L(s) = 1 | + (0.0586 − 0.0410i)3-s + (1.91 + 1.15i)5-s + (−0.252 − 2.89i)7-s + (−1.02 + 2.81i)9-s + (3.18 − 1.83i)11-s + (0.615 − 0.224i)13-s + (0.159 − 0.0108i)15-s + (1.54 − 4.25i)17-s + (1.52 + 2.17i)19-s + (−0.133 − 0.159i)21-s + (0.987 − 1.71i)23-s + (2.33 + 4.42i)25-s + (0.111 + 0.414i)27-s + (−1.86 + 6.94i)29-s + (3.49 − 3.49i)31-s + ⋯ |
L(s) = 1 | + (0.0338 − 0.0237i)3-s + (0.856 + 0.516i)5-s + (−0.0956 − 1.09i)7-s + (−0.341 + 0.938i)9-s + (0.958 − 0.553i)11-s + (0.170 − 0.0621i)13-s + (0.0412 − 0.00281i)15-s + (0.375 − 1.03i)17-s + (0.349 + 0.498i)19-s + (−0.0291 − 0.0347i)21-s + (0.206 − 0.356i)23-s + (0.466 + 0.884i)25-s + (0.0213 + 0.0797i)27-s + (−0.345 + 1.29i)29-s + (0.627 − 0.627i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.103i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 + 0.103i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.85752 - 0.0963674i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.85752 - 0.0963674i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.91 - 1.15i)T \) |
| 37 | \( 1 + (-5.78 - 1.87i)T \) |
good | 3 | \( 1 + (-0.0586 + 0.0410i)T + (1.02 - 2.81i)T^{2} \) |
| 7 | \( 1 + (0.252 + 2.89i)T + (-6.89 + 1.21i)T^{2} \) |
| 11 | \( 1 + (-3.18 + 1.83i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.615 + 0.224i)T + (9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (-1.54 + 4.25i)T + (-13.0 - 10.9i)T^{2} \) |
| 19 | \( 1 + (-1.52 - 2.17i)T + (-6.49 + 17.8i)T^{2} \) |
| 23 | \( 1 + (-0.987 + 1.71i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.86 - 6.94i)T + (-25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (-3.49 + 3.49i)T - 31iT^{2} \) |
| 41 | \( 1 + (2.44 + 6.72i)T + (-31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + 0.409T + 43T^{2} \) |
| 47 | \( 1 + (-0.396 + 0.106i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (0.141 - 1.62i)T + (-52.1 - 9.20i)T^{2} \) |
| 59 | \( 1 + (-0.0782 + 0.893i)T + (-58.1 - 10.2i)T^{2} \) |
| 61 | \( 1 + (2.56 - 5.50i)T + (-39.2 - 46.7i)T^{2} \) |
| 67 | \( 1 + (-3.82 + 0.334i)T + (65.9 - 11.6i)T^{2} \) |
| 71 | \( 1 + (1.24 - 7.06i)T + (-66.7 - 24.2i)T^{2} \) |
| 73 | \( 1 + (2.25 + 2.25i)T + 73iT^{2} \) |
| 79 | \( 1 + (-4.33 + 0.379i)T + (77.7 - 13.7i)T^{2} \) |
| 83 | \( 1 + (0.740 - 0.345i)T + (53.3 - 63.5i)T^{2} \) |
| 89 | \( 1 + (-3.98 - 0.348i)T + (87.6 + 15.4i)T^{2} \) |
| 97 | \( 1 + (1.88 + 1.08i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40354274811515365942379791513, −9.626476173336780088020068775115, −8.729536782139677886658175450309, −7.60125742492064664818970765012, −6.91244833459039645475768920143, −5.96005104729814897938462372827, −5.02489858321880112391769637238, −3.75543978209197873190389766968, −2.69777288676869212432863564483, −1.22763690558821942714521705116,
1.34467028425489527819176977891, 2.60353228689493577073462647150, 3.90042047052548901103997904560, 5.10327262257386755687920374911, 6.10009672218633721785252875340, 6.48545168239964676986018468472, 8.006493669198425720549252147770, 8.974369182517104578048630009890, 9.357282145192622434507644834756, 10.09657766411456913779885881875