Properties

Label 740.2.ce.a.247.1
Level $740$
Weight $2$
Character 740.247
Analytic conductor $5.909$
Analytic rank $0$
Dimension $12$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(3,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([18, 27, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.ce (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{36})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{36}]$

Embedding invariants

Embedding label 247.1
Root \(0.642788 + 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 740.247
Dual form 740.2.ce.a.3.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.123257 - 1.40883i) q^{2} +(-1.96962 - 0.347296i) q^{4} +(-1.86603 + 1.23205i) q^{5} +(-0.732051 + 2.73205i) q^{8} +(2.95442 - 0.520945i) q^{9} +(1.50575 + 2.78078i) q^{10} +(5.59549 - 3.91800i) q^{13} +(3.75877 + 1.36808i) q^{16} +(-5.24685 - 3.67389i) q^{17} +(-0.369771 - 4.22650i) q^{18} +(4.10324 - 1.77860i) q^{20} +(1.96410 - 4.59808i) q^{25} +(-4.83013 - 8.36603i) q^{26} +(-2.83786 - 4.91531i) q^{29} +(2.39069 - 5.12685i) q^{32} +(-5.82260 + 6.93910i) q^{34} -6.00000 q^{36} +(-5.73520 - 2.02670i) q^{37} +(-2.00000 - 6.00000i) q^{40} +(1.89932 - 10.7716i) q^{41} +(-4.87120 + 4.61210i) q^{45} +(4.49951 + 5.36231i) q^{49} +(-6.23583 - 3.33383i) q^{50} +(-12.3817 + 5.77367i) q^{52} +(6.78568 - 3.16421i) q^{53} +(-7.27463 + 3.39222i) q^{58} +(13.3483 + 2.35366i) q^{61} +(-6.92820 - 4.00000i) q^{64} +(-5.61415 + 14.2050i) q^{65} +(9.05836 + 9.05836i) q^{68} +(-0.739541 + 8.45299i) q^{72} +(12.0263 - 12.0263i) q^{73} +(-3.56218 + 7.83013i) q^{74} +(-8.69951 + 2.07812i) q^{80} +(8.45723 - 3.07818i) q^{81} +(-14.9412 - 4.00349i) q^{82} +(14.3172 + 0.391175i) q^{85} +(3.68792 + 1.34229i) q^{89} +(5.89726 + 7.43117i) q^{90} +(-2.62860 - 9.81006i) q^{97} +(8.10919 - 5.67812i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{5} + 12 q^{8} - 24 q^{17} - 18 q^{25} - 6 q^{26} + 30 q^{34} - 72 q^{36} - 24 q^{40} + 24 q^{41} - 42 q^{58} + 72 q^{61} + 30 q^{73} + 30 q^{74} + 84 q^{85} + 60 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.123257 1.40883i 0.0871557 0.996195i
\(3\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(4\) −1.96962 0.347296i −0.984808 0.173648i
\(5\) −1.86603 + 1.23205i −0.834512 + 0.550990i
\(6\) 0 0
\(7\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(8\) −0.732051 + 2.73205i −0.258819 + 0.965926i
\(9\) 2.95442 0.520945i 0.984808 0.173648i
\(10\) 1.50575 + 2.78078i 0.476161 + 0.879358i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 5.59549 3.91800i 1.55191 1.08666i 0.592153 0.805826i \(-0.298278\pi\)
0.959757 0.280833i \(-0.0906107\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.75877 + 1.36808i 0.939693 + 0.342020i
\(17\) −5.24685 3.67389i −1.27255 0.891048i −0.275029 0.961436i \(-0.588688\pi\)
−0.997520 + 0.0703875i \(0.977576\pi\)
\(18\) −0.369771 4.22650i −0.0871557 0.996195i
\(19\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(20\) 4.10324 1.77860i 0.917512 0.397708i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(24\) 0 0
\(25\) 1.96410 4.59808i 0.392820 0.919615i
\(26\) −4.83013 8.36603i −0.947266 1.64071i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.83786 4.91531i −0.526977 0.912750i −0.999506 0.0314353i \(-0.989992\pi\)
0.472529 0.881315i \(-0.343341\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 2.39069 5.12685i 0.422618 0.906308i
\(33\) 0 0
\(34\) −5.82260 + 6.93910i −0.998568 + 1.19005i
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) −5.73520 2.02670i −0.942861 0.333187i
\(38\) 0 0
\(39\) 0 0
\(40\) −2.00000 6.00000i −0.316228 0.948683i
\(41\) 1.89932 10.7716i 0.296624 1.68224i −0.363905 0.931436i \(-0.618557\pi\)
0.660529 0.750801i \(-0.270332\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) −4.87120 + 4.61210i −0.726155 + 0.687531i
\(46\) 0 0
\(47\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(48\) 0 0
\(49\) 4.49951 + 5.36231i 0.642788 + 0.766044i
\(50\) −6.23583 3.33383i −0.881879 0.471475i
\(51\) 0 0
\(52\) −12.3817 + 5.77367i −1.71703 + 0.800664i
\(53\) 6.78568 3.16421i 0.932085 0.434638i 0.103581 0.994621i \(-0.466970\pi\)
0.828504 + 0.559983i \(0.189192\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −7.27463 + 3.39222i −0.955206 + 0.445420i
\(59\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(60\) 0 0
\(61\) 13.3483 + 2.35366i 1.70907 + 0.301355i 0.940848 0.338829i \(-0.110031\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −6.92820 4.00000i −0.866025 0.500000i
\(65\) −5.61415 + 14.2050i −0.696349 + 1.76192i
\(66\) 0 0
\(67\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(68\) 9.05836 + 9.05836i 1.09849 + 1.09849i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(72\) −0.739541 + 8.45299i −0.0871557 + 0.996195i
\(73\) 12.0263 12.0263i 1.40757 1.40757i 0.635323 0.772246i \(-0.280867\pi\)
0.772246 0.635323i \(-0.219133\pi\)
\(74\) −3.56218 + 7.83013i −0.414095 + 0.910234i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(80\) −8.69951 + 2.07812i −0.972634 + 0.232341i
\(81\) 8.45723 3.07818i 0.939693 0.342020i
\(82\) −14.9412 4.00349i −1.64998 0.442112i
\(83\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(84\) 0 0
\(85\) 14.3172 + 0.391175i 1.55292 + 0.0424289i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.68792 + 1.34229i 0.390919 + 0.142283i 0.529999 0.847998i \(-0.322192\pi\)
−0.139080 + 0.990281i \(0.544415\pi\)
\(90\) 5.89726 + 7.43117i 0.621626 + 0.783314i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.62860 9.81006i −0.266894 0.996061i −0.961081 0.276267i \(-0.910903\pi\)
0.694187 0.719794i \(-0.255764\pi\)
\(98\) 8.10919 5.67812i 0.819152 0.573576i
\(99\) 0 0
\(100\) −5.46542 + 8.37432i −0.546542 + 0.837432i
\(101\) −9.67443 + 16.7566i −0.962642 + 1.66734i −0.246820 + 0.969061i \(0.579386\pi\)
−0.715822 + 0.698283i \(0.753948\pi\)
\(102\) 0 0
\(103\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(104\) 6.60800 + 18.1553i 0.647968 + 1.78028i
\(105\) 0 0
\(106\) −3.62147 9.94990i −0.351748 0.966419i
\(107\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(108\) 0 0
\(109\) −12.8249 + 10.7614i −1.22840 + 1.03075i −0.230063 + 0.973176i \(0.573893\pi\)
−0.998341 + 0.0575772i \(0.981662\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.5968 1.53952i −1.65537 0.144826i −0.779184 0.626795i \(-0.784366\pi\)
−0.876188 + 0.481969i \(0.839922\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.88242 + 10.6669i 0.360473 + 0.990392i
\(117\) 14.4904 14.4904i 1.33964 1.33964i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) 4.96117 18.5153i 0.449163 1.67630i
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 0 0
\(127\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(128\) −6.48928 + 9.26765i −0.573576 + 0.819152i
\(129\) 0 0
\(130\) 19.3205 + 9.66025i 1.69452 + 0.847260i
\(131\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 13.8782 11.6452i 1.19005 0.998568i
\(137\) 5.85281 21.8430i 0.500039 1.86617i 0.000294847 1.00000i \(-0.499906\pi\)
0.499745 0.866173i \(-0.333427\pi\)
\(138\) 0 0
\(139\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 11.8177 + 2.08378i 0.984808 + 0.173648i
\(145\) 11.3514 + 5.67571i 0.942685 + 0.471342i
\(146\) −15.4607 18.4253i −1.27954 1.52489i
\(147\) 0 0
\(148\) 10.5923 + 5.98363i 0.870679 + 0.491851i
\(149\) 23.5804i 1.93178i 0.258954 + 0.965890i \(0.416622\pi\)
−0.258954 + 0.965890i \(0.583378\pi\)
\(150\) 0 0
\(151\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(152\) 0 0
\(153\) −17.4153 8.12090i −1.40795 0.656536i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −8.52756 + 12.1786i −0.680574 + 0.971960i 0.319132 + 0.947710i \(0.396609\pi\)
−0.999706 + 0.0242497i \(0.992280\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.85545 + 12.5123i 0.146686 + 0.989183i
\(161\) 0 0
\(162\) −3.29423 12.2942i −0.258819 0.965926i
\(163\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(164\) −7.48186 + 20.5562i −0.584235 + 1.60517i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(168\) 0 0
\(169\) 11.5125 31.6303i 0.885576 2.43310i
\(170\) 2.31579 20.1223i 0.177613 1.54331i
\(171\) 0 0
\(172\) 0 0
\(173\) −0.544796 + 6.22704i −0.0414200 + 0.473433i 0.946952 + 0.321376i \(0.104145\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 2.34563 5.03021i 0.175812 0.377031i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 11.1962 7.39230i 0.834512 0.550990i
\(181\) 0.162022 0.918873i 0.0120430 0.0682993i −0.978194 0.207693i \(-0.933404\pi\)
0.990237 + 0.139394i \(0.0445155\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.1990 3.28419i 0.970411 0.241458i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0.594690 2.21941i 0.0428067 0.159757i −0.941214 0.337811i \(-0.890314\pi\)
0.984021 + 0.178054i \(0.0569802\pi\)
\(194\) −14.1447 + 2.49410i −1.01553 + 0.179066i
\(195\) 0 0
\(196\) −7.00000 12.1244i −0.500000 0.866025i
\(197\) 26.1221 + 2.28539i 1.86112 + 0.162827i 0.961673 0.274201i \(-0.0884132\pi\)
0.899448 + 0.437028i \(0.143969\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 11.1244 + 8.73205i 0.786611 + 0.617449i
\(201\) 0 0
\(202\) 22.4148 + 15.6950i 1.57710 + 1.10430i
\(203\) 0 0
\(204\) 0 0
\(205\) 9.72695 + 22.4401i 0.679360 + 1.56728i
\(206\) 0 0
\(207\) 0 0
\(208\) 26.3923 7.07180i 1.82998 0.490341i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) −14.4641 + 3.87564i −0.993399 + 0.266180i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 13.5802 + 19.3946i 0.919768 + 1.31357i
\(219\) 0 0
\(220\) 0 0
\(221\) −43.7530 −2.94315
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 3.40744 14.6079i 0.227163 0.973857i
\(226\) −4.33786 + 24.6012i −0.288550 + 1.63645i
\(227\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(228\) 0 0
\(229\) 10.3423 + 28.4152i 0.683438 + 1.87773i 0.381157 + 0.924510i \(0.375526\pi\)
0.302281 + 0.953219i \(0.402252\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 15.5063 4.15491i 1.01804 0.272783i
\(233\) −23.6715 6.34277i −1.55077 0.415528i −0.621045 0.783775i \(-0.713292\pi\)
−0.929728 + 0.368246i \(0.879958\pi\)
\(234\) −18.6285 22.2006i −1.21778 1.45130i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(240\) 0 0
\(241\) 5.18845 6.18336i 0.334218 0.398305i −0.572596 0.819838i \(-0.694063\pi\)
0.906813 + 0.421533i \(0.138508\pi\)
\(242\) 12.7430 + 8.92276i 0.819152 + 0.573576i
\(243\) 0 0
\(244\) −25.4735 9.27160i −1.63077 0.593553i
\(245\) −15.0028 4.46258i −0.958497 0.285104i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 15.7437 1.46184i 0.995717 0.0924548i
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 12.2567 + 10.2846i 0.766044 + 0.642788i
\(257\) −2.18462 + 24.9703i −0.136273 + 1.55761i 0.553047 + 0.833150i \(0.313465\pi\)
−0.689320 + 0.724457i \(0.742091\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 15.9911 26.0287i 0.991723 1.61423i
\(261\) −10.9448 13.0435i −0.677468 0.807375i
\(262\) 0 0
\(263\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(264\) 0 0
\(265\) −8.76378 + 14.2648i −0.538355 + 0.876280i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.74167 + 2.16025i 0.228134 + 0.131713i 0.609711 0.792624i \(-0.291286\pi\)
−0.381577 + 0.924337i \(0.624619\pi\)
\(270\) 0 0
\(271\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(272\) −14.6955 20.9874i −0.891048 1.27255i
\(273\) 0 0
\(274\) −30.0517 10.9379i −1.81549 0.660784i
\(275\) 0 0
\(276\) 0 0
\(277\) 20.2943 1.77553i 1.21937 0.106681i 0.540758 0.841178i \(-0.318138\pi\)
0.678611 + 0.734498i \(0.262582\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.41506 + 12.1303i −0.263380 + 0.723631i 0.735554 + 0.677466i \(0.236922\pi\)
−0.998934 + 0.0461646i \(0.985300\pi\)
\(282\) 0 0
\(283\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 4.39230 16.3923i 0.258819 0.965926i
\(289\) 8.21769 + 22.5779i 0.483394 + 1.32811i
\(290\) 9.39527 15.2927i 0.551709 0.898017i
\(291\) 0 0
\(292\) −27.8638 + 19.5105i −1.63061 + 1.14176i
\(293\) 22.6915 1.98525i 1.32565 0.115980i 0.597763 0.801673i \(-0.296056\pi\)
0.727890 + 0.685693i \(0.240501\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 9.73550 14.1852i 0.565864 0.824498i
\(297\) 0 0
\(298\) 33.2208 + 2.90644i 1.92443 + 0.168366i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −27.8080 + 12.0537i −1.59228 + 0.690195i
\(306\) −13.5875 + 23.5343i −0.776748 + 1.34537i
\(307\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(312\) 0 0
\(313\) 12.4137 17.7286i 0.701664 1.00208i −0.297218 0.954810i \(-0.596059\pi\)
0.998882 0.0472702i \(-0.0150522\pi\)
\(314\) 16.1066 + 13.5150i 0.908945 + 0.762696i
\(315\) 0 0
\(316\) 0 0
\(317\) −13.4275 28.7953i −0.754161 1.61730i −0.786318 0.617822i \(-0.788015\pi\)
0.0321569 0.999483i \(-0.489762\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 17.8564 1.07180i 0.998203 0.0599153i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −17.7265 + 3.12567i −0.984808 + 0.173648i
\(325\) −7.02517 33.4238i −0.389686 1.85402i
\(326\) 0 0
\(327\) 0 0
\(328\) 28.0381 + 13.0744i 1.54814 + 0.721912i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(332\) 0 0
\(333\) −18.0000 3.00000i −0.986394 0.164399i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.95690 2.07044i 0.161073 0.112784i −0.490261 0.871576i \(-0.663099\pi\)
0.651334 + 0.758791i \(0.274210\pi\)
\(338\) −43.1428 20.1178i −2.34666 1.09426i
\(339\) 0 0
\(340\) −28.0635 5.74277i −1.52196 0.311445i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 8.70571 + 1.53505i 0.468022 + 0.0825248i
\(347\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(348\) 0 0
\(349\) −5.50632 + 15.1285i −0.294747 + 0.809810i 0.700609 + 0.713545i \(0.252912\pi\)
−0.995356 + 0.0962646i \(0.969310\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.7032 + 26.7109i −0.995471 + 1.42168i −0.0906521 + 0.995883i \(0.528895\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.79761 3.92460i −0.360273 0.208004i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) −9.03451 16.6847i −0.476161 0.879358i
\(361\) 3.29932 + 18.7113i 0.173648 + 0.984808i
\(362\) −1.27457 0.341519i −0.0669898 0.0179499i
\(363\) 0 0
\(364\) 0 0
\(365\) −7.62436 + 37.2583i −0.399077 + 1.95019i
\(366\) 0 0
\(367\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(368\) 0 0
\(369\) 32.8132i 1.70819i
\(370\) −3.00000 19.0000i −0.155963 0.987763i
\(371\) 0 0
\(372\) 0 0
\(373\) −38.3971 + 3.35931i −1.98812 + 0.173938i −0.988363 + 0.152115i \(0.951392\pi\)
−0.999762 + 0.0218237i \(0.993053\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −35.1374 16.3848i −1.80967 0.843862i
\(378\) 0 0
\(379\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.05348 1.11138i −0.155418 0.0565676i
\(387\) 0 0
\(388\) 1.77033 + 20.2350i 0.0898749 + 1.02727i
\(389\) −28.4782 23.8961i −1.44390 1.21158i −0.936883 0.349644i \(-0.886303\pi\)
−0.507020 0.861934i \(-0.669253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −17.9440 + 8.36741i −0.906308 + 0.422618i
\(393\) 0 0
\(394\) 6.43945 36.5199i 0.324415 1.83985i
\(395\) 0 0
\(396\) 0 0
\(397\) 14.7461 3.95120i 0.740084 0.198305i 0.130969 0.991387i \(-0.458191\pi\)
0.609115 + 0.793082i \(0.291525\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 13.6731 14.5961i 0.683657 0.729803i
\(401\) 21.7321i 1.08525i −0.839976 0.542623i \(-0.817431\pi\)
0.839976 0.542623i \(-0.182569\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 24.8744 29.6442i 1.23755 1.47485i
\(405\) −11.9889 + 16.1637i −0.595735 + 0.803181i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 20.5185 17.2171i 1.01458 0.851331i 0.0256402 0.999671i \(-0.491838\pi\)
0.988936 + 0.148340i \(0.0473931\pi\)
\(410\) 32.8132 10.9377i 1.62053 0.540177i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −6.70994 38.0540i −0.328982 1.86575i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(420\) 0 0
\(421\) −32.7075 18.8837i −1.59406 0.920334i −0.992599 0.121435i \(-0.961250\pi\)
−0.601466 0.798899i \(-0.705416\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 3.67733 + 20.8552i 0.178587 + 1.01282i
\(425\) −27.1982 + 16.9095i −1.31930 + 0.820234i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(432\) 0 0
\(433\) −19.9673 5.35021i −0.959565 0.257115i −0.255149 0.966902i \(-0.582124\pi\)
−0.704416 + 0.709787i \(0.748791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 28.9975 16.7417i 1.38873 0.801784i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(440\) 0 0
\(441\) 16.0869 + 13.4985i 0.766044 + 0.642788i
\(442\) −5.39286 + 61.6407i −0.256512 + 2.93195i
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) −8.53553 + 2.03895i −0.404623 + 0.0966556i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −30.1870 + 10.9872i −1.42461 + 0.518517i −0.935383 0.353637i \(-0.884945\pi\)
−0.489231 + 0.872154i \(0.662722\pi\)
\(450\) −20.1600 6.60103i −0.950352 0.311176i
\(451\) 0 0
\(452\) 34.1244 + 9.14359i 1.60507 + 0.430078i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.02227 + 8.60069i 0.281710 + 0.402323i 0.934923 0.354851i \(-0.115468\pi\)
−0.653213 + 0.757174i \(0.726579\pi\)
\(458\) 41.3070 11.0682i 1.93015 0.517182i
\(459\) 0 0
\(460\) 0 0
\(461\) 42.2571 7.45106i 1.96811 0.347031i 0.977263 0.212032i \(-0.0680081\pi\)
0.990846 0.134999i \(-0.0431030\pi\)
\(462\) 0 0
\(463\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(464\) −3.94231 22.3579i −0.183017 1.03794i
\(465\) 0 0
\(466\) −11.8536 + 32.5674i −0.549106 + 1.50866i
\(467\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(468\) −33.5729 + 23.5080i −1.55191 + 1.08666i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 18.3994 12.8834i 0.842450 0.589890i
\(478\) 0 0
\(479\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(480\) 0 0
\(481\) −40.0318 + 11.1302i −1.82530 + 0.507492i
\(482\) −8.07180 8.07180i −0.367660 0.367660i
\(483\) 0 0
\(484\) 14.1413 16.8530i 0.642788 0.766044i
\(485\) 16.9915 + 15.0673i 0.771546 + 0.684169i
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) −16.2019 + 34.7451i −0.733426 + 1.57284i
\(489\) 0 0
\(490\) −8.13623 + 20.5864i −0.367557 + 0.930001i
\(491\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) −3.16848 + 36.2159i −0.142701 + 1.63108i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(500\) −0.118971 22.3604i −0.00532055 0.999986i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(504\) 0 0
\(505\) −2.59226 43.1876i −0.115354 1.92182i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 39.5241 6.96917i 1.75188 0.308903i 0.796575 0.604540i \(-0.206643\pi\)
0.955300 + 0.295637i \(0.0955319\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) 34.9097 + 6.15553i 1.53980 + 0.271509i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −34.6990 25.7369i −1.52165 1.12864i
\(521\) 34.9630 + 29.3375i 1.53176 + 1.28530i 0.779220 + 0.626751i \(0.215616\pi\)
0.752539 + 0.658548i \(0.228829\pi\)
\(522\) −19.7252 + 13.8117i −0.863348 + 0.604523i
\(523\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 19.9186 11.5000i 0.866025 0.500000i
\(530\) 19.0165 + 14.1049i 0.826025 + 0.612679i
\(531\) 0 0
\(532\) 0 0
\(533\) −31.5754 67.7138i −1.36768 2.93301i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 3.50462 5.00512i 0.151095 0.215786i
\(539\) 0 0
\(540\) 0 0
\(541\) 28.7163 + 16.5793i 1.23461 + 0.712802i 0.967987 0.250999i \(-0.0807592\pi\)
0.266622 + 0.963801i \(0.414093\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −31.3791 + 18.1167i −1.34537 + 0.776748i
\(545\) 10.6730 35.8819i 0.457183 1.53701i
\(546\) 0 0
\(547\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(548\) −19.1138 + 40.9896i −0.816500 + 1.75099i
\(549\) 40.6625 1.73543
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 28.8102i 1.22403i
\(555\) 0 0
\(556\) 0 0
\(557\) −3.61140 + 41.2784i −0.153020 + 1.74902i 0.400599 + 0.916253i \(0.368802\pi\)
−0.553619 + 0.832770i \(0.686754\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 16.5453 + 7.71521i 0.697922 + 0.325446i
\(563\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(564\) 0 0
\(565\) 34.7329 18.8074i 1.46123 0.791234i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.32954 + 16.1592i −0.391115 + 0.677430i −0.992597 0.121456i \(-0.961244\pi\)
0.601482 + 0.798886i \(0.294577\pi\)
\(570\) 0 0
\(571\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −22.5526 8.20848i −0.939693 0.342020i
\(577\) 42.4896 19.8132i 1.76886 0.824835i 0.792140 0.610340i \(-0.208967\pi\)
0.976725 0.214496i \(-0.0688108\pi\)
\(578\) 32.8214 8.79446i 1.36519 0.365801i
\(579\) 0 0
\(580\) −20.3868 15.1213i −0.846515 0.627877i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 24.0526 + 41.6603i 0.995302 + 1.72391i
\(585\) −9.18653 + 44.8923i −0.379816 + 1.85607i
\(586\) 32.2132i 1.33072i
\(587\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −18.7846 15.4641i −0.772043 0.635571i
\(593\) 27.9243 27.9243i 1.14671 1.14671i 0.159520 0.987195i \(-0.449006\pi\)
0.987195 0.159520i \(-0.0509945\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8.18938 46.4443i 0.335450 1.90243i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(600\) 0 0
\(601\) −0.262724 1.48998i −0.0107167 0.0607775i 0.978980 0.203954i \(-0.0653794\pi\)
−0.989697 + 0.143177i \(0.954268\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.47372 24.5526i −0.0599153 0.998203i
\(606\) 0 0
\(607\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 13.5542 + 40.6625i 0.548792 + 1.64638i
\(611\) 0 0
\(612\) 31.4811 + 22.0433i 1.27255 + 0.891048i
\(613\) 33.5408 15.6404i 1.35470 0.631708i 0.396562 0.918008i \(-0.370203\pi\)
0.958140 + 0.286300i \(0.0924254\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −28.3148 2.47723i −1.13991 0.0997293i −0.498474 0.866905i \(-0.666106\pi\)
−0.641437 + 0.767175i \(0.721662\pi\)
\(618\) 0 0
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −17.2846 18.0622i −0.691384 0.722487i
\(626\) −23.4465 19.6740i −0.937112 0.786331i
\(627\) 0 0
\(628\) 21.0256 21.0256i 0.839013 0.839013i
\(629\) 22.6459 + 31.7043i 0.902951 + 1.26413i
\(630\) 0 0
\(631\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −42.2227 + 15.3678i −1.67688 + 0.610334i
\(635\) 0 0
\(636\) 0 0
\(637\) 46.1865 + 12.3756i 1.82998 + 0.490341i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.690942 25.2888i 0.0273119 0.999627i
\(641\) −19.9256 + 16.7196i −0.787014 + 0.660383i −0.945004 0.327058i \(-0.893943\pi\)
0.157991 + 0.987441i \(0.449498\pi\)
\(642\) 0 0
\(643\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(648\) 2.21862 + 25.3590i 0.0871557 + 0.996195i
\(649\) 0 0
\(650\) −47.9545 + 5.77757i −1.88093 + 0.226615i
\(651\) 0 0
\(652\) 0 0
\(653\) −4.07020 + 2.84999i −0.159279 + 0.111529i −0.650499 0.759507i \(-0.725440\pi\)
0.491220 + 0.871036i \(0.336551\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 21.8755 37.8895i 0.854094 1.47933i
\(657\) 29.2657 41.7957i 1.14176 1.63061i
\(658\) 0 0
\(659\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(660\) 0 0
\(661\) 10.4620 + 28.7440i 0.406924 + 1.11801i 0.958799 + 0.284087i \(0.0916904\pi\)
−0.551875 + 0.833927i \(0.686087\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −6.44512 + 24.9892i −0.249743 + 0.968312i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −16.1529 + 34.6399i −0.622647 + 1.33527i 0.301585 + 0.953439i \(0.402484\pi\)
−0.924232 + 0.381832i \(0.875293\pi\)
\(674\) −2.55245 4.42097i −0.0983167 0.170290i
\(675\) 0 0
\(676\) −33.6603 + 58.3013i −1.29463 + 2.24236i
\(677\) −8.14355 + 30.3922i −0.312982 + 1.16807i 0.612871 + 0.790183i \(0.290014\pi\)
−0.925853 + 0.377883i \(0.876652\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −11.5496 + 38.8289i −0.442907 + 1.48902i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(684\) 0 0
\(685\) 15.9902 + 47.9705i 0.610953 + 1.83286i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 25.5718 44.2917i 0.974208 1.68738i
\(690\) 0 0
\(691\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(692\) 3.23567 12.0757i 0.123002 0.459048i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −49.5390 + 49.5390i −1.87642 + 1.87642i
\(698\) 20.6348 + 9.62218i 0.781040 + 0.364205i
\(699\) 0 0
\(700\) 0 0
\(701\) −25.7329 30.6673i −0.971919 1.15829i −0.987374 0.158407i \(-0.949364\pi\)
0.0154547 0.999881i \(-0.495080\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 35.3259 + 29.6420i 1.32951 + 1.11559i
\(707\) 0 0
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.36696 + 9.09296i −0.238612 + 0.340773i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(720\) −24.6194 + 10.6716i −0.917512 + 0.397708i
\(721\) 0 0
\(722\) 26.7678 2.34188i 0.996195 0.0871557i
\(723\) 0 0
\(724\) −0.638242 + 1.75356i −0.0237201 + 0.0651704i
\(725\) −28.1748 + 3.39451i −1.04639 + 0.126069i
\(726\) 0 0
\(727\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(728\) 0 0
\(729\) 23.3827 13.5000i 0.866025 0.500000i
\(730\) 51.5510 + 15.3338i 1.90799 + 0.567529i
\(731\) 0 0
\(732\) 0 0
\(733\) −22.4813 + 48.2113i −0.830365 + 1.78072i −0.245923 + 0.969289i \(0.579091\pi\)
−0.584442 + 0.811435i \(0.698687\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −46.2283 4.04445i −1.70169 0.148878i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) −27.1376 + 1.88462i −0.997597 + 0.0692799i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(744\) 0 0
\(745\) −29.0522 44.0016i −1.06439 1.61209i
\(746\) 54.5091i 1.99572i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −27.4144 + 47.4832i −0.998374 + 1.72923i
\(755\) 0 0
\(756\) 0 0
\(757\) 43.3498 + 30.3538i 1.57557 + 1.10323i 0.944986 + 0.327111i \(0.106075\pi\)
0.630588 + 0.776118i \(0.282814\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 51.5151 + 18.7500i 1.86742 + 0.679685i 0.972243 + 0.233975i \(0.0751733\pi\)
0.895177 + 0.445710i \(0.147049\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 42.5028 6.30276i 1.53669 0.227877i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −25.0000 43.3013i −0.901523 1.56148i −0.825518 0.564376i \(-0.809117\pi\)
−0.0760054 0.997107i \(-0.524217\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.94210 + 4.16486i −0.0698979 + 0.149896i
\(773\) 31.8589 + 45.4992i 1.14588 + 1.63649i 0.611448 + 0.791285i \(0.290588\pi\)
0.534437 + 0.845208i \(0.320524\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 28.7259 1.03120
\(777\) 0 0
\(778\) −37.1757 + 37.1757i −1.33281 + 1.33281i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 9.57656 + 26.3114i 0.342020 + 0.939693i
\(785\) 0.907968 33.2320i 0.0324068 1.18610i
\(786\) 0 0
\(787\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(788\) −50.6567 13.5734i −1.80457 0.483533i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 83.9117 39.1287i 2.97979 1.38950i
\(794\) −3.74902 21.2617i −0.133048 0.754551i
\(795\) 0 0
\(796\) 0 0
\(797\) −42.8629 30.0129i −1.51828 1.06311i −0.974636 0.223796i \(-0.928155\pi\)
−0.543645 0.839315i \(-0.682956\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −18.8781 21.0622i −0.667441 0.744662i
\(801\) 11.5949 + 2.04450i 0.409687 + 0.0722389i
\(802\) −30.6168 2.67862i −1.08112 0.0945855i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −38.6977 38.6977i −1.36138 1.36138i
\(809\) 50.2711 18.2972i 1.76744 0.643295i 0.767441 0.641119i \(-0.221530\pi\)
0.999998 0.00217593i \(-0.000692620\pi\)
\(810\) 21.2942 + 18.8827i 0.748203 + 0.663470i
\(811\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −21.7270 31.0293i −0.759665 1.08491i
\(819\) 0 0
\(820\) −11.3650 47.5765i −0.396883 1.66144i
\(821\) 27.5342 10.0216i 0.960950 0.349757i 0.186544 0.982447i \(-0.440271\pi\)
0.774406 + 0.632689i \(0.218049\pi\)
\(822\) 0 0
\(823\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(828\) 0 0
\(829\) −18.7939 6.84040i −0.652737 0.237577i −0.00563977 0.999984i \(-0.501795\pi\)
−0.647098 + 0.762407i \(0.724017\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −54.4387 + 4.76277i −1.88732 + 0.165119i
\(833\) −3.90777 44.6660i −0.135396 1.54758i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(840\) 0 0
\(841\) −1.60686 + 2.78316i −0.0554089 + 0.0959710i
\(842\) −30.6353 + 43.7518i −1.05576 + 1.50779i
\(843\) 0 0
\(844\) 0 0
\(845\) 17.4875 + 73.2069i 0.601590 + 2.51839i
\(846\) 0 0
\(847\) 0 0
\(848\) 29.8347 2.61020i 1.02453 0.0896346i
\(849\) 0 0
\(850\) 20.4704 + 40.4019i 0.702127 + 1.38577i
\(851\) 0 0
\(852\) 0 0
\(853\) −56.6879 4.95955i −1.94096 0.169812i −0.950802 0.309798i \(-0.899739\pi\)
−0.990153 + 0.139986i \(0.955294\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −41.3492 + 41.3492i −1.41246 + 1.41246i −0.671031 + 0.741429i \(0.734148\pi\)
−0.741429 + 0.671031i \(0.765852\pi\)
\(858\) 0 0
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(864\) 0 0
\(865\) −6.65543 12.2910i −0.226291 0.417908i
\(866\) −9.99865 + 27.4711i −0.339768 + 0.933505i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −20.0121 42.9162i −0.677697 1.45333i
\(873\) −12.8765 27.6137i −0.435803 0.934583i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.06610 + 22.6390i −0.204838 + 0.764464i 0.784661 + 0.619925i \(0.212837\pi\)
−0.989499 + 0.144540i \(0.953830\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 51.4925 18.7417i 1.73482 0.631425i 0.735870 0.677123i \(-0.236774\pi\)
0.998955 + 0.0456985i \(0.0145514\pi\)
\(882\) 21.0000 21.0000i 0.707107 0.707107i
\(883\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(884\) 86.1766 + 15.1953i 2.89843 + 0.511072i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.82048 + 12.2764i 0.0610226 + 0.411507i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 11.7583 + 43.8827i 0.392381 + 1.46438i
\(899\) 0 0
\(900\) −11.7846 + 27.5885i −0.392820 + 0.919615i
\(901\) −47.2284 8.32765i −1.57341 0.277434i
\(902\) 0 0
\(903\) 0 0
\(904\) 17.0878 46.9485i 0.568333 1.56148i
\(905\) 0.829761 + 1.91426i 0.0275822 + 0.0636321i
\(906\) 0 0
\(907\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(908\) 0 0
\(909\) −19.8531 + 54.5459i −0.658486 + 1.80917i
\(910\) 0 0
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 12.8592 7.42427i 0.425345 0.245573i
\(915\) 0 0
\(916\) −10.5018 59.5589i −0.346990 1.96788i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −5.28882 60.4515i −0.174178 1.99086i
\(923\) 0 0
\(924\) 0 0
\(925\) −20.5834 + 22.3902i −0.676779 + 0.736187i
\(926\) 0 0
\(927\) 0 0
\(928\) −31.9845 + 2.79828i −1.04994 + 0.0918581i
\(929\) 9.38181 + 1.65427i 0.307807 + 0.0542747i 0.325418 0.945570i \(-0.394495\pi\)
−0.0176110 + 0.999845i \(0.505606\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 44.4210 + 20.7138i 1.45506 + 0.678505i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 28.9808 + 50.1962i 0.947266 + 1.64071i
\(937\) 60.8826 + 5.32654i 1.98895 + 0.174011i 0.999594 + 0.0284889i \(0.00906953\pi\)
0.989355 + 0.145522i \(0.0464860\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 44.7874 + 16.3013i 1.46003 + 0.531407i 0.945373 0.325991i \(-0.105698\pi\)
0.514655 + 0.857397i \(0.327920\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(948\) 0 0
\(949\) 20.1739 114.412i 0.654873 3.71397i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.4449 + 22.7182i 1.05099 + 0.735914i 0.965494 0.260424i \(-0.0838624\pi\)
0.0854999 + 0.996338i \(0.472751\pi\)
\(954\) −15.8827 27.5096i −0.514221 0.890657i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 10.7463 + 57.7700i 0.346476 + 1.86258i
\(963\) 0 0
\(964\) −12.3667 + 10.3769i −0.398305 + 0.334218i
\(965\) 1.62472 + 4.87417i 0.0523017 + 0.156905i
\(966\) 0 0
\(967\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(968\) −22.0000 22.0000i −0.707107 0.707107i
\(969\) 0 0
\(970\) 23.3216 22.0811i 0.748810 0.708980i
\(971\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 46.9530 + 27.1083i 1.50293 + 0.867717i
\(977\) −21.5467 + 10.0474i −0.689341 + 0.321445i −0.735534 0.677488i \(-0.763069\pi\)
0.0461933 + 0.998933i \(0.485291\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 28.0000 + 14.0000i 0.894427 + 0.447214i
\(981\) −32.2841 + 38.4747i −1.03075 + 1.22840i
\(982\) 0 0
\(983\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(984\) 0 0
\(985\) −51.5602 + 27.9191i −1.64284 + 0.889578i
\(986\) 50.6316 + 8.92771i 1.61244 + 0.284316i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.56050 52.1268i 0.144433 1.65087i −0.485511 0.874231i \(-0.661366\pi\)
0.629943 0.776641i \(-0.283078\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.ce.a.247.1 yes 12
4.3 odd 2 CM 740.2.ce.a.247.1 yes 12
5.3 odd 4 740.2.ce.b.543.1 yes 12
20.3 even 4 740.2.ce.b.543.1 yes 12
37.3 even 18 740.2.ce.b.447.1 yes 12
148.3 odd 18 740.2.ce.b.447.1 yes 12
185.3 odd 36 inner 740.2.ce.a.3.1 12
740.3 even 36 inner 740.2.ce.a.3.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.ce.a.3.1 12 185.3 odd 36 inner
740.2.ce.a.3.1 12 740.3 even 36 inner
740.2.ce.a.247.1 yes 12 1.1 even 1 trivial
740.2.ce.a.247.1 yes 12 4.3 odd 2 CM
740.2.ce.b.447.1 yes 12 37.3 even 18
740.2.ce.b.447.1 yes 12 148.3 odd 18
740.2.ce.b.543.1 yes 12 5.3 odd 4
740.2.ce.b.543.1 yes 12 20.3 even 4