61473 + 16.6532i 0.508866 + 0.881381i
\(358\) 0 0
\(359\) −7.14442 −0.377068 −0.188534 0.982067i \(-0.560374\pi\)
−0.188534 + 0.982067i \(0.560374\pi\)
\(360\) 0 0
\(361\) 7.88929 13.6646i 0.415226 0.719192i
\(362\) 0 0
\(363\) −0.546423 0.946432i −0.0286798 0.0496748i
\(364\) 0 0
\(365\) −2.37237 4.10907i −0.124176 0.215079i
\(366\) 0 0
\(367\) 14.4395 + 25.0099i 0.753735 + 1.30551i 0.946001 + 0.324165i \(0.105083\pi\)
−0.192266 + 0.981343i \(0.561584\pi\)
\(368\) 0 0
\(369\) 3.09751 0.161250
\(370\) 0 0
\(371\) −8.68707 −0.451010
\(372\) 0 0
\(373\) −13.7490 23.8140i −0.711896 1.23304i −0.964145 0.265378i \(-0.914503\pi\)
0.252249 0.967662i \(-0.418830\pi\)
\(374\) 0 0
\(375\) −0.795627 1.37807i −0.0410860 0.0711630i
\(376\) 0 0
\(377\) −2.11995 3.67185i −0.109183 0.189110i
\(378\) 0 0
\(379\) 3.68880 6.38919i 0.189481 0.328191i −0.755596 0.655038i \(-0.772653\pi\)
0.945077 + 0.326847i \(0.105986\pi\)
\(380\) 0 0
\(381\) −26.1653 −1.34049
\(382\) 0 0
\(383\) 10.4670 + 18.1293i 0.534837 + 0.926365i 0.999171 + 0.0407046i \(0.0129602\pi\)
−0.464334 + 0.885660i \(0.653706\pi\)
\(384\) 0 0
\(385\) −5.25185 + 9.09648i −0.267659 + 0.463600i
\(386\) 0 0
\(387\) 1.49181 2.58388i 0.0758328 0.131346i
\(388\) 0 0
\(389\) −9.78686 16.9513i −0.496213 0.859467i 0.503777 0.863834i \(-0.331943\pi\)
−0.999990 + 0.00436684i \(0.998610\pi\)
\(390\) 0 0
\(391\) −18.0201 + 31.2117i −0.911314 + 1.57844i
\(392\) 0 0
\(393\) −2.72016 −0.137214
\(394\) 0 0
\(395\) −0.346287 + 0.599786i −0.0174236 + 0.0301785i
\(396\) 0 0
\(397\) 15.5500 0.780432 0.390216 0.920723i \(-0.372400\pi\)
0.390216 + 0.920723i \(0.372400\pi\)
\(398\) 0 0
\(399\) 8.77524 0.439311
\(400\) 0 0
\(401\) −10.4214 −0.520421 −0.260210 0.965552i \(-0.583792\pi\)
−0.260210 + 0.965552i \(0.583792\pi\)
\(402\) 0 0
\(403\) −3.43112 5.94288i −0.170916 0.296036i
\(404\) 0 0
\(405\) 3.68866 6.38895i 0.183291 0.317469i
\(406\) 0 0
\(407\) −20.6457 + 2.48319i −1.02337 + 0.123087i
\(408\) 0 0
\(409\) 11.3454 19.6508i 0.560995 0.971671i −0.436415 0.899745i \(-0.643752\pi\)
0.997410 0.0719258i \(-0.0229145\pi\)
\(410\) 0 0
\(411\) −7.00971 12.1412i −0.345763 0.598880i
\(412\) 0 0
\(413\) −31.3900 −1.54460
\(414\) 0 0
\(415\) 10.5538 0.518065
\(416\) 0 0
\(417\) −19.7743 −0.968349
\(418\) 0 0
\(419\) −14.3953 + 24.9333i −0.703254 + 1.21807i 0.264064 + 0.964505i \(0.414937\pi\)
−0.967318 + 0.253567i \(0.918396\pi\)
\(420\) 0 0
\(421\) 28.0292 1.36606 0.683030 0.730390i \(-0.260662\pi\)
0.683030 + 0.730390i \(0.260662\pi\)
\(422\) 0 0
\(423\) −0.777019 + 1.34584i −0.0377799 + 0.0654368i
\(424\) 0 0
\(425\) 1.96654 + 3.40615i 0.0953912 + 0.165222i
\(426\) 0 0
\(427\) 11.2377 19.4643i 0.543830 0.941942i
\(428\) 0 0
\(429\) 5.14270 8.90742i 0.248292 0.430054i
\(430\) 0 0
\(431\) −6.21355 10.7622i −0.299296 0.518396i 0.676679 0.736278i \(-0.263419\pi\)
−0.975975 + 0.217882i \(0.930085\pi\)
\(432\) 0 0
\(433\) 3.89461 0.187163 0.0935814 0.995612i \(-0.470168\pi\)
0.0935814 + 0.995612i \(0.470168\pi\)
\(434\) 0 0
\(435\) 1.78414 3.09023i 0.0855432 0.148165i
\(436\) 0 0
\(437\) 8.22334 + 14.2432i 0.393376 + 0.681347i
\(438\) 0 0
\(439\) 1.42944 + 2.47587i 0.0682236 + 0.118167i 0.898119 0.439752i \(-0.144934\pi\)
−0.829896 + 0.557918i \(0.811600\pi\)
\(440\) 0 0
\(441\) 0.570946 + 0.988908i 0.0271879 + 0.0470909i
\(442\) 0 0
\(443\) 22.3986 1.06419 0.532095 0.846685i \(-0.321405\pi\)
0.532095 + 0.846685i \(0.321405\pi\)
\(444\) 0 0
\(445\) 8.58773 0.407097
\(446\) 0 0
\(447\) −16.8118 29.1188i −0.795169 1.37727i
\(448\) 0 0
\(449\) −8.93201 15.4707i −0.421528 0.730107i 0.574562 0.818461i \(-0.305173\pi\)
−0.996089 + 0.0883542i \(0.971839\pi\)
\(450\) 0 0
\(451\) 11.3153 + 19.5987i 0.532817 + 0.922866i
\(452\) 0 0
\(453\) 10.8780 18.8412i 0.511093 0.885239i
\(454\) 0 0
\(455\) −5.80938 −0.272348
\(456\) 0 0
\(457\) −14.6709 25.4107i −0.686276 1.18866i −0.973034 0.230661i \(-0.925911\pi\)
0.286759 0.958003i \(-0.407422\pi\)
\(458\) 0 0
\(459\) −10.8520 + 18.7962i −0.506528 + 0.877333i
\(460\) 0 0
\(461\) −15.7560 + 27.2902i −0.733830 + 1.27103i 0.221404 + 0.975182i \(0.428936\pi\)
−0.955235 + 0.295849i \(0.904397\pi\)
\(462\) 0 0
\(463\) 10.1893 + 17.6484i 0.473539 + 0.820193i 0.999541 0.0302900i \(-0.00964309\pi\)
−0.526003 + 0.850483i \(0.676310\pi\)
\(464\) 0 0
\(465\) 2.88763 5.00152i 0.133911 0.231940i
\(466\) 0 0
\(467\) −12.6834 −0.586919 −0.293459 0.955972i \(-0.594807\pi\)
−0.293459 + 0.955972i \(0.594807\pi\)
\(468\) 0 0
\(469\) −19.4964 + 33.7688i −0.900261 + 1.55930i
\(470\) 0 0
\(471\) −18.6864 −0.861022
\(472\) 0 0
\(473\) 21.7985 1.00229
\(474\) 0 0
\(475\) 1.79483 0.0823526
\(476\) 0 0
\(477\) −0.661473 1.14571i −0.0302868 0.0524582i
\(478\) 0 0
\(479\) −10.0337 + 17.3788i −0.458450 + 0.794059i −0.998879 0.0473304i \(-0.984929\pi\)
0.540429 + 0.841390i \(0.318262\pi\)
\(480\) 0 0
\(481\) −6.89874 9.20218i −0.314556 0.419583i
\(482\) 0 0
\(483\) 22.4005 38.7989i 1.01926 1.76541i
\(484\) 0 0
\(485\) 1.69939 + 2.94343i 0.0771653 + 0.133654i
\(486\) 0 0
\(487\) −11.5540 −0.523560 −0.261780 0.965128i \(-0.584309\pi\)
−0.261780 + 0.965128i \(0.584309\pi\)
\(488\) 0 0
\(489\) −35.6742 −1.61324
\(490\) 0 0
\(491\) 15.9933 0.721766 0.360883 0.932611i \(-0.382475\pi\)
0.360883 + 0.932611i \(0.382475\pi\)
\(492\) 0 0
\(493\) −4.40984 + 7.63807i −0.198609 + 0.344002i
\(494\) 0 0
\(495\) −1.59960 −0.0718967
\(496\) 0 0
\(497\) −6.48070 + 11.2249i −0.290699 + 0.503505i
\(498\) 0 0
\(499\) 14.1135 + 24.4453i 0.631806 + 1.09432i 0.987182 + 0.159597i \(0.0510194\pi\)
−0.355376 + 0.934723i \(0.615647\pi\)
\(500\) 0 0
\(501\) 13.5030 23.3879i 0.603270 1.04489i
\(502\) 0 0
\(503\) −9.18647 + 15.9114i −0.409605 + 0.709456i −0.994845 0.101404i \(-0.967667\pi\)
0.585241 + 0.810860i \(0.301000\pi\)
\(504\) 0 0
\(505\) 2.43116 + 4.21089i 0.108185 + 0.187382i
\(506\) 0 0
\(507\) −14.9977 −0.666070
\(508\) 0 0
\(509\) 19.2792 33.3925i 0.854535 1.48010i −0.0225407 0.999746i \(-0.507176\pi\)
0.877076 0.480352i \(-0.159491\pi\)
\(510\) 0 0
\(511\) −7.28918 12.6252i −0.322454 0.558507i
\(512\) 0 0
\(513\) 4.95224 + 8.57753i 0.218647 + 0.378707i
\(514\) 0 0
\(515\) −7.68779 13.3156i −0.338765 0.586758i
\(516\) 0 0
\(517\) −11.3539 −0.499344
\(518\) 0 0
\(519\) 8.82663 0.387446
\(520\) 0 0
\(521\) −9.99608 17.3137i −0.437936 0.758527i 0.559594 0.828767i \(-0.310957\pi\)
−0.997530 + 0.0702393i \(0.977624\pi\)
\(522\) 0 0
\(523\) 12.9249 + 22.3865i 0.565165 + 0.978894i 0.997034 + 0.0769583i \(0.0245208\pi\)
−0.431869 + 0.901936i \(0.642146\pi\)
\(524\) 0 0
\(525\) −2.44458 4.23414i −0.106690 0.184793i
\(526\) 0 0
\(527\) −7.13731 + 12.3622i −0.310906 + 0.538506i
\(528\) 0 0
\(529\) 60.9669 2.65073
\(530\) 0 0
\(531\) −2.39018 4.13992i −0.103725 0.179657i
\(532\) 0 0
\(533\) −6.25825 + 10.8396i −0.271075 + 0.469516i
\(534\) 0 0
\(535\) −2.68098 + 4.64360i −0.115909 + 0.200760i
\(536\) 0 0
\(537\) 16.9970 + 29.4397i 0.733475 + 1.27042i
\(538\) 0 0
\(539\) −4.17137 + 7.22502i −0.179674 + 0.311204i
\(540\) 0 0
\(541\) −25.6404 −1.10237 −0.551183 0.834384i \(-0.685824\pi\)
−0.551183 + 0.834384i \(0.685824\pi\)
\(542\) 0 0
\(543\) 1.80944 3.13403i 0.0776503 0.134494i
\(544\) 0 0
\(545\) −13.6678 −0.585466
\(546\) 0 0
\(547\) −21.7589 −0.930345 −0.465173 0.885220i \(-0.654008\pi\)
−0.465173 + 0.885220i \(0.654008\pi\)
\(548\) 0 0
\(549\) 3.42276 0.146080
\(550\) 0 0
\(551\) 2.01240 + 3.48558i 0.0857312 + 0.148491i
\(552\) 0 0
\(553\) −1.06397 + 1.84286i −0.0452448 + 0.0783663i
\(554\) 0 0
\(555\) 3.80398 8.90039i 0.161470 0.377801i
\(556\) 0 0
\(557\) 8.15805 14.1302i 0.345668 0.598714i −0.639807 0.768535i \(-0.720986\pi\)
0.985475 + 0.169822i \(0.0543191\pi\)
\(558\) 0 0
\(559\) 6.02813 + 10.4410i 0.254963 + 0.441608i
\(560\) 0 0
\(561\) −21.3954 −0.903313
\(562\) 0 0
\(563\) −5.14741 −0.216938 −0.108469 0.994100i \(-0.534595\pi\)
−0.108469 + 0.994100i \(0.534595\pi\)
\(564\) 0 0
\(565\) 1.32289 0.0556545
\(566\) 0 0
\(567\) 11.3335 19.6302i 0.475962 0.824391i
\(568\) 0 0
\(569\) 22.8603 0.958353 0.479176 0.877719i \(-0.340935\pi\)
0.479176 + 0.877719i \(0.340935\pi\)
\(570\) 0 0
\(571\) 3.29158 5.70119i 0.137748 0.238587i −0.788896 0.614527i \(-0.789347\pi\)
0.926644 + 0.375940i \(0.122680\pi\)
\(572\) 0 0
\(573\) 12.9581 + 22.4441i 0.541332 + 0.937615i
\(574\) 0 0
\(575\) 4.58167 7.93569i 0.191069 0.330941i
\(576\) 0 0
\(577\) −16.0852 + 27.8603i −0.669634 + 1.15984i 0.308373 + 0.951266i \(0.400216\pi\)
−0.978007 + 0.208574i \(0.933118\pi\)
\(578\) 0 0
\(579\) 6.60871 + 11.4466i 0.274649 + 0.475706i
\(580\) 0 0
\(581\) 32.4267 1.34529
\(582\) 0 0
\(583\) 4.83276 8.37059i 0.200153 0.346675i
\(584\) 0 0
\(585\) −0.442352 0.766177i −0.0182890 0.0316775i
\(586\) 0 0
\(587\) 9.72391 + 16.8423i 0.401349 + 0.695157i 0.993889 0.110384i \(-0.0352082\pi\)
−0.592540 + 0.805541i \(0.701875\pi\)
\(588\) 0 0
\(589\) 3.25706 + 5.64140i 0.134205 + 0.232450i
\(590\) 0 0
\(591\) −33.6907 −1.38585
\(592\) 0 0
\(593\) 23.7692 0.976082 0.488041 0.872821i \(-0.337712\pi\)
0.488041 + 0.872821i \(0.337712\pi\)
\(594\) 0 0
\(595\) 6.04224 + 10.4655i 0.247708 + 0.429042i
\(596\) 0 0
\(597\) 0.173864 + 0.301141i 0.00711577 + 0.0123249i
\(598\) 0 0
\(599\) −4.03233 6.98419i −0.164756 0.285366i 0.771812 0.635850i \(-0.219350\pi\)
−0.936569 + 0.350484i \(0.886017\pi\)
\(600\) 0 0
\(601\) 15.0641 26.0918i 0.614478 1.06431i −0.375998 0.926620i \(-0.622700\pi\)
0.990476 0.137686i \(-0.0439666\pi\)
\(602\) 0 0
\(603\) −5.93819 −0.241822
\(604\) 0 0
\(605\) −0.343391 0.594771i −0.0139608 0.0241809i
\(606\) 0 0
\(607\) 2.52778 4.37825i 0.102599 0.177708i −0.810155 0.586215i \(-0.800617\pi\)
0.912755 + 0.408508i \(0.133951\pi\)
\(608\) 0 0
\(609\) 5.48182 9.49480i 0.222135 0.384749i
\(610\) 0 0
\(611\) −3.13980 5.43829i −0.127023 0.220010i
\(612\) 0 0
\(613\) −22.6931 + 39.3056i −0.916565 + 1.58754i −0.111971 + 0.993712i \(0.535716\pi\)
−0.804594 + 0.593825i \(0.797617\pi\)
\(614\) 0 0
\(615\) −10.5339 −0.424767
\(616\) 0 0
\(617\) −13.4068 + 23.2212i −0.539736 + 0.934851i 0.459181 + 0.888342i \(0.348143\pi\)
−0.998918 + 0.0465084i \(0.985191\pi\)
\(618\) 0 0
\(619\) −30.6521 −1.23201 −0.616006 0.787741i \(-0.711250\pi\)
−0.616006 + 0.787741i \(0.711250\pi\)
\(620\) 0 0
\(621\) 50.5663 2.02916
\(622\) 0 0
\(623\) 26.3860 1.05713
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −4.88181 + 8.45555i −0.194961 + 0.337682i
\(628\) 0 0
\(629\) −9.40225 + 21.9990i −0.374892 + 0.877157i
\(630\) 0 0
\(631\) 4.31031 7.46567i 0.171591 0.297204i −0.767385 0.641186i \(-0.778443\pi\)
0.938976 + 0.343982i \(0.111776\pi\)
\(632\) 0 0
\(633\) −8.52972 14.7739i −0.339026 0.587210i
\(634\) 0 0
\(635\) −16.4432 −0.652527
\(636\) 0 0
\(637\) −4.61419 −0.182821
\(638\) 0 0
\(639\) −1.97388 −0.0780855
\(640\) 0 0
\(641\) 6.56516 11.3712i 0.259308 0.449135i −0.706749 0.707465i \(-0.749839\pi\)
0.966057 + 0.258330i \(0.0831722\pi\)
\(642\) 0 0
\(643\) 20.1992 0.796577 0.398289 0.917260i \(-0.369604\pi\)
0.398289 + 0.917260i \(0.369604\pi\)
\(644\) 0 0
\(645\) −5.07327 + 8.78715i −0.199760 + 0.345994i
\(646\) 0 0
\(647\) 18.4800 + 32.0083i 0.726524 + 1.25838i 0.958344 + 0.285617i \(0.0921986\pi\)
−0.231820 + 0.972759i \(0.574468\pi\)
\(648\) 0 0
\(649\) 17.4628 30.2465i 0.685475 1.18728i
\(650\) 0 0
\(651\) 8.87231 15.3673i 0.347733 0.602292i
\(652\) 0 0
\(653\) 1.51371 + 2.62183i 0.0592362 + 0.102600i 0.894123 0.447822i \(-0.147800\pi\)
−0.834887 + 0.550422i \(0.814467\pi\)
\(654\) 0 0
\(655\) −1.70944 −0.0667934
\(656\) 0 0
\(657\) 1.11006 1.92269i 0.0433077 0.0750111i
\(658\) 0 0
\(659\) 6.10755 + 10.5786i 0.237916 + 0.412083i 0.960116 0.279601i \(-0.0902023\pi\)
−0.722200 + 0.691684i \(0.756869\pi\)
\(660\) 0 0
\(661\) −5.69340 9.86126i −0.221448 0.383558i 0.733800 0.679365i \(-0.237745\pi\)
−0.955248 + 0.295807i \(0.904411\pi\)
\(662\) 0 0
\(663\) −5.91666 10.2479i −0.229784 0.397997i
\(664\) 0 0
\(665\) 5.51467 0.213850
\(666\) 0 0
\(667\) 20.5482 0.795631
\(668\) 0 0
\(669\) 8.38296 + 14.5197i 0.324104 + 0.561365i
\(670\) 0 0
\(671\) 12.5034 + 21.6566i 0.482690 + 0.836044i
\(672\) 0 0
\(673\) −15.0026 25.9852i −0.578306 1.00166i −0.995674 0.0929179i \(-0.970381\pi\)
0.417368 0.908738i \(-0.362953\pi\)
\(674\) 0 0
\(675\) 2.75916 4.77901i 0.106200 0.183944i
\(676\) 0 0
\(677\) −7.25195 −0.278715 −0.139358 0.990242i \(-0.544504\pi\)
−0.139358 + 0.990242i \(0.544504\pi\)
\(678\) 0 0
\(679\) 5.22142 + 9.04376i 0.200380 + 0.347068i
\(680\) 0 0
\(681\) −10.5258 + 18.2313i −0.403351 + 0.698625i
\(682\) 0 0
\(683\) −0.482627 + 0.835935i −0.0184672 + 0.0319862i −0.875111 0.483922i \(-0.839212\pi\)
0.856644 + 0.515908i \(0.172545\pi\)
\(684\) 0 0
\(685\) −4.40515 7.62994i −0.168312 0.291525i
\(686\) 0 0
\(687\) −15.4973 + 26.8421i −0.591259 + 1.02409i
\(688\) 0 0
\(689\) 5.34579 0.203659
\(690\) 0 0
\(691\) −6.44091 + 11.1560i −0.245024 + 0.424394i −0.962138 0.272562i \(-0.912129\pi\)
0.717114 + 0.696955i \(0.245462\pi\)
\(692\) 0 0
\(693\) −4.91481 −0.186698
\(694\) 0 0
\(695\) −12.4268 −0.471377
\(696\) 0 0
\(697\) 26.0364 0.986201
\(698\) 0 0
\(699\) −7.30697 12.6561i −0.276375 0.478696i
\(700\) 0 0
\(701\) 16.2997 28.2319i 0.615631 1.06630i −0.374642 0.927169i \(-0.622234\pi\)
0.990273 0.139135i \(-0.0444322\pi\)
\(702\) 0 0
\(703\) 6.54877 + 8.73535i 0.246992 + 0.329460i
\(704\) 0 0
\(705\) 2.64245 4.57686i 0.0995204 0.172374i
\(706\) 0 0
\(707\) 7.46979 + 12.9381i 0.280930 + 0.486586i
\(708\) 0 0
\(709\) 34.3877 1.29146 0.645728 0.763567i \(-0.276554\pi\)
0.645728 + 0.763567i \(0.276554\pi\)
\(710\) 0 0
\(711\) −0.324064 −0.0121533
\(712\) 0 0
\(713\) 33.2572 1.24549
\(714\) 0 0
\(715\) 3.23185 5.59774i 0.120864 0.209343i
\(716\) 0 0
\(717\) 45.7695 1.70929
\(718\) 0 0
\(719\) −4.48338 + 7.76545i −0.167202 + 0.289602i −0.937435 0.348160i \(-0.886807\pi\)
0.770233 + 0.637763i \(0.220140\pi\)
\(720\) 0 0
\(721\) −23.6209 40.9126i −0.879689 1.52367i
\(722\) 0 0
\(723\) 7.88759 13.6617i 0.293343 0.508085i
\(724\) 0 0
\(725\) 1.12122 1.94201i 0.0416410 0.0721244i
\(726\) 0 0
\(727\) 12.4286 + 21.5270i 0.460951 + 0.798391i 0.999009 0.0445175i \(-0.0141750\pi\)
−0.538058 + 0.842908i \(0.680842\pi\)
\(728\) 0 0
\(729\) 29.7951 1.10352
\(730\) 0 0
\(731\) 12.5395 21.7191i 0.463791 0.803309i
\(732\) 0 0
\(733\) 4.10956 + 7.11796i 0.151790 + 0.262908i 0.931886 0.362752i \(-0.118163\pi\)
−0.780096 + 0.625660i \(0.784830\pi\)
\(734\) 0 0
\(735\) −1.94165 3.36303i −0.0716188 0.124047i
\(736\) 0 0
\(737\) −21.6924 37.5723i −0.799049 1.38399i
\(738\) 0 0
\(739\) 38.8470 1.42901 0.714506 0.699630i \(-0.246652\pi\)
0.714506 + 0.699630i \(0.246652\pi\)
\(740\) 0 0
\(741\) −5.40005 −0.198376
\(742\) 0 0
\(743\) −4.93828 8.55335i −0.181168 0.313792i 0.761111 0.648622i \(-0.224654\pi\)
−0.942278 + 0.334830i \(0.891321\pi\)
\(744\) 0 0
\(745\) −10.5651 18.2993i −0.387075 0.670434i
\(746\) 0 0
\(747\) 2.46912 + 4.27664i 0.0903404 + 0.156474i
\(748\) 0 0
\(749\) −8.23739 + 14.2676i −0.300988 + 0.521326i
\(750\) 0 0
\(751\) 15.9259 0.581146 0.290573 0.956853i \(-0.406154\pi\)
0.290573 + 0.956853i \(0.406154\pi\)
\(752\) 0 0
\(753\) −20.5727 35.6330i −0.749712 1.29854i
\(754\) 0 0
\(755\) 6.83612 11.8405i 0.248792 0.430920i
\(756\) 0 0
\(757\) 11.2887 19.5526i 0.410294 0.710650i −0.584628 0.811302i \(-0.698759\pi\)
0.994922 + 0.100652i \(0.0320928\pi\)
\(758\) 0 0
\(759\) 24.9236 + 43.1689i 0.904670 + 1.56693i
\(760\) 0 0
\(761\) 6.99144 12.1095i 0.253440 0.438970i −0.711031 0.703161i \(-0.751771\pi\)
0.964471 + 0.264190i \(0.0851048\pi\)
\(762\) 0 0
\(763\) −41.9947 −1.52031
\(764\) 0 0
\(765\) −0.920168 + 1.59378i −0.0332687 + 0.0576231i
\(766\) 0 0
\(767\) 19.3166 0.697482
\(768\) 0 0
\(769\) 45.0764 1.62550 0.812749 0.582614i \(-0.197970\pi\)
0.812749 + 0.582614i \(0.197970\pi\)
\(770\) 0 0
\(771\) 23.4412 0.844213
\(772\) 0 0
\(773\) 20.1815 + 34.9554i 0.725878 + 1.25726i 0.958612 + 0.284717i \(0.0918996\pi\)
−0.232734 + 0.972540i \(0.574767\pi\)
\(774\) 0 0
\(775\) 1.81469 3.14313i 0.0651855 0.112905i
\(776\) 0 0
\(777\) 11.6878 27.3467i 0.419298 0.981056i
\(778\) 0 0
\(779\) 5.94078 10.2897i 0.212850 0.368668i
\(780\) 0 0
\(781\) −7.21064 12.4892i −0.258017 0.446899i
\(782\) 0 0
\(783\) 12.3745 0.442229
\(784\) 0 0
\(785\) −11.7432 −0.419131
\(786\) 0 0
\(787\) −24.6222 −0.877687 −0.438843 0.898564i \(-0.644612\pi\)
−0.438843 + 0.898564i \(0.644612\pi\)
\(788\) 0 0
\(789\) −11.7318 + 20.3201i −0.417664 + 0.723415i
\(790\) 0 0
\(791\) 4.06461 0.144521
\(792\) 0 0
\(793\) −6.91538 + 11.9778i −0.245572 + 0.425344i
\(794\) 0 0
\(795\) 2.24951 + 3.89626i 0.0797818 + 0.138186i
\(796\) 0 0
\(797\) −16.8182 + 29.1301i −0.595733 + 1.03184i 0.397710 + 0.917511i \(0.369805\pi\)
−0.993443 + 0.114328i \(0.963528\pi\)
\(798\) 0 0
\(799\) −6.53131 + 11.3126i −0.231061 + 0.400209i
\(800\) 0 0
\(801\) 2.00915 + 3.47995i 0.0709898 + 0.122958i
\(802\) 0 0
\(803\) 16.2204 0.572404
\(804\) 0 0
\(805\) 14.0773 24.3826i 0.496159 0.859373i
\(806\) 0 0
\(807\) 20.2774 + 35.1215i 0.713798 + 1.23634i
\(808\) 0 0
\(809\) −13.5087 23.3977i −0.474939 0.822618i 0.524649 0.851319i \(-0.324197\pi\)
−0.999588 + 0.0287002i \(0.990863\pi\)
\(810\) 0 0
\(811\) −7.94033 13.7531i −0.278823 0.482935i 0.692270 0.721639i \(-0.256611\pi\)
−0.971092 + 0.238704i \(0.923278\pi\)
\(812\) 0 0
\(813\) −36.7597 −1.28922
\(814\) 0 0
\(815\) −22.4189 −0.785301
\(816\) 0 0
\(817\) −5.72232 9.91136i −0.200199 0.346754i
\(818\) 0 0
\(819\) −1.35914 2.35410i −0.0474921 0.0822588i
\(820\) 0 0
\(821\) −1.68973 2.92670i −0.0589720 0.102142i 0.835032 0.550201i \(-0.185449\pi\)
−0.894004 + 0.448059i \(0.852116\pi\)
\(822\) 0 0
\(823\) −4.39961 + 7.62035i −0.153361 + 0.265629i −0.932461 0.361271i \(-0.882343\pi\)
0.779100 + 0.626900i \(0.215676\pi\)
\(824\) 0 0
\(825\) 5.43985 0.189391
\(826\) 0 0
\(827\) 11.9558 + 20.7080i 0.415743 + 0.720088i 0.995506 0.0946972i \(-0.0301883\pi\)
−0.579763 + 0.814785i \(0.696855\pi\)
\(828\) 0 0
\(829\) −8.64171 + 14.9679i −0.300139 + 0.519856i −0.976167 0.217020i \(-0.930366\pi\)
0.676028 + 0.736876i \(0.263700\pi\)
\(830\) 0 0
\(831\) 13.6990 23.7273i 0.475213 0.823092i
\(832\) 0 0
\(833\) 4.79914 + 8.31236i 0.166280 + 0.288006i
\(834\) 0 0
\(835\) 8.48577 14.6978i 0.293662 0.508638i
\(836\) 0 0
\(837\) 20.0281 0.692272
\(838\) 0 0
\(839\) −17.3961 + 30.1309i −0.600579 + 1.04023i 0.392154 + 0.919900i \(0.371730\pi\)
−0.992733 + 0.120334i \(0.961603\pi\)
\(840\) 0 0
\(841\) −23.9715 −0.826602
\(842\) 0 0
\(843\) 28.2365 0.972518
\(844\) 0 0
\(845\) −9.42506 −0.324232
\(846\) 0 0
\(847\) −1.05508 1.82745i −0.0362529 0.0627919i
\(848\) 0 0
\(849\) −0.156858 + 0.271686i −0.00538336 + 0.00932425i
\(850\) 0 0
\(851\) 55.3396 6.65605i 1.89702 0.228166i
\(852\) 0 0
\(853\) 13.3714 23.1599i 0.457827 0.792979i −0.541019 0.841010i \(-0.681961\pi\)
0.998846 + 0.0480311i \(0.0152947\pi\)
\(854\) 0 0
\(855\) 0.419912 + 0.727309i 0.0143607 + 0.0248734i
\(856\) 0 0
\(857\) −30.6784 −1.04795 −0.523976 0.851733i \(-0.675552\pi\)
−0.523976 + 0.851733i \(0.675552\pi\)
\(858\) 0 0
\(859\) 18.0066 0.614376 0.307188 0.951649i \(-0.400612\pi\)
0.307188 + 0.951649i \(0.400612\pi\)
\(860\) 0 0
\(861\) −32.3656 −1.10302
\(862\) 0 0
\(863\) 7.59673 13.1579i 0.258596 0.447901i −0.707270 0.706943i \(-0.750074\pi\)
0.965866 + 0.259042i \(0.0834069\pi\)
\(864\) 0 0
\(865\) 5.54697 0.188603
\(866\) 0 0
\(867\) 1.21802 2.10967i 0.0413660 0.0716480i
\(868\) 0 0
\(869\) −1.18381 2.05043i −0.0401581 0.0695559i
\(870\) 0 0
\(871\) 11.9976 20.7804i 0.406523 0.704118i
\(872\) 0 0
\(873\) −0.795165 + 1.37727i −0.0269123 + 0.0466134i
\(874\) 0 0
\(875\) −1.53626 2.66088i −0.0519351 0.0899543i
\(876\) 0 0
\(877\) −45.7605 −1.54522 −0.772611 0.634880i \(-0.781049\pi\)
−0.772611 + 0.634880i \(0.781049\pi\)
\(878\) 0 0
\(879\) 3.46318 5.99840i 0.116810 0.202321i
\(880\) 0 0
\(881\) −6.62702 11.4783i −0.223270 0.386715i 0.732529 0.680736i \(-0.238340\pi\)
−0.955799 + 0.294021i \(0.905006\pi\)
\(882\) 0 0
\(883\) 11.2805 + 19.5384i 0.379618 + 0.657518i 0.991007 0.133813i \(-0.0427220\pi\)
−0.611388 + 0.791331i \(0.709389\pi\)
\(884\) 0 0
\(885\) 8.12842 + 14.0788i 0.273234 + 0.473255i
\(886\) 0 0
\(887\) 42.7077 1.43398 0.716992 0.697081i \(-0.245518\pi\)
0.716992 + 0.697081i \(0.245518\pi\)
\(888\) 0 0
\(889\) −50.5220 −1.69445
\(890\) 0 0
\(891\) 12.6100 + 21.8412i 0.422452 + 0.731708i
\(892\) 0 0
\(893\) 2.98052 + 5.16241i 0.0997392 + 0.172753i
\(894\) 0 0
\(895\) 10.6815 + 18.5009i 0.357044 + 0.618418i
\(896\) 0 0
\(897\) −13.7847 + 23.8758i −0.460258 + 0.797190i
\(898\) 0 0
\(899\) 8.13866 0.271439
\(900\) 0 0
\(901\) −5.56008 9.63033i −0.185233 0.320833i
\(902\) 0 0
\(903\) −15.5877 + 26.9987i −0.518727 + 0.898462i
\(904\) 0 0
\(905\) 1.13711 1.96954i 0.0377989 0.0654696i
\(906\) 0 0
\(907\) 19.8574 + 34.3941i 0.659356 + 1.14204i 0.980783 + 0.195103i \(0.0625042\pi\)
−0.321427 + 0.946934i \(0.604162\pi\)
\(908\) 0 0
\(909\) −1.13757 + 1.97033i −0.0377308 + 0.0653516i
\(910\) 0 0
\(911\) −46.3504 −1.53566 −0.767828 0.640656i \(-0.778662\pi\)
−0.767828 + 0.640656i \(0.778662\pi\)
\(912\) 0 0
\(913\) −18.0395 + 31.2454i −0.597022 + 1.03407i
\(914\) 0 0
\(915\) −11.6400 −0.384805
\(916\) 0 0
\(917\) −5.25230 −0.173446
\(918\) 0 0
\(919\) −23.2723 −0.767683 −0.383841 0.923399i \(-0.625399\pi\)
−0.383841 + 0.923399i \(0.625399\pi\)
\(920\) 0 0
\(921\) 6.25846 + 10.8400i 0.206223 + 0.357189i
\(922\) 0 0
\(923\) 3.98805 6.90751i 0.131268 0.227363i
\(924\) 0 0
\(925\) 2.39056 5.59332i 0.0786010 0.183907i
\(926\) 0 0
\(927\) 3.59721 6.23055i 0.118148 0.204638i
\(928\) 0 0
\(929\) −21.8368 37.8224i −0.716442 1.24091i −0.962401 0.271633i \(-0.912436\pi\)
0.245959 0.969280i \(-0.420897\pi\)
\(930\) 0 0
\(931\) 4.38011 0.143552
\(932\) 0 0
\(933\) −29.0814 −0.952084
\(934\) 0 0
\(935\) −13.4456 −0.439718
\(936\) 0 0
\(937\) −11.4758 + 19.8766i −0.374897 + 0.649341i −0.990312 0.138863i \(-0.955655\pi\)
0.615414 + 0.788204i \(0.288989\pi\)
\(938\) 0 0
\(939\) −22.7264 −0.741649
\(940\) 0 0
\(941\) −17.7649 + 30.7696i −0.579118 + 1.00306i 0.416463 + 0.909153i \(0.363270\pi\)
−0.995581 + 0.0939088i \(0.970064\pi\)
\(942\) 0 0
\(943\) −30.3300 52.5332i −0.987682 1.71072i
\(944\) 0 0
\(945\) 8.47760 14.6836i 0.275776 0.477658i
\(946\) 0 0
\(947\) −23.3398 + 40.4257i −0.758440 + 1.31366i 0.185205 + 0.982700i \(0.440705\pi\)
−0.943646 + 0.330957i \(0.892628\pi\)
\(948\) 0 0
\(949\) 4.48557 + 7.76923i 0.145608 + 0.252200i
\(950\) 0 0
\(951\) −41.7865 −1.35502
\(952\) 0 0
\(953\) −2.71628 + 4.70473i −0.0879888 + 0.152401i −0.906661 0.421860i \(-0.861377\pi\)
0.818672 + 0.574261i \(0.194711\pi\)
\(954\) 0 0
\(955\) 8.14332 + 14.1046i 0.263512 + 0.456416i
\(956\) 0 0
\(957\) 6.09926 + 10.5642i 0.197161 + 0.341493i
\(958\) 0 0
\(959\) −13.5349 23.4432i −0.437066 0.757020i
\(960\) 0 0
\(961\) −17.8276 −0.575084
\(962\) 0 0
\(963\) −2.50893 −0.0808491
\(964\) 0 0
\(965\) 4.15315 + 7.19347i 0.133695 + 0.231566i
\(966\) 0 0
\(967\) 7.09769 + 12.2936i 0.228246 + 0.395334i 0.957288 0.289135i \(-0.0933675\pi\)
−0.729042 + 0.684469i \(0.760034\pi\)
\(968\) 0 0
\(969\) 5.61651 + 9.72807i 0.180428 + 0.312511i
\(970\) 0 0
\(971\) 20.4125 35.3554i 0.655067 1.13461i −0.326810 0.945090i \(-0.605974\pi\)
0.981877 0.189519i \(-0.0606929\pi\)
\(972\) 0 0
\(973\) −38.1818 −1.22405
\(974\) 0 0
\(975\) 1.50433 + 2.60558i 0.0481772 + 0.0834453i
\(976\) 0 0
\(977\) −5.36367 + 9.29015i −0.171599 + 0.297218i −0.938979 0.343974i \(-0.888227\pi\)
0.767380 + 0.641193i \(0.221560\pi\)
\(978\) 0 0
\(979\) −14.6790 + 25.4247i −0.469142 + 0.812578i
\(980\) 0 0
\(981\) −3.19767 5.53853i −0.102094 0.176832i
\(982\) 0 0
\(983\) −11.8899 + 20.5939i −0.379229 + 0.656845i −0.990950 0.134229i \(-0.957144\pi\)
0.611721 + 0.791074i \(0.290478\pi\)
\(984\) 0 0
\(985\) −21.1725 −0.674611
\(986\) 0 0
\(987\) 8.11899 14.0625i 0.258430 0.447614i
\(988\) 0 0
\(989\) −58.4295 −1.85795
\(990\) 0 0
\(991\) −40.0740 −1.27299 −0.636496 0.771280i \(-0.719617\pi\)
−0.636496 + 0.771280i \(0.719617\pi\)
\(992\) 0 0
\(993\) −27.9104 −0.885710
\(994\) 0 0
\(995\) 0.109262 + 0.189248i 0.00346384 + 0.00599955i
\(996\) 0 0
\(997\) 3.21670 5.57148i 0.101874 0.176451i −0.810583 0.585624i \(-0.800850\pi\)
0.912457 + 0.409173i \(0.134183\pi\)
\(998\) 0 0
\(999\) 33.3265 4.00839i 1.05440 0.126820i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.i.a.121.3 14
37.26 even 3 inner 740.2.i.a.581.3 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.i.a.121.3 14 1.1 even 1 trivial
740.2.i.a.581.3 yes 14 37.26 even 3 inner