Properties

Label 740.2.bp.a.169.15
Level $740$
Weight $2$
Character 740.169
Analytic conductor $5.909$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(169,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.bp (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 169.15
Character \(\chi\) \(=\) 740.169
Dual form 740.2.bp.a.289.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.583105 + 1.60207i) q^{3} +(-1.38719 + 1.75377i) q^{5} +(0.0792084 + 0.0139666i) q^{7} +(0.0715239 - 0.0600157i) q^{9} +(1.18626 + 2.05465i) q^{11} +(3.75018 + 3.14678i) q^{13} +(-3.61853 - 1.19974i) q^{15} +(-4.04619 + 3.39516i) q^{17} +(-1.65640 - 4.55091i) q^{19} +(0.0238114 + 0.135041i) q^{21} +(-1.11475 + 1.93081i) q^{23} +(-1.15141 - 4.86562i) q^{25} +(4.56728 + 2.63692i) q^{27} +(-7.71310 + 4.45316i) q^{29} +8.47122i q^{31} +(-2.59998 + 3.09854i) q^{33} +(-0.134371 + 0.119539i) q^{35} +(1.01674 - 5.99719i) q^{37} +(-2.85460 + 7.84294i) q^{39} +(-3.20670 - 2.69074i) q^{41} -5.46918 q^{43} +(0.00603632 + 0.208690i) q^{45} +(-1.08101 - 0.624120i) q^{47} +(-6.57177 - 2.39193i) q^{49} +(-7.79862 - 4.50254i) q^{51} +(10.0249 - 1.76766i) q^{53} +(-5.24895 - 0.769780i) q^{55} +(6.32502 - 5.30732i) q^{57} +(-0.0395489 + 0.00697353i) q^{59} +(6.95139 - 8.28434i) q^{61} +(0.00650351 - 0.00375480i) q^{63} +(-10.7209 + 2.21177i) q^{65} +(1.49255 + 0.263177i) q^{67} +(-3.74331 - 0.660047i) q^{69} +(11.6356 - 4.23500i) q^{71} +12.8456i q^{73} +(7.12366 - 4.68180i) q^{75} +(0.0652649 + 0.179314i) q^{77} +(16.9092 + 2.98155i) q^{79} +(-1.51268 + 8.57884i) q^{81} +(4.82941 + 5.75547i) q^{83} +(-0.341481 - 11.8058i) q^{85} +(-11.6318 - 9.76025i) q^{87} +(-1.10202 + 0.194316i) q^{89} +(0.253096 + 0.301628i) q^{91} +(-13.5715 + 4.93961i) q^{93} +(10.2790 + 3.40805i) q^{95} +(-7.09258 + 12.2847i) q^{97} +(0.208157 + 0.0757630i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 3 q^{5} + 6 q^{9} + 12 q^{11} + 3 q^{15} + 6 q^{19} - 12 q^{21} - 33 q^{25} - 48 q^{35} + 24 q^{39} + 30 q^{41} - 27 q^{45} + 6 q^{49} - 3 q^{55} - 42 q^{59} + 48 q^{61} - 18 q^{65} - 108 q^{69}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.583105 + 1.60207i 0.336656 + 0.924954i 0.986336 + 0.164747i \(0.0526806\pi\)
−0.649680 + 0.760208i \(0.725097\pi\)
\(4\) 0 0
\(5\) −1.38719 + 1.75377i −0.620370 + 0.784309i
\(6\) 0 0
\(7\) 0.0792084 + 0.0139666i 0.0299379 + 0.00527887i 0.188597 0.982055i \(-0.439606\pi\)
−0.158659 + 0.987333i \(0.550717\pi\)
\(8\) 0 0
\(9\) 0.0715239 0.0600157i 0.0238413 0.0200052i
\(10\) 0 0
\(11\) 1.18626 + 2.05465i 0.357669 + 0.619502i 0.987571 0.157173i \(-0.0502381\pi\)
−0.629902 + 0.776675i \(0.716905\pi\)
\(12\) 0 0
\(13\) 3.75018 + 3.14678i 1.04011 + 0.872758i 0.992020 0.126084i \(-0.0402410\pi\)
0.0480934 + 0.998843i \(0.484685\pi\)
\(14\) 0 0
\(15\) −3.61853 1.19974i −0.934301 0.309772i
\(16\) 0 0
\(17\) −4.04619 + 3.39516i −0.981345 + 0.823446i −0.984292 0.176549i \(-0.943506\pi\)
0.00294680 + 0.999996i \(0.499062\pi\)
\(18\) 0 0
\(19\) −1.65640 4.55091i −0.380004 1.04405i −0.971354 0.237637i \(-0.923627\pi\)
0.591351 0.806415i \(-0.298595\pi\)
\(20\) 0 0
\(21\) 0.0238114 + 0.135041i 0.00519607 + 0.0294684i
\(22\) 0 0
\(23\) −1.11475 + 1.93081i −0.232442 + 0.402602i −0.958526 0.285004i \(-0.908005\pi\)
0.726084 + 0.687606i \(0.241338\pi\)
\(24\) 0 0
\(25\) −1.15141 4.86562i −0.230281 0.973124i
\(26\) 0 0
\(27\) 4.56728 + 2.63692i 0.878973 + 0.507475i
\(28\) 0 0
\(29\) −7.71310 + 4.45316i −1.43229 + 0.826931i −0.997295 0.0735032i \(-0.976582\pi\)
−0.434992 + 0.900434i \(0.643249\pi\)
\(30\) 0 0
\(31\) 8.47122i 1.52148i 0.649059 + 0.760738i \(0.275163\pi\)
−0.649059 + 0.760738i \(0.724837\pi\)
\(32\) 0 0
\(33\) −2.59998 + 3.09854i −0.452599 + 0.539387i
\(34\) 0 0
\(35\) −0.134371 + 0.119539i −0.0227129 + 0.0202057i
\(36\) 0 0
\(37\) 1.01674 5.99719i 0.167152 0.985931i
\(38\) 0 0
\(39\) −2.85460 + 7.84294i −0.457101 + 1.25588i
\(40\) 0 0
\(41\) −3.20670 2.69074i −0.500802 0.420223i 0.357077 0.934075i \(-0.383773\pi\)
−0.857879 + 0.513852i \(0.828218\pi\)
\(42\) 0 0
\(43\) −5.46918 −0.834042 −0.417021 0.908897i \(-0.636926\pi\)
−0.417021 + 0.908897i \(0.636926\pi\)
\(44\) 0 0
\(45\) 0.00603632 + 0.208690i 0.000899841 + 0.0311096i
\(46\) 0 0
\(47\) −1.08101 0.624120i −0.157681 0.0910373i 0.419083 0.907948i \(-0.362352\pi\)
−0.576764 + 0.816911i \(0.695685\pi\)
\(48\) 0 0
\(49\) −6.57177 2.39193i −0.938824 0.341704i
\(50\) 0 0
\(51\) −7.79862 4.50254i −1.09203 0.630481i
\(52\) 0 0
\(53\) 10.0249 1.76766i 1.37703 0.242807i 0.564356 0.825531i \(-0.309124\pi\)
0.812670 + 0.582724i \(0.198013\pi\)
\(54\) 0 0
\(55\) −5.24895 0.769780i −0.707768 0.103797i
\(56\) 0 0
\(57\) 6.32502 5.30732i 0.837769 0.702972i
\(58\) 0 0
\(59\) −0.0395489 + 0.00697353i −0.00514882 + 0.000907876i −0.176222 0.984350i \(-0.556388\pi\)
0.171073 + 0.985258i \(0.445277\pi\)
\(60\) 0 0
\(61\) 6.95139 8.28434i 0.890034 1.06070i −0.107751 0.994178i \(-0.534365\pi\)
0.997785 0.0665230i \(-0.0211906\pi\)
\(62\) 0 0
\(63\) 0.00650351 0.00375480i 0.000819365 0.000473060i
\(64\) 0 0
\(65\) −10.7209 + 2.21177i −1.32977 + 0.274336i
\(66\) 0 0
\(67\) 1.49255 + 0.263177i 0.182344 + 0.0321522i 0.264074 0.964502i \(-0.414934\pi\)
−0.0817305 + 0.996654i \(0.526045\pi\)
\(68\) 0 0
\(69\) −3.74331 0.660047i −0.450642 0.0794603i
\(70\) 0 0
\(71\) 11.6356 4.23500i 1.38089 0.502602i 0.458440 0.888725i \(-0.348408\pi\)
0.922447 + 0.386123i \(0.126186\pi\)
\(72\) 0 0
\(73\) 12.8456i 1.50346i 0.659470 + 0.751731i \(0.270781\pi\)
−0.659470 + 0.751731i \(0.729219\pi\)
\(74\) 0 0
\(75\) 7.12366 4.68180i 0.822570 0.540607i
\(76\) 0 0
\(77\) 0.0652649 + 0.179314i 0.00743762 + 0.0204347i
\(78\) 0 0
\(79\) 16.9092 + 2.98155i 1.90243 + 0.335451i 0.996183 0.0872879i \(-0.0278200\pi\)
0.906252 + 0.422739i \(0.138931\pi\)
\(80\) 0 0
\(81\) −1.51268 + 8.57884i −0.168076 + 0.953204i
\(82\) 0 0
\(83\) 4.82941 + 5.75547i 0.530097 + 0.631745i 0.962937 0.269726i \(-0.0869331\pi\)
−0.432840 + 0.901471i \(0.642489\pi\)
\(84\) 0 0
\(85\) −0.341481 11.8058i −0.0370389 1.28052i
\(86\) 0 0
\(87\) −11.6318 9.76025i −1.24706 1.04641i
\(88\) 0 0
\(89\) −1.10202 + 0.194316i −0.116814 + 0.0205974i −0.231749 0.972776i \(-0.574445\pi\)
0.114936 + 0.993373i \(0.463334\pi\)
\(90\) 0 0
\(91\) 0.253096 + 0.301628i 0.0265317 + 0.0316192i
\(92\) 0 0
\(93\) −13.5715 + 4.93961i −1.40730 + 0.512214i
\(94\) 0 0
\(95\) 10.2790 + 3.40805i 1.05460 + 0.349658i
\(96\) 0 0
\(97\) −7.09258 + 12.2847i −0.720142 + 1.24732i 0.240800 + 0.970575i \(0.422590\pi\)
−0.960942 + 0.276749i \(0.910743\pi\)
\(98\) 0 0
\(99\) 0.208157 + 0.0757630i 0.0209206 + 0.00761447i
\(100\) 0 0
\(101\) −5.15022 + 8.92044i −0.512466 + 0.887617i 0.487430 + 0.873162i \(0.337935\pi\)
−0.999896 + 0.0144548i \(0.995399\pi\)
\(102\) 0 0
\(103\) 3.61083 + 6.25414i 0.355786 + 0.616239i 0.987252 0.159164i \(-0.0508799\pi\)
−0.631466 + 0.775403i \(0.717547\pi\)
\(104\) 0 0
\(105\) −0.269862 0.145568i −0.0263358 0.0142060i
\(106\) 0 0
\(107\) 5.12605 6.10899i 0.495554 0.590578i −0.459067 0.888402i \(-0.651816\pi\)
0.954621 + 0.297823i \(0.0962607\pi\)
\(108\) 0 0
\(109\) 5.36181 14.7315i 0.513568 1.41102i −0.363925 0.931428i \(-0.618563\pi\)
0.877493 0.479589i \(-0.159214\pi\)
\(110\) 0 0
\(111\) 10.2008 1.86810i 0.968214 0.177312i
\(112\) 0 0
\(113\) 2.01058 + 0.731790i 0.189139 + 0.0688410i 0.434853 0.900501i \(-0.356800\pi\)
−0.245714 + 0.969342i \(0.579022\pi\)
\(114\) 0 0
\(115\) −1.83982 4.63343i −0.171564 0.432069i
\(116\) 0 0
\(117\) 0.457083 0.0422574
\(118\) 0 0
\(119\) −0.367911 + 0.212413i −0.0337263 + 0.0194719i
\(120\) 0 0
\(121\) 2.68560 4.65159i 0.244145 0.422872i
\(122\) 0 0
\(123\) 2.44090 6.70633i 0.220089 0.604689i
\(124\) 0 0
\(125\) 10.1304 + 4.73024i 0.906090 + 0.423086i
\(126\) 0 0
\(127\) 5.24797 0.925359i 0.465682 0.0821124i 0.0641163 0.997942i \(-0.479577\pi\)
0.401566 + 0.915830i \(0.368466\pi\)
\(128\) 0 0
\(129\) −3.18910 8.76199i −0.280785 0.771450i
\(130\) 0 0
\(131\) 7.54891 + 8.99644i 0.659551 + 0.786023i 0.987321 0.158735i \(-0.0507415\pi\)
−0.327770 + 0.944758i \(0.606297\pi\)
\(132\) 0 0
\(133\) −0.0676398 0.383605i −0.00586512 0.0332627i
\(134\) 0 0
\(135\) −10.9602 + 4.35204i −0.943306 + 0.374564i
\(136\) 0 0
\(137\) −8.88650 + 5.13062i −0.759225 + 0.438339i −0.829017 0.559223i \(-0.811100\pi\)
0.0697927 + 0.997562i \(0.477766\pi\)
\(138\) 0 0
\(139\) 9.55309 8.01599i 0.810283 0.679908i −0.140393 0.990096i \(-0.544836\pi\)
0.950675 + 0.310188i \(0.100392\pi\)
\(140\) 0 0
\(141\) 0.369542 2.09577i 0.0311210 0.176496i
\(142\) 0 0
\(143\) −2.01686 + 11.4382i −0.168659 + 0.956511i
\(144\) 0 0
\(145\) 2.88973 19.7044i 0.239979 1.63636i
\(146\) 0 0
\(147\) 11.9232i 0.983406i
\(148\) 0 0
\(149\) −8.41838 −0.689660 −0.344830 0.938665i \(-0.612063\pi\)
−0.344830 + 0.938665i \(0.612063\pi\)
\(150\) 0 0
\(151\) 10.8015 3.93144i 0.879017 0.319936i 0.137204 0.990543i \(-0.456188\pi\)
0.741813 + 0.670607i \(0.233966\pi\)
\(152\) 0 0
\(153\) −0.0856367 + 0.485670i −0.00692331 + 0.0392641i
\(154\) 0 0
\(155\) −14.8566 11.7512i −1.19331 0.943879i
\(156\) 0 0
\(157\) −5.44329 6.48707i −0.434422 0.517724i 0.503771 0.863838i \(-0.331946\pi\)
−0.938193 + 0.346113i \(0.887501\pi\)
\(158\) 0 0
\(159\) 8.67748 + 15.0298i 0.688169 + 1.19194i
\(160\) 0 0
\(161\) −0.115265 + 0.137367i −0.00908413 + 0.0108261i
\(162\) 0 0
\(163\) 3.03781 + 17.2283i 0.237939 + 1.34942i 0.836334 + 0.548220i \(0.184694\pi\)
−0.598395 + 0.801202i \(0.704194\pi\)
\(164\) 0 0
\(165\) −1.82745 8.85804i −0.142267 0.689597i
\(166\) 0 0
\(167\) 13.2056 4.80643i 1.02188 0.371933i 0.223894 0.974613i \(-0.428123\pi\)
0.797982 + 0.602681i \(0.205901\pi\)
\(168\) 0 0
\(169\) 1.90423 + 10.7994i 0.146480 + 0.830727i
\(170\) 0 0
\(171\) −0.391598 0.226089i −0.0299463 0.0172895i
\(172\) 0 0
\(173\) −3.11090 + 8.54714i −0.236518 + 0.649827i 0.763474 + 0.645838i \(0.223492\pi\)
−0.999992 + 0.00398872i \(0.998730\pi\)
\(174\) 0 0
\(175\) −0.0232449 0.401479i −0.00175715 0.0303490i
\(176\) 0 0
\(177\) −0.0342332 0.0592936i −0.00257312 0.00445678i
\(178\) 0 0
\(179\) 8.50177i 0.635452i −0.948183 0.317726i \(-0.897081\pi\)
0.948183 0.317726i \(-0.102919\pi\)
\(180\) 0 0
\(181\) 1.55177 + 1.30209i 0.115342 + 0.0967833i 0.698634 0.715479i \(-0.253791\pi\)
−0.583293 + 0.812262i \(0.698236\pi\)
\(182\) 0 0
\(183\) 17.3255 + 6.30595i 1.28073 + 0.466149i
\(184\) 0 0
\(185\) 9.10726 + 10.1024i 0.669579 + 0.742741i
\(186\) 0 0
\(187\) −11.7757 4.28600i −0.861123 0.313423i
\(188\) 0 0
\(189\) 0.324938 + 0.272655i 0.0236357 + 0.0198327i
\(190\) 0 0
\(191\) 5.28657i 0.382523i −0.981539 0.191262i \(-0.938742\pi\)
0.981539 0.191262i \(-0.0612579\pi\)
\(192\) 0 0
\(193\) −7.00497 12.1330i −0.504229 0.873349i −0.999988 0.00488961i \(-0.998444\pi\)
0.495760 0.868460i \(-0.334890\pi\)
\(194\) 0 0
\(195\) −9.79483 15.8860i −0.701423 1.13762i
\(196\) 0 0
\(197\) 4.44150 12.2029i 0.316444 0.869422i −0.674874 0.737933i \(-0.735802\pi\)
0.991318 0.131489i \(-0.0419759\pi\)
\(198\) 0 0
\(199\) 18.1499 + 10.4789i 1.28662 + 0.742828i 0.978049 0.208375i \(-0.0668176\pi\)
0.308566 + 0.951203i \(0.400151\pi\)
\(200\) 0 0
\(201\) 0.448686 + 2.54462i 0.0316479 + 0.179484i
\(202\) 0 0
\(203\) −0.673137 + 0.245002i −0.0472450 + 0.0171958i
\(204\) 0 0
\(205\) 9.16723 1.89124i 0.640267 0.132090i
\(206\) 0 0
\(207\) 0.0361474 + 0.205002i 0.00251242 + 0.0142486i
\(208\) 0 0
\(209\) 7.38565 8.80187i 0.510876 0.608838i
\(210\) 0 0
\(211\) −6.37504 11.0419i −0.438876 0.760156i 0.558727 0.829352i \(-0.311290\pi\)
−0.997603 + 0.0691959i \(0.977957\pi\)
\(212\) 0 0
\(213\) 13.5695 + 16.1715i 0.929768 + 1.10805i
\(214\) 0 0
\(215\) 7.58679 9.59167i 0.517415 0.654146i
\(216\) 0 0
\(217\) −0.118314 + 0.670992i −0.00803167 + 0.0455499i
\(218\) 0 0
\(219\) −20.5795 + 7.49032i −1.39063 + 0.506149i
\(220\) 0 0
\(221\) −25.8577 −1.73938
\(222\) 0 0
\(223\) 21.6797i 1.45178i −0.687811 0.725890i \(-0.741428\pi\)
0.687811 0.725890i \(-0.258572\pi\)
\(224\) 0 0
\(225\) −0.374367 0.278906i −0.0249578 0.0185937i
\(226\) 0 0
\(227\) 3.15501 17.8930i 0.209406 1.18760i −0.680949 0.732331i \(-0.738433\pi\)
0.890355 0.455267i \(-0.150456\pi\)
\(228\) 0 0
\(229\) 4.25230 24.1160i 0.281000 1.59363i −0.438234 0.898861i \(-0.644396\pi\)
0.719234 0.694768i \(-0.244493\pi\)
\(230\) 0 0
\(231\) −0.249217 + 0.209117i −0.0163972 + 0.0137589i
\(232\) 0 0
\(233\) 0.952643 0.550009i 0.0624097 0.0360323i −0.468470 0.883479i \(-0.655195\pi\)
0.530880 + 0.847447i \(0.321861\pi\)
\(234\) 0 0
\(235\) 2.59413 1.03006i 0.169222 0.0671939i
\(236\) 0 0
\(237\) 5.08320 + 28.8283i 0.330189 + 1.87260i
\(238\) 0 0
\(239\) 17.9038 + 21.3369i 1.15810 + 1.38017i 0.911628 + 0.411017i \(0.134826\pi\)
0.246470 + 0.969150i \(0.420729\pi\)
\(240\) 0 0
\(241\) −2.91049 7.99649i −0.187481 0.515099i 0.809969 0.586473i \(-0.199484\pi\)
−0.997450 + 0.0713736i \(0.977262\pi\)
\(242\) 0 0
\(243\) 0.955215 0.168430i 0.0612771 0.0108048i
\(244\) 0 0
\(245\) 13.3112 8.20730i 0.850420 0.524345i
\(246\) 0 0
\(247\) 8.10891 22.2791i 0.515958 1.41758i
\(248\) 0 0
\(249\) −6.40460 + 11.0931i −0.405875 + 0.702996i
\(250\) 0 0
\(251\) 12.3125 7.10865i 0.777161 0.448694i −0.0582625 0.998301i \(-0.518556\pi\)
0.835423 + 0.549607i \(0.185223\pi\)
\(252\) 0 0
\(253\) −5.28954 −0.332550
\(254\) 0 0
\(255\) 18.7146 7.43110i 1.17195 0.465353i
\(256\) 0 0
\(257\) −9.09685 3.31098i −0.567446 0.206533i 0.0423351 0.999103i \(-0.486520\pi\)
−0.609781 + 0.792570i \(0.708743\pi\)
\(258\) 0 0
\(259\) 0.164295 0.460827i 0.0102088 0.0286344i
\(260\) 0 0
\(261\) −0.284412 + 0.781415i −0.0176046 + 0.0483683i
\(262\) 0 0
\(263\) −18.0445 + 21.5046i −1.11267 + 1.32603i −0.172624 + 0.984988i \(0.555225\pi\)
−0.940048 + 0.341043i \(0.889220\pi\)
\(264\) 0 0
\(265\) −10.8064 + 20.0334i −0.663831 + 1.23064i
\(266\) 0 0
\(267\) −0.953901 1.65220i −0.0583778 0.101113i
\(268\) 0 0
\(269\) 4.12941 7.15235i 0.251775 0.436086i −0.712240 0.701936i \(-0.752319\pi\)
0.964014 + 0.265850i \(0.0856525\pi\)
\(270\) 0 0
\(271\) −28.1820 10.2574i −1.71193 0.623093i −0.714840 0.699288i \(-0.753501\pi\)
−0.997093 + 0.0761948i \(0.975723\pi\)
\(272\) 0 0
\(273\) −0.335647 + 0.581358i −0.0203143 + 0.0351854i
\(274\) 0 0
\(275\) 8.63131 8.13761i 0.520488 0.490716i
\(276\) 0 0
\(277\) −22.6189 + 8.23259i −1.35904 + 0.494649i −0.915756 0.401735i \(-0.868407\pi\)
−0.443280 + 0.896383i \(0.646185\pi\)
\(278\) 0 0
\(279\) 0.508406 + 0.605895i 0.0304375 + 0.0362740i
\(280\) 0 0
\(281\) −6.32774 + 1.11575i −0.377481 + 0.0665602i −0.359170 0.933272i \(-0.616940\pi\)
−0.0183115 + 0.999832i \(0.505829\pi\)
\(282\) 0 0
\(283\) −10.1239 8.49499i −0.601805 0.504975i 0.290220 0.956960i \(-0.406271\pi\)
−0.892025 + 0.451985i \(0.850716\pi\)
\(284\) 0 0
\(285\) 0.533805 + 18.4549i 0.0316199 + 1.09317i
\(286\) 0 0
\(287\) −0.216417 0.257915i −0.0127747 0.0152243i
\(288\) 0 0
\(289\) 1.89254 10.7332i 0.111326 0.631362i
\(290\) 0 0
\(291\) −23.8167 4.19952i −1.39616 0.246180i
\(292\) 0 0
\(293\) 8.73125 + 23.9889i 0.510085 + 1.40145i 0.881149 + 0.472839i \(0.156771\pi\)
−0.371064 + 0.928607i \(0.621007\pi\)
\(294\) 0 0
\(295\) 0.0426318 0.0790331i 0.00248212 0.00460149i
\(296\) 0 0
\(297\) 12.5122i 0.726033i
\(298\) 0 0
\(299\) −10.2564 + 3.73301i −0.593141 + 0.215886i
\(300\) 0 0
\(301\) −0.433205 0.0763857i −0.0249695 0.00440280i
\(302\) 0 0
\(303\) −17.2943 3.04945i −0.993530 0.175186i
\(304\) 0 0
\(305\) 4.88591 + 23.6831i 0.279767 + 1.35609i
\(306\) 0 0
\(307\) −3.29602 + 1.90296i −0.188114 + 0.108607i −0.591099 0.806599i \(-0.701306\pi\)
0.402986 + 0.915206i \(0.367972\pi\)
\(308\) 0 0
\(309\) −7.91407 + 9.43162i −0.450216 + 0.536546i
\(310\) 0 0
\(311\) −20.1434 + 3.55182i −1.14223 + 0.201405i −0.712579 0.701592i \(-0.752473\pi\)
−0.429647 + 0.902997i \(0.641362\pi\)
\(312\) 0 0
\(313\) 6.58564 5.52601i 0.372242 0.312348i −0.437406 0.899264i \(-0.644103\pi\)
0.809648 + 0.586916i \(0.199658\pi\)
\(314\) 0 0
\(315\) −0.00243655 + 0.0166143i −0.000137284 + 0.000936108i
\(316\) 0 0
\(317\) 14.7726 2.60480i 0.829710 0.146300i 0.257366 0.966314i \(-0.417145\pi\)
0.572344 + 0.820014i \(0.306034\pi\)
\(318\) 0 0
\(319\) −18.2994 10.5652i −1.02457 0.591536i
\(320\) 0 0
\(321\) 12.7760 + 4.65010i 0.713089 + 0.259543i
\(322\) 0 0
\(323\) 22.1532 + 12.7901i 1.23263 + 0.711662i
\(324\) 0 0
\(325\) 10.9930 21.8702i 0.609784 1.21314i
\(326\) 0 0
\(327\) 26.7273 1.47802
\(328\) 0 0
\(329\) −0.0769080 0.0645335i −0.00424008 0.00355785i
\(330\) 0 0
\(331\) −5.20508 + 14.3008i −0.286097 + 0.786045i 0.710506 + 0.703691i \(0.248466\pi\)
−0.996603 + 0.0823541i \(0.973756\pi\)
\(332\) 0 0
\(333\) −0.287204 0.489963i −0.0157387 0.0268498i
\(334\) 0 0
\(335\) −2.53200 + 2.25251i −0.138338 + 0.123068i
\(336\) 0 0
\(337\) −10.2878 + 12.2606i −0.560414 + 0.667875i −0.969634 0.244561i \(-0.921356\pi\)
0.409220 + 0.912436i \(0.365801\pi\)
\(338\) 0 0
\(339\) 3.64779i 0.198121i
\(340\) 0 0
\(341\) −17.4054 + 10.0490i −0.942557 + 0.544186i
\(342\) 0 0
\(343\) −0.974715 0.562752i −0.0526297 0.0303857i
\(344\) 0 0
\(345\) 6.35025 5.64929i 0.341886 0.304148i
\(346\) 0 0
\(347\) −1.92108 + 3.32740i −0.103129 + 0.178624i −0.912972 0.408022i \(-0.866219\pi\)
0.809843 + 0.586646i \(0.199552\pi\)
\(348\) 0 0
\(349\) 1.25828 + 7.13607i 0.0673543 + 0.381985i 0.999787 + 0.0206413i \(0.00657080\pi\)
−0.932433 + 0.361344i \(0.882318\pi\)
\(350\) 0 0
\(351\) 8.83032 + 24.2611i 0.471328 + 1.29496i
\(352\) 0 0
\(353\) 13.0242 10.9286i 0.693208 0.581671i −0.226624 0.973982i \(-0.572769\pi\)
0.919832 + 0.392312i \(0.128325\pi\)
\(354\) 0 0
\(355\) −8.71354 + 26.2808i −0.462467 + 1.39484i
\(356\) 0 0
\(357\) −0.554831 0.465559i −0.0293648 0.0246400i
\(358\) 0 0
\(359\) 1.00440 + 1.73968i 0.0530104 + 0.0918166i 0.891313 0.453389i \(-0.149785\pi\)
−0.838303 + 0.545205i \(0.816452\pi\)
\(360\) 0 0
\(361\) −3.41232 + 2.86327i −0.179596 + 0.150699i
\(362\) 0 0
\(363\) 9.01814 + 1.59014i 0.473330 + 0.0834608i
\(364\) 0 0
\(365\) −22.5282 17.8193i −1.17918 0.932703i
\(366\) 0 0
\(367\) 1.11071 + 3.05166i 0.0579787 + 0.159295i 0.965300 0.261142i \(-0.0840990\pi\)
−0.907322 + 0.420437i \(0.861877\pi\)
\(368\) 0 0
\(369\) −0.390842 −0.0203464
\(370\) 0 0
\(371\) 0.818744 0.0425071
\(372\) 0 0
\(373\) −3.39200 9.31944i −0.175631 0.482542i 0.820375 0.571826i \(-0.193765\pi\)
−0.996006 + 0.0892833i \(0.971542\pi\)
\(374\) 0 0
\(375\) −1.67109 + 18.9878i −0.0862948 + 0.980526i
\(376\) 0 0
\(377\) −42.9386 7.57124i −2.21145 0.389939i
\(378\) 0 0
\(379\) 13.0928 10.9862i 0.672532 0.564322i −0.241281 0.970455i \(-0.577568\pi\)
0.913814 + 0.406133i \(0.133123\pi\)
\(380\) 0 0
\(381\) 4.54261 + 7.86803i 0.232725 + 0.403091i
\(382\) 0 0
\(383\) 7.45459 + 6.25514i 0.380912 + 0.319623i 0.813060 0.582180i \(-0.197800\pi\)
−0.432149 + 0.901802i \(0.642244\pi\)
\(384\) 0 0
\(385\) −0.405010 0.134283i −0.0206412 0.00684369i
\(386\) 0 0
\(387\) −0.391177 + 0.328236i −0.0198846 + 0.0166852i
\(388\) 0 0
\(389\) −2.97958 8.18632i −0.151071 0.415063i 0.840954 0.541106i \(-0.181994\pi\)
−0.992025 + 0.126043i \(0.959772\pi\)
\(390\) 0 0
\(391\) −2.04490 11.5972i −0.103415 0.586496i
\(392\) 0 0
\(393\) −10.0111 + 17.3397i −0.504993 + 0.874674i
\(394\) 0 0
\(395\) −28.6852 + 25.5189i −1.44331 + 1.28399i
\(396\) 0 0
\(397\) 20.4266 + 11.7933i 1.02518 + 0.591890i 0.915601 0.402088i \(-0.131715\pi\)
0.109582 + 0.993978i \(0.465049\pi\)
\(398\) 0 0
\(399\) 0.575119 0.332045i 0.0287920 0.0166231i
\(400\) 0 0
\(401\) 30.5230i 1.52424i −0.647434 0.762122i \(-0.724158\pi\)
0.647434 0.762122i \(-0.275842\pi\)
\(402\) 0 0
\(403\) −26.6570 + 31.7686i −1.32788 + 1.58251i
\(404\) 0 0
\(405\) −12.9469 14.5534i −0.643337 0.723163i
\(406\) 0 0
\(407\) 13.5283 5.02514i 0.670571 0.249087i
\(408\) 0 0
\(409\) −3.05621 + 8.39687i −0.151120 + 0.415198i −0.992034 0.125970i \(-0.959796\pi\)
0.840914 + 0.541168i \(0.182018\pi\)
\(410\) 0 0
\(411\) −13.4014 11.2451i −0.661040 0.554679i
\(412\) 0 0
\(413\) −0.00323000 −0.000158938
\(414\) 0 0
\(415\) −16.7931 + 0.485737i −0.824339 + 0.0238439i
\(416\) 0 0
\(417\) 18.4126 + 10.6305i 0.901670 + 0.520579i
\(418\) 0 0
\(419\) 31.6082 + 11.5044i 1.54416 + 0.562029i 0.967039 0.254628i \(-0.0819531\pi\)
0.577123 + 0.816657i \(0.304175\pi\)
\(420\) 0 0
\(421\) 24.8740 + 14.3610i 1.21229 + 0.699914i 0.963257 0.268582i \(-0.0865550\pi\)
0.249030 + 0.968496i \(0.419888\pi\)
\(422\) 0 0
\(423\) −0.114775 + 0.0202379i −0.00558055 + 0.000984001i
\(424\) 0 0
\(425\) 21.1783 + 15.7780i 1.02730 + 0.765346i
\(426\) 0 0
\(427\) 0.666312 0.559102i 0.0322451 0.0270568i
\(428\) 0 0
\(429\) −19.5008 + 3.43852i −0.941509 + 0.166013i
\(430\) 0 0
\(431\) −12.3342 + 14.6993i −0.594118 + 0.708042i −0.976392 0.216007i \(-0.930697\pi\)
0.382274 + 0.924049i \(0.375141\pi\)
\(432\) 0 0
\(433\) −2.31009 + 1.33373i −0.111016 + 0.0640951i −0.554480 0.832197i \(-0.687083\pi\)
0.443464 + 0.896292i \(0.353749\pi\)
\(434\) 0 0
\(435\) 33.2528 6.86018i 1.59435 0.328920i
\(436\) 0 0
\(437\) 10.6334 + 1.87496i 0.508666 + 0.0896916i
\(438\) 0 0
\(439\) −12.4602 2.19707i −0.594693 0.104861i −0.131803 0.991276i \(-0.542077\pi\)
−0.462891 + 0.886415i \(0.653188\pi\)
\(440\) 0 0
\(441\) −0.613592 + 0.223329i −0.0292187 + 0.0106347i
\(442\) 0 0
\(443\) 11.4388i 0.543472i −0.962372 0.271736i \(-0.912402\pi\)
0.962372 0.271736i \(-0.0875978\pi\)
\(444\) 0 0
\(445\) 1.18793 2.20224i 0.0563131 0.104396i
\(446\) 0 0
\(447\) −4.90880 13.4868i −0.232178 0.637904i
\(448\) 0 0
\(449\) −6.69110 1.17982i −0.315773 0.0556792i 0.0135157 0.999909i \(-0.495698\pi\)
−0.329288 + 0.944229i \(0.606809\pi\)
\(450\) 0 0
\(451\) 1.72458 9.78056i 0.0812071 0.460548i
\(452\) 0 0
\(453\) 12.5969 + 15.0124i 0.591852 + 0.705342i
\(454\) 0 0
\(455\) −0.880078 + 0.0254561i −0.0412587 + 0.00119340i
\(456\) 0 0
\(457\) 26.2633 + 22.0375i 1.22855 + 1.03087i 0.998332 + 0.0577323i \(0.0183870\pi\)
0.230214 + 0.973140i \(0.426057\pi\)
\(458\) 0 0
\(459\) −27.4328 + 4.83714i −1.28045 + 0.225779i
\(460\) 0 0
\(461\) 19.8726 + 23.6832i 0.925557 + 1.10304i 0.994429 + 0.105411i \(0.0336158\pi\)
−0.0688713 + 0.997626i \(0.521940\pi\)
\(462\) 0 0
\(463\) −1.73394 + 0.631102i −0.0805829 + 0.0293298i −0.381997 0.924164i \(-0.624764\pi\)
0.301414 + 0.953493i \(0.402541\pi\)
\(464\) 0 0
\(465\) 10.1633 30.6534i 0.471311 1.42152i
\(466\) 0 0
\(467\) −18.4199 + 31.9042i −0.852372 + 1.47635i 0.0266889 + 0.999644i \(0.491504\pi\)
−0.879061 + 0.476709i \(0.841830\pi\)
\(468\) 0 0
\(469\) 0.114547 + 0.0416916i 0.00528928 + 0.00192514i
\(470\) 0 0
\(471\) 7.21871 12.5032i 0.332620 0.576115i
\(472\) 0 0
\(473\) −6.48784 11.2373i −0.298311 0.516690i
\(474\) 0 0
\(475\) −20.2358 + 13.2993i −0.928484 + 0.610216i
\(476\) 0 0
\(477\) 0.610933 0.728082i 0.0279727 0.0333366i
\(478\) 0 0
\(479\) −1.74879 + 4.80475i −0.0799041 + 0.219535i −0.973212 0.229911i \(-0.926156\pi\)
0.893307 + 0.449446i \(0.148379\pi\)
\(480\) 0 0
\(481\) 22.6848 19.2911i 1.03434 0.879597i
\(482\) 0 0
\(483\) −0.287283 0.104562i −0.0130718 0.00475776i
\(484\) 0 0
\(485\) −11.7058 29.4800i −0.531532 1.33862i
\(486\) 0 0
\(487\) 21.6004 0.978808 0.489404 0.872057i \(-0.337214\pi\)
0.489404 + 0.872057i \(0.337214\pi\)
\(488\) 0 0
\(489\) −25.8295 + 14.9127i −1.16805 + 0.674374i
\(490\) 0 0
\(491\) −7.85865 + 13.6116i −0.354656 + 0.614282i −0.987059 0.160357i \(-0.948735\pi\)
0.632403 + 0.774639i \(0.282069\pi\)
\(492\) 0 0
\(493\) 16.0895 44.2055i 0.724634 1.99092i
\(494\) 0 0
\(495\) −0.421624 + 0.259962i −0.0189506 + 0.0116844i
\(496\) 0 0
\(497\) 0.980782 0.172938i 0.0439941 0.00775735i
\(498\) 0 0
\(499\) 0.344270 + 0.945875i 0.0154117 + 0.0423432i 0.947160 0.320762i \(-0.103939\pi\)
−0.931748 + 0.363105i \(0.881717\pi\)
\(500\) 0 0
\(501\) 15.4004 + 18.3535i 0.688041 + 0.819976i
\(502\) 0 0
\(503\) −1.90172 10.7852i −0.0847936 0.480888i −0.997401 0.0720512i \(-0.977045\pi\)
0.912607 0.408837i \(-0.134066\pi\)
\(504\) 0 0
\(505\) −8.50005 21.4066i −0.378247 0.952583i
\(506\) 0 0
\(507\) −16.1911 + 9.34792i −0.719071 + 0.415156i
\(508\) 0 0
\(509\) 5.84423 4.90389i 0.259041 0.217361i −0.504013 0.863696i \(-0.668144\pi\)
0.763054 + 0.646335i \(0.223699\pi\)
\(510\) 0 0
\(511\) −0.179409 + 1.01748i −0.00793657 + 0.0450105i
\(512\) 0 0
\(513\) 4.43516 25.1531i 0.195817 1.11053i
\(514\) 0 0
\(515\) −15.9772 2.34313i −0.704041 0.103251i
\(516\) 0 0
\(517\) 2.96146i 0.130245i
\(518\) 0 0
\(519\) −15.5071 −0.680685
\(520\) 0 0
\(521\) −16.1961 + 5.89491i −0.709565 + 0.258261i −0.671489 0.741014i \(-0.734345\pi\)
−0.0380760 + 0.999275i \(0.512123\pi\)
\(522\) 0 0
\(523\) 1.00314 5.68911i 0.0438644 0.248767i −0.954989 0.296641i \(-0.904133\pi\)
0.998853 + 0.0478740i \(0.0152446\pi\)
\(524\) 0 0
\(525\) 0.629642 0.271344i 0.0274798 0.0118424i
\(526\) 0 0
\(527\) −28.7611 34.2762i −1.25285 1.49309i
\(528\) 0 0
\(529\) 9.01464 + 15.6138i 0.391941 + 0.678862i
\(530\) 0 0
\(531\) −0.00241017 + 0.00287233i −0.000104592 + 0.000124648i
\(532\) 0 0
\(533\) −3.55854 20.1815i −0.154138 0.874158i
\(534\) 0 0
\(535\) 3.60294 + 17.4642i 0.155769 + 0.755045i
\(536\) 0 0
\(537\) 13.6204 4.95742i 0.587764 0.213929i
\(538\) 0 0
\(539\) −2.88121 16.3402i −0.124103 0.703820i
\(540\) 0 0
\(541\) −18.6176 10.7489i −0.800433 0.462130i 0.0431893 0.999067i \(-0.486248\pi\)
−0.843623 + 0.536937i \(0.819581\pi\)
\(542\) 0 0
\(543\) −1.18119 + 3.24529i −0.0506896 + 0.139269i
\(544\) 0 0
\(545\) 18.3977 + 29.8387i 0.788071 + 1.27815i
\(546\) 0 0
\(547\) −10.2159 17.6945i −0.436802 0.756563i 0.560639 0.828060i \(-0.310556\pi\)
−0.997441 + 0.0714973i \(0.977222\pi\)
\(548\) 0 0
\(549\) 1.00972i 0.0430938i
\(550\) 0 0
\(551\) 33.0419 + 27.7255i 1.40763 + 1.18114i
\(552\) 0 0
\(553\) 1.29771 + 0.472327i 0.0551842 + 0.0200854i
\(554\) 0 0
\(555\) −10.8742 + 20.4812i −0.461584 + 0.869378i
\(556\) 0 0
\(557\) −39.6227 14.4215i −1.67887 0.611057i −0.685712 0.727873i \(-0.740509\pi\)
−0.993154 + 0.116816i \(0.962731\pi\)
\(558\) 0 0
\(559\) −20.5104 17.2103i −0.867498 0.727917i
\(560\) 0 0
\(561\) 21.3646i 0.902016i
\(562\) 0 0
\(563\) −9.41619 16.3093i −0.396845 0.687356i 0.596490 0.802621i \(-0.296562\pi\)
−0.993335 + 0.115265i \(0.963228\pi\)
\(564\) 0 0
\(565\) −4.07244 + 2.51095i −0.171329 + 0.105637i
\(566\) 0 0
\(567\) −0.239634 + 0.658389i −0.0100637 + 0.0276497i
\(568\) 0 0
\(569\) −8.64894 4.99347i −0.362582 0.209337i 0.307631 0.951506i \(-0.400464\pi\)
−0.670213 + 0.742169i \(0.733797\pi\)
\(570\) 0 0
\(571\) −4.48352 25.4273i −0.187629 1.06410i −0.922530 0.385925i \(-0.873882\pi\)
0.734901 0.678174i \(-0.237229\pi\)
\(572\) 0 0
\(573\) 8.46945 3.08263i 0.353816 0.128779i
\(574\) 0 0
\(575\) 10.6781 + 3.20083i 0.445309 + 0.133484i
\(576\) 0 0
\(577\) −7.73305 43.8563i −0.321931 1.82576i −0.530416 0.847737i \(-0.677964\pi\)
0.208485 0.978026i \(-0.433147\pi\)
\(578\) 0 0
\(579\) 15.3532 18.2972i 0.638057 0.760406i
\(580\) 0 0
\(581\) 0.302146 + 0.523331i 0.0125351 + 0.0217114i
\(582\) 0 0
\(583\) 15.5240 + 18.5008i 0.642940 + 0.766226i
\(584\) 0 0
\(585\) −0.634062 + 0.801618i −0.0262152 + 0.0331428i
\(586\) 0 0
\(587\) −3.39032 + 19.2275i −0.139934 + 0.793603i 0.831363 + 0.555730i \(0.187561\pi\)
−0.971296 + 0.237873i \(0.923550\pi\)
\(588\) 0 0
\(589\) 38.5518 14.0317i 1.58850 0.578166i
\(590\) 0 0
\(591\) 22.1398 0.910709
\(592\) 0 0
\(593\) 15.3790i 0.631540i −0.948836 0.315770i \(-0.897737\pi\)
0.948836 0.315770i \(-0.102263\pi\)
\(594\) 0 0
\(595\) 0.137838 0.939888i 0.00565083 0.0385316i
\(596\) 0 0
\(597\) −6.20454 + 35.1877i −0.253935 + 1.44014i
\(598\) 0 0
\(599\) −3.02042 + 17.1296i −0.123411 + 0.699898i 0.858828 + 0.512264i \(0.171193\pi\)
−0.982239 + 0.187634i \(0.939918\pi\)
\(600\) 0 0
\(601\) 3.37731 2.83390i 0.137763 0.115597i −0.571302 0.820740i \(-0.693561\pi\)
0.709065 + 0.705143i \(0.249117\pi\)
\(602\) 0 0
\(603\) 0.122548 0.0707529i 0.00499053 0.00288128i
\(604\) 0 0
\(605\) 4.43237 + 11.1626i 0.180202 + 0.453822i
\(606\) 0 0
\(607\) 5.66111 + 32.1057i 0.229777 + 1.30313i 0.853339 + 0.521357i \(0.174574\pi\)
−0.623561 + 0.781775i \(0.714315\pi\)
\(608\) 0 0
\(609\) −0.785020 0.935550i −0.0318106 0.0379104i
\(610\) 0 0
\(611\) −2.09001 5.74225i −0.0845527 0.232307i
\(612\) 0 0
\(613\) 5.67013 0.999796i 0.229014 0.0403814i −0.0579632 0.998319i \(-0.518461\pi\)
0.286977 + 0.957937i \(0.407350\pi\)
\(614\) 0 0
\(615\) 8.37534 + 13.5837i 0.337726 + 0.547749i
\(616\) 0 0
\(617\) −1.64913 + 4.53095i −0.0663916 + 0.182409i −0.968452 0.249201i \(-0.919832\pi\)
0.902060 + 0.431610i \(0.142054\pi\)
\(618\) 0 0
\(619\) 3.46095 5.99455i 0.139107 0.240941i −0.788052 0.615609i \(-0.788910\pi\)
0.927159 + 0.374668i \(0.122243\pi\)
\(620\) 0 0
\(621\) −10.1828 + 5.87903i −0.408621 + 0.235918i
\(622\) 0 0
\(623\) −0.0900031 −0.00360590
\(624\) 0 0
\(625\) −22.3485 + 11.2046i −0.893941 + 0.448184i
\(626\) 0 0
\(627\) 18.4078 + 6.69989i 0.735137 + 0.267568i
\(628\) 0 0
\(629\) 16.2474 + 27.7177i 0.647828 + 1.10518i
\(630\) 0 0
\(631\) −1.89785 + 5.21429i −0.0755521 + 0.207578i −0.971719 0.236139i \(-0.924118\pi\)
0.896167 + 0.443716i \(0.146340\pi\)
\(632\) 0 0
\(633\) 13.9726 16.6518i 0.555359 0.661851i
\(634\) 0 0
\(635\) −5.65707 + 10.4874i −0.224494 + 0.416179i
\(636\) 0 0
\(637\) −17.1185 29.6500i −0.678258 1.17478i
\(638\) 0 0
\(639\) 0.578055 1.00122i 0.0228675 0.0396077i
\(640\) 0 0
\(641\) −21.3012 7.75301i −0.841348 0.306226i −0.114840 0.993384i \(-0.536636\pi\)
−0.726508 + 0.687158i \(0.758858\pi\)
\(642\) 0 0
\(643\) 4.53745 7.85909i 0.178939 0.309932i −0.762578 0.646896i \(-0.776067\pi\)
0.941518 + 0.336964i \(0.109400\pi\)
\(644\) 0 0
\(645\) 19.7904 + 6.56160i 0.779246 + 0.258363i
\(646\) 0 0
\(647\) 6.56351 2.38892i 0.258038 0.0939182i −0.209762 0.977752i \(-0.567269\pi\)
0.467800 + 0.883834i \(0.345047\pi\)
\(648\) 0 0
\(649\) −0.0612432 0.0729869i −0.00240401 0.00286498i
\(650\) 0 0
\(651\) −1.14396 + 0.201712i −0.0448355 + 0.00790570i
\(652\) 0 0
\(653\) −26.4196 22.1686i −1.03388 0.867526i −0.0425699 0.999093i \(-0.513555\pi\)
−0.991307 + 0.131568i \(0.957999\pi\)
\(654\) 0 0
\(655\) −26.2494 + 0.759262i −1.02565 + 0.0296668i
\(656\) 0 0
\(657\) 0.770936 + 0.918766i 0.0300771 + 0.0358445i
\(658\) 0 0
\(659\) 4.70805 26.7007i 0.183400 1.04011i −0.744595 0.667517i \(-0.767357\pi\)
0.927994 0.372594i \(-0.121532\pi\)
\(660\) 0 0
\(661\) 22.5175 + 3.97044i 0.875828 + 0.154432i 0.593450 0.804871i \(-0.297766\pi\)
0.282378 + 0.959303i \(0.408877\pi\)
\(662\) 0 0
\(663\) −15.0778 41.4258i −0.585572 1.60885i
\(664\) 0 0
\(665\) 0.766583 + 0.413508i 0.0297268 + 0.0160352i
\(666\) 0 0
\(667\) 19.8567i 0.768856i
\(668\) 0 0
\(669\) 34.7323 12.6415i 1.34283 0.488750i
\(670\) 0 0
\(671\) 25.2676 + 4.45536i 0.975444 + 0.171997i
\(672\) 0 0
\(673\) −28.5452 5.03328i −1.10034 0.194019i −0.406144 0.913809i \(-0.633127\pi\)
−0.694192 + 0.719790i \(0.744238\pi\)
\(674\) 0 0
\(675\) 7.57146 25.2588i 0.291425 0.972211i
\(676\) 0 0
\(677\) 8.15681 4.70934i 0.313492 0.180994i −0.334996 0.942219i \(-0.608735\pi\)
0.648488 + 0.761225i \(0.275402\pi\)
\(678\) 0 0
\(679\) −0.733367 + 0.873993i −0.0281440 + 0.0335408i
\(680\) 0 0
\(681\) 30.5054 5.37893i 1.16897 0.206121i
\(682\) 0 0
\(683\) 1.59763 1.34057i 0.0611316 0.0512955i −0.611710 0.791082i \(-0.709518\pi\)
0.672842 + 0.739787i \(0.265074\pi\)
\(684\) 0 0
\(685\) 3.32934 22.7020i 0.127208 0.867399i
\(686\) 0 0
\(687\) 41.1150 7.24968i 1.56863 0.276592i
\(688\) 0 0
\(689\) 43.1576 + 24.9171i 1.64417 + 0.949265i
\(690\) 0 0
\(691\) −1.09733 0.399394i −0.0417442 0.0151937i 0.321064 0.947058i \(-0.395960\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(692\) 0 0
\(693\) 0.0154296 + 0.00890831i 0.000586124 + 0.000338399i
\(694\) 0 0
\(695\) 0.806241 + 27.8736i 0.0305825 + 1.05731i
\(696\) 0 0
\(697\) 22.1104 0.837490
\(698\) 0 0
\(699\) 1.43664 + 1.20549i 0.0543388 + 0.0455957i
\(700\) 0 0
\(701\) 9.26395 25.4525i 0.349894 0.961327i −0.632509 0.774553i \(-0.717975\pi\)
0.982403 0.186774i \(-0.0598031\pi\)
\(702\) 0 0
\(703\) −28.9768 + 5.30661i −1.09288 + 0.200142i
\(704\) 0 0
\(705\) 3.16288 + 3.55533i 0.119121 + 0.133901i
\(706\) 0 0
\(707\) −0.532528 + 0.634643i −0.0200278 + 0.0238682i
\(708\) 0 0
\(709\) 0.0901398i 0.00338527i −0.999999 0.00169264i \(-0.999461\pi\)
0.999999 0.00169264i \(-0.000538783\pi\)
\(710\) 0 0
\(711\) 1.38835 0.801566i 0.0520673 0.0300611i
\(712\) 0 0
\(713\) −16.3563 9.44334i −0.612550 0.353656i
\(714\) 0 0
\(715\) −17.2622 19.4041i −0.645569 0.725671i
\(716\) 0 0
\(717\) −23.7433 + 41.1247i −0.886711 + 1.53583i
\(718\) 0 0
\(719\) −7.87429 44.6573i −0.293661 1.66544i −0.672594 0.740012i \(-0.734820\pi\)
0.378933 0.925424i \(-0.376291\pi\)
\(720\) 0 0
\(721\) 0.198659 + 0.545811i 0.00739845 + 0.0203271i
\(722\) 0 0
\(723\) 11.1138 9.32559i 0.413327 0.346822i
\(724\) 0 0
\(725\) 30.5483 + 32.4016i 1.13454 + 1.20337i
\(726\) 0 0
\(727\) 36.0121 + 30.2178i 1.33562 + 1.12072i 0.982729 + 0.185049i \(0.0592445\pi\)
0.352887 + 0.935666i \(0.385200\pi\)
\(728\) 0 0
\(729\) 13.8936 + 24.0644i 0.514578 + 0.891275i
\(730\) 0 0
\(731\) 22.1293 18.5687i 0.818483 0.686789i
\(732\) 0 0
\(733\) −38.7519 6.83301i −1.43133 0.252383i −0.596380 0.802702i \(-0.703395\pi\)
−0.834954 + 0.550319i \(0.814506\pi\)
\(734\) 0 0
\(735\) 20.9105 + 16.5397i 0.771294 + 0.610076i
\(736\) 0 0
\(737\) 1.22981 + 3.37887i 0.0453005 + 0.124462i
\(738\) 0 0
\(739\) −23.2174 −0.854064 −0.427032 0.904236i \(-0.640441\pi\)
−0.427032 + 0.904236i \(0.640441\pi\)
\(740\) 0 0
\(741\) 40.4209 1.48490
\(742\) 0 0
\(743\) 5.14467 + 14.1349i 0.188740 + 0.518558i 0.997584 0.0694642i \(-0.0221290\pi\)
−0.808845 + 0.588022i \(0.799907\pi\)
\(744\) 0 0
\(745\) 11.6779 14.7639i 0.427845 0.540907i
\(746\) 0 0
\(747\) 0.690837 + 0.121813i 0.0252764 + 0.00445691i
\(748\) 0 0
\(749\) 0.491348 0.412290i 0.0179535 0.0150647i
\(750\) 0 0
\(751\) 17.7098 + 30.6743i 0.646241 + 1.11932i 0.984013 + 0.178094i \(0.0569931\pi\)
−0.337773 + 0.941228i \(0.609674\pi\)
\(752\) 0 0
\(753\) 18.5680 + 15.5804i 0.676657 + 0.567783i
\(754\) 0 0
\(755\) −8.08896 + 24.3971i −0.294387 + 0.887900i
\(756\) 0 0
\(757\) −15.8884 + 13.3320i −0.577475 + 0.484559i −0.884117 0.467266i \(-0.845239\pi\)
0.306642 + 0.951825i \(0.400795\pi\)
\(758\) 0 0
\(759\) −3.08436 8.47420i −0.111955 0.307594i
\(760\) 0 0
\(761\) 6.95161 + 39.4245i 0.251996 + 1.42914i 0.803669 + 0.595077i \(0.202879\pi\)
−0.551673 + 0.834060i \(0.686010\pi\)
\(762\) 0 0
\(763\) 0.630448 1.09197i 0.0228238 0.0395319i
\(764\) 0 0
\(765\) −0.732958 0.823903i −0.0265001 0.0297883i
\(766\) 0 0
\(767\) −0.170259 0.0982993i −0.00614771 0.00354938i
\(768\) 0 0
\(769\) 21.2021 12.2410i 0.764566 0.441422i −0.0663668 0.997795i \(-0.521141\pi\)
0.830933 + 0.556373i \(0.187807\pi\)
\(770\) 0 0
\(771\) 16.5044i 0.594392i
\(772\) 0 0
\(773\) 16.8541 20.0859i 0.606200 0.722441i −0.372432 0.928059i \(-0.621476\pi\)
0.978632 + 0.205618i \(0.0659205\pi\)
\(774\) 0 0
\(775\) 41.2178 9.75381i 1.48059 0.350367i
\(776\) 0 0
\(777\) 0.834077 0.00549912i 0.0299223 0.000197280i
\(778\) 0 0
\(779\) −6.93375 + 19.0503i −0.248427 + 0.682549i
\(780\) 0 0
\(781\) 22.5042 + 18.8833i 0.805264 + 0.675697i
\(782\) 0 0
\(783\) −46.9705 −1.67859
\(784\) 0 0
\(785\) 18.9277 0.547481i 0.675558 0.0195404i
\(786\) 0 0
\(787\) 11.4299 + 6.59905i 0.407431 + 0.235231i 0.689686 0.724109i \(-0.257749\pi\)
−0.282254 + 0.959340i \(0.591082\pi\)
\(788\) 0 0
\(789\) −44.9737 16.3691i −1.60111 0.582755i
\(790\) 0 0
\(791\) 0.149034 + 0.0860448i 0.00529904 + 0.00305940i
\(792\) 0 0
\(793\) 52.1379 9.19332i 1.85147 0.326464i
\(794\) 0 0
\(795\) −38.3962 5.63096i −1.36177 0.199710i
\(796\) 0 0
\(797\) −26.2544 + 22.0301i −0.929980 + 0.780345i −0.975814 0.218604i \(-0.929850\pi\)
0.0458342 + 0.998949i \(0.485405\pi\)
\(798\) 0 0
\(799\) 6.49295 1.14488i 0.229704 0.0405030i
\(800\) 0 0
\(801\) −0.0671588 + 0.0800367i −0.00237294 + 0.00282796i
\(802\) 0 0
\(803\) −26.3932 + 15.2381i −0.931397 + 0.537742i
\(804\) 0 0
\(805\) −0.0810160 0.392702i −0.00285544 0.0138409i
\(806\) 0 0
\(807\) 13.8664 + 2.44503i 0.488121 + 0.0860690i
\(808\) 0 0
\(809\) −4.36369 0.769436i −0.153419 0.0270519i 0.0964110 0.995342i \(-0.469264\pi\)
−0.249830 + 0.968290i \(0.580375\pi\)
\(810\) 0 0
\(811\) 17.7226 6.45051i 0.622325 0.226508i −0.0115622 0.999933i \(-0.503680\pi\)
0.633888 + 0.773425i \(0.281458\pi\)
\(812\) 0 0
\(813\) 51.1306i 1.79323i
\(814\) 0 0
\(815\) −34.4284 18.5713i −1.20597 0.650523i
\(816\) 0 0
\(817\) 9.05913 + 24.8898i 0.316939 + 0.870782i
\(818\) 0 0
\(819\) 0.0362048 + 0.00638389i 0.00126510 + 0.000223071i
\(820\) 0 0
\(821\) −3.58965 + 20.3579i −0.125280 + 0.710497i 0.855862 + 0.517205i \(0.173027\pi\)
−0.981141 + 0.193292i \(0.938084\pi\)
\(822\) 0 0
\(823\) −18.4212 21.9536i −0.642124 0.765254i 0.342580 0.939489i \(-0.388699\pi\)
−0.984704 + 0.174235i \(0.944255\pi\)
\(824\) 0 0
\(825\) 18.0700 + 9.08286i 0.629115 + 0.316225i
\(826\) 0 0
\(827\) −34.5806 29.0166i −1.20249 1.00900i −0.999556 0.0298114i \(-0.990509\pi\)
−0.202930 0.979193i \(-0.565046\pi\)
\(828\) 0 0
\(829\) 20.3443 3.58725i 0.706588 0.124590i 0.191204 0.981550i \(-0.438761\pi\)
0.515383 + 0.856960i \(0.327650\pi\)
\(830\) 0 0
\(831\) −26.3783 31.4365i −0.915055 1.09052i
\(832\) 0 0
\(833\) 34.7116 12.6340i 1.20269 0.437742i
\(834\) 0 0
\(835\) −9.88926 + 29.8269i −0.342232 + 1.03220i
\(836\) 0 0
\(837\) −22.3379 + 38.6904i −0.772111 + 1.33734i
\(838\) 0 0
\(839\) 21.6041 + 7.86326i 0.745857 + 0.271470i 0.686861 0.726789i \(-0.258988\pi\)
0.0589956 + 0.998258i \(0.481210\pi\)
\(840\) 0 0
\(841\) 25.1613 43.5806i 0.867630 1.50278i
\(842\) 0 0
\(843\) −5.47725 9.48687i −0.188646 0.326745i
\(844\) 0 0
\(845\) −21.5813 11.6413i −0.742418 0.400473i
\(846\) 0 0
\(847\) 0.277688 0.330936i 0.00954149 0.0113711i
\(848\) 0 0
\(849\) 7.70623 21.1727i 0.264477 0.726645i
\(850\) 0 0
\(851\) 10.4460 + 8.64853i 0.358085 + 0.296468i
\(852\) 0 0
\(853\) −6.14681 2.23726i −0.210463 0.0766022i 0.234637 0.972083i \(-0.424610\pi\)
−0.445100 + 0.895481i \(0.646832\pi\)
\(854\) 0 0
\(855\) 0.939730 0.373144i 0.0321381 0.0127612i
\(856\) 0 0
\(857\) 1.02419 0.0349857 0.0174929 0.999847i \(-0.494432\pi\)
0.0174929 + 0.999847i \(0.494432\pi\)
\(858\) 0 0
\(859\) −38.4347 + 22.1903i −1.31137 + 0.757122i −0.982324 0.187190i \(-0.940062\pi\)
−0.329051 + 0.944312i \(0.606729\pi\)
\(860\) 0 0
\(861\) 0.287004 0.497106i 0.00978108 0.0169413i
\(862\) 0 0
\(863\) 1.00086 2.74985i 0.0340698 0.0936061i −0.921491 0.388399i \(-0.873028\pi\)
0.955561 + 0.294793i \(0.0952506\pi\)
\(864\) 0 0
\(865\) −10.6743 17.3123i −0.362936 0.588636i
\(866\) 0 0
\(867\) 18.2988 3.22657i 0.621459 0.109580i
\(868\) 0 0
\(869\) 13.9326 + 38.2795i 0.472631 + 1.29854i
\(870\) 0 0
\(871\) 4.76917 + 5.68368i 0.161597 + 0.192584i
\(872\) 0 0
\(873\) 0.229986 + 1.30432i 0.00778385 + 0.0441444i
\(874\) 0 0
\(875\) 0.736346 + 0.516162i 0.0248930 + 0.0174495i
\(876\) 0 0
\(877\) 10.4440 6.02986i 0.352670 0.203614i −0.313191 0.949690i \(-0.601398\pi\)
0.665860 + 0.746076i \(0.268065\pi\)
\(878\) 0 0
\(879\) −33.3406 + 27.9761i −1.12455 + 0.943610i
\(880\) 0 0
\(881\) 5.07096 28.7588i 0.170845 0.968910i −0.771986 0.635639i \(-0.780737\pi\)
0.942831 0.333271i \(-0.108152\pi\)
\(882\) 0 0
\(883\) 8.30126 47.0788i 0.279360 1.58433i −0.445404 0.895330i \(-0.646940\pi\)
0.724764 0.688997i \(-0.241949\pi\)
\(884\) 0 0
\(885\) 0.151475 + 0.0222145i 0.00509179 + 0.000746731i
\(886\) 0 0
\(887\) 55.4993i 1.86349i −0.363119 0.931743i \(-0.618288\pi\)
0.363119 0.931743i \(-0.381712\pi\)
\(888\) 0 0
\(889\) 0.428608 0.0143750
\(890\) 0 0
\(891\) −19.4210 + 7.06866i −0.650627 + 0.236809i
\(892\) 0 0
\(893\) −1.04974 + 5.95336i −0.0351282 + 0.199222i
\(894\) 0 0
\(895\) 14.9101 + 11.7936i 0.498391 + 0.394215i
\(896\) 0 0
\(897\) −11.9611 14.2547i −0.399369 0.475949i
\(898\) 0 0
\(899\) −37.7237 65.3394i −1.25816 2.17919i
\(900\) 0 0
\(901\) −34.5612 + 41.1884i −1.15140 + 1.37218i
\(902\) 0 0
\(903\) −0.130229 0.738564i −0.00433374 0.0245779i
\(904\) 0 0
\(905\) −4.43615 + 0.915196i −0.147463 + 0.0304221i
\(906\) 0 0
\(907\) −12.2383 + 4.45437i −0.406366 + 0.147905i −0.537112 0.843511i \(-0.680485\pi\)
0.130747 + 0.991416i \(0.458263\pi\)
\(908\) 0 0
\(909\) 0.167003 + 0.947119i 0.00553913 + 0.0314139i
\(910\) 0 0
\(911\) −38.8403 22.4245i −1.28684 0.742956i −0.308748 0.951144i \(-0.599910\pi\)
−0.978089 + 0.208188i \(0.933243\pi\)
\(912\) 0 0
\(913\) −6.09658 + 16.7502i −0.201767 + 0.554352i
\(914\) 0 0
\(915\) −35.0929 + 21.6373i −1.16014 + 0.715306i
\(916\) 0 0
\(917\) 0.472287 + 0.818026i 0.0155963 + 0.0270136i
\(918\) 0 0
\(919\) 14.3337i 0.472826i 0.971653 + 0.236413i \(0.0759719\pi\)
−0.971653 + 0.236413i \(0.924028\pi\)
\(920\) 0 0
\(921\) −4.97059 4.17082i −0.163787 0.137433i
\(922\) 0 0
\(923\) 56.9621 + 20.7325i 1.87493 + 0.682418i
\(924\) 0 0
\(925\) −30.3507 + 1.95810i −0.997925 + 0.0643820i
\(926\) 0 0
\(927\) 0.633608 + 0.230614i 0.0208104 + 0.00757437i
\(928\) 0 0
\(929\) −7.44612 6.24803i −0.244299 0.204991i 0.512414 0.858739i \(-0.328751\pi\)
−0.756713 + 0.653747i \(0.773196\pi\)
\(930\) 0 0
\(931\) 33.8695i 1.11003i
\(932\) 0 0
\(933\) −17.4359 30.1999i −0.570827 0.988702i
\(934\) 0 0
\(935\) 23.8518 14.7063i 0.780036 0.480948i
\(936\) 0 0
\(937\) −7.00012 + 19.2327i −0.228684 + 0.628304i −0.999966 0.00818896i \(-0.997393\pi\)
0.771283 + 0.636493i \(0.219616\pi\)
\(938\) 0 0
\(939\) 12.6932 + 7.32840i 0.414225 + 0.239153i
\(940\) 0 0
\(941\) 0.836658 + 4.74492i 0.0272743 + 0.154680i 0.995403 0.0957718i \(-0.0305319\pi\)
−0.968129 + 0.250452i \(0.919421\pi\)
\(942\) 0 0
\(943\) 8.76999 3.19202i 0.285590 0.103946i
\(944\) 0 0
\(945\) −0.928924 + 0.191641i −0.0302179 + 0.00623408i
\(946\) 0 0
\(947\) −7.60794 43.1468i −0.247225 1.40208i −0.815268 0.579083i \(-0.803411\pi\)
0.568043 0.822999i \(-0.307701\pi\)
\(948\) 0 0
\(949\) −40.4221 + 48.1732i −1.31216 + 1.56377i
\(950\) 0 0
\(951\) 12.7870 + 22.1478i 0.414648 + 0.718191i
\(952\) 0 0
\(953\) −9.84182 11.7290i −0.318808 0.379940i 0.582712 0.812679i \(-0.301992\pi\)
−0.901519 + 0.432739i \(0.857547\pi\)
\(954\) 0 0
\(955\) 9.27143 + 7.33349i 0.300016 + 0.237306i
\(956\) 0 0
\(957\) 6.25564 35.4775i 0.202216 1.14682i
\(958\) 0 0
\(959\) −0.775542 + 0.282274i −0.0250436 + 0.00911511i
\(960\) 0 0
\(961\) −40.7616 −1.31489
\(962\) 0 0
\(963\) 0.744582i 0.0239938i
\(964\) 0 0
\(965\) 30.9956 + 4.54564i 0.997784 + 0.146329i
\(966\) 0 0
\(967\) −0.214224 + 1.21492i −0.00688897 + 0.0390693i −0.988058 0.154079i \(-0.950759\pi\)
0.981170 + 0.193149i \(0.0618700\pi\)
\(968\) 0 0
\(969\) −7.57304 + 42.9488i −0.243281 + 1.37972i
\(970\) 0 0
\(971\) −4.90407 + 4.11501i −0.157379 + 0.132057i −0.718077 0.695964i \(-0.754977\pi\)
0.560698 + 0.828021i \(0.310533\pi\)
\(972\) 0 0
\(973\) 0.868641 0.501510i 0.0278473 0.0160777i
\(974\) 0 0
\(975\) 41.4476 + 4.85898i 1.32739 + 0.155612i
\(976\) 0 0
\(977\) 2.05979 + 11.6817i 0.0658986 + 0.373730i 0.999866 + 0.0163714i \(0.00521142\pi\)
−0.933967 + 0.357358i \(0.883677\pi\)
\(978\) 0 0
\(979\) −1.70653 2.03376i −0.0545409 0.0649993i
\(980\) 0 0
\(981\) −0.500621 1.37544i −0.0159836 0.0439146i
\(982\) 0 0
\(983\) 49.7820 8.77790i 1.58780 0.279972i 0.691148 0.722713i \(-0.257105\pi\)
0.896649 + 0.442741i \(0.145994\pi\)
\(984\) 0 0
\(985\) 15.2399 + 24.7171i 0.485583 + 0.787554i
\(986\) 0 0
\(987\) 0.0585416 0.160842i 0.00186340 0.00511965i
\(988\) 0 0
\(989\) 6.09679 10.5600i 0.193867 0.335787i
\(990\) 0 0
\(991\) −48.5417 + 28.0256i −1.54198 + 0.890261i −0.543264 + 0.839562i \(0.682812\pi\)
−0.998714 + 0.0506996i \(0.983855\pi\)
\(992\) 0 0
\(993\) −25.9460 −0.823372
\(994\) 0 0
\(995\) −43.5549 + 17.2946i −1.38078 + 0.548275i
\(996\) 0 0
\(997\) 38.4650 + 14.0001i 1.21820 + 0.443388i 0.869541 0.493861i \(-0.164415\pi\)
0.348659 + 0.937250i \(0.386637\pi\)
\(998\) 0 0
\(999\) 20.4578 24.7097i 0.647257 0.781781i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.bp.a.169.15 yes 120
5.4 even 2 inner 740.2.bp.a.169.6 120
37.30 even 18 inner 740.2.bp.a.289.6 yes 120
185.104 even 18 inner 740.2.bp.a.289.15 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.bp.a.169.6 120 5.4 even 2 inner
740.2.bp.a.169.15 yes 120 1.1 even 1 trivial
740.2.bp.a.289.6 yes 120 37.30 even 18 inner
740.2.bp.a.289.15 yes 120 185.104 even 18 inner