Properties

Label 740.2.cc.a.17.10
Level $740$
Weight $2$
Character 740.17
Analytic conductor $5.909$
Analytic rank $0$
Dimension $228$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(17,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.cc (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(228\)
Relative dimension: \(19\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.10
Character \(\chi\) \(=\) 740.17
Dual form 740.2.cc.a.653.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0586331 - 0.0410554i) q^{3} +(1.91470 + 1.15496i) q^{5} +(-0.252966 - 2.89142i) q^{7} +(-1.02431 + 2.81426i) q^{9} +(3.18039 - 1.83620i) q^{11} +(0.615664 - 0.224083i) q^{13} +(0.159682 - 0.0108894i) q^{15} +(1.54808 - 4.25330i) q^{17} +(1.52167 + 2.17318i) q^{19} +(-0.133540 - 0.159147i) q^{21} +(0.987994 - 1.71126i) q^{23} +(2.33212 + 4.42281i) q^{25} +(0.111059 + 0.414479i) q^{27} +(-1.86162 + 6.94765i) q^{29} +(3.49362 - 3.49362i) q^{31} +(0.111090 - 0.238234i) q^{33} +(2.85513 - 5.82835i) q^{35} +(5.78774 + 1.87138i) q^{37} +(0.0268985 - 0.0384150i) q^{39} +(-2.44928 - 6.72933i) q^{41} -0.409897 q^{43} +(-5.21161 + 4.20542i) q^{45} +(0.396579 - 0.106263i) q^{47} +(-1.40264 + 0.247324i) q^{49} +(-0.0838524 - 0.312941i) q^{51} +(-0.141808 + 1.62087i) q^{53} +(8.21021 + 0.157473i) q^{55} +(0.178441 + 0.0649472i) q^{57} +(0.0782094 - 0.893937i) q^{59} +(-2.56682 + 5.50455i) q^{61} +(8.39632 + 2.24979i) q^{63} +(1.43762 + 0.282018i) q^{65} +(3.82527 - 0.334667i) q^{67} +(-0.0123270 - 0.140899i) q^{69} +(-1.24540 + 7.06302i) q^{71} +(-2.25715 - 2.25715i) q^{73} +(0.318319 + 0.163577i) q^{75} +(-6.11374 - 8.73133i) q^{77} +(4.33677 - 0.379418i) q^{79} +(-6.85910 - 5.75547i) q^{81} +(-0.740270 + 0.345193i) q^{83} +(7.87651 - 6.35581i) q^{85} +(0.176086 + 0.483792i) q^{87} +(3.98791 + 0.348897i) q^{89} +(-0.803661 - 1.72346i) q^{91} +(0.0614101 - 0.348274i) q^{93} +(0.403603 + 5.91845i) q^{95} +(-1.88605 - 1.08891i) q^{97} +(1.90985 + 10.8313i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 228 q + 6 q^{3} - 12 q^{25} + 12 q^{27} - 36 q^{31} + 6 q^{33} + 24 q^{35} + 24 q^{37} - 72 q^{39} - 54 q^{41} - 12 q^{45} + 36 q^{49} - 6 q^{53} - 72 q^{57} - 36 q^{61} + 18 q^{65} + 42 q^{67} + 96 q^{69}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0586331 0.0410554i 0.0338519 0.0237033i −0.556528 0.830829i \(-0.687867\pi\)
0.590380 + 0.807125i \(0.298978\pi\)
\(4\) 0 0
\(5\) 1.91470 + 1.15496i 0.856278 + 0.516515i
\(6\) 0 0
\(7\) −0.252966 2.89142i −0.0956122 1.09285i −0.880766 0.473552i \(-0.842972\pi\)
0.785154 0.619301i \(-0.212584\pi\)
\(8\) 0 0
\(9\) −1.02431 + 2.81426i −0.341436 + 0.938088i
\(10\) 0 0
\(11\) 3.18039 1.83620i 0.958923 0.553634i 0.0630814 0.998008i \(-0.479907\pi\)
0.895841 + 0.444374i \(0.146574\pi\)
\(12\) 0 0
\(13\) 0.615664 0.224083i 0.170755 0.0621496i −0.255228 0.966881i \(-0.582151\pi\)
0.425983 + 0.904731i \(0.359928\pi\)
\(14\) 0 0
\(15\) 0.159682 0.0108894i 0.0412297 0.00281163i
\(16\) 0 0
\(17\) 1.54808 4.25330i 0.375464 1.03158i −0.597752 0.801681i \(-0.703939\pi\)
0.973215 0.229896i \(-0.0738387\pi\)
\(18\) 0 0
\(19\) 1.52167 + 2.17318i 0.349096 + 0.498561i 0.954849 0.297092i \(-0.0960169\pi\)
−0.605753 + 0.795653i \(0.707128\pi\)
\(20\) 0 0
\(21\) −0.133540 0.159147i −0.0291409 0.0347288i
\(22\) 0 0
\(23\) 0.987994 1.71126i 0.206011 0.356821i −0.744443 0.667686i \(-0.767285\pi\)
0.950454 + 0.310864i \(0.100618\pi\)
\(24\) 0 0
\(25\) 2.33212 + 4.42281i 0.466424 + 0.884562i
\(26\) 0 0
\(27\) 0.111059 + 0.414479i 0.0213734 + 0.0797665i
\(28\) 0 0
\(29\) −1.86162 + 6.94765i −0.345693 + 1.29015i 0.546107 + 0.837716i \(0.316109\pi\)
−0.891800 + 0.452430i \(0.850557\pi\)
\(30\) 0 0
\(31\) 3.49362 3.49362i 0.627473 0.627473i −0.319958 0.947432i \(-0.603669\pi\)
0.947432 + 0.319958i \(0.103669\pi\)
\(32\) 0 0
\(33\) 0.111090 0.238234i 0.0193383 0.0414712i
\(34\) 0 0
\(35\) 2.85513 5.82835i 0.482605 0.985171i
\(36\) 0 0
\(37\) 5.78774 + 1.87138i 0.951499 + 0.307653i
\(38\) 0 0
\(39\) 0.0268985 0.0384150i 0.00430721 0.00615133i
\(40\) 0 0
\(41\) −2.44928 6.72933i −0.382513 1.05095i −0.970295 0.241926i \(-0.922221\pi\)
0.587782 0.809019i \(-0.300001\pi\)
\(42\) 0 0
\(43\) −0.409897 −0.0625087 −0.0312543 0.999511i \(-0.509950\pi\)
−0.0312543 + 0.999511i \(0.509950\pi\)
\(44\) 0 0
\(45\) −5.21161 + 4.20542i −0.776901 + 0.626907i
\(46\) 0 0
\(47\) 0.396579 0.106263i 0.0578470 0.0155001i −0.229779 0.973243i \(-0.573801\pi\)
0.287626 + 0.957743i \(0.407134\pi\)
\(48\) 0 0
\(49\) −1.40264 + 0.247324i −0.200378 + 0.0353320i
\(50\) 0 0
\(51\) −0.0838524 0.312941i −0.0117417 0.0438206i
\(52\) 0 0
\(53\) −0.141808 + 1.62087i −0.0194788 + 0.222644i 0.980216 + 0.197932i \(0.0634225\pi\)
−0.999695 + 0.0247122i \(0.992133\pi\)
\(54\) 0 0
\(55\) 8.21021 + 0.157473i 1.10706 + 0.0212336i
\(56\) 0 0
\(57\) 0.178441 + 0.0649472i 0.0236351 + 0.00860247i
\(58\) 0 0
\(59\) 0.0782094 0.893937i 0.0101820 0.116381i −0.989403 0.145197i \(-0.953618\pi\)
0.999585 + 0.0288166i \(0.00917387\pi\)
\(60\) 0 0
\(61\) −2.56682 + 5.50455i −0.328647 + 0.704786i −0.999316 0.0369705i \(-0.988229\pi\)
0.670669 + 0.741757i \(0.266007\pi\)
\(62\) 0 0
\(63\) 8.39632 + 2.24979i 1.05784 + 0.283447i
\(64\) 0 0
\(65\) 1.43762 + 0.282018i 0.178315 + 0.0349801i
\(66\) 0 0
\(67\) 3.82527 0.334667i 0.467331 0.0408861i 0.148941 0.988846i \(-0.452414\pi\)
0.318390 + 0.947960i \(0.396858\pi\)
\(68\) 0 0
\(69\) −0.0123270 0.140899i −0.00148400 0.0169622i
\(70\) 0 0
\(71\) −1.24540 + 7.06302i −0.147802 + 0.838226i 0.817273 + 0.576251i \(0.195485\pi\)
−0.965075 + 0.261975i \(0.915626\pi\)
\(72\) 0 0
\(73\) −2.25715 2.25715i −0.264180 0.264180i 0.562570 0.826750i \(-0.309813\pi\)
−0.826750 + 0.562570i \(0.809813\pi\)
\(74\) 0 0
\(75\) 0.318319 + 0.163577i 0.0367564 + 0.0188883i
\(76\) 0 0
\(77\) −6.11374 8.73133i −0.696725 0.995027i
\(78\) 0 0
\(79\) 4.33677 0.379418i 0.487924 0.0426878i 0.159460 0.987204i \(-0.449025\pi\)
0.328464 + 0.944517i \(0.393469\pi\)
\(80\) 0 0
\(81\) −6.85910 5.75547i −0.762122 0.639496i
\(82\) 0 0
\(83\) −0.740270 + 0.345193i −0.0812551 + 0.0378899i −0.462821 0.886452i \(-0.653163\pi\)
0.381566 + 0.924342i \(0.375385\pi\)
\(84\) 0 0
\(85\) 7.87651 6.35581i 0.854327 0.689384i
\(86\) 0 0
\(87\) 0.176086 + 0.483792i 0.0188784 + 0.0518679i
\(88\) 0 0
\(89\) 3.98791 + 0.348897i 0.422717 + 0.0369830i 0.296530 0.955023i \(-0.404170\pi\)
0.126187 + 0.992006i \(0.459726\pi\)
\(90\) 0 0
\(91\) −0.803661 1.72346i −0.0842465 0.180667i
\(92\) 0 0
\(93\) 0.0614101 0.348274i 0.00636793 0.0361143i
\(94\) 0 0
\(95\) 0.403603 + 5.91845i 0.0414088 + 0.607220i
\(96\) 0 0
\(97\) −1.88605 1.08891i −0.191499 0.110562i 0.401185 0.915997i \(-0.368598\pi\)
−0.592684 + 0.805435i \(0.701932\pi\)
\(98\) 0 0
\(99\) 1.90985 + 10.8313i 0.191947 + 1.08858i
\(100\) 0 0
\(101\) −9.67703 5.58704i −0.962901 0.555931i −0.0658361 0.997830i \(-0.520971\pi\)
−0.897065 + 0.441899i \(0.854305\pi\)
\(102\) 0 0
\(103\) 11.4447 6.60760i 1.12768 0.651067i 0.184330 0.982864i \(-0.440989\pi\)
0.943351 + 0.331798i \(0.107655\pi\)
\(104\) 0 0
\(105\) −0.0718799 0.458953i −0.00701476 0.0447892i
\(106\) 0 0
\(107\) 6.96265 + 3.24674i 0.673105 + 0.313874i 0.728951 0.684565i \(-0.240008\pi\)
−0.0558465 + 0.998439i \(0.517786\pi\)
\(108\) 0 0
\(109\) −11.6738 8.17412i −1.11815 0.782938i −0.139860 0.990171i \(-0.544665\pi\)
−0.978292 + 0.207233i \(0.933554\pi\)
\(110\) 0 0
\(111\) 0.416184 0.127893i 0.0395024 0.0121391i
\(112\) 0 0
\(113\) −13.4908 + 2.37879i −1.26911 + 0.223777i −0.767348 0.641231i \(-0.778424\pi\)
−0.501757 + 0.865008i \(0.667313\pi\)
\(114\) 0 0
\(115\) 3.86815 2.13544i 0.360706 0.199130i
\(116\) 0 0
\(117\) 1.96217i 0.181403i
\(118\) 0 0
\(119\) −12.6897 3.40019i −1.16326 0.311695i
\(120\) 0 0
\(121\) 1.24324 2.15336i 0.113022 0.195760i
\(122\) 0 0
\(123\) −0.419884 0.294006i −0.0378597 0.0265096i
\(124\) 0 0
\(125\) −0.642887 + 11.1618i −0.0575015 + 0.998345i
\(126\) 0 0
\(127\) −18.3599 1.60628i −1.62918 0.142534i −0.764417 0.644722i \(-0.776973\pi\)
−0.864759 + 0.502187i \(0.832529\pi\)
\(128\) 0 0
\(129\) −0.0240335 + 0.0168285i −0.00211603 + 0.00148166i
\(130\) 0 0
\(131\) −13.8544 + 6.46042i −1.21047 + 0.564450i −0.919805 0.392376i \(-0.871653\pi\)
−0.290661 + 0.956826i \(0.593875\pi\)
\(132\) 0 0
\(133\) 5.89862 4.94953i 0.511476 0.429179i
\(134\) 0 0
\(135\) −0.266064 + 0.921871i −0.0228991 + 0.0793420i
\(136\) 0 0
\(137\) 0.685445 2.55811i 0.0585615 0.218555i −0.930444 0.366435i \(-0.880578\pi\)
0.989005 + 0.147880i \(0.0472450\pi\)
\(138\) 0 0
\(139\) −16.4097 5.97265i −1.39185 0.506593i −0.466104 0.884730i \(-0.654343\pi\)
−0.925750 + 0.378136i \(0.876565\pi\)
\(140\) 0 0
\(141\) 0.0188900 0.0225122i 0.00159082 0.00189587i
\(142\) 0 0
\(143\) 1.54659 1.84315i 0.129332 0.154132i
\(144\) 0 0
\(145\) −11.5887 + 11.1525i −0.962390 + 0.926167i
\(146\) 0 0
\(147\) −0.0720874 + 0.0720874i −0.00594567 + 0.00594567i
\(148\) 0 0
\(149\) 18.5053i 1.51601i 0.652248 + 0.758006i \(0.273826\pi\)
−0.652248 + 0.758006i \(0.726174\pi\)
\(150\) 0 0
\(151\) −11.2424 1.98234i −0.914894 0.161321i −0.303669 0.952777i \(-0.598212\pi\)
−0.611225 + 0.791457i \(0.709323\pi\)
\(152\) 0 0
\(153\) 10.3842 + 8.71339i 0.839514 + 0.704436i
\(154\) 0 0
\(155\) 10.7242 2.65422i 0.861391 0.213192i
\(156\) 0 0
\(157\) −0.184904 0.396528i −0.0147569 0.0316463i 0.898791 0.438377i \(-0.144447\pi\)
−0.913548 + 0.406731i \(0.866669\pi\)
\(158\) 0 0
\(159\) 0.0582309 + 0.100859i 0.00461801 + 0.00799863i
\(160\) 0 0
\(161\) −5.19788 2.42381i −0.409651 0.191023i
\(162\) 0 0
\(163\) 3.29387 + 3.92548i 0.257996 + 0.307468i 0.879458 0.475977i \(-0.157905\pi\)
−0.621462 + 0.783444i \(0.713461\pi\)
\(164\) 0 0
\(165\) 0.487856 0.327840i 0.0379795 0.0255223i
\(166\) 0 0
\(167\) −17.1061 3.01627i −1.32371 0.233406i −0.533272 0.845944i \(-0.679038\pi\)
−0.790441 + 0.612538i \(0.790149\pi\)
\(168\) 0 0
\(169\) −9.62975 + 8.08032i −0.740750 + 0.621563i
\(170\) 0 0
\(171\) −7.67455 + 2.05639i −0.586888 + 0.157256i
\(172\) 0 0
\(173\) −14.1109 + 20.1525i −1.07283 + 1.53217i −0.246372 + 0.969175i \(0.579238\pi\)
−0.826463 + 0.562991i \(0.809650\pi\)
\(174\) 0 0
\(175\) 12.1982 7.86194i 0.922100 0.594307i
\(176\) 0 0
\(177\) −0.0321153 0.0556252i −0.00241393 0.00418105i
\(178\) 0 0
\(179\) −1.80862 1.80862i −0.135183 0.135183i 0.636277 0.771460i \(-0.280473\pi\)
−0.771460 + 0.636277i \(0.780473\pi\)
\(180\) 0 0
\(181\) 6.00793 2.18671i 0.446566 0.162537i −0.108942 0.994048i \(-0.534746\pi\)
0.555507 + 0.831512i \(0.312524\pi\)
\(182\) 0 0
\(183\) 0.0754910 + 0.428131i 0.00558046 + 0.0316483i
\(184\) 0 0
\(185\) 8.92039 + 10.2678i 0.655840 + 0.754900i
\(186\) 0 0
\(187\) −2.88642 16.3697i −0.211076 1.19707i
\(188\) 0 0
\(189\) 1.17034 0.425968i 0.0851295 0.0309846i
\(190\) 0 0
\(191\) 9.17431 + 9.17431i 0.663830 + 0.663830i 0.956281 0.292451i \(-0.0944707\pi\)
−0.292451 + 0.956281i \(0.594471\pi\)
\(192\) 0 0
\(193\) −5.82815 10.0946i −0.419519 0.726629i 0.576372 0.817188i \(-0.304468\pi\)
−0.995891 + 0.0905588i \(0.971135\pi\)
\(194\) 0 0
\(195\) 0.0958704 0.0424863i 0.00686542 0.00304251i
\(196\) 0 0
\(197\) 6.43257 9.18666i 0.458301 0.654522i −0.521789 0.853075i \(-0.674735\pi\)
0.980090 + 0.198552i \(0.0636240\pi\)
\(198\) 0 0
\(199\) −19.2377 + 5.15473i −1.36372 + 0.365409i −0.865183 0.501457i \(-0.832798\pi\)
−0.498542 + 0.866866i \(0.666131\pi\)
\(200\) 0 0
\(201\) 0.210547 0.176670i 0.0148509 0.0124614i
\(202\) 0 0
\(203\) 20.5595 + 3.62519i 1.44299 + 0.254438i
\(204\) 0 0
\(205\) 3.08252 15.7135i 0.215292 1.09748i
\(206\) 0 0
\(207\) 3.80391 + 4.53333i 0.264390 + 0.315088i
\(208\) 0 0
\(209\) 8.82989 + 4.11745i 0.610776 + 0.284810i
\(210\) 0 0
\(211\) −1.42032 2.46006i −0.0977786 0.169358i 0.812986 0.582283i \(-0.197840\pi\)
−0.910765 + 0.412925i \(0.864507\pi\)
\(212\) 0 0
\(213\) 0.216953 + 0.465257i 0.0148654 + 0.0318789i
\(214\) 0 0
\(215\) −0.784827 0.473416i −0.0535248 0.0322867i
\(216\) 0 0
\(217\) −10.9853 9.21775i −0.745730 0.625742i
\(218\) 0 0
\(219\) −0.225012 0.0396757i −0.0152049 0.00268103i
\(220\) 0 0
\(221\) 2.96551i 0.199481i
\(222\) 0 0
\(223\) 10.6310 10.6310i 0.711907 0.711907i −0.255027 0.966934i \(-0.582084\pi\)
0.966934 + 0.255027i \(0.0820843\pi\)
\(224\) 0 0
\(225\) −14.8358 + 2.03288i −0.989050 + 0.135525i
\(226\) 0 0
\(227\) 15.0951 17.9896i 1.00190 1.19401i 0.0209398 0.999781i \(-0.493334\pi\)
0.980956 0.194232i \(-0.0622214\pi\)
\(228\) 0 0
\(229\) −10.3867 + 12.3784i −0.686371 + 0.817985i −0.990912 0.134515i \(-0.957053\pi\)
0.304541 + 0.952499i \(0.401497\pi\)
\(230\) 0 0
\(231\) −0.716936 0.260943i −0.0471709 0.0171688i
\(232\) 0 0
\(233\) −0.540943 + 2.01883i −0.0354384 + 0.132258i −0.981379 0.192083i \(-0.938476\pi\)
0.945940 + 0.324341i \(0.105142\pi\)
\(234\) 0 0
\(235\) 0.882058 + 0.254573i 0.0575391 + 0.0166065i
\(236\) 0 0
\(237\) 0.238701 0.200294i 0.0155053 0.0130105i
\(238\) 0 0
\(239\) 0.981773 0.457808i 0.0635056 0.0296132i −0.390606 0.920558i \(-0.627735\pi\)
0.454112 + 0.890945i \(0.349957\pi\)
\(240\) 0 0
\(241\) 3.80575 2.66481i 0.245150 0.171656i −0.444544 0.895757i \(-0.646634\pi\)
0.689693 + 0.724102i \(0.257745\pi\)
\(242\) 0 0
\(243\) −1.92087 0.168054i −0.123224 0.0107807i
\(244\) 0 0
\(245\) −2.97128 1.14645i −0.189828 0.0732441i
\(246\) 0 0
\(247\) 1.42381 + 0.996964i 0.0905950 + 0.0634353i
\(248\) 0 0
\(249\) −0.0292323 + 0.0506318i −0.00185252 + 0.00320866i
\(250\) 0 0
\(251\) 10.8225 + 2.89988i 0.683110 + 0.183039i 0.583653 0.812003i \(-0.301623\pi\)
0.0994568 + 0.995042i \(0.468289\pi\)
\(252\) 0 0
\(253\) 7.25661i 0.456219i
\(254\) 0 0
\(255\) 0.200884 0.696034i 0.0125799 0.0435873i
\(256\) 0 0
\(257\) −21.9531 + 3.87093i −1.36940 + 0.241462i −0.809510 0.587106i \(-0.800267\pi\)
−0.559888 + 0.828568i \(0.689156\pi\)
\(258\) 0 0
\(259\) 3.94683 17.2082i 0.245244 1.06926i
\(260\) 0 0
\(261\) −17.6456 12.3556i −1.09224 0.764793i
\(262\) 0 0
\(263\) −14.9554 6.97382i −0.922190 0.430024i −0.0972600 0.995259i \(-0.531008\pi\)
−0.824930 + 0.565235i \(0.808786\pi\)
\(264\) 0 0
\(265\) −2.14357 + 2.93970i −0.131678 + 0.180584i
\(266\) 0 0
\(267\) 0.248148 0.143268i 0.0151864 0.00876786i
\(268\) 0 0
\(269\) 8.49231 + 4.90303i 0.517785 + 0.298943i 0.736028 0.676951i \(-0.236699\pi\)
−0.218243 + 0.975894i \(0.570033\pi\)
\(270\) 0 0
\(271\) −0.432338 2.45191i −0.0262627 0.148943i 0.968857 0.247622i \(-0.0796493\pi\)
−0.995119 + 0.0986795i \(0.968538\pi\)
\(272\) 0 0
\(273\) −0.117878 0.0680571i −0.00713432 0.00411900i
\(274\) 0 0
\(275\) 15.5382 + 9.78401i 0.936988 + 0.589998i
\(276\) 0 0
\(277\) 2.38285 13.5138i 0.143172 0.811967i −0.825645 0.564190i \(-0.809189\pi\)
0.968817 0.247777i \(-0.0797002\pi\)
\(278\) 0 0
\(279\) 6.25343 + 13.4105i 0.374383 + 0.802867i
\(280\) 0 0
\(281\) 19.4107 + 1.69821i 1.15794 + 0.101307i 0.649897 0.760022i \(-0.274812\pi\)
0.508047 + 0.861329i \(0.330368\pi\)
\(282\) 0 0
\(283\) −7.71458 21.1956i −0.458584 1.25995i −0.926540 0.376197i \(-0.877231\pi\)
0.467955 0.883752i \(-0.344991\pi\)
\(284\) 0 0
\(285\) 0.266649 + 0.330447i 0.0157949 + 0.0195740i
\(286\) 0 0
\(287\) −18.8377 + 8.78418i −1.11196 + 0.518513i
\(288\) 0 0
\(289\) −2.67130 2.24149i −0.157135 0.131852i
\(290\) 0 0
\(291\) −0.155290 + 0.0135862i −0.00910329 + 0.000796434i
\(292\) 0 0
\(293\) 11.1116 + 15.8689i 0.649144 + 0.927073i 0.999956 0.00937240i \(-0.00298337\pi\)
−0.350812 + 0.936446i \(0.614094\pi\)
\(294\) 0 0
\(295\) 1.18221 1.62129i 0.0688310 0.0943950i
\(296\) 0 0
\(297\) 1.11428 + 1.11428i 0.0646569 + 0.0646569i
\(298\) 0 0
\(299\) 0.224808 1.27495i 0.0130010 0.0737324i
\(300\) 0 0
\(301\) 0.103690 + 1.18518i 0.00597659 + 0.0683128i
\(302\) 0 0
\(303\) −0.796773 + 0.0697086i −0.0457734 + 0.00400465i
\(304\) 0 0
\(305\) −11.2722 + 7.57497i −0.645446 + 0.433741i
\(306\) 0 0
\(307\) 27.0123 + 7.23791i 1.54167 + 0.413089i 0.926805 0.375542i \(-0.122544\pi\)
0.614866 + 0.788632i \(0.289210\pi\)
\(308\) 0 0
\(309\) 0.399761 0.857291i 0.0227416 0.0487696i
\(310\) 0 0
\(311\) −2.30598 + 26.3575i −0.130760 + 1.49460i 0.593367 + 0.804932i \(0.297798\pi\)
−0.724128 + 0.689666i \(0.757757\pi\)
\(312\) 0 0
\(313\) 18.2704 + 6.64989i 1.03271 + 0.375874i 0.802111 0.597175i \(-0.203710\pi\)
0.230595 + 0.973050i \(0.425933\pi\)
\(314\) 0 0
\(315\) 13.4780 + 14.0051i 0.759398 + 0.789098i
\(316\) 0 0
\(317\) −0.994146 + 11.3631i −0.0558368 + 0.638218i 0.915784 + 0.401672i \(0.131571\pi\)
−0.971620 + 0.236546i \(0.923985\pi\)
\(318\) 0 0
\(319\) 6.83659 + 25.5145i 0.382775 + 1.42854i
\(320\) 0 0
\(321\) 0.541538 0.0954878i 0.0302257 0.00532961i
\(322\) 0 0
\(323\) 11.5988 3.10790i 0.645377 0.172928i
\(324\) 0 0
\(325\) 2.42688 + 2.20038i 0.134619 + 0.122055i
\(326\) 0 0
\(327\) −1.02007 −0.0564098
\(328\) 0 0
\(329\) −0.407572 1.11979i −0.0224702 0.0617362i
\(330\) 0 0
\(331\) 7.65788 10.9366i 0.420915 0.601129i −0.551560 0.834135i \(-0.685967\pi\)
0.972475 + 0.233006i \(0.0748562\pi\)
\(332\) 0 0
\(333\) −11.1950 + 14.3714i −0.613481 + 0.787546i
\(334\) 0 0
\(335\) 7.71075 + 3.77726i 0.421283 + 0.206374i
\(336\) 0 0
\(337\) −12.7538 + 27.3505i −0.694742 + 1.48988i 0.168826 + 0.985646i \(0.446002\pi\)
−0.863568 + 0.504233i \(0.831775\pi\)
\(338\) 0 0
\(339\) −0.693344 + 0.693344i −0.0376573 + 0.0376573i
\(340\) 0 0
\(341\) 4.69609 17.5260i 0.254308 0.949089i
\(342\) 0 0
\(343\) −4.18855 15.6319i −0.226160 0.844042i
\(344\) 0 0
\(345\) 0.139130 0.284016i 0.00749053 0.0152909i
\(346\) 0 0
\(347\) 13.2363 22.9259i 0.710560 1.23073i −0.254087 0.967181i \(-0.581775\pi\)
0.964647 0.263545i \(-0.0848917\pi\)
\(348\) 0 0
\(349\) 18.4695 + 22.0111i 0.988648 + 1.17823i 0.983988 + 0.178236i \(0.0570390\pi\)
0.00466045 + 0.999989i \(0.498517\pi\)
\(350\) 0 0
\(351\) 0.161253 + 0.230293i 0.00860706 + 0.0122922i
\(352\) 0 0
\(353\) 2.58163 7.09296i 0.137406 0.377520i −0.851836 0.523809i \(-0.824511\pi\)
0.989242 + 0.146289i \(0.0467328\pi\)
\(354\) 0 0
\(355\) −10.5421 + 12.0851i −0.559516 + 0.641412i
\(356\) 0 0
\(357\) −0.883632 + 0.321616i −0.0467668 + 0.0170217i
\(358\) 0 0
\(359\) −25.0776 + 14.4786i −1.32354 + 0.764149i −0.984292 0.176547i \(-0.943507\pi\)
−0.339252 + 0.940695i \(0.610174\pi\)
\(360\) 0 0
\(361\) 4.09118 11.2404i 0.215325 0.591602i
\(362\) 0 0
\(363\) −0.0155117 0.177300i −0.000814154 0.00930582i
\(364\) 0 0
\(365\) −1.71483 6.92868i −0.0897583 0.362664i
\(366\) 0 0
\(367\) 21.5483 15.0883i 1.12481 0.787603i 0.145381 0.989376i \(-0.453559\pi\)
0.979432 + 0.201773i \(0.0646704\pi\)
\(368\) 0 0
\(369\) 21.4469 1.11648
\(370\) 0 0
\(371\) 4.72250 0.245180
\(372\) 0 0
\(373\) 24.3654 17.0608i 1.26159 0.883376i 0.264870 0.964284i \(-0.414671\pi\)
0.996722 + 0.0809085i \(0.0257822\pi\)
\(374\) 0 0
\(375\) 0.420559 + 0.680848i 0.0217176 + 0.0351588i
\(376\) 0 0
\(377\) 0.410722 + 4.69457i 0.0211533 + 0.241783i
\(378\) 0 0
\(379\) 7.66587 21.0618i 0.393769 1.08187i −0.571497 0.820604i \(-0.693637\pi\)
0.965266 0.261268i \(-0.0841405\pi\)
\(380\) 0 0
\(381\) −1.14244 + 0.659590i −0.0585292 + 0.0337918i
\(382\) 0 0
\(383\) −34.9049 + 12.7044i −1.78356 + 0.649162i −0.783960 + 0.620811i \(0.786803\pi\)
−0.999598 + 0.0283509i \(0.990974\pi\)
\(384\) 0 0
\(385\) −1.62159 23.7790i −0.0826437 1.21189i
\(386\) 0 0
\(387\) 0.419861 1.15356i 0.0213427 0.0586386i
\(388\) 0 0
\(389\) −7.77725 11.1071i −0.394322 0.563150i 0.572076 0.820201i \(-0.306138\pi\)
−0.966398 + 0.257050i \(0.917249\pi\)
\(390\) 0 0
\(391\) −5.74900 6.85139i −0.290739 0.346490i
\(392\) 0 0
\(393\) −0.547093 + 0.947593i −0.0275972 + 0.0477997i
\(394\) 0 0
\(395\) 8.74180 + 4.28234i 0.439848 + 0.215468i
\(396\) 0 0
\(397\) −2.26234 8.44315i −0.113543 0.423750i 0.885630 0.464391i \(-0.153727\pi\)
−0.999174 + 0.0406410i \(0.987060\pi\)
\(398\) 0 0
\(399\) 0.142650 0.532377i 0.00714143 0.0266522i
\(400\) 0 0
\(401\) 4.56626 4.56626i 0.228028 0.228028i −0.583840 0.811868i \(-0.698451\pi\)
0.811868 + 0.583840i \(0.198451\pi\)
\(402\) 0 0
\(403\) 1.36804 2.93376i 0.0681467 0.146141i
\(404\) 0 0
\(405\) −6.48573 18.9420i −0.322278 0.941234i
\(406\) 0 0
\(407\) 21.8435 4.67572i 1.08274 0.231767i
\(408\) 0 0
\(409\) 8.51380 12.1590i 0.420980 0.601222i −0.551509 0.834169i \(-0.685948\pi\)
0.972490 + 0.232947i \(0.0748367\pi\)
\(410\) 0 0
\(411\) −0.0648346 0.178132i −0.00319805 0.00878658i
\(412\) 0 0
\(413\) −2.60453 −0.128160
\(414\) 0 0
\(415\) −1.81608 0.194044i −0.0891477 0.00952526i
\(416\) 0 0
\(417\) −1.20736 + 0.323512i −0.0591248 + 0.0158424i
\(418\) 0 0
\(419\) −8.93846 + 1.57609i −0.436672 + 0.0769971i −0.387663 0.921801i \(-0.626718\pi\)
−0.0490094 + 0.998798i \(0.515606\pi\)
\(420\) 0 0
\(421\) −2.70515 10.0957i −0.131841 0.492036i 0.868150 0.496302i \(-0.165309\pi\)
−0.999991 + 0.00426525i \(0.998642\pi\)
\(422\) 0 0
\(423\) −0.107167 + 1.22492i −0.00521063 + 0.0595578i
\(424\) 0 0
\(425\) 22.4218 3.07236i 1.08762 0.149032i
\(426\) 0 0
\(427\) 16.5653 + 6.02927i 0.801650 + 0.291777i
\(428\) 0 0
\(429\) 0.0150100 0.171566i 0.000724692 0.00828327i
\(430\) 0 0
\(431\) 0.142560 0.305720i 0.00686685 0.0147260i −0.902844 0.429967i \(-0.858525\pi\)
0.909711 + 0.415241i \(0.136303\pi\)
\(432\) 0 0
\(433\) 23.2361 + 6.22610i 1.11666 + 0.299207i 0.769530 0.638611i \(-0.220490\pi\)
0.347127 + 0.937818i \(0.387157\pi\)
\(434\) 0 0
\(435\) −0.221611 + 1.12969i −0.0106254 + 0.0541643i
\(436\) 0 0
\(437\) 5.22226 0.456889i 0.249815 0.0218560i
\(438\) 0 0
\(439\) −1.82930 20.9090i −0.0873076 0.997931i −0.905882 0.423530i \(-0.860791\pi\)
0.818574 0.574400i \(-0.194765\pi\)
\(440\) 0 0
\(441\) 0.740704 4.20074i 0.0352716 0.200035i
\(442\) 0 0
\(443\) −10.8242 10.8242i −0.514273 0.514273i 0.401560 0.915833i \(-0.368468\pi\)
−0.915833 + 0.401560i \(0.868468\pi\)
\(444\) 0 0
\(445\) 7.23266 + 5.27392i 0.342861 + 0.250008i
\(446\) 0 0
\(447\) 0.759741 + 1.08502i 0.0359345 + 0.0513198i
\(448\) 0 0
\(449\) 35.1649 3.07653i 1.65953 0.145190i 0.781537 0.623859i \(-0.214436\pi\)
0.877996 + 0.478669i \(0.158881\pi\)
\(450\) 0 0
\(451\) −20.1460 16.9045i −0.948640 0.796003i
\(452\) 0 0
\(453\) −0.740563 + 0.345330i −0.0347947 + 0.0162250i
\(454\) 0 0
\(455\) 0.451763 4.22809i 0.0211790 0.198216i
\(456\) 0 0
\(457\) 7.55671 + 20.7619i 0.353488 + 0.971200i 0.981241 + 0.192787i \(0.0617527\pi\)
−0.627753 + 0.778413i \(0.716025\pi\)
\(458\) 0 0
\(459\) 1.93483 + 0.169276i 0.0903103 + 0.00790113i
\(460\) 0 0
\(461\) −0.826232 1.77186i −0.0384815 0.0825238i 0.886127 0.463442i \(-0.153386\pi\)
−0.924609 + 0.380918i \(0.875608\pi\)
\(462\) 0 0
\(463\) −4.46453 + 25.3196i −0.207484 + 1.17670i 0.685998 + 0.727603i \(0.259366\pi\)
−0.893482 + 0.449098i \(0.851745\pi\)
\(464\) 0 0
\(465\) 0.519825 0.595912i 0.0241063 0.0276348i
\(466\) 0 0
\(467\) 18.8079 + 10.8587i 0.870324 + 0.502482i 0.867456 0.497514i \(-0.165754\pi\)
0.00286793 + 0.999996i \(0.499087\pi\)
\(468\) 0 0
\(469\) −1.93533 10.9758i −0.0893650 0.506814i
\(470\) 0 0
\(471\) −0.0271211 0.0156584i −0.00124967 0.000721499i
\(472\) 0 0
\(473\) −1.30363 + 0.752651i −0.0599410 + 0.0346069i
\(474\) 0 0
\(475\) −6.06282 + 11.7982i −0.278181 + 0.541337i
\(476\) 0 0
\(477\) −4.41631 2.05936i −0.202209 0.0942916i
\(478\) 0 0
\(479\) −5.76161 4.03433i −0.263255 0.184333i 0.434496 0.900674i \(-0.356927\pi\)
−0.697750 + 0.716341i \(0.745816\pi\)
\(480\) 0 0
\(481\) 3.98265 0.144796i 0.181593 0.00660211i
\(482\) 0 0
\(483\) −0.404279 + 0.0712852i −0.0183953 + 0.00324359i
\(484\) 0 0
\(485\) −2.35355 4.26325i −0.106869 0.193584i
\(486\) 0 0
\(487\) 25.9912i 1.17777i 0.808216 + 0.588887i \(0.200434\pi\)
−0.808216 + 0.588887i \(0.799566\pi\)
\(488\) 0 0
\(489\) 0.354292 + 0.0949323i 0.0160216 + 0.00429299i
\(490\) 0 0
\(491\) −20.4462 + 35.4138i −0.922723 + 1.59820i −0.127539 + 0.991834i \(0.540708\pi\)
−0.795184 + 0.606369i \(0.792626\pi\)
\(492\) 0 0
\(493\) 26.6685 + 18.6735i 1.20109 + 0.841012i
\(494\) 0 0
\(495\) −8.85296 + 22.9444i −0.397911 + 1.03127i
\(496\) 0 0
\(497\) 20.7372 + 1.81427i 0.930189 + 0.0813810i
\(498\) 0 0
\(499\) 15.3836 10.7717i 0.688666 0.482209i −0.176108 0.984371i \(-0.556351\pi\)
0.864774 + 0.502162i \(0.167462\pi\)
\(500\) 0 0
\(501\) −1.12682 + 0.525445i −0.0503427 + 0.0234752i
\(502\) 0 0
\(503\) −21.2073 + 17.7950i −0.945586 + 0.793441i −0.978549 0.206016i \(-0.933950\pi\)
0.0329628 + 0.999457i \(0.489506\pi\)
\(504\) 0 0
\(505\) −12.0757 21.8741i −0.537364 0.973385i
\(506\) 0 0
\(507\) −0.232882 + 0.869127i −0.0103427 + 0.0385993i
\(508\) 0 0
\(509\) −9.95374 3.62286i −0.441192 0.160581i 0.111867 0.993723i \(-0.464317\pi\)
−0.553058 + 0.833143i \(0.686539\pi\)
\(510\) 0 0
\(511\) −5.95538 + 7.09735i −0.263451 + 0.313968i
\(512\) 0 0
\(513\) −0.731740 + 0.872054i −0.0323071 + 0.0385021i
\(514\) 0 0
\(515\) 29.5447 + 0.566670i 1.30189 + 0.0249705i
\(516\) 0 0
\(517\) 1.06615 1.06615i 0.0468894 0.0468894i
\(518\) 0 0
\(519\) 1.76093i 0.0772964i
\(520\) 0 0
\(521\) 35.9056 + 6.33113i 1.57306 + 0.277372i 0.891026 0.453953i \(-0.149987\pi\)
0.682029 + 0.731325i \(0.261098\pi\)
\(522\) 0 0
\(523\) −23.8017 19.9720i −1.04077 0.873313i −0.0486809 0.998814i \(-0.515502\pi\)
−0.992094 + 0.125501i \(0.959946\pi\)
\(524\) 0 0
\(525\) 0.392446 0.961773i 0.0171277 0.0419752i
\(526\) 0 0
\(527\) −9.45104 20.2678i −0.411694 0.882881i
\(528\) 0 0
\(529\) 9.54774 + 16.5372i 0.415119 + 0.719007i
\(530\) 0 0
\(531\) 2.43566 + 1.13577i 0.105699 + 0.0492882i
\(532\) 0 0
\(533\) −3.01586 3.59417i −0.130632 0.155681i
\(534\) 0 0
\(535\) 9.58149 + 14.2581i 0.414244 + 0.616432i
\(536\) 0 0
\(537\) −0.180299 0.0317916i −0.00778048 0.00137191i
\(538\) 0 0
\(539\) −4.00681 + 3.36212i −0.172586 + 0.144817i
\(540\) 0 0
\(541\) −6.33105 + 1.69640i −0.272193 + 0.0729339i −0.392334 0.919823i \(-0.628332\pi\)
0.120141 + 0.992757i \(0.461665\pi\)
\(542\) 0 0
\(543\) 0.262488 0.374871i 0.0112644 0.0160873i
\(544\) 0 0
\(545\) −12.9111 29.1338i −0.553049 1.24796i
\(546\) 0 0
\(547\) −10.2594 17.7697i −0.438658 0.759779i 0.558928 0.829216i \(-0.311213\pi\)
−0.997586 + 0.0694376i \(0.977880\pi\)
\(548\) 0 0
\(549\) −12.8621 12.8621i −0.548939 0.548939i
\(550\) 0 0
\(551\) −17.9312 + 6.52643i −0.763896 + 0.278035i
\(552\) 0 0
\(553\) −2.19411 12.4434i −0.0933030 0.529148i
\(554\) 0 0
\(555\) 0.944577 + 0.235801i 0.0400950 + 0.0100092i
\(556\) 0 0
\(557\) 5.65277 + 32.0585i 0.239516 + 1.35836i 0.832892 + 0.553436i \(0.186684\pi\)
−0.593376 + 0.804925i \(0.702205\pi\)
\(558\) 0 0
\(559\) −0.252359 + 0.0918511i −0.0106736 + 0.00388489i
\(560\) 0 0
\(561\) −0.841305 0.841305i −0.0355199 0.0355199i
\(562\) 0 0
\(563\) 2.56205 + 4.43760i 0.107978 + 0.187023i 0.914951 0.403565i \(-0.132229\pi\)
−0.806973 + 0.590588i \(0.798896\pi\)
\(564\) 0 0
\(565\) −28.5781 11.0267i −1.20229 0.463897i
\(566\) 0 0
\(567\) −14.9063 + 21.2884i −0.626007 + 0.894031i
\(568\) 0 0
\(569\) −44.0976 + 11.8159i −1.84867 + 0.495349i −0.999465 0.0327189i \(-0.989583\pi\)
−0.849202 + 0.528068i \(0.822917\pi\)
\(570\) 0 0
\(571\) 0.480315 0.403032i 0.0201005 0.0168664i −0.632682 0.774412i \(-0.718046\pi\)
0.652783 + 0.757545i \(0.273602\pi\)
\(572\) 0 0
\(573\) 0.914574 + 0.161264i 0.0382069 + 0.00673690i
\(574\) 0 0
\(575\) 9.87267 + 0.378857i 0.411719 + 0.0157994i
\(576\) 0 0
\(577\) 12.0834 + 14.4004i 0.503039 + 0.599498i 0.956484 0.291786i \(-0.0942496\pi\)
−0.453445 + 0.891284i \(0.649805\pi\)
\(578\) 0 0
\(579\) −0.756162 0.352604i −0.0314250 0.0146537i
\(580\) 0 0
\(581\) 1.18536 + 2.05311i 0.0491771 + 0.0851772i
\(582\) 0 0
\(583\) 2.52524 + 5.41539i 0.104585 + 0.224283i
\(584\) 0 0
\(585\) −2.26624 + 3.75696i −0.0936974 + 0.155331i
\(586\) 0 0
\(587\) −20.5545 17.2473i −0.848375 0.711871i 0.111056 0.993814i \(-0.464577\pi\)
−0.959431 + 0.281943i \(0.909021\pi\)
\(588\) 0 0
\(589\) 12.9084 + 2.27610i 0.531882 + 0.0937851i
\(590\) 0 0
\(591\) 0.802734i 0.0330201i
\(592\) 0 0
\(593\) −15.5723 + 15.5723i −0.639476 + 0.639476i −0.950426 0.310950i \(-0.899353\pi\)
0.310950 + 0.950426i \(0.399353\pi\)
\(594\) 0 0
\(595\) −20.3698 21.1665i −0.835080 0.867740i
\(596\) 0 0
\(597\) −0.916337 + 1.09205i −0.0375032 + 0.0446946i
\(598\) 0 0
\(599\) −16.7504 + 19.9623i −0.684401 + 0.815638i −0.990666 0.136309i \(-0.956476\pi\)
0.306265 + 0.951946i \(0.400921\pi\)
\(600\) 0 0
\(601\) 12.9538 + 4.71480i 0.528396 + 0.192321i 0.592422 0.805628i \(-0.298172\pi\)
−0.0640258 + 0.997948i \(0.520394\pi\)
\(602\) 0 0
\(603\) −2.97641 + 11.1081i −0.121209 + 0.452357i
\(604\) 0 0
\(605\) 4.86748 2.68712i 0.197891 0.109247i
\(606\) 0 0
\(607\) −23.5872 + 19.7920i −0.957373 + 0.803331i −0.980524 0.196401i \(-0.937075\pi\)
0.0231506 + 0.999732i \(0.492630\pi\)
\(608\) 0 0
\(609\) 1.35430 0.631520i 0.0548790 0.0255905i
\(610\) 0 0
\(611\) 0.220348 0.154289i 0.00891431 0.00624187i
\(612\) 0 0
\(613\) −31.7202 2.77516i −1.28117 0.112088i −0.573836 0.818970i \(-0.694545\pi\)
−0.707331 + 0.706882i \(0.750101\pi\)
\(614\) 0 0
\(615\) −0.464384 1.04788i −0.0187258 0.0422547i
\(616\) 0 0
\(617\) −37.0450 25.9392i −1.49138 1.04427i −0.983098 0.183080i \(-0.941393\pi\)
−0.508278 0.861193i \(-0.669718\pi\)
\(618\) 0 0
\(619\) 20.5297 35.5584i 0.825157 1.42921i −0.0766430 0.997059i \(-0.524420\pi\)
0.901800 0.432155i \(-0.142247\pi\)
\(620\) 0 0
\(621\) 0.819006 + 0.219452i 0.0328656 + 0.00880630i
\(622\) 0 0
\(623\) 11.6190i 0.465504i
\(624\) 0 0
\(625\) −14.1225 + 20.6290i −0.564898 + 0.825161i
\(626\) 0 0
\(627\) 0.686768 0.121096i 0.0274269 0.00483609i
\(628\) 0 0
\(629\) 16.9194 21.7200i 0.674621 0.866032i
\(630\) 0 0
\(631\) 38.4114 + 26.8960i 1.52913 + 1.07071i 0.970442 + 0.241336i \(0.0775855\pi\)
0.558692 + 0.829375i \(0.311303\pi\)
\(632\) 0 0
\(633\) −0.184276 0.0859295i −0.00732433 0.00341539i
\(634\) 0 0
\(635\) −33.2984 24.2805i −1.32141 0.963544i
\(636\) 0 0
\(637\) −0.808136 + 0.466578i −0.0320195 + 0.0184865i
\(638\) 0 0
\(639\) −18.6015 10.7396i −0.735864 0.424852i
\(640\) 0 0
\(641\) 0.831751 + 4.71709i 0.0328522 + 0.186314i 0.996818 0.0797125i \(-0.0254002\pi\)
−0.963966 + 0.266027i \(0.914289\pi\)
\(642\) 0 0
\(643\) −22.4222 12.9455i −0.884245 0.510519i −0.0121895 0.999926i \(-0.503880\pi\)
−0.872056 + 0.489406i \(0.837213\pi\)
\(644\) 0 0
\(645\) −0.0654532 + 0.00446352i −0.00257722 + 0.000175751i
\(646\) 0 0
\(647\) 3.07212 17.4229i 0.120778 0.684963i −0.862949 0.505291i \(-0.831385\pi\)
0.983727 0.179672i \(-0.0575037\pi\)
\(648\) 0 0
\(649\) −1.39271 2.98667i −0.0546686 0.117237i
\(650\) 0 0
\(651\) −1.02254 0.0894606i −0.0400765 0.00350624i
\(652\) 0 0
\(653\) −0.597121 1.64058i −0.0233672 0.0642007i 0.927461 0.373921i \(-0.121987\pi\)
−0.950828 + 0.309720i \(0.899765\pi\)
\(654\) 0 0
\(655\) −33.9885 3.63161i −1.32804 0.141899i
\(656\) 0 0
\(657\) 8.66424 4.04020i 0.338024 0.157623i
\(658\) 0 0
\(659\) −11.6411 9.76806i −0.453473 0.380509i 0.387249 0.921975i \(-0.373425\pi\)
−0.840723 + 0.541466i \(0.817870\pi\)
\(660\) 0 0
\(661\) 29.6079 2.59035i 1.15161 0.100753i 0.504684 0.863304i \(-0.331609\pi\)
0.646928 + 0.762551i \(0.276053\pi\)
\(662\) 0 0
\(663\) −0.121750 0.173877i −0.00472837 0.00675282i
\(664\) 0 0
\(665\) 17.0106 2.66415i 0.659643 0.103311i
\(666\) 0 0
\(667\) 10.0499 + 10.0499i 0.389135 + 0.389135i
\(668\) 0 0
\(669\) 0.186870 1.05979i 0.00722481 0.0409739i
\(670\) 0 0
\(671\) 1.94398 + 22.2198i 0.0750465 + 0.857786i
\(672\) 0 0
\(673\) 25.7568 2.25342i 0.992850 0.0868631i 0.420862 0.907125i \(-0.361728\pi\)
0.571988 + 0.820262i \(0.306172\pi\)
\(674\) 0 0
\(675\) −1.57416 + 1.45781i −0.0605894 + 0.0561111i
\(676\) 0 0
\(677\) 4.22617 + 1.13240i 0.162425 + 0.0435216i 0.339115 0.940745i \(-0.389872\pi\)
−0.176690 + 0.984267i \(0.556539\pi\)
\(678\) 0 0
\(679\) −2.67139 + 5.72880i −0.102518 + 0.219851i
\(680\) 0 0
\(681\) 0.146502 1.67452i 0.00561395 0.0641678i
\(682\) 0 0
\(683\) −45.1568 16.4357i −1.72788 0.628896i −0.729401 0.684086i \(-0.760201\pi\)
−0.998476 + 0.0551905i \(0.982423\pi\)
\(684\) 0 0
\(685\) 4.26695 4.10635i 0.163032 0.156895i
\(686\) 0 0
\(687\) −0.100805 + 1.15221i −0.00384596 + 0.0439596i
\(688\) 0 0
\(689\) 0.275905 + 1.02969i 0.0105111 + 0.0392281i
\(690\) 0 0
\(691\) 37.9551 6.69252i 1.44388 0.254595i 0.603835 0.797109i \(-0.293639\pi\)
0.840047 + 0.542514i \(0.182527\pi\)
\(692\) 0 0
\(693\) 30.8346 8.26211i 1.17131 0.313852i
\(694\) 0 0
\(695\) −24.5214 30.3884i −0.930150 1.15270i
\(696\) 0 0
\(697\) −32.4136 −1.22775
\(698\) 0 0
\(699\) 0.0511665 + 0.140579i 0.00193530 + 0.00531718i
\(700\) 0 0
\(701\) −15.9836 + 22.8270i −0.603693 + 0.862162i −0.998394 0.0566470i \(-0.981959\pi\)
0.394702 + 0.918809i \(0.370848\pi\)
\(702\) 0 0
\(703\) 4.74022 + 15.4254i 0.178781 + 0.581780i
\(704\) 0 0
\(705\) 0.0621694 0.0212868i 0.00234144 0.000801707i
\(706\) 0 0
\(707\) −13.7065 + 29.3937i −0.515486 + 1.10546i
\(708\) 0 0
\(709\) 33.6760 33.6760i 1.26473 1.26473i 0.315956 0.948774i \(-0.397675\pi\)
0.948774 0.315956i \(-0.102325\pi\)
\(710\) 0 0
\(711\) −3.37440 + 12.5934i −0.126550 + 0.472291i
\(712\) 0 0
\(713\) −2.52680 9.43016i −0.0946295 0.353162i
\(714\) 0 0
\(715\) 5.09002 1.74282i 0.190356 0.0651779i
\(716\) 0 0
\(717\) 0.0387689 0.0671498i 0.00144785 0.00250775i
\(718\) 0 0
\(719\) 32.1115 + 38.2690i 1.19756 + 1.42719i 0.877355 + 0.479842i \(0.159306\pi\)
0.320201 + 0.947350i \(0.396250\pi\)
\(720\) 0 0
\(721\) −22.0005 31.4199i −0.819340 1.17014i
\(722\) 0 0
\(723\) 0.113738 0.312493i 0.00422996 0.0116217i
\(724\) 0 0
\(725\) −35.0696 + 7.96916i −1.30245 + 0.295967i
\(726\) 0 0
\(727\) −43.1368 + 15.7005i −1.59985 + 0.582300i −0.979398 0.201941i \(-0.935275\pi\)
−0.620457 + 0.784240i \(0.713053\pi\)
\(728\) 0 0
\(729\) 23.1434 13.3619i 0.857164 0.494884i
\(730\) 0 0
\(731\) −0.634551 + 1.74342i −0.0234697 + 0.0644826i
\(732\) 0 0
\(733\) 2.92567 + 33.4406i 0.108062 + 1.23516i 0.835697 + 0.549191i \(0.185064\pi\)
−0.727635 + 0.685965i \(0.759380\pi\)
\(734\) 0 0
\(735\) −0.221284 + 0.0547671i −0.00816217 + 0.00202011i
\(736\) 0 0
\(737\) 11.5513 8.08831i 0.425498 0.297937i
\(738\) 0 0
\(739\) 29.9662 1.10232 0.551162 0.834398i \(-0.314184\pi\)
0.551162 + 0.834398i \(0.314184\pi\)
\(740\) 0 0
\(741\) 0.124413 0.00457044
\(742\) 0 0
\(743\) 41.2078 28.8540i 1.51177 1.05855i 0.534846 0.844949i \(-0.320369\pi\)
0.976921 0.213601i \(-0.0685194\pi\)
\(744\) 0 0
\(745\) −21.3729 + 35.4320i −0.783043 + 1.29813i
\(746\) 0 0
\(747\) −0.213201 2.43690i −0.00780062 0.0891614i
\(748\) 0 0
\(749\) 7.62636 20.9532i 0.278661 0.765615i
\(750\) 0 0
\(751\) −42.0868 + 24.2989i −1.53577 + 0.886678i −0.536691 + 0.843779i \(0.680326\pi\)
−0.999079 + 0.0428991i \(0.986341\pi\)
\(752\) 0 0
\(753\) 0.753612 0.274292i 0.0274632 0.00999577i
\(754\) 0 0
\(755\) −19.2363 16.7802i −0.700079 0.610692i
\(756\) 0 0
\(757\) −15.7677 + 43.3215i −0.573088 + 1.57455i 0.226509 + 0.974009i \(0.427269\pi\)
−0.799597 + 0.600537i \(0.794954\pi\)
\(758\) 0 0
\(759\) −0.297923 0.425478i −0.0108139 0.0154439i
\(760\) 0 0
\(761\) 5.30651 + 6.32405i 0.192361 + 0.229247i 0.853601 0.520928i \(-0.174414\pi\)
−0.661240 + 0.750175i \(0.729969\pi\)
\(762\) 0 0
\(763\) −20.6817 + 35.8217i −0.748727 + 1.29683i
\(764\) 0 0
\(765\) 9.81896 + 28.6769i 0.355005 + 1.03681i
\(766\) 0 0
\(767\) −0.152166 0.567890i −0.00549439 0.0205053i
\(768\) 0 0
\(769\) 10.8657 40.5514i 0.391828 1.46232i −0.435289 0.900291i \(-0.643354\pi\)
0.827117 0.562030i \(-0.189980\pi\)
\(770\) 0 0
\(771\) −1.12826 + 1.12826i −0.0406332 + 0.0406332i
\(772\) 0 0
\(773\) 6.10094 13.0835i 0.219435 0.470581i −0.765515 0.643418i \(-0.777516\pi\)
0.984950 + 0.172837i \(0.0552935\pi\)
\(774\) 0 0
\(775\) 23.5992 + 7.30408i 0.847707 + 0.262370i
\(776\) 0 0
\(777\) −0.475072 1.17101i −0.0170431 0.0420097i
\(778\) 0 0
\(779\) 10.8970 15.5626i 0.390426 0.557587i
\(780\) 0 0
\(781\) 9.00824 + 24.7499i 0.322340 + 0.885622i
\(782\) 0 0
\(783\) −3.08640 −0.110299
\(784\) 0 0
\(785\) 0.103940 0.972787i 0.00370979 0.0347203i
\(786\) 0 0
\(787\) −15.4460 + 4.13874i −0.550590 + 0.147530i −0.523380 0.852100i \(-0.675329\pi\)
−0.0272102 + 0.999630i \(0.508662\pi\)
\(788\) 0 0
\(789\) −1.16320 + 0.205103i −0.0414109 + 0.00730185i
\(790\) 0 0
\(791\) 10.2908 + 38.4057i 0.365898 + 1.36555i
\(792\) 0 0
\(793\) −0.346817 + 3.96414i −0.0123158 + 0.140771i
\(794\) 0 0
\(795\) −0.00499390 + 0.260369i −0.000177115 + 0.00923433i
\(796\) 0 0
\(797\) −19.5649 7.12103i −0.693023 0.252240i −0.0285938 0.999591i \(-0.509103\pi\)
−0.664429 + 0.747351i \(0.731325\pi\)
\(798\) 0 0
\(799\) 0.161965 1.85127i 0.00572993 0.0654934i
\(800\) 0 0
\(801\) −5.06673 + 10.8656i −0.179024 + 0.383919i
\(802\) 0 0
\(803\) −11.3232 3.03404i −0.399587 0.107069i
\(804\) 0 0
\(805\) −7.15295 10.6442i −0.252108 0.375160i
\(806\) 0 0
\(807\) 0.699226 0.0611744i 0.0246139 0.00215344i
\(808\) 0 0
\(809\) −4.04776 46.2661i −0.142312 1.62663i −0.646416 0.762985i \(-0.723733\pi\)
0.504104 0.863643i \(-0.331823\pi\)
\(810\) 0 0
\(811\) 6.06376 34.3893i 0.212927 1.20757i −0.671540 0.740968i \(-0.734367\pi\)
0.884467 0.466602i \(-0.154522\pi\)
\(812\) 0 0
\(813\) −0.126013 0.126013i −0.00441948 0.00441948i
\(814\) 0 0
\(815\) 1.77297 + 11.3204i 0.0621044 + 0.396537i
\(816\) 0 0
\(817\) −0.623729 0.890778i −0.0218215 0.0311644i
\(818\) 0 0
\(819\) 5.67346 0.496363i 0.198247 0.0173443i
\(820\) 0 0
\(821\) 19.2910 + 16.1870i 0.673260 + 0.564932i 0.914028 0.405651i \(-0.132955\pi\)
−0.240769 + 0.970583i \(0.577399\pi\)
\(822\) 0 0
\(823\) −5.11708 + 2.38613i −0.178370 + 0.0831754i −0.509752 0.860321i \(-0.670263\pi\)
0.331382 + 0.943497i \(0.392485\pi\)
\(824\) 0 0
\(825\) 1.31274 0.0642585i 0.0457037 0.00223720i
\(826\) 0 0
\(827\) 11.9833 + 32.9238i 0.416699 + 1.14487i 0.953561 + 0.301201i \(0.0973876\pi\)
−0.536861 + 0.843670i \(0.680390\pi\)
\(828\) 0 0
\(829\) −33.8646 2.96276i −1.17616 0.102901i −0.517733 0.855542i \(-0.673224\pi\)
−0.658431 + 0.752641i \(0.728780\pi\)
\(830\) 0 0
\(831\) −0.415101 0.890187i −0.0143997 0.0308802i
\(832\) 0 0
\(833\) −1.11945 + 6.34874i −0.0387868 + 0.219971i
\(834\) 0 0
\(835\) −29.2694 25.5322i −1.01291 0.883579i
\(836\) 0 0
\(837\) 1.83603 + 1.06003i 0.0634626 + 0.0366401i
\(838\) 0 0
\(839\) 0.676517 + 3.83672i 0.0233560 + 0.132458i 0.994256 0.107026i \(-0.0341328\pi\)
−0.970900 + 0.239484i \(0.923022\pi\)
\(840\) 0 0
\(841\) −19.6894 11.3677i −0.678946 0.391990i
\(842\) 0 0
\(843\) 1.20783 0.697341i 0.0415999 0.0240177i
\(844\) 0 0
\(845\) −27.7705 + 4.34934i −0.955335 + 0.149622i
\(846\) 0 0
\(847\) −6.54075 3.05000i −0.224743 0.104799i
\(848\) 0 0
\(849\) −1.32252 0.926042i −0.0453889 0.0317817i
\(850\) 0 0
\(851\) 8.92066 8.05539i 0.305796 0.276135i
\(852\) 0 0
\(853\) 6.35788 1.12107i 0.217690 0.0383846i −0.0637395 0.997967i \(-0.520303\pi\)
0.281429 + 0.959582i \(0.409192\pi\)
\(854\) 0 0
\(855\) −17.0695 4.92647i −0.583764 0.168482i
\(856\) 0 0
\(857\) 14.7846i 0.505031i −0.967593 0.252516i \(-0.918742\pi\)
0.967593 0.252516i \(-0.0812579\pi\)
\(858\) 0 0
\(859\) −33.1428 8.88059i −1.13082 0.303002i −0.355565 0.934652i \(-0.615711\pi\)
−0.775254 + 0.631650i \(0.782378\pi\)
\(860\) 0 0
\(861\) −0.743877 + 1.28843i −0.0253513 + 0.0439097i
\(862\) 0 0
\(863\) −32.2997 22.6165i −1.09950 0.769875i −0.124527 0.992216i \(-0.539741\pi\)
−0.974969 + 0.222341i \(0.928630\pi\)
\(864\) 0 0
\(865\) −50.2936 + 22.2883i −1.71003 + 0.757825i
\(866\) 0 0
\(867\) −0.248652 0.0217542i −0.00844466 0.000738812i
\(868\) 0 0
\(869\) 13.0959 9.16985i 0.444248 0.311066i
\(870\) 0 0
\(871\) 2.28009 1.06322i 0.0772577 0.0360259i
\(872\) 0 0
\(873\) 4.99637 4.19245i 0.169102 0.141893i
\(874\) 0 0
\(875\) 32.4362 0.964715i 1.09654 0.0326133i
\(876\) 0 0
\(877\) 11.5209 42.9965i 0.389032 1.45189i −0.442679 0.896680i \(-0.645972\pi\)
0.831711 0.555208i \(-0.187361\pi\)
\(878\) 0 0
\(879\) 1.30301 + 0.474257i 0.0439494 + 0.0159963i
\(880\) 0 0
\(881\) 16.2673 19.3866i 0.548059 0.653151i −0.418915 0.908025i \(-0.637590\pi\)
0.966974 + 0.254874i \(0.0820340\pi\)
\(882\) 0 0
\(883\) 18.2298 21.7254i 0.613480 0.731117i −0.366455 0.930436i \(-0.619428\pi\)
0.979935 + 0.199319i \(0.0638729\pi\)
\(884\) 0 0
\(885\) 0.00275421 0.143597i 9.25818e−5 0.00482697i
\(886\) 0 0
\(887\) 21.4435 21.4435i 0.720004 0.720004i −0.248602 0.968606i \(-0.579971\pi\)
0.968606 + 0.248602i \(0.0799711\pi\)
\(888\) 0 0
\(889\) 53.4924i 1.79408i
\(890\) 0 0
\(891\) −32.3828 5.70995i −1.08486 0.191291i
\(892\) 0 0
\(893\) 0.834392 + 0.700138i 0.0279219 + 0.0234292i
\(894\) 0 0
\(895\) −1.37407 5.55186i −0.0459301 0.185578i
\(896\) 0 0
\(897\) −0.0391624 0.0839840i −0.00130759 0.00280415i
\(898\) 0 0
\(899\) 17.7687 + 30.7762i 0.592618 + 1.02644i
\(900\) 0 0
\(901\) 6.67454 + 3.11239i 0.222361 + 0.103689i
\(902\) 0 0
\(903\) 0.0547378 + 0.0652339i 0.00182156 + 0.00217085i
\(904\) 0 0
\(905\) 14.0289 + 2.75206i 0.466337 + 0.0914816i
\(906\) 0 0
\(907\) 39.4091 + 6.94888i 1.30856 + 0.230734i 0.784064 0.620681i \(-0.213144\pi\)
0.524493 + 0.851414i \(0.324255\pi\)
\(908\) 0 0
\(909\) 25.6357 21.5109i 0.850281 0.713471i
\(910\) 0 0
\(911\) −2.26602 + 0.607178i −0.0750766 + 0.0201167i −0.296162 0.955138i \(-0.595707\pi\)
0.221085 + 0.975254i \(0.429040\pi\)
\(912\) 0 0
\(913\) −1.72050 + 2.45713i −0.0569403 + 0.0813191i
\(914\) 0 0
\(915\) −0.349933 + 0.906930i −0.0115684 + 0.0299822i
\(916\) 0 0
\(917\) 22.1845 + 38.4246i 0.732596 + 1.26889i
\(918\) 0 0
\(919\) −22.0854 22.0854i −0.728530 0.728530i 0.241797 0.970327i \(-0.422263\pi\)
−0.970327 + 0.241797i \(0.922263\pi\)
\(920\) 0 0
\(921\) 1.88097 0.684617i 0.0619800 0.0225589i
\(922\) 0 0
\(923\) 0.815956 + 4.62752i 0.0268575 + 0.152317i
\(924\) 0 0
\(925\) 5.22094 + 29.9623i 0.171664 + 0.985156i
\(926\) 0 0
\(927\) 6.87263 + 38.9766i 0.225727 + 1.28016i
\(928\) 0 0
\(929\) −37.8784 + 13.7866i −1.24275 + 0.452324i −0.877946 0.478760i \(-0.841086\pi\)
−0.364805 + 0.931084i \(0.618864\pi\)
\(930\) 0 0
\(931\) −2.67184 2.67184i −0.0875662 0.0875662i
\(932\) 0 0
\(933\) 0.946910 + 1.64010i 0.0310005 + 0.0536944i
\(934\) 0 0
\(935\) 13.3798 34.6768i 0.437567 1.13405i
\(936\) 0 0
\(937\) −14.1266 + 20.1749i −0.461496 + 0.659085i −0.980689 0.195572i \(-0.937344\pi\)
0.519193 + 0.854657i \(0.326233\pi\)
\(938\) 0 0
\(939\) 1.34427 0.360195i 0.0438685 0.0117545i
\(940\) 0 0
\(941\) 22.8515 19.1747i 0.744939 0.625078i −0.189220 0.981935i \(-0.560596\pi\)
0.934159 + 0.356857i \(0.116151\pi\)
\(942\) 0 0
\(943\) −13.9355 2.45720i −0.453802 0.0800175i
\(944\) 0 0
\(945\) 2.73282 + 0.536098i 0.0888986 + 0.0174393i
\(946\) 0 0
\(947\) 21.0541 + 25.0913i 0.684166 + 0.815357i 0.990637 0.136523i \(-0.0435926\pi\)
−0.306471 + 0.951880i \(0.599148\pi\)
\(948\) 0 0
\(949\) −1.89544 0.883857i −0.0615285 0.0286912i
\(950\) 0 0
\(951\) 0.408228 + 0.707072i 0.0132377 + 0.0229284i
\(952\) 0 0
\(953\) −11.5202 24.7052i −0.373177 0.800282i −0.999781 0.0209431i \(-0.993333\pi\)
0.626603 0.779338i \(-0.284445\pi\)
\(954\) 0 0
\(955\) 6.97002 + 28.1620i 0.225545 + 0.911302i
\(956\) 0 0
\(957\) 1.44836 + 1.21532i 0.0468188 + 0.0392856i
\(958\) 0 0
\(959\) −7.56997 1.33479i −0.244447 0.0431026i
\(960\) 0 0
\(961\) 6.58921i 0.212555i
\(962\) 0 0
\(963\) −16.2691 + 16.2691i −0.524264 + 0.524264i
\(964\) 0 0
\(965\) 0.499824 26.0595i 0.0160899 0.838884i
\(966\) 0 0
\(967\) 32.9854 39.3105i 1.06074 1.26414i 0.0975758 0.995228i \(-0.468891\pi\)
0.963164 0.268913i \(-0.0866644\pi\)
\(968\) 0 0
\(969\) 0.552481 0.658421i 0.0177482 0.0211515i
\(970\) 0 0
\(971\) 45.1071 + 16.4177i 1.44756 + 0.526868i 0.941908 0.335872i \(-0.109031\pi\)
0.505649 + 0.862739i \(0.331253\pi\)
\(972\) 0 0
\(973\) −13.1183 + 48.9582i −0.420554 + 1.56953i
\(974\) 0 0
\(975\) 0.232633 + 0.0293785i 0.00745021 + 0.000940865i
\(976\) 0 0
\(977\) 6.07520 5.09770i 0.194363 0.163090i −0.540413 0.841400i \(-0.681732\pi\)
0.734776 + 0.678310i \(0.237287\pi\)
\(978\) 0 0
\(979\) 13.3237 6.21296i 0.425828 0.198567i
\(980\) 0 0
\(981\) 34.9617 24.4805i 1.11624 0.781601i
\(982\) 0 0
\(983\) 21.3921 + 1.87157i 0.682302 + 0.0596937i 0.423037 0.906112i \(-0.360964\pi\)
0.259265 + 0.965806i \(0.416520\pi\)
\(984\) 0 0
\(985\) 22.9267 10.1603i 0.730504 0.323733i
\(986\) 0 0
\(987\) −0.0698707 0.0489240i −0.00222401 0.00155727i
\(988\) 0 0
\(989\) −0.404976 + 0.701438i −0.0128775 + 0.0223044i
\(990\) 0 0
\(991\) −35.7492 9.57897i −1.13561 0.304286i −0.358426 0.933558i \(-0.616686\pi\)
−0.777185 + 0.629272i \(0.783353\pi\)
\(992\) 0 0
\(993\) 0.955643i 0.0303264i
\(994\) 0 0
\(995\) −42.7879 12.3491i −1.35647 0.391493i
\(996\) 0 0
\(997\) −21.4471 + 3.78170i −0.679235 + 0.119768i −0.502613 0.864511i \(-0.667628\pi\)
−0.176622 + 0.984279i \(0.556517\pi\)
\(998\) 0 0
\(999\) −0.132865 + 2.60673i −0.00420366 + 0.0824733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.cc.a.17.10 228
5.3 odd 4 740.2.ch.a.313.10 yes 228
37.24 odd 36 740.2.ch.a.357.10 yes 228
185.98 even 36 inner 740.2.cc.a.653.10 yes 228
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.cc.a.17.10 228 1.1 even 1 trivial
740.2.cc.a.653.10 yes 228 185.98 even 36 inner
740.2.ch.a.313.10 yes 228 5.3 odd 4
740.2.ch.a.357.10 yes 228 37.24 odd 36