Properties

Label 740.2.ce.b.543.1
Level $740$
Weight $2$
Character 740.543
Analytic conductor $5.909$
Analytic rank $0$
Dimension $12$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(3,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([18, 27, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.ce (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{36})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{36}]$

Embedding invariants

Embedding label 543.1
Root \(-0.642788 - 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 740.543
Dual form 740.2.ce.b.447.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40883 - 0.123257i) q^{2} +(1.96962 + 0.347296i) q^{4} +(2.22141 - 0.255652i) q^{5} +(-2.73205 - 0.732051i) q^{8} +(-2.95442 + 0.520945i) q^{9} +(-3.16110 + 0.0863678i) q^{10} +(3.91800 + 5.59549i) q^{13} +(3.75877 + 1.36808i) q^{16} +(-3.67389 + 5.24685i) q^{17} +(4.22650 - 0.369771i) q^{18} +(4.46410 + 0.267949i) q^{20} +(4.86928 - 1.13581i) q^{25} +(-4.83013 - 8.36603i) q^{26} +(2.83786 + 4.91531i) q^{29} +(-5.12685 - 2.39069i) q^{32} +(5.82260 - 6.93910i) q^{34} -6.00000 q^{36} +(-2.02670 + 5.73520i) q^{37} +(-6.25614 - 0.927726i) q^{40} +(1.89932 - 10.7716i) q^{41} +(-6.42979 + 1.91253i) q^{45} +(-4.49951 - 5.36231i) q^{49} +(-7.00000 + 1.00000i) q^{50} +(5.77367 + 12.3817i) q^{52} +(3.16421 + 6.78568i) q^{53} +(-3.39222 - 7.27463i) q^{58} +(13.3483 + 2.35366i) q^{61} +(6.92820 + 4.00000i) q^{64} +(10.1340 + 11.4282i) q^{65} +(-9.05836 + 9.05836i) q^{68} +(8.45299 + 0.739541i) q^{72} +(12.0263 + 12.0263i) q^{73} +(3.56218 - 7.83013i) q^{74} +(8.69951 + 2.07812i) q^{80} +(8.45723 - 3.07818i) q^{81} +(-4.00349 + 14.9412i) q^{82} +(-6.81982 + 12.5946i) q^{85} +(-3.68792 - 1.34229i) q^{89} +(9.29423 - 1.90192i) q^{90} +(-9.81006 + 2.62860i) q^{97} +(5.67812 + 8.10919i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{8} - 6 q^{17} + 12 q^{20} - 6 q^{26} - 30 q^{34} - 72 q^{36} + 24 q^{41} - 84 q^{50} - 18 q^{58} + 72 q^{61} + 132 q^{65} + 30 q^{73} - 30 q^{74} - 42 q^{85} - 60 q^{89} + 18 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40883 0.123257i −0.996195 0.0871557i
\(3\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(4\) 1.96962 + 0.347296i 0.984808 + 0.173648i
\(5\) 2.22141 0.255652i 0.993443 0.114331i
\(6\) 0 0
\(7\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(8\) −2.73205 0.732051i −0.965926 0.258819i
\(9\) −2.95442 + 0.520945i −0.984808 + 0.173648i
\(10\) −3.16110 + 0.0863678i −0.999627 + 0.0273119i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 3.91800 + 5.59549i 1.08666 + 1.55191i 0.805826 + 0.592153i \(0.201722\pi\)
0.280833 + 0.959757i \(0.409389\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.75877 + 1.36808i 0.939693 + 0.342020i
\(17\) −3.67389 + 5.24685i −0.891048 + 1.27255i 0.0703875 + 0.997520i \(0.477576\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) 4.22650 0.369771i 0.996195 0.0871557i
\(19\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(20\) 4.46410 + 0.267949i 0.998203 + 0.0599153i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(24\) 0 0
\(25\) 4.86928 1.13581i 0.973857 0.227163i
\(26\) −4.83013 8.36603i −0.947266 1.64071i
\(27\) 0 0
\(28\) 0 0
\(29\) 2.83786 + 4.91531i 0.526977 + 0.912750i 0.999506 + 0.0314353i \(0.0100078\pi\)
−0.472529 + 0.881315i \(0.656659\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −5.12685 2.39069i −0.906308 0.422618i
\(33\) 0 0
\(34\) 5.82260 6.93910i 0.998568 1.19005i
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) −2.02670 + 5.73520i −0.333187 + 0.942861i
\(38\) 0 0
\(39\) 0 0
\(40\) −6.25614 0.927726i −0.989183 0.146686i
\(41\) 1.89932 10.7716i 0.296624 1.68224i −0.363905 0.931436i \(-0.618557\pi\)
0.660529 0.750801i \(-0.270332\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) −6.42979 + 1.91253i −0.958497 + 0.285104i
\(46\) 0 0
\(47\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(48\) 0 0
\(49\) −4.49951 5.36231i −0.642788 0.766044i
\(50\) −7.00000 + 1.00000i −0.989949 + 0.141421i
\(51\) 0 0
\(52\) 5.77367 + 12.3817i 0.800664 + 1.71703i
\(53\) 3.16421 + 6.78568i 0.434638 + 0.932085i 0.994621 + 0.103581i \(0.0330300\pi\)
−0.559983 + 0.828504i \(0.689192\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −3.39222 7.27463i −0.445420 0.955206i
\(59\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(60\) 0 0
\(61\) 13.3483 + 2.35366i 1.70907 + 0.301355i 0.940848 0.338829i \(-0.110031\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 6.92820 + 4.00000i 0.866025 + 0.500000i
\(65\) 10.1340 + 11.4282i 1.25696 + 1.41749i
\(66\) 0 0
\(67\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(68\) −9.05836 + 9.05836i −1.09849 + 1.09849i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(72\) 8.45299 + 0.739541i 0.996195 + 0.0871557i
\(73\) 12.0263 + 12.0263i 1.40757 + 1.40757i 0.772246 + 0.635323i \(0.219133\pi\)
0.635323 + 0.772246i \(0.280867\pi\)
\(74\) 3.56218 7.83013i 0.414095 0.910234i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(80\) 8.69951 + 2.07812i 0.972634 + 0.232341i
\(81\) 8.45723 3.07818i 0.939693 0.342020i
\(82\) −4.00349 + 14.9412i −0.442112 + 1.64998i
\(83\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(84\) 0 0
\(85\) −6.81982 + 12.5946i −0.739713 + 1.36608i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.68792 1.34229i −0.390919 0.142283i 0.139080 0.990281i \(-0.455585\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 9.29423 1.90192i 0.979698 0.200480i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.81006 + 2.62860i −0.996061 + 0.266894i −0.719794 0.694187i \(-0.755764\pi\)
−0.276267 + 0.961081i \(0.589097\pi\)
\(98\) 5.67812 + 8.10919i 0.573576 + 0.819152i
\(99\) 0 0
\(100\) 9.98508 0.546034i 0.998508 0.0546034i
\(101\) −9.67443 + 16.7566i −0.962642 + 1.66734i −0.246820 + 0.969061i \(0.579386\pi\)
−0.715822 + 0.698283i \(0.753948\pi\)
\(102\) 0 0
\(103\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(104\) −6.60800 18.1553i −0.647968 1.78028i
\(105\) 0 0
\(106\) −3.62147 9.94990i −0.351748 0.966419i
\(107\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(108\) 0 0
\(109\) 12.8249 10.7614i 1.22840 1.03075i 0.230063 0.973176i \(-0.426107\pi\)
0.998341 0.0575772i \(-0.0183375\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.53952 17.5968i 0.144826 1.65537i −0.481969 0.876188i \(-0.660078\pi\)
0.626795 0.779184i \(-0.284366\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.88242 + 10.6669i 0.360473 + 0.990392i
\(117\) −14.4904 14.4904i −1.33964 1.33964i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) −18.5153 4.96117i −1.67630 0.449163i
\(123\) 0 0
\(124\) 0 0
\(125\) 10.5263 3.76795i 0.941499 0.337016i
\(126\) 0 0
\(127\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(128\) −9.26765 6.48928i −0.819152 0.573576i
\(129\) 0 0
\(130\) −12.8685 17.3495i −1.12864 1.52165i
\(131\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 13.8782 11.6452i 1.19005 0.998568i
\(137\) −21.8430 5.85281i −1.86617 0.500039i −1.00000 0.000294847i \(-0.999906\pi\)
−0.866173 0.499745i \(-0.833427\pi\)
\(138\) 0 0
\(139\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −11.8177 2.08378i −0.984808 0.173648i
\(145\) 7.56064 + 10.1934i 0.627877 + 0.846515i
\(146\) −15.4607 18.4253i −1.27954 1.52489i
\(147\) 0 0
\(148\) −5.98363 + 10.5923i −0.491851 + 0.870679i
\(149\) 23.5804i 1.93178i −0.258954 0.965890i \(-0.583378\pi\)
0.258954 0.965890i \(-0.416622\pi\)
\(150\) 0 0
\(151\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(152\) 0 0
\(153\) 8.12090 17.4153i 0.656536 1.40795i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.1786 + 8.52756i 0.971960 + 0.680574i 0.947710 0.319132i \(-0.103391\pi\)
0.0242497 + 0.999706i \(0.492280\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −12.0000 4.00000i −0.948683 0.316228i
\(161\) 0 0
\(162\) −12.2942 + 3.29423i −0.965926 + 0.258819i
\(163\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(164\) 7.48186 20.5562i 0.584235 1.60517i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(168\) 0 0
\(169\) −11.5125 + 31.6303i −0.885576 + 2.43310i
\(170\) 11.1604 16.9031i 0.855960 1.29641i
\(171\) 0 0
\(172\) 0 0
\(173\) −6.22704 0.544796i −0.473433 0.0414200i −0.152057 0.988372i \(-0.548590\pi\)
−0.321376 + 0.946952i \(0.604145\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 5.03021 + 2.34563i 0.377031 + 0.175812i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −13.3284 + 1.53391i −0.993443 + 0.114331i
\(181\) 0.162022 0.918873i 0.0120430 0.0682993i −0.978194 0.207693i \(-0.933404\pi\)
0.990237 + 0.139394i \(0.0445155\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.03590 + 13.2583i −0.223204 + 0.974772i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 2.21941 + 0.594690i 0.159757 + 0.0428067i 0.337811 0.941214i \(-0.390314\pi\)
−0.178054 + 0.984021i \(0.556980\pi\)
\(194\) 14.1447 2.49410i 1.01553 0.179066i
\(195\) 0 0
\(196\) −7.00000 12.1244i −0.500000 0.866025i
\(197\) 2.28539 26.1221i 0.162827 1.86112i −0.274201 0.961673i \(-0.588413\pi\)
0.437028 0.899448i \(-0.356031\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) −14.1346 0.461459i −0.999467 0.0326301i
\(201\) 0 0
\(202\) 15.6950 22.4148i 1.10430 1.57710i
\(203\) 0 0
\(204\) 0 0
\(205\) 1.46538 24.4136i 0.102347 1.70512i
\(206\) 0 0
\(207\) 0 0
\(208\) 7.07180 + 26.3923i 0.490341 + 1.82998i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 3.87564 + 14.4641i 0.266180 + 0.993399i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −19.3946 + 13.5802i −1.31357 + 0.919768i
\(219\) 0 0
\(220\) 0 0
\(221\) −43.7530 −2.94315
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) −13.7942 + 5.89230i −0.919615 + 0.392820i
\(226\) −4.33786 + 24.6012i −0.288550 + 1.63645i
\(227\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(228\) 0 0
\(229\) −10.3423 28.4152i −0.683438 1.87773i −0.381157 0.924510i \(-0.624474\pi\)
−0.302281 0.953219i \(-0.597748\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.15491 15.5063i −0.272783 1.01804i
\(233\) 6.34277 23.6715i 0.415528 1.55077i −0.368246 0.929728i \(-0.620042\pi\)
0.783775 0.621045i \(-0.213292\pi\)
\(234\) 18.6285 + 22.2006i 1.21778 + 1.45130i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(240\) 0 0
\(241\) 5.18845 6.18336i 0.334218 0.398305i −0.572596 0.819838i \(-0.694063\pi\)
0.906813 + 0.421533i \(0.138508\pi\)
\(242\) 8.92276 12.7430i 0.573576 0.819152i
\(243\) 0 0
\(244\) 25.4735 + 9.27160i 1.63077 + 0.593553i
\(245\) −11.3661 10.7616i −0.726155 0.687531i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −15.2942 + 4.01097i −0.967289 + 0.253676i
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 12.2567 + 10.2846i 0.766044 + 0.642788i
\(257\) 24.9703 + 2.18462i 1.55761 + 0.136273i 0.833150 0.553047i \(-0.186535\pi\)
0.724457 + 0.689320i \(0.242091\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 15.9911 + 26.0287i 0.991723 + 1.61423i
\(261\) −10.9448 13.0435i −0.677468 0.807375i
\(262\) 0 0
\(263\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(264\) 0 0
\(265\) 8.76378 + 14.2648i 0.538355 + 0.876280i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.74167 2.16025i −0.228134 0.131713i 0.381577 0.924337i \(-0.375381\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(272\) −20.9874 + 14.6955i −1.27255 + 0.891048i
\(273\) 0 0
\(274\) 30.0517 + 10.9379i 1.81549 + 0.660784i
\(275\) 0 0
\(276\) 0 0
\(277\) −1.77553 20.2943i −0.106681 1.21937i −0.841178 0.540758i \(-0.818138\pi\)
0.734498 0.678611i \(-0.237418\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.41506 + 12.1303i −0.263380 + 0.723631i 0.735554 + 0.677466i \(0.236922\pi\)
−0.998934 + 0.0461646i \(0.985300\pi\)
\(282\) 0 0
\(283\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 16.3923 + 4.39230i 0.965926 + 0.258819i
\(289\) −8.21769 22.5779i −0.483394 1.32811i
\(290\) −9.39527 15.2927i −0.551709 0.898017i
\(291\) 0 0
\(292\) 19.5105 + 27.8638i 1.14176 + 1.63061i
\(293\) 1.98525 + 22.6915i 0.115980 + 1.32565i 0.801673 + 0.597763i \(0.203944\pi\)
−0.685693 + 0.727890i \(0.740501\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 9.73550 14.1852i 0.565864 0.824498i
\(297\) 0 0
\(298\) −2.90644 + 33.2208i −0.168366 + 1.92443i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 30.2536 + 1.81592i 1.73232 + 0.103979i
\(306\) −13.5875 + 23.5343i −0.776748 + 1.34537i
\(307\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(312\) 0 0
\(313\) 17.7286 + 12.4137i 1.00208 + 0.701664i 0.954810 0.297218i \(-0.0960589\pi\)
0.0472702 + 0.998882i \(0.484948\pi\)
\(314\) −16.1066 13.5150i −0.908945 0.762696i
\(315\) 0 0
\(316\) 0 0
\(317\) −28.7953 + 13.4275i −1.61730 + 0.754161i −0.999483 0.0321569i \(-0.989762\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 16.4130 + 7.11441i 0.917512 + 0.397708i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 17.7265 3.12567i 0.984808 0.173648i
\(325\) 25.4333 + 22.7959i 1.41079 + 1.26449i
\(326\) 0 0
\(327\) 0 0
\(328\) −13.0744 + 28.0381i −0.721912 + 1.54814i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(332\) 0 0
\(333\) 3.00000 18.0000i 0.164399 0.986394i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.07044 2.95690i −0.112784 0.161073i 0.758791 0.651334i \(-0.225790\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 20.1178 43.1428i 1.09426 2.34666i
\(339\) 0 0
\(340\) −17.8065 + 22.4381i −0.965693 + 1.21688i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 8.70571 + 1.53505i 0.468022 + 0.0825248i
\(347\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(348\) 0 0
\(349\) 5.50632 15.1285i 0.294747 0.809810i −0.700609 0.713545i \(-0.747088\pi\)
0.995356 0.0962646i \(-0.0306895\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −26.7109 18.7032i −1.42168 0.995471i −0.995883 0.0906521i \(-0.971105\pi\)
−0.425797 0.904819i \(-0.640006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.79761 3.92460i −0.360273 0.208004i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 18.9666 0.518207i 0.999627 0.0273119i
\(361\) 3.29932 + 18.7113i 0.173648 + 0.984808i
\(362\) −0.341519 + 1.27457i −0.0179499 + 0.0669898i
\(363\) 0 0
\(364\) 0 0
\(365\) 29.7898 + 23.6407i 1.55927 + 1.23741i
\(366\) 0 0
\(367\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(368\) 0 0
\(369\) 32.8132i 1.70819i
\(370\) 5.91125 18.3046i 0.307311 0.951609i
\(371\) 0 0
\(372\) 0 0
\(373\) −3.35931 38.3971i −0.173938 1.98812i −0.152115 0.988363i \(-0.548608\pi\)
−0.0218237 0.999762i \(-0.506947\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −16.3848 + 35.1374i −0.843862 + 1.80967i
\(378\) 0 0
\(379\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.05348 1.11138i −0.155418 0.0565676i
\(387\) 0 0
\(388\) −20.2350 + 1.77033i −1.02727 + 0.0898749i
\(389\) 28.4782 + 23.8961i 1.44390 + 1.21158i 0.936883 + 0.349644i \(0.113697\pi\)
0.507020 + 0.861934i \(0.330747\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 8.36741 + 17.9440i 0.422618 + 0.906308i
\(393\) 0 0
\(394\) −6.43945 + 36.5199i −0.324415 + 1.83985i
\(395\) 0 0
\(396\) 0 0
\(397\) −3.95120 14.7461i −0.198305 0.740084i −0.991387 0.130969i \(-0.958191\pi\)
0.793082 0.609115i \(-0.208475\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 19.8564 + 2.39230i 0.992820 + 0.119615i
\(401\) 21.7321i 1.08525i −0.839976 0.542623i \(-0.817431\pi\)
0.839976 0.542623i \(-0.182569\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −24.8744 + 29.6442i −1.23755 + 1.47485i
\(405\) 18.0000 9.00000i 0.894427 0.447214i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −20.5185 + 17.2171i −1.01458 + 0.851331i −0.988936 0.148340i \(-0.952607\pi\)
−0.0256402 + 0.999671i \(0.508162\pi\)
\(410\) −5.07362 + 34.2140i −0.250568 + 1.68971i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −6.70994 38.0540i −0.328982 1.86575i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(420\) 0 0
\(421\) −32.7075 18.8837i −1.59406 0.920334i −0.992599 0.121435i \(-0.961250\pi\)
−0.601466 0.798899i \(-0.705416\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −3.67733 20.8552i −0.178587 1.01282i
\(425\) −11.9297 + 29.7213i −0.578677 + 1.44169i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(432\) 0 0
\(433\) 5.35021 19.9673i 0.257115 0.959565i −0.709787 0.704416i \(-0.751209\pi\)
0.966902 0.255149i \(-0.0821245\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 28.9975 16.7417i 1.38873 0.801784i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(440\) 0 0
\(441\) 16.0869 + 13.4985i 0.766044 + 0.642788i
\(442\) 61.6407 + 5.39286i 2.93195 + 0.256512i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) −8.53553 2.03895i −0.404623 0.0966556i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.1870 10.9872i 1.42461 0.518517i 0.489231 0.872154i \(-0.337278\pi\)
0.935383 + 0.353637i \(0.115055\pi\)
\(450\) 20.1600 6.60103i 0.950352 0.311176i
\(451\) 0 0
\(452\) 9.14359 34.1244i 0.430078 1.60507i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.60069 6.02227i 0.402323 0.281710i −0.354851 0.934923i \(-0.615468\pi\)
0.757174 + 0.653213i \(0.226579\pi\)
\(458\) 11.0682 + 41.3070i 0.517182 + 1.93015i
\(459\) 0 0
\(460\) 0 0
\(461\) 42.2571 7.45106i 1.96811 0.347031i 0.977263 0.212032i \(-0.0680081\pi\)
0.990846 0.134999i \(-0.0431030\pi\)
\(462\) 0 0
\(463\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(464\) 3.94231 + 22.3579i 0.183017 + 1.03794i
\(465\) 0 0
\(466\) −11.8536 + 32.5674i −0.549106 + 1.50866i
\(467\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(468\) −23.5080 33.5729i −1.08666 1.55191i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −12.8834 18.3994i −0.589890 0.842450i
\(478\) 0 0
\(479\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(480\) 0 0
\(481\) −40.0318 + 11.1302i −1.82530 + 0.507492i
\(482\) −8.07180 + 8.07180i −0.367660 + 0.367660i
\(483\) 0 0
\(484\) −14.1413 + 16.8530i −0.642788 + 0.766044i
\(485\) −21.1201 + 8.34715i −0.959015 + 0.379025i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −34.7451 16.2019i −1.57284 0.733426i
\(489\) 0 0
\(490\) 14.6865 + 16.5622i 0.663470 + 0.748203i
\(491\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) −36.2159 3.16848i −1.63108 0.142701i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(500\) 22.0413 3.76567i 0.985718 0.168406i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(504\) 0 0
\(505\) −17.2070 + 39.6965i −0.765700 + 1.76647i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −39.5241 + 6.96917i −1.75188 + 0.308903i −0.955300 0.295637i \(-0.904468\pi\)
−0.796575 + 0.604540i \(0.793357\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) −34.9097 6.15553i −1.53980 0.271509i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −19.3205 38.6410i −0.847260 1.69452i
\(521\) 34.9630 + 29.3375i 1.53176 + 1.28530i 0.779220 + 0.626751i \(0.215616\pi\)
0.752539 + 0.658548i \(0.228829\pi\)
\(522\) 13.8117 + 19.7252i 0.604523 + 0.863348i
\(523\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −19.9186 + 11.5000i −0.866025 + 0.500000i
\(530\) −10.5885 21.1769i −0.459933 0.919866i
\(531\) 0 0
\(532\) 0 0
\(533\) 67.7138 31.5754i 2.93301 1.36768i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 5.00512 + 3.50462i 0.215786 + 0.151095i
\(539\) 0 0
\(540\) 0 0
\(541\) 28.7163 + 16.5793i 1.23461 + 0.712802i 0.967987 0.250999i \(-0.0807592\pi\)
0.266622 + 0.963801i \(0.414093\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 31.3791 18.1167i 1.34537 0.776748i
\(545\) 25.7382 27.1841i 1.10250 1.16444i
\(546\) 0 0
\(547\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(548\) −40.9896 19.1138i −1.75099 0.816500i
\(549\) −40.6625 −1.73543
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 28.8102i 1.22403i
\(555\) 0 0
\(556\) 0 0
\(557\) 41.2784 + 3.61140i 1.74902 + 0.153020i 0.916253 0.400599i \(-0.131198\pi\)
0.832770 + 0.553619i \(0.186754\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 7.71521 16.5453i 0.325446 0.697922i
\(563\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(564\) 0 0
\(565\) −1.07877 39.4833i −0.0453841 1.66108i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.32954 16.1592i 0.391115 0.677430i −0.601482 0.798886i \(-0.705423\pi\)
0.992597 + 0.121456i \(0.0387563\pi\)
\(570\) 0 0
\(571\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −22.5526 8.20848i −0.939693 0.342020i
\(577\) −19.8132 42.4896i −0.824835 1.76886i −0.610340 0.792140i \(-0.708967\pi\)
−0.214496 0.976725i \(-0.568811\pi\)
\(578\) 8.79446 + 32.8214i 0.365801 + 1.36519i
\(579\) 0 0
\(580\) 11.3514 + 22.7029i 0.471342 + 0.942685i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −24.0526 41.6603i −0.995302 1.72391i
\(585\) −35.8935 28.4845i −1.48401 1.17769i
\(586\) 32.2132i 1.33072i
\(587\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −15.4641 + 18.7846i −0.635571 + 0.772043i
\(593\) 27.9243 + 27.9243i 1.14671 + 1.14671i 0.987195 + 0.159520i \(0.0509945\pi\)
0.159520 + 0.987195i \(0.449006\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8.18938 46.4443i 0.335450 1.90243i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(600\) 0 0
\(601\) −0.262724 1.48998i −0.0107167 0.0607775i 0.978980 0.203954i \(-0.0653794\pi\)
−0.989697 + 0.143177i \(0.954268\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.78231 + 22.5678i −0.397708 + 0.917512i
\(606\) 0 0
\(607\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −42.3984 6.28728i −1.71666 0.254565i
\(611\) 0 0
\(612\) 22.0433 31.4811i 0.891048 1.27255i
\(613\) 15.6404 + 33.5408i 0.631708 + 1.35470i 0.918008 + 0.396562i \(0.129797\pi\)
−0.286300 + 0.958140i \(0.592425\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.47723 + 28.3148i −0.0997293 + 1.13991i 0.767175 + 0.641437i \(0.221662\pi\)
−0.866905 + 0.498474i \(0.833894\pi\)
\(618\) 0 0
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 22.4198 11.0612i 0.896794 0.442448i
\(626\) −23.4465 19.6740i −0.937112 0.786331i
\(627\) 0 0
\(628\) 21.0256 + 21.0256i 0.839013 + 0.839013i
\(629\) −22.6459 31.7043i −0.902951 1.26413i
\(630\) 0 0
\(631\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 42.2227 15.3678i 1.67688 0.610334i
\(635\) 0 0
\(636\) 0 0
\(637\) 12.3756 46.1865i 0.490341 1.82998i
\(638\) 0 0
\(639\) 0 0
\(640\) −22.2462 12.0460i −0.879358 0.476161i
\(641\) −19.9256 + 16.7196i −0.787014 + 0.660383i −0.945004 0.327058i \(-0.893943\pi\)
0.157991 + 0.987441i \(0.449498\pi\)
\(642\) 0 0
\(643\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(648\) −25.3590 + 2.21862i −0.996195 + 0.0871557i
\(649\) 0 0
\(650\) −33.0215 35.2504i −1.29521 1.38264i
\(651\) 0 0
\(652\) 0 0
\(653\) −2.84999 4.07020i −0.111529 0.159279i 0.759507 0.650499i \(-0.225440\pi\)
−0.871036 + 0.491220i \(0.836551\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 21.8755 37.8895i 0.854094 1.47933i
\(657\) −41.7957 29.2657i −1.63061 1.14176i
\(658\) 0 0
\(659\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(660\) 0 0
\(661\) 10.4620 + 28.7440i 0.406924 + 1.11801i 0.958799 + 0.284087i \(0.0916904\pi\)
−0.551875 + 0.833927i \(0.686087\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −6.44512 + 24.9892i −0.249743 + 0.968312i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −34.6399 16.1529i −1.33527 0.622647i −0.381832 0.924232i \(-0.624707\pi\)
−0.953439 + 0.301585i \(0.902484\pi\)
\(674\) 2.55245 + 4.42097i 0.0983167 + 0.170290i
\(675\) 0 0
\(676\) −33.6603 + 58.3013i −1.29463 + 2.24236i
\(677\) 30.3922 + 8.14355i 1.16807 + 0.312982i 0.790183 0.612871i \(-0.209986\pi\)
0.377883 + 0.925853i \(0.376652\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 27.8520 29.4167i 1.06808 1.12808i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(684\) 0 0
\(685\) −50.0184 7.41726i −1.91111 0.283399i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −25.5718 + 44.2917i −0.974208 + 1.68738i
\(690\) 0 0
\(691\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(692\) −12.0757 3.23567i −0.459048 0.123002i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 49.5390 + 49.5390i 1.87642 + 1.87642i
\(698\) −9.62218 + 20.6348i −0.364205 + 0.781040i
\(699\) 0 0
\(700\) 0 0
\(701\) −25.7329 30.6673i −0.971919 1.15829i −0.987374 0.158407i \(-0.949364\pi\)
0.0154547 0.999881i \(-0.495080\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 35.3259 + 29.6420i 1.32951 + 1.11559i
\(707\) 0 0
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.09296 + 6.36696i 0.340773 + 0.238612i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(720\) −26.7846 1.60770i −0.998203 0.0599153i
\(721\) 0 0
\(722\) −2.34188 26.7678i −0.0871557 0.996195i
\(723\) 0 0
\(724\) 0.638242 1.75356i 0.0237201 0.0651704i
\(725\) 19.4012 + 20.7108i 0.720543 + 0.769179i
\(726\) 0 0
\(727\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(728\) 0 0
\(729\) −23.3827 + 13.5000i −0.866025 + 0.500000i
\(730\) −39.0549 36.9776i −1.44549 1.36860i
\(731\) 0 0
\(732\) 0 0
\(733\) −48.2113 22.4813i −1.78072 0.830365i −0.969289 0.245923i \(-0.920909\pi\)
−0.811435 0.584442i \(-0.801313\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 4.04445 46.2283i 0.148878 1.70169i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) −10.5841 + 25.0595i −0.389080 + 0.921204i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(744\) 0 0
\(745\) −6.02838 52.3816i −0.220863 1.91911i
\(746\) 54.5091i 1.99572i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 27.4144 47.4832i 0.998374 1.72923i
\(755\) 0 0
\(756\) 0 0
\(757\) 30.3538 43.3498i 1.10323 1.57557i 0.327111 0.944986i \(-0.393925\pi\)
0.776118 0.630588i \(-0.217186\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 51.5151 + 18.7500i 1.86742 + 0.679685i 0.972243 + 0.233975i \(0.0751733\pi\)
0.895177 + 0.445710i \(0.147049\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 13.5875 40.7626i 0.491258 1.47378i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 25.0000 + 43.3013i 0.901523 + 1.56148i 0.825518 + 0.564376i \(0.190883\pi\)
0.0760054 + 0.997107i \(0.475783\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.16486 + 1.94210i 0.149896 + 0.0698979i
\(773\) −45.4992 + 31.8589i −1.63649 + 1.14588i −0.791285 + 0.611448i \(0.790588\pi\)
−0.845208 + 0.534437i \(0.820524\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 28.7259 1.03120
\(777\) 0 0
\(778\) −37.1757 37.1757i −1.33281 1.33281i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −9.57656 26.3114i −0.342020 0.939693i
\(785\) 29.2337 + 15.8297i 1.04340 + 0.564986i
\(786\) 0 0
\(787\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(788\) 13.5734 50.6567i 0.483533 1.80457i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 39.1287 + 83.9117i 1.38950 + 2.97979i
\(794\) 3.74902 + 21.2617i 0.133048 + 0.754551i
\(795\) 0 0
\(796\) 0 0
\(797\) −30.0129 + 42.8629i −1.06311 + 1.51828i −0.223796 + 0.974636i \(0.571845\pi\)
−0.839315 + 0.543645i \(0.817044\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −27.6795 5.81779i −0.978617 0.205690i
\(801\) 11.5949 + 2.04450i 0.409687 + 0.0722389i
\(802\) −2.67862 + 30.6168i −0.0945855 + 1.08112i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 38.6977 38.6977i 1.36138 1.36138i
\(809\) −50.2711 + 18.2972i −1.76744 + 0.643295i −0.767441 + 0.641119i \(0.778470\pi\)
−0.999998 + 0.00217593i \(0.999307\pi\)
\(810\) −26.4683 + 10.4609i −0.930001 + 0.367557i
\(811\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 31.0293 21.7270i 1.08491 0.759665i
\(819\) 0 0
\(820\) 11.3650 47.5765i 0.396883 1.66144i
\(821\) 27.5342 10.0216i 0.960950 0.349757i 0.186544 0.982447i \(-0.440271\pi\)
0.774406 + 0.632689i \(0.218049\pi\)
\(822\) 0 0
\(823\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(828\) 0 0
\(829\) 18.7939 + 6.84040i 0.652737 + 0.237577i 0.647098 0.762407i \(-0.275983\pi\)
0.00563977 + 0.999984i \(0.498205\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 4.76277 + 54.4387i 0.165119 + 1.88732i
\(833\) 44.6660 3.90777i 1.54758 0.135396i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(840\) 0 0
\(841\) −1.60686 + 2.78316i −0.0554089 + 0.0959710i
\(842\) 43.7518 + 30.6353i 1.50779 + 1.05576i
\(843\) 0 0
\(844\) 0 0
\(845\) −17.4875 + 73.2069i −0.601590 + 2.51839i
\(846\) 0 0
\(847\) 0 0
\(848\) 2.61020 + 29.8347i 0.0896346 + 1.02453i
\(849\) 0 0
\(850\) 20.4704 40.4019i 0.702127 1.38577i
\(851\) 0 0
\(852\) 0 0
\(853\) 4.95955 56.6879i 0.169812 1.94096i −0.139986 0.990153i \(-0.544706\pi\)
0.309798 0.950802i \(-0.399739\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.3492 + 41.3492i 1.41246 + 1.41246i 0.741429 + 0.671031i \(0.234148\pi\)
0.671031 + 0.741429i \(0.265852\pi\)
\(858\) 0 0
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(864\) 0 0
\(865\) −13.9721 + 0.381746i −0.475064 + 0.0129798i
\(866\) −9.99865 + 27.4711i −0.339768 + 0.933505i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −42.9162 + 20.0121i −1.45333 + 0.677697i
\(873\) 27.6137 12.8765i 0.934583 0.435803i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.6390 + 6.06610i 0.764464 + 0.204838i 0.619925 0.784661i \(-0.287163\pi\)
0.144540 + 0.989499i \(0.453830\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 51.4925 18.7417i 1.73482 0.631425i 0.735870 0.677123i \(-0.236774\pi\)
0.998955 + 0.0456985i \(0.0145514\pi\)
\(882\) −21.0000 21.0000i −0.707107 0.707107i
\(883\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(884\) −86.1766 15.1953i −2.89843 0.511072i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 11.7738 + 3.92460i 0.394659 + 0.131553i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −43.8827 + 11.7583i −1.46438 + 0.392381i
\(899\) 0 0
\(900\) −29.2157 + 6.81489i −0.973857 + 0.227163i
\(901\) −47.2284 8.32765i −1.57341 0.277434i
\(902\) 0 0
\(903\) 0 0
\(904\) −17.0878 + 46.9485i −0.568333 + 1.56148i
\(905\) 0.125005 2.08261i 0.00415530 0.0692283i
\(906\) 0 0
\(907\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(908\) 0 0
\(909\) 19.8531 54.5459i 0.658486 1.80917i
\(910\) 0 0
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −12.8592 + 7.42427i −0.425345 + 0.245573i
\(915\) 0 0
\(916\) −10.5018 59.5589i −0.346990 1.96788i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −60.4515 + 5.28882i −1.99086 + 0.174178i
\(923\) 0 0
\(924\) 0 0
\(925\) −3.35444 + 30.2283i −0.110293 + 0.993899i
\(926\) 0 0
\(927\) 0 0
\(928\) −2.79828 31.9845i −0.0918581 1.04994i
\(929\) −9.38181 1.65427i −0.307807 0.0542747i 0.0176110 0.999845i \(-0.494394\pi\)
−0.325418 + 0.945570i \(0.605505\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 20.7138 44.4210i 0.678505 1.45506i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 28.9808 + 50.1962i 0.947266 + 1.64071i
\(937\) 5.32654 60.8826i 0.174011 1.98895i 0.0284889 0.999594i \(-0.490930\pi\)
0.145522 0.989355i \(-0.453514\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 44.7874 + 16.3013i 1.46003 + 0.531407i 0.945373 0.325991i \(-0.105698\pi\)
0.514655 + 0.857397i \(0.327920\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(948\) 0 0
\(949\) −20.1739 + 114.412i −0.654873 + 3.71397i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.7182 + 32.4449i −0.735914 + 1.05099i 0.260424 + 0.965494i \(0.416138\pi\)
−0.996338 + 0.0854999i \(0.972751\pi\)
\(954\) 15.8827 + 27.5096i 0.514221 + 0.890657i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 57.7700 10.7463i 1.86258 0.346476i
\(963\) 0 0
\(964\) 12.3667 10.3769i 0.398305 0.334218i
\(965\) 5.08225 + 0.753649i 0.163603 + 0.0242608i
\(966\) 0 0
\(967\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(968\) 22.0000 22.0000i 0.707107 0.707107i
\(969\) 0 0
\(970\) 30.7835 9.15653i 0.988400 0.293999i
\(971\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 46.9530 + 27.1083i 1.50293 + 0.867717i
\(977\) 10.0474 + 21.5467i 0.321445 + 0.689341i 0.998933 0.0461933i \(-0.0147090\pi\)
−0.677488 + 0.735534i \(0.736931\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −18.6495 25.1435i −0.595735 0.803181i
\(981\) −32.2841 + 38.4747i −1.03075 + 1.22840i
\(982\) 0 0
\(983\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(984\) 0 0
\(985\) −1.60140 58.6120i −0.0510249 1.86753i
\(986\) 50.6316 + 8.92771i 1.61244 + 0.284316i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −52.1268 4.56050i −1.65087 0.144433i −0.776641 0.629943i \(-0.783078\pi\)
−0.874231 + 0.485511i \(0.838634\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.ce.b.543.1 yes 12
4.3 odd 2 CM 740.2.ce.b.543.1 yes 12
5.2 odd 4 740.2.ce.a.247.1 yes 12
20.7 even 4 740.2.ce.a.247.1 yes 12
37.3 even 18 740.2.ce.a.3.1 12
148.3 odd 18 740.2.ce.a.3.1 12
185.77 odd 36 inner 740.2.ce.b.447.1 yes 12
740.447 even 36 inner 740.2.ce.b.447.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.ce.a.3.1 12 37.3 even 18
740.2.ce.a.3.1 12 148.3 odd 18
740.2.ce.a.247.1 yes 12 5.2 odd 4
740.2.ce.a.247.1 yes 12 20.7 even 4
740.2.ce.b.447.1 yes 12 185.77 odd 36 inner
740.2.ce.b.447.1 yes 12 740.447 even 36 inner
740.2.ce.b.543.1 yes 12 1.1 even 1 trivial
740.2.ce.b.543.1 yes 12 4.3 odd 2 CM