L(s) = 1 | + (−0.795 − 1.37i)3-s + (−0.5 − 0.866i)5-s + (−1.53 − 2.66i)7-s + (0.233 − 0.405i)9-s + 3.41·11-s + (0.945 + 1.63i)13-s + (−0.795 + 1.37i)15-s + (1.96 − 3.40i)17-s + (−0.897 − 1.55i)19-s + (−2.44 + 4.23i)21-s − 9.16·23-s + (−0.499 + 0.866i)25-s − 5.51·27-s − 2.24·29-s − 3.62·31-s + ⋯ |
L(s) = 1 | + (−0.459 − 0.795i)3-s + (−0.223 − 0.387i)5-s + (−0.580 − 1.00i)7-s + (0.0779 − 0.135i)9-s + 1.03·11-s + (0.262 + 0.454i)13-s + (−0.205 + 0.355i)15-s + (0.476 − 0.826i)17-s + (−0.205 − 0.356i)19-s + (−0.533 + 0.923i)21-s − 1.91·23-s + (−0.0999 + 0.173i)25-s − 1.06·27-s − 0.416·29-s − 0.651·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.263i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 + 0.263i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.116525 - 0.868305i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.116525 - 0.868305i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (6.03 - 0.726i)T \) |
good | 3 | \( 1 + (0.795 + 1.37i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (1.53 + 2.66i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 3.41T + 11T^{2} \) |
| 13 | \( 1 + (-0.945 - 1.63i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.96 + 3.40i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.897 + 1.55i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 9.16T + 23T^{2} \) |
| 29 | \( 1 + 2.24T + 29T^{2} \) |
| 31 | \( 1 + 3.62T + 31T^{2} \) |
| 41 | \( 1 + (-3.30 - 5.73i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 6.37T + 43T^{2} \) |
| 47 | \( 1 + 3.32T + 47T^{2} \) |
| 53 | \( 1 + (-1.41 + 2.44i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.10 + 8.84i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.65 - 6.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.34 + 10.9i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.10 + 3.65i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 4.74T + 73T^{2} \) |
| 79 | \( 1 + (0.346 + 0.599i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.27 - 9.13i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (4.29 - 7.43i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 3.39T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.831889728681321072147709672164, −9.295149622599141330534835337704, −8.078779595040155206689893931984, −7.15870658572098240319431379046, −6.62842089869566935741449931402, −5.73534460870094490418312611679, −4.29035070360743908165654835016, −3.59492729692665109397571206107, −1.68484272330559826601901895246, −0.48165199457674286313000900505,
2.02488443039844408422707875584, 3.55095316949643390058424379603, 4.19047944578596062096936876303, 5.73331650857921470579145636943, 5.94049333974058223377650033277, 7.25932479172603608274121459691, 8.324147776293514157761450730764, 9.188679905110070212884320513079, 10.05225482794268716223335756226, 10.59070227419161346410760473191