Properties

Label 738.2.u.f.595.1
Level $738$
Weight $2$
Character 738.595
Analytic conductor $5.893$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(289,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.u (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,8,0,0,4,0,0,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 246)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 595.1
Character \(\chi\) \(=\) 738.595
Dual form 738.2.u.f.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.951057 + 0.309017i) q^{2} +(0.809017 + 0.587785i) q^{4} +(-1.84265 + 2.53619i) q^{5} +(0.0346438 - 0.0679922i) q^{7} +(0.587785 + 0.809017i) q^{8} +(-2.53619 + 1.84265i) q^{10} +(0.100968 + 0.0159917i) q^{11} +(-0.311532 + 0.158733i) q^{13} +(0.0539589 - 0.0539589i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-1.17013 + 7.38790i) q^{17} +(-2.53277 - 1.29051i) q^{19} +(-2.98147 + 0.968737i) q^{20} +(0.0910845 + 0.0464099i) q^{22} +(-0.669963 + 2.06193i) q^{23} +(-1.49181 - 4.59132i) q^{25} +(-0.345335 + 0.0546958i) q^{26} +(0.0679922 - 0.0346438i) q^{28} +(0.561209 + 3.54333i) q^{29} +(-3.20265 + 2.32686i) q^{31} +1.00000i q^{32} +(-3.39585 + 6.66472i) q^{34} +(0.108605 + 0.213149i) q^{35} +(1.42799 + 1.03749i) q^{37} +(-2.01002 - 2.01002i) q^{38} -3.13490 q^{40} +(-3.57891 - 5.30956i) q^{41} +(0.478727 + 0.155548i) q^{43} +(0.0722851 + 0.0722851i) q^{44} +(-1.27434 + 1.75398i) q^{46} +(-4.55170 - 8.93321i) q^{47} +(4.11107 + 5.65841i) q^{49} -4.82760i q^{50} +(-0.345335 - 0.0546958i) q^{52} +(1.21132 + 7.64797i) q^{53} +(-0.226606 + 0.226606i) q^{55} +(0.0753700 - 0.0119374i) q^{56} +(-0.561209 + 3.54333i) q^{58} +(2.88903 - 8.89152i) q^{59} +(9.07537 - 2.94877i) q^{61} +(-3.76494 + 1.22330i) q^{62} +(-0.309017 + 0.951057i) q^{64} +(0.171466 - 1.08259i) q^{65} +(11.5761 - 1.83347i) q^{67} +(-5.28915 + 5.28915i) q^{68} +(0.0374227 + 0.236277i) q^{70} +(12.4401 + 1.97032i) q^{71} +5.87673i q^{73} +(1.03749 + 1.42799i) q^{74} +(-1.29051 - 2.53277i) q^{76} +(0.00458522 - 0.00631102i) q^{77} +(8.02245 + 8.02245i) q^{79} +(-2.98147 - 0.968737i) q^{80} +(-1.76301 - 6.15563i) q^{82} -6.44344 q^{83} +(-16.5810 - 16.5810i) q^{85} +(0.407229 + 0.295869i) q^{86} +(0.0464099 + 0.0910845i) q^{88} +(3.11099 - 6.10566i) q^{89} +0.0266808i q^{91} +(-1.75398 + 1.27434i) q^{92} +(-1.56841 - 9.90254i) q^{94} +(7.93998 - 4.04562i) q^{95} +(10.2747 - 1.62735i) q^{97} +(2.16132 + 6.65186i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{4} + 4 q^{7} - 4 q^{10} + 4 q^{11} - 12 q^{13} - 4 q^{14} - 8 q^{16} + 4 q^{17} - 4 q^{19} - 4 q^{22} - 40 q^{23} + 12 q^{25} - 8 q^{26} - 4 q^{28} - 16 q^{29} - 4 q^{31} - 16 q^{34} + 8 q^{35}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951057 + 0.309017i 0.672499 + 0.218508i
\(3\) 0 0
\(4\) 0.809017 + 0.587785i 0.404508 + 0.293893i
\(5\) −1.84265 + 2.53619i −0.824057 + 1.13422i 0.164943 + 0.986303i \(0.447256\pi\)
−0.989000 + 0.147914i \(0.952744\pi\)
\(6\) 0 0
\(7\) 0.0346438 0.0679922i 0.0130941 0.0256986i −0.884367 0.466793i \(-0.845409\pi\)
0.897461 + 0.441094i \(0.145409\pi\)
\(8\) 0.587785 + 0.809017i 0.207813 + 0.286031i
\(9\) 0 0
\(10\) −2.53619 + 1.84265i −0.802013 + 0.582696i
\(11\) 0.100968 + 0.0159917i 0.0304430 + 0.00482169i 0.171637 0.985160i \(-0.445094\pi\)
−0.141194 + 0.989982i \(0.545094\pi\)
\(12\) 0 0
\(13\) −0.311532 + 0.158733i −0.0864033 + 0.0440247i −0.496658 0.867946i \(-0.665440\pi\)
0.410255 + 0.911971i \(0.365440\pi\)
\(14\) 0.0539589 0.0539589i 0.0144211 0.0144211i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −1.17013 + 7.38790i −0.283798 + 1.79183i 0.273872 + 0.961766i \(0.411696\pi\)
−0.557670 + 0.830063i \(0.688304\pi\)
\(18\) 0 0
\(19\) −2.53277 1.29051i −0.581057 0.296063i 0.138650 0.990341i \(-0.455724\pi\)
−0.719707 + 0.694278i \(0.755724\pi\)
\(20\) −2.98147 + 0.968737i −0.666676 + 0.216616i
\(21\) 0 0
\(22\) 0.0910845 + 0.0464099i 0.0194193 + 0.00989462i
\(23\) −0.669963 + 2.06193i −0.139697 + 0.429943i −0.996291 0.0860481i \(-0.972576\pi\)
0.856594 + 0.515991i \(0.172576\pi\)
\(24\) 0 0
\(25\) −1.49181 4.59132i −0.298362 0.918264i
\(26\) −0.345335 + 0.0546958i −0.0677259 + 0.0107267i
\(27\) 0 0
\(28\) 0.0679922 0.0346438i 0.0128493 0.00654706i
\(29\) 0.561209 + 3.54333i 0.104214 + 0.657981i 0.983393 + 0.181489i \(0.0580917\pi\)
−0.879179 + 0.476492i \(0.841908\pi\)
\(30\) 0 0
\(31\) −3.20265 + 2.32686i −0.575213 + 0.417917i −0.836995 0.547210i \(-0.815690\pi\)
0.261782 + 0.965127i \(0.415690\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −3.39585 + 6.66472i −0.582383 + 1.14299i
\(35\) 0.108605 + 0.213149i 0.0183576 + 0.0360287i
\(36\) 0 0
\(37\) 1.42799 + 1.03749i 0.234759 + 0.170563i 0.698945 0.715175i \(-0.253653\pi\)
−0.464186 + 0.885738i \(0.653653\pi\)
\(38\) −2.01002 2.01002i −0.326068 0.326068i
\(39\) 0 0
\(40\) −3.13490 −0.495671
\(41\) −3.57891 5.30956i −0.558932 0.829213i
\(42\) 0 0
\(43\) 0.478727 + 0.155548i 0.0730051 + 0.0237208i 0.345292 0.938495i \(-0.387780\pi\)
−0.272287 + 0.962216i \(0.587780\pi\)
\(44\) 0.0722851 + 0.0722851i 0.0108974 + 0.0108974i
\(45\) 0 0
\(46\) −1.27434 + 1.75398i −0.187892 + 0.258611i
\(47\) −4.55170 8.93321i −0.663934 1.30304i −0.939760 0.341836i \(-0.888951\pi\)
0.275826 0.961208i \(-0.411049\pi\)
\(48\) 0 0
\(49\) 4.11107 + 5.65841i 0.587296 + 0.808344i
\(50\) 4.82760i 0.682726i
\(51\) 0 0
\(52\) −0.345335 0.0546958i −0.0478894 0.00758494i
\(53\) 1.21132 + 7.64797i 0.166388 + 1.05053i 0.919630 + 0.392787i \(0.128489\pi\)
−0.753242 + 0.657743i \(0.771511\pi\)
\(54\) 0 0
\(55\) −0.226606 + 0.226606i −0.0305556 + 0.0305556i
\(56\) 0.0753700 0.0119374i 0.0100717 0.00159521i
\(57\) 0 0
\(58\) −0.561209 + 3.54333i −0.0736904 + 0.465263i
\(59\) 2.88903 8.89152i 0.376120 1.15758i −0.566601 0.823993i \(-0.691742\pi\)
0.942720 0.333584i \(-0.108258\pi\)
\(60\) 0 0
\(61\) 9.07537 2.94877i 1.16198 0.377551i 0.336338 0.941741i \(-0.390812\pi\)
0.825645 + 0.564190i \(0.190812\pi\)
\(62\) −3.76494 + 1.22330i −0.478148 + 0.155360i
\(63\) 0 0
\(64\) −0.309017 + 0.951057i −0.0386271 + 0.118882i
\(65\) 0.171466 1.08259i 0.0212677 0.134279i
\(66\) 0 0
\(67\) 11.5761 1.83347i 1.41424 0.223994i 0.597904 0.801567i \(-0.296000\pi\)
0.816339 + 0.577573i \(0.196000\pi\)
\(68\) −5.28915 + 5.28915i −0.641404 + 0.641404i
\(69\) 0 0
\(70\) 0.0374227 + 0.236277i 0.00447286 + 0.0282405i
\(71\) 12.4401 + 1.97032i 1.47637 + 0.233834i 0.842118 0.539294i \(-0.181309\pi\)
0.634250 + 0.773128i \(0.281309\pi\)
\(72\) 0 0
\(73\) 5.87673i 0.687819i 0.939003 + 0.343910i \(0.111751\pi\)
−0.939003 + 0.343910i \(0.888249\pi\)
\(74\) 1.03749 + 1.42799i 0.120606 + 0.166000i
\(75\) 0 0
\(76\) −1.29051 2.53277i −0.148032 0.290529i
\(77\) 0.00458522 0.00631102i 0.000522535 0.000719208i
\(78\) 0 0
\(79\) 8.02245 + 8.02245i 0.902596 + 0.902596i 0.995660 0.0930639i \(-0.0296661\pi\)
−0.0930639 + 0.995660i \(0.529666\pi\)
\(80\) −2.98147 0.968737i −0.333338 0.108308i
\(81\) 0 0
\(82\) −1.76301 6.15563i −0.194691 0.679776i
\(83\) −6.44344 −0.707259 −0.353629 0.935386i \(-0.615053\pi\)
−0.353629 + 0.935386i \(0.615053\pi\)
\(84\) 0 0
\(85\) −16.5810 16.5810i −1.79846 1.79846i
\(86\) 0.407229 + 0.295869i 0.0439127 + 0.0319044i
\(87\) 0 0
\(88\) 0.0464099 + 0.0910845i 0.00494731 + 0.00970964i
\(89\) 3.11099 6.10566i 0.329764 0.647198i −0.665284 0.746590i \(-0.731690\pi\)
0.995048 + 0.0993917i \(0.0316897\pi\)
\(90\) 0 0
\(91\) 0.0266808i 0.00279691i
\(92\) −1.75398 + 1.27434i −0.182866 + 0.132860i
\(93\) 0 0
\(94\) −1.56841 9.90254i −0.161769 1.02137i
\(95\) 7.93998 4.04562i 0.814624 0.415072i
\(96\) 0 0
\(97\) 10.2747 1.62735i 1.04324 0.165232i 0.388779 0.921331i \(-0.372897\pi\)
0.654458 + 0.756099i \(0.272897\pi\)
\(98\) 2.16132 + 6.65186i 0.218326 + 0.671939i
\(99\) 0 0
\(100\) 1.49181 4.59132i 0.149181 0.459132i
\(101\) 0.666935 + 0.339820i 0.0663625 + 0.0338134i 0.486857 0.873482i \(-0.338143\pi\)
−0.420494 + 0.907295i \(0.638143\pi\)
\(102\) 0 0
\(103\) −1.83036 + 0.594721i −0.180351 + 0.0585996i −0.397800 0.917472i \(-0.630226\pi\)
0.217449 + 0.976072i \(0.430226\pi\)
\(104\) −0.311532 0.158733i −0.0305482 0.0155651i
\(105\) 0 0
\(106\) −1.21132 + 7.64797i −0.117654 + 0.742837i
\(107\) 2.95677 + 9.10000i 0.285842 + 0.879730i 0.986145 + 0.165885i \(0.0530479\pi\)
−0.700304 + 0.713845i \(0.746952\pi\)
\(108\) 0 0
\(109\) 2.13974 2.13974i 0.204950 0.204950i −0.597167 0.802117i \(-0.703707\pi\)
0.802117 + 0.597167i \(0.203707\pi\)
\(110\) −0.285541 + 0.145490i −0.0272252 + 0.0138720i
\(111\) 0 0
\(112\) 0.0753700 + 0.0119374i 0.00712179 + 0.00112798i
\(113\) 16.1454 11.7303i 1.51883 1.10350i 0.556771 0.830666i \(-0.312040\pi\)
0.962062 0.272831i \(-0.0879600\pi\)
\(114\) 0 0
\(115\) −3.99494 5.49857i −0.372530 0.512744i
\(116\) −1.62869 + 3.19649i −0.151220 + 0.296787i
\(117\) 0 0
\(118\) 5.49526 7.56358i 0.505880 0.696284i
\(119\) 0.461782 + 0.335504i 0.0423315 + 0.0307556i
\(120\) 0 0
\(121\) −10.4517 3.39596i −0.950153 0.308723i
\(122\) 9.54241 0.863929
\(123\) 0 0
\(124\) −3.95869 −0.355501
\(125\) −0.514007 0.167011i −0.0459742 0.0149379i
\(126\) 0 0
\(127\) 7.22363 + 5.24828i 0.640994 + 0.465709i 0.860191 0.509971i \(-0.170344\pi\)
−0.219198 + 0.975680i \(0.570344\pi\)
\(128\) −0.587785 + 0.809017i −0.0519534 + 0.0715077i
\(129\) 0 0
\(130\) 0.497613 0.976621i 0.0436435 0.0856553i
\(131\) −8.99722 12.3836i −0.786091 1.08196i −0.994584 0.103938i \(-0.966856\pi\)
0.208493 0.978024i \(-0.433144\pi\)
\(132\) 0 0
\(133\) −0.175489 + 0.127500i −0.0152169 + 0.0110557i
\(134\) 11.5761 + 1.83347i 1.00002 + 0.158388i
\(135\) 0 0
\(136\) −6.66472 + 3.39585i −0.571495 + 0.291191i
\(137\) −14.2651 + 14.2651i −1.21875 + 1.21875i −0.250681 + 0.968070i \(0.580655\pi\)
−0.968070 + 0.250681i \(0.919345\pi\)
\(138\) 0 0
\(139\) −3.23954 9.97029i −0.274775 0.845669i −0.989279 0.146038i \(-0.953348\pi\)
0.714504 0.699631i \(-0.246652\pi\)
\(140\) −0.0374227 + 0.236277i −0.00316279 + 0.0199691i
\(141\) 0 0
\(142\) 11.2224 + 5.71809i 0.941761 + 0.479851i
\(143\) −0.0339931 + 0.0110450i −0.00284265 + 0.000923632i
\(144\) 0 0
\(145\) −10.0207 5.10579i −0.832172 0.424013i
\(146\) −1.81601 + 5.58910i −0.150294 + 0.462558i
\(147\) 0 0
\(148\) 0.545442 + 1.67870i 0.0448351 + 0.137988i
\(149\) −21.0600 + 3.33557i −1.72530 + 0.273261i −0.938833 0.344373i \(-0.888092\pi\)
−0.786466 + 0.617634i \(0.788092\pi\)
\(150\) 0 0
\(151\) 12.8298 6.53713i 1.04408 0.531984i 0.154132 0.988050i \(-0.450742\pi\)
0.889946 + 0.456066i \(0.150742\pi\)
\(152\) −0.444679 2.80760i −0.0360683 0.227726i
\(153\) 0 0
\(154\) 0.00631102 0.00458522i 0.000508557 0.000369488i
\(155\) 12.4101i 0.996804i
\(156\) 0 0
\(157\) 3.37714 6.62800i 0.269525 0.528972i −0.716084 0.698014i \(-0.754067\pi\)
0.985609 + 0.169042i \(0.0540673\pi\)
\(158\) 5.15073 + 10.1089i 0.409770 + 0.804219i
\(159\) 0 0
\(160\) −2.53619 1.84265i −0.200503 0.145674i
\(161\) 0.116985 + 0.116985i 0.00921974 + 0.00921974i
\(162\) 0 0
\(163\) −11.8702 −0.929748 −0.464874 0.885377i \(-0.653900\pi\)
−0.464874 + 0.885377i \(0.653900\pi\)
\(164\) 0.225477 6.39915i 0.0176068 0.499690i
\(165\) 0 0
\(166\) −6.12807 1.99113i −0.475631 0.154542i
\(167\) 15.0057 + 15.0057i 1.16118 + 1.16118i 0.984218 + 0.176958i \(0.0566256\pi\)
0.176958 + 0.984218i \(0.443374\pi\)
\(168\) 0 0
\(169\) −7.56935 + 10.4183i −0.582258 + 0.801409i
\(170\) −10.6456 20.8932i −0.816483 1.60244i
\(171\) 0 0
\(172\) 0.295869 + 0.407229i 0.0225598 + 0.0310509i
\(173\) 15.1065i 1.14853i −0.818671 0.574263i \(-0.805289\pi\)
0.818671 0.574263i \(-0.194711\pi\)
\(174\) 0 0
\(175\) −0.363856 0.0576291i −0.0275049 0.00435635i
\(176\) 0.0159917 + 0.100968i 0.00120542 + 0.00761074i
\(177\) 0 0
\(178\) 4.84548 4.84548i 0.363184 0.363184i
\(179\) 17.2465 2.73158i 1.28906 0.204168i 0.525996 0.850487i \(-0.323693\pi\)
0.763067 + 0.646319i \(0.223693\pi\)
\(180\) 0 0
\(181\) −3.37192 + 21.2895i −0.250633 + 1.58243i 0.465872 + 0.884852i \(0.345741\pi\)
−0.716505 + 0.697582i \(0.754259\pi\)
\(182\) −0.00824484 + 0.0253750i −0.000611148 + 0.00188092i
\(183\) 0 0
\(184\) −2.06193 + 0.669963i −0.152008 + 0.0493903i
\(185\) −5.26255 + 1.70991i −0.386911 + 0.125715i
\(186\) 0 0
\(187\) −0.236291 + 0.727229i −0.0172793 + 0.0531802i
\(188\) 1.56841 9.90254i 0.114388 0.722217i
\(189\) 0 0
\(190\) 8.80153 1.39403i 0.638530 0.101133i
\(191\) 14.6503 14.6503i 1.06006 1.06006i 0.0619807 0.998077i \(-0.480258\pi\)
0.998077 0.0619807i \(-0.0197417\pi\)
\(192\) 0 0
\(193\) −0.919085 5.80288i −0.0661572 0.417700i −0.998433 0.0559529i \(-0.982180\pi\)
0.932276 0.361747i \(-0.117820\pi\)
\(194\) 10.2747 + 1.62735i 0.737680 + 0.116837i
\(195\) 0 0
\(196\) 6.99418i 0.499584i
\(197\) −4.92559 6.77950i −0.350934 0.483019i 0.596661 0.802493i \(-0.296494\pi\)
−0.947595 + 0.319474i \(0.896494\pi\)
\(198\) 0 0
\(199\) 0.232645 + 0.456592i 0.0164918 + 0.0323670i 0.899105 0.437732i \(-0.144218\pi\)
−0.882614 + 0.470099i \(0.844218\pi\)
\(200\) 2.83759 3.90561i 0.200648 0.276168i
\(201\) 0 0
\(202\) 0.529283 + 0.529283i 0.0372402 + 0.0372402i
\(203\) 0.260362 + 0.0845966i 0.0182738 + 0.00593752i
\(204\) 0 0
\(205\) 20.0607 + 0.706848i 1.40110 + 0.0493684i
\(206\) −1.92456 −0.134090
\(207\) 0 0
\(208\) −0.247233 0.247233i −0.0171425 0.0171425i
\(209\) −0.235091 0.170804i −0.0162616 0.0118147i
\(210\) 0 0
\(211\) 0.714967 + 1.40320i 0.0492204 + 0.0966004i 0.914307 0.405023i \(-0.132736\pi\)
−0.865086 + 0.501623i \(0.832736\pi\)
\(212\) −3.51539 + 6.89934i −0.241438 + 0.473848i
\(213\) 0 0
\(214\) 9.56830i 0.654076i
\(215\) −1.27662 + 0.927521i −0.0870650 + 0.0632564i
\(216\) 0 0
\(217\) 0.0472566 + 0.298367i 0.00320799 + 0.0202545i
\(218\) 2.69623 1.37380i 0.182612 0.0930453i
\(219\) 0 0
\(220\) −0.316524 + 0.0501325i −0.0213401 + 0.00337994i
\(221\) −0.808174 2.48730i −0.0543637 0.167314i
\(222\) 0 0
\(223\) −3.23494 + 9.95613i −0.216628 + 0.666712i 0.782406 + 0.622768i \(0.213992\pi\)
−0.999034 + 0.0439434i \(0.986008\pi\)
\(224\) 0.0679922 + 0.0346438i 0.00454292 + 0.00231473i
\(225\) 0 0
\(226\) 18.9801 6.16700i 1.26254 0.410223i
\(227\) 1.04445 + 0.532171i 0.0693223 + 0.0353215i 0.488308 0.872671i \(-0.337614\pi\)
−0.418986 + 0.907993i \(0.637614\pi\)
\(228\) 0 0
\(229\) −1.29154 + 8.15447i −0.0853474 + 0.538863i 0.907555 + 0.419933i \(0.137946\pi\)
−0.992903 + 0.118930i \(0.962054\pi\)
\(230\) −2.10027 6.46395i −0.138487 0.426221i
\(231\) 0 0
\(232\) −2.53675 + 2.53675i −0.166546 + 0.166546i
\(233\) 21.1656 10.7844i 1.38660 0.706510i 0.408138 0.912920i \(-0.366178\pi\)
0.978466 + 0.206410i \(0.0661781\pi\)
\(234\) 0 0
\(235\) 31.0435 + 4.91680i 2.02505 + 0.320737i
\(236\) 7.56358 5.49526i 0.492347 0.357711i
\(237\) 0 0
\(238\) 0.335504 + 0.461782i 0.0217475 + 0.0299329i
\(239\) −9.07637 + 17.8134i −0.587102 + 1.15225i 0.386134 + 0.922443i \(0.373810\pi\)
−0.973236 + 0.229810i \(0.926190\pi\)
\(240\) 0 0
\(241\) −4.67533 + 6.43504i −0.301165 + 0.414517i −0.932600 0.360911i \(-0.882466\pi\)
0.631436 + 0.775428i \(0.282466\pi\)
\(242\) −8.89073 6.45950i −0.571518 0.415232i
\(243\) 0 0
\(244\) 9.07537 + 2.94877i 0.580991 + 0.188776i
\(245\) −21.9260 −1.40080
\(246\) 0 0
\(247\) 0.993884 0.0632394
\(248\) −3.76494 1.22330i −0.239074 0.0776799i
\(249\) 0 0
\(250\) −0.437240 0.317674i −0.0276535 0.0200915i
\(251\) −2.14543 + 2.95293i −0.135418 + 0.186387i −0.871341 0.490679i \(-0.836749\pi\)
0.735922 + 0.677066i \(0.236749\pi\)
\(252\) 0 0
\(253\) −0.100619 + 0.197475i −0.00632584 + 0.0124152i
\(254\) 5.24828 + 7.22363i 0.329306 + 0.453251i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −0.665902 0.105469i −0.0415379 0.00657895i 0.135631 0.990759i \(-0.456694\pi\)
−0.177169 + 0.984180i \(0.556694\pi\)
\(258\) 0 0
\(259\) 0.120012 0.0611493i 0.00745720 0.00379963i
\(260\) 0.775050 0.775050i 0.0480666 0.0480666i
\(261\) 0 0
\(262\) −4.73012 14.5578i −0.292228 0.899385i
\(263\) −2.92611 + 18.4747i −0.180432 + 1.13920i 0.716682 + 0.697400i \(0.245660\pi\)
−0.897113 + 0.441800i \(0.854340\pi\)
\(264\) 0 0
\(265\) −21.6287 11.0204i −1.32864 0.676977i
\(266\) −0.206300 + 0.0670310i −0.0126491 + 0.00410993i
\(267\) 0 0
\(268\) 10.4429 + 5.32094i 0.637904 + 0.325028i
\(269\) −1.07493 + 3.30831i −0.0655399 + 0.201711i −0.978464 0.206419i \(-0.933819\pi\)
0.912924 + 0.408130i \(0.133819\pi\)
\(270\) 0 0
\(271\) 3.06228 + 9.42473i 0.186020 + 0.572511i 0.999964 0.00843170i \(-0.00268392\pi\)
−0.813944 + 0.580943i \(0.802684\pi\)
\(272\) −7.38790 + 1.17013i −0.447957 + 0.0709495i
\(273\) 0 0
\(274\) −17.9751 + 9.15877i −1.08592 + 0.553301i
\(275\) −0.0772018 0.487433i −0.00465544 0.0293933i
\(276\) 0 0
\(277\) 6.93279 5.03697i 0.416551 0.302642i −0.359697 0.933069i \(-0.617120\pi\)
0.776249 + 0.630427i \(0.217120\pi\)
\(278\) 10.4834i 0.628752i
\(279\) 0 0
\(280\) −0.108605 + 0.213149i −0.00649038 + 0.0127381i
\(281\) 0.403383 + 0.791683i 0.0240638 + 0.0472279i 0.902725 0.430217i \(-0.141563\pi\)
−0.878662 + 0.477445i \(0.841563\pi\)
\(282\) 0 0
\(283\) −19.4643 14.1416i −1.15703 0.840633i −0.167632 0.985850i \(-0.553612\pi\)
−0.989400 + 0.145217i \(0.953612\pi\)
\(284\) 8.90613 + 8.90613i 0.528481 + 0.528481i
\(285\) 0 0
\(286\) −0.0357425 −0.00211350
\(287\) −0.484996 + 0.0593952i −0.0286284 + 0.00350599i
\(288\) 0 0
\(289\) −37.0439 12.0363i −2.17905 0.708018i
\(290\) −7.95245 7.95245i −0.466984 0.466984i
\(291\) 0 0
\(292\) −3.45426 + 4.75438i −0.202145 + 0.278229i
\(293\) −2.02289 3.97014i −0.118178 0.231938i 0.824338 0.566098i \(-0.191548\pi\)
−0.942517 + 0.334160i \(0.891548\pi\)
\(294\) 0 0
\(295\) 17.2271 + 23.7111i 1.00300 + 1.38051i
\(296\) 1.76509i 0.102594i
\(297\) 0 0
\(298\) −21.0600 3.33557i −1.21997 0.193224i
\(299\) −0.118583 0.748703i −0.00685782 0.0432986i
\(300\) 0 0
\(301\) 0.0271609 0.0271609i 0.00156553 0.00156553i
\(302\) 14.2220 2.25254i 0.818384 0.129619i
\(303\) 0 0
\(304\) 0.444679 2.80760i 0.0255041 0.161027i
\(305\) −9.24409 + 28.4504i −0.529315 + 1.62906i
\(306\) 0 0
\(307\) 26.9559 8.75849i 1.53845 0.499874i 0.587504 0.809221i \(-0.300111\pi\)
0.950949 + 0.309348i \(0.100111\pi\)
\(308\) 0.00741905 0.00241060i 0.000422740 0.000137356i
\(309\) 0 0
\(310\) 3.83494 11.8027i 0.217810 0.670349i
\(311\) −4.45454 + 28.1249i −0.252594 + 1.59482i 0.456514 + 0.889716i \(0.349098\pi\)
−0.709108 + 0.705099i \(0.750902\pi\)
\(312\) 0 0
\(313\) −22.7528 + 3.60369i −1.28606 + 0.203692i −0.761771 0.647846i \(-0.775670\pi\)
−0.524292 + 0.851538i \(0.675670\pi\)
\(314\) 5.26001 5.26001i 0.296840 0.296840i
\(315\) 0 0
\(316\) 1.77482 + 11.2058i 0.0998415 + 0.630374i
\(317\) 6.37254 + 1.00931i 0.357917 + 0.0566885i 0.332804 0.942996i \(-0.392005\pi\)
0.0251135 + 0.999685i \(0.492005\pi\)
\(318\) 0 0
\(319\) 0.366738i 0.0205334i
\(320\) −1.84265 2.53619i −0.103007 0.141777i
\(321\) 0 0
\(322\) 0.0751092 + 0.147410i 0.00418567 + 0.00821485i
\(323\) 12.4978 17.2018i 0.695398 0.957133i
\(324\) 0 0
\(325\) 1.19354 + 1.19354i 0.0662058 + 0.0662058i
\(326\) −11.2893 3.66810i −0.625254 0.203157i
\(327\) 0 0
\(328\) 2.19189 6.01628i 0.121027 0.332193i
\(329\) −0.765077 −0.0421801
\(330\) 0 0
\(331\) −24.2411 24.2411i −1.33241 1.33241i −0.903208 0.429204i \(-0.858794\pi\)
−0.429204 0.903208i \(-0.641206\pi\)
\(332\) −5.21285 3.78736i −0.286092 0.207858i
\(333\) 0 0
\(334\) 9.63426 + 18.9083i 0.527163 + 1.03462i
\(335\) −16.6806 + 32.7376i −0.911359 + 1.78864i
\(336\) 0 0
\(337\) 5.87884i 0.320241i 0.987097 + 0.160120i \(0.0511882\pi\)
−0.987097 + 0.160120i \(0.948812\pi\)
\(338\) −10.4183 + 7.56935i −0.566682 + 0.411719i
\(339\) 0 0
\(340\) −3.66824 23.1603i −0.198938 1.25605i
\(341\) −0.360576 + 0.183722i −0.0195263 + 0.00994913i
\(342\) 0 0
\(343\) 1.05474 0.167055i 0.0569506 0.00902010i
\(344\) 0.155548 + 0.478727i 0.00838657 + 0.0258112i
\(345\) 0 0
\(346\) 4.66817 14.3671i 0.250962 0.772383i
\(347\) 11.0081 + 5.60890i 0.590945 + 0.301101i 0.723773 0.690038i \(-0.242406\pi\)
−0.132829 + 0.991139i \(0.542406\pi\)
\(348\) 0 0
\(349\) 5.63605 1.83127i 0.301691 0.0980254i −0.154260 0.988030i \(-0.549299\pi\)
0.455951 + 0.890005i \(0.349299\pi\)
\(350\) −0.328239 0.167246i −0.0175451 0.00893969i
\(351\) 0 0
\(352\) −0.0159917 + 0.100968i −0.000852363 + 0.00538161i
\(353\) 0.332345 + 1.02285i 0.0176889 + 0.0544409i 0.959511 0.281670i \(-0.0908883\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(354\) 0 0
\(355\) −27.9198 + 27.9198i −1.48183 + 1.48183i
\(356\) 6.10566 3.11099i 0.323599 0.164882i
\(357\) 0 0
\(358\) 17.2465 + 2.73158i 0.911506 + 0.144368i
\(359\) 3.02432 2.19730i 0.159618 0.115969i −0.505109 0.863055i \(-0.668548\pi\)
0.664727 + 0.747086i \(0.268548\pi\)
\(360\) 0 0
\(361\) −6.41842 8.83420i −0.337811 0.464958i
\(362\) −9.78570 + 19.2055i −0.514325 + 1.00942i
\(363\) 0 0
\(364\) −0.0156826 + 0.0215853i −0.000821992 + 0.00113138i
\(365\) −14.9045 10.8287i −0.780137 0.566803i
\(366\) 0 0
\(367\) 34.4342 + 11.1884i 1.79745 + 0.584028i 0.999817 0.0191125i \(-0.00608407\pi\)
0.797635 + 0.603140i \(0.206084\pi\)
\(368\) −2.16804 −0.113017
\(369\) 0 0
\(370\) −5.53337 −0.287666
\(371\) 0.561968 + 0.182594i 0.0291759 + 0.00947982i
\(372\) 0 0
\(373\) −21.7974 15.8368i −1.12863 0.819997i −0.143134 0.989703i \(-0.545718\pi\)
−0.985495 + 0.169706i \(0.945718\pi\)
\(374\) −0.449452 + 0.618618i −0.0232406 + 0.0319880i
\(375\) 0 0
\(376\) 4.55170 8.93321i 0.234736 0.460695i
\(377\) −0.737280 1.01478i −0.0379718 0.0522637i
\(378\) 0 0
\(379\) 22.2040 16.1322i 1.14054 0.828653i 0.153348 0.988172i \(-0.450994\pi\)
0.987195 + 0.159519i \(0.0509944\pi\)
\(380\) 8.80153 + 1.39403i 0.451509 + 0.0715120i
\(381\) 0 0
\(382\) 18.4604 9.40607i 0.944519 0.481256i
\(383\) −7.29030 + 7.29030i −0.372517 + 0.372517i −0.868393 0.495876i \(-0.834847\pi\)
0.495876 + 0.868393i \(0.334847\pi\)
\(384\) 0 0
\(385\) 0.00755698 + 0.0232580i 0.000385139 + 0.00118534i
\(386\) 0.919085 5.80288i 0.0467802 0.295359i
\(387\) 0 0
\(388\) 9.26893 + 4.72276i 0.470559 + 0.239762i
\(389\) −5.15936 + 1.67638i −0.261590 + 0.0849957i −0.436876 0.899522i \(-0.643915\pi\)
0.175286 + 0.984518i \(0.443915\pi\)
\(390\) 0 0
\(391\) −14.4494 7.36234i −0.730738 0.372330i
\(392\) −2.16132 + 6.65186i −0.109163 + 0.335970i
\(393\) 0 0
\(394\) −2.58954 7.96978i −0.130459 0.401512i
\(395\) −35.1290 + 5.56389i −1.76753 + 0.279950i
\(396\) 0 0
\(397\) −15.7141 + 8.00674i −0.788669 + 0.401847i −0.801443 0.598071i \(-0.795934\pi\)
0.0127737 + 0.999918i \(0.495934\pi\)
\(398\) 0.0801641 + 0.506136i 0.00401826 + 0.0253703i
\(399\) 0 0
\(400\) 3.90561 2.83759i 0.195280 0.141880i
\(401\) 20.7188i 1.03465i −0.855790 0.517323i \(-0.826929\pi\)
0.855790 0.517323i \(-0.173071\pi\)
\(402\) 0 0
\(403\) 0.628377 1.23326i 0.0313017 0.0614330i
\(404\) 0.339820 + 0.666935i 0.0169067 + 0.0331813i
\(405\) 0 0
\(406\) 0.221477 + 0.160912i 0.0109917 + 0.00798595i
\(407\) 0.127589 + 0.127589i 0.00632438 + 0.00632438i
\(408\) 0 0
\(409\) −10.5239 −0.520375 −0.260187 0.965558i \(-0.583784\pi\)
−0.260187 + 0.965558i \(0.583784\pi\)
\(410\) 18.8604 + 6.87135i 0.931451 + 0.339352i
\(411\) 0 0
\(412\) −1.83036 0.594721i −0.0901754 0.0292998i
\(413\) −0.504467 0.504467i −0.0248232 0.0248232i
\(414\) 0 0
\(415\) 11.8730 16.3418i 0.582822 0.802185i
\(416\) −0.158733 0.311532i −0.00778254 0.0152741i
\(417\) 0 0
\(418\) −0.170804 0.235091i −0.00835427 0.0114987i
\(419\) 12.0058i 0.586520i −0.956033 0.293260i \(-0.905260\pi\)
0.956033 0.293260i \(-0.0947402\pi\)
\(420\) 0 0
\(421\) 8.63360 + 1.36743i 0.420776 + 0.0666444i 0.363232 0.931699i \(-0.381673\pi\)
0.0575438 + 0.998343i \(0.481673\pi\)
\(422\) 0.246361 + 1.55546i 0.0119927 + 0.0757187i
\(423\) 0 0
\(424\) −5.47535 + 5.47535i −0.265906 + 0.265906i
\(425\) 35.6658 5.64891i 1.73005 0.274012i
\(426\) 0 0
\(427\) 0.113912 0.719211i 0.00551258 0.0348051i
\(428\) −2.95677 + 9.10000i −0.142921 + 0.439865i
\(429\) 0 0
\(430\) −1.50076 + 0.487627i −0.0723731 + 0.0235154i
\(431\) −14.5130 + 4.71556i −0.699067 + 0.227140i −0.636924 0.770927i \(-0.719793\pi\)
−0.0621428 + 0.998067i \(0.519793\pi\)
\(432\) 0 0
\(433\) −12.0419 + 37.0613i −0.578698 + 1.78105i 0.0445275 + 0.999008i \(0.485822\pi\)
−0.623226 + 0.782042i \(0.714178\pi\)
\(434\) −0.0472566 + 0.298367i −0.00226839 + 0.0143221i
\(435\) 0 0
\(436\) 2.98879 0.473378i 0.143137 0.0226707i
\(437\) 4.35781 4.35781i 0.208462 0.208462i
\(438\) 0 0
\(439\) 2.50768 + 15.8329i 0.119685 + 0.755661i 0.972406 + 0.233294i \(0.0749506\pi\)
−0.852721 + 0.522366i \(0.825049\pi\)
\(440\) −0.316524 0.0501325i −0.0150897 0.00238998i
\(441\) 0 0
\(442\) 2.61531i 0.124397i
\(443\) −11.0705 15.2372i −0.525974 0.723941i 0.460536 0.887641i \(-0.347657\pi\)
−0.986510 + 0.163700i \(0.947657\pi\)
\(444\) 0 0
\(445\) 9.75264 + 19.1406i 0.462319 + 0.907353i
\(446\) −6.15323 + 8.46919i −0.291364 + 0.401028i
\(447\) 0 0
\(448\) 0.0539589 + 0.0539589i 0.00254932 + 0.00254932i
\(449\) 22.5162 + 7.31595i 1.06260 + 0.345261i 0.787603 0.616183i \(-0.211322\pi\)
0.275001 + 0.961444i \(0.411322\pi\)
\(450\) 0 0
\(451\) −0.276446 0.593328i −0.0130174 0.0279387i
\(452\) 19.9568 0.938691
\(453\) 0 0
\(454\) 0.828876 + 0.828876i 0.0389011 + 0.0389011i
\(455\) −0.0676676 0.0491634i −0.00317231 0.00230482i
\(456\) 0 0
\(457\) 1.68928 + 3.31539i 0.0790211 + 0.155088i 0.927136 0.374724i \(-0.122263\pi\)
−0.848115 + 0.529812i \(0.822263\pi\)
\(458\) −3.74820 + 7.35625i −0.175142 + 0.343735i
\(459\) 0 0
\(460\) 6.79660i 0.316893i
\(461\) −28.6714 + 20.8310i −1.33536 + 0.970195i −0.335758 + 0.941948i \(0.608992\pi\)
−0.999601 + 0.0282468i \(0.991008\pi\)
\(462\) 0 0
\(463\) 3.82726 + 24.1644i 0.177868 + 1.12301i 0.901484 + 0.432812i \(0.142479\pi\)
−0.723616 + 0.690203i \(0.757521\pi\)
\(464\) −3.19649 + 1.62869i −0.148393 + 0.0756101i
\(465\) 0 0
\(466\) 23.4622 3.71605i 1.08687 0.172143i
\(467\) 3.94825 + 12.1514i 0.182703 + 0.562302i 0.999901 0.0140547i \(-0.00447389\pi\)
−0.817198 + 0.576357i \(0.804474\pi\)
\(468\) 0 0
\(469\) 0.276377 0.850602i 0.0127619 0.0392771i
\(470\) 28.0047 + 14.2691i 1.29176 + 0.658186i
\(471\) 0 0
\(472\) 8.89152 2.88903i 0.409265 0.132978i
\(473\) 0.0458486 + 0.0233610i 0.00210812 + 0.00107414i
\(474\) 0 0
\(475\) −2.14673 + 13.5539i −0.0984989 + 0.621898i
\(476\) 0.176385 + 0.542858i 0.00808460 + 0.0248818i
\(477\) 0 0
\(478\) −14.1368 + 14.1368i −0.646602 + 0.646602i
\(479\) 11.3045 5.75996i 0.516518 0.263179i −0.176243 0.984347i \(-0.556394\pi\)
0.692761 + 0.721168i \(0.256394\pi\)
\(480\) 0 0
\(481\) −0.609547 0.0965428i −0.0277930 0.00440197i
\(482\) −6.43504 + 4.67533i −0.293108 + 0.212955i
\(483\) 0 0
\(484\) −6.45950 8.89073i −0.293613 0.404124i
\(485\) −14.8054 + 29.0572i −0.672277 + 1.31942i
\(486\) 0 0
\(487\) 16.8887 23.2454i 0.765302 1.05335i −0.231453 0.972846i \(-0.574348\pi\)
0.996754 0.0805016i \(-0.0256522\pi\)
\(488\) 7.71997 + 5.60889i 0.349467 + 0.253902i
\(489\) 0 0
\(490\) −20.8529 6.77552i −0.942038 0.306087i
\(491\) −38.6471 −1.74412 −0.872061 0.489398i \(-0.837217\pi\)
−0.872061 + 0.489398i \(0.837217\pi\)
\(492\) 0 0
\(493\) −26.8345 −1.20856
\(494\) 0.945240 + 0.307127i 0.0425284 + 0.0138183i
\(495\) 0 0
\(496\) −3.20265 2.32686i −0.143803 0.104479i
\(497\) 0.564938 0.777571i 0.0253409 0.0348788i
\(498\) 0 0
\(499\) 9.36080 18.3716i 0.419047 0.822426i −0.580917 0.813963i \(-0.697306\pi\)
0.999964 0.00846356i \(-0.00269407\pi\)
\(500\) −0.317674 0.437240i −0.0142068 0.0195540i
\(501\) 0 0
\(502\) −2.95293 + 2.14543i −0.131796 + 0.0957552i
\(503\) 24.1383 + 3.82313i 1.07627 + 0.170465i 0.669313 0.742981i \(-0.266589\pi\)
0.406960 + 0.913446i \(0.366589\pi\)
\(504\) 0 0
\(505\) −2.09077 + 1.06530i −0.0930383 + 0.0474054i
\(506\) −0.156717 + 0.156717i −0.00696693 + 0.00696693i
\(507\) 0 0
\(508\) 2.75918 + 8.49189i 0.122419 + 0.376767i
\(509\) 1.97806 12.4890i 0.0876760 0.553564i −0.904276 0.426949i \(-0.859588\pi\)
0.991952 0.126616i \(-0.0404115\pi\)
\(510\) 0 0
\(511\) 0.399572 + 0.203592i 0.0176760 + 0.00900639i
\(512\) −0.951057 + 0.309017i −0.0420312 + 0.0136568i
\(513\) 0 0
\(514\) −0.600719 0.306082i −0.0264966 0.0135007i
\(515\) 1.86439 5.73800i 0.0821548 0.252847i
\(516\) 0 0
\(517\) −0.316718 0.974758i −0.0139292 0.0428698i
\(518\) 0.133035 0.0210706i 0.00584521 0.000925790i
\(519\) 0 0
\(520\) 0.976621 0.497613i 0.0428276 0.0218218i
\(521\) −5.86475 37.0286i −0.256939 1.62225i −0.692033 0.721866i \(-0.743285\pi\)
0.435094 0.900385i \(-0.356715\pi\)
\(522\) 0 0
\(523\) 4.02853 2.92690i 0.176155 0.127984i −0.496214 0.868200i \(-0.665277\pi\)
0.672369 + 0.740216i \(0.265277\pi\)
\(524\) 15.3070i 0.668689i
\(525\) 0 0
\(526\) −8.49190 + 16.6663i −0.370264 + 0.726685i
\(527\) −13.4431 26.3836i −0.585591 1.14929i
\(528\) 0 0
\(529\) 14.8047 + 10.7562i 0.643681 + 0.467662i
\(530\) −17.1647 17.1647i −0.745585 0.745585i
\(531\) 0 0
\(532\) −0.216917 −0.00940453
\(533\) 1.95775 + 1.08600i 0.0847995 + 0.0470400i
\(534\) 0 0
\(535\) −28.5276 9.26917i −1.23335 0.400741i
\(536\) 8.28756 + 8.28756i 0.357968 + 0.357968i
\(537\) 0 0
\(538\) −2.04465 + 2.81421i −0.0881510 + 0.121329i
\(539\) 0.324599 + 0.637061i 0.0139815 + 0.0274402i
\(540\) 0 0
\(541\) 15.1504 + 20.8527i 0.651366 + 0.896529i 0.999157 0.0410431i \(-0.0130681\pi\)
−0.347791 + 0.937572i \(0.613068\pi\)
\(542\) 9.90974i 0.425660i
\(543\) 0 0
\(544\) −7.38790 1.17013i −0.316754 0.0501689i
\(545\) 1.48399 + 9.36956i 0.0635673 + 0.401348i
\(546\) 0 0
\(547\) −11.2671 + 11.2671i −0.481745 + 0.481745i −0.905689 0.423943i \(-0.860646\pi\)
0.423943 + 0.905689i \(0.360646\pi\)
\(548\) −19.9255 + 3.15590i −0.851177 + 0.134813i
\(549\) 0 0
\(550\) 0.0772018 0.487433i 0.00329189 0.0207842i
\(551\) 3.15130 9.69869i 0.134250 0.413178i
\(552\) 0 0
\(553\) 0.823392 0.267536i 0.0350142 0.0113768i
\(554\) 8.14999 2.64809i 0.346260 0.112507i
\(555\) 0 0
\(556\) 3.23954 9.97029i 0.137387 0.422835i
\(557\) −1.32538 + 8.36812i −0.0561581 + 0.354569i 0.943568 + 0.331178i \(0.107446\pi\)
−0.999726 + 0.0233905i \(0.992554\pi\)
\(558\) 0 0
\(559\) −0.173829 + 0.0275318i −0.00735219 + 0.00116447i
\(560\) −0.169156 + 0.169156i −0.00714814 + 0.00714814i
\(561\) 0 0
\(562\) 0.138996 + 0.877588i 0.00586320 + 0.0370188i
\(563\) 15.5576 + 2.46409i 0.655676 + 0.103849i 0.475403 0.879768i \(-0.342302\pi\)
0.180272 + 0.983617i \(0.442302\pi\)
\(564\) 0 0
\(565\) 62.5627i 2.63203i
\(566\) −14.1416 19.4643i −0.594417 0.818145i
\(567\) 0 0
\(568\) 5.71809 + 11.2224i 0.239926 + 0.470880i
\(569\) −3.44570 + 4.74260i −0.144451 + 0.198820i −0.875112 0.483921i \(-0.839212\pi\)
0.730660 + 0.682741i \(0.239212\pi\)
\(570\) 0 0
\(571\) −0.103268 0.103268i −0.00432161 0.00432161i 0.704943 0.709264i \(-0.250973\pi\)
−0.709264 + 0.704943i \(0.750973\pi\)
\(572\) −0.0339931 0.0110450i −0.00142132 0.000461816i
\(573\) 0 0
\(574\) −0.479612 0.0933836i −0.0200186 0.00389776i
\(575\) 10.4665 0.436481
\(576\) 0 0
\(577\) 4.85491 + 4.85491i 0.202112 + 0.202112i 0.800905 0.598792i \(-0.204352\pi\)
−0.598792 + 0.800905i \(0.704352\pi\)
\(578\) −31.5114 22.8944i −1.31070 0.952282i
\(579\) 0 0
\(580\) −5.10579 10.0207i −0.212006 0.416086i
\(581\) −0.223225 + 0.438104i −0.00926093 + 0.0181756i
\(582\) 0 0
\(583\) 0.791571i 0.0327835i
\(584\) −4.75438 + 3.45426i −0.196737 + 0.142938i
\(585\) 0 0
\(586\) −0.697040 4.40094i −0.0287945 0.181801i
\(587\) 40.6886 20.7319i 1.67940 0.855697i 0.687868 0.725836i \(-0.258547\pi\)
0.991532 0.129862i \(-0.0414533\pi\)
\(588\) 0 0
\(589\) 11.1144 1.76035i 0.457961 0.0725340i
\(590\) 9.05682 + 27.8740i 0.372863 + 1.14756i
\(591\) 0 0
\(592\) −0.545442 + 1.67870i −0.0224175 + 0.0689941i
\(593\) 1.13116 + 0.576353i 0.0464510 + 0.0236680i 0.477062 0.878870i \(-0.341702\pi\)
−0.430611 + 0.902538i \(0.641702\pi\)
\(594\) 0 0
\(595\) −1.70180 + 0.552950i −0.0697672 + 0.0226687i
\(596\) −18.9985 9.68020i −0.778207 0.396516i
\(597\) 0 0
\(598\) 0.118583 0.748703i 0.00484921 0.0306167i
\(599\) −9.29638 28.6113i −0.379840 1.16903i −0.940155 0.340747i \(-0.889320\pi\)
0.560315 0.828280i \(-0.310680\pi\)
\(600\) 0 0
\(601\) −18.3006 + 18.3006i −0.746498 + 0.746498i −0.973820 0.227322i \(-0.927003\pi\)
0.227322 + 0.973820i \(0.427003\pi\)
\(602\) 0.0342248 0.0174384i 0.00139490 0.000710736i
\(603\) 0 0
\(604\) 14.2220 + 2.25254i 0.578685 + 0.0916546i
\(605\) 27.8716 20.2499i 1.13314 0.823274i
\(606\) 0 0
\(607\) −10.0423 13.8221i −0.407606 0.561022i 0.555026 0.831833i \(-0.312708\pi\)
−0.962633 + 0.270811i \(0.912708\pi\)
\(608\) 1.29051 2.53277i 0.0523371 0.102717i
\(609\) 0 0
\(610\) −17.5833 + 24.2013i −0.711927 + 0.979884i
\(611\) 2.83600 + 2.06047i 0.114732 + 0.0833578i
\(612\) 0 0
\(613\) 11.1033 + 3.60769i 0.448459 + 0.145713i 0.524535 0.851389i \(-0.324239\pi\)
−0.0760759 + 0.997102i \(0.524239\pi\)
\(614\) 28.3431 1.14383
\(615\) 0 0
\(616\) 0.00780085 0.000314305
\(617\) 37.3173 + 12.1251i 1.50234 + 0.488140i 0.940699 0.339242i \(-0.110170\pi\)
0.561640 + 0.827381i \(0.310170\pi\)
\(618\) 0 0
\(619\) −10.8801 7.90485i −0.437308 0.317723i 0.347257 0.937770i \(-0.387113\pi\)
−0.784564 + 0.620048i \(0.787113\pi\)
\(620\) 7.29448 10.0400i 0.292953 0.403216i
\(621\) 0 0
\(622\) −12.9276 + 25.3718i −0.518349 + 1.01732i
\(623\) −0.307361 0.423046i −0.0123142 0.0169490i
\(624\) 0 0
\(625\) 20.8988 15.1838i 0.835950 0.607353i
\(626\) −22.7528 3.60369i −0.909384 0.144032i
\(627\) 0 0
\(628\) 6.62800 3.37714i 0.264486 0.134762i
\(629\) −9.33582 + 9.33582i −0.372244 + 0.372244i
\(630\) 0 0
\(631\) −6.85341 21.0926i −0.272830 0.839684i −0.989785 0.142565i \(-0.954465\pi\)
0.716956 0.697119i \(-0.245535\pi\)
\(632\) −1.77482 + 11.2058i −0.0705986 + 0.445742i
\(633\) 0 0
\(634\) 5.74875 + 2.92913i 0.228312 + 0.116331i
\(635\) −26.6212 + 8.64976i −1.05643 + 0.343255i
\(636\) 0 0
\(637\) −2.17891 1.11021i −0.0863314 0.0439881i
\(638\) −0.113328 + 0.348788i −0.00448671 + 0.0138087i
\(639\) 0 0
\(640\) −0.968737 2.98147i −0.0382927 0.117853i
\(641\) −24.4147 + 3.86690i −0.964321 + 0.152733i −0.618689 0.785636i \(-0.712336\pi\)
−0.345633 + 0.938370i \(0.612336\pi\)
\(642\) 0 0
\(643\) −3.14347 + 1.60168i −0.123966 + 0.0631639i −0.514874 0.857266i \(-0.672161\pi\)
0.390908 + 0.920430i \(0.372161\pi\)
\(644\) 0.0258809 + 0.163405i 0.00101985 + 0.00643908i
\(645\) 0 0
\(646\) 17.2018 12.4978i 0.676795 0.491720i
\(647\) 12.6164i 0.496003i 0.968760 + 0.248002i \(0.0797739\pi\)
−0.968760 + 0.248002i \(0.920226\pi\)
\(648\) 0 0
\(649\) 0.433890 0.851558i 0.0170317 0.0334266i
\(650\) 0.766301 + 1.50395i 0.0300568 + 0.0589898i
\(651\) 0 0
\(652\) −9.60322 6.97715i −0.376091 0.273246i
\(653\) −18.4555 18.4555i −0.722220 0.722220i 0.246837 0.969057i \(-0.420609\pi\)
−0.969057 + 0.246837i \(0.920609\pi\)
\(654\) 0 0
\(655\) 47.9859 1.87496
\(656\) 3.94374 5.04449i 0.153977 0.196954i
\(657\) 0 0
\(658\) −0.727632 0.236422i −0.0283660 0.00921668i
\(659\) −10.7342 10.7342i −0.418144 0.418144i 0.466420 0.884563i \(-0.345544\pi\)
−0.884563 + 0.466420i \(0.845544\pi\)
\(660\) 0 0
\(661\) 29.8730 41.1166i 1.16192 1.59925i 0.458048 0.888928i \(-0.348549\pi\)
0.703876 0.710323i \(-0.251451\pi\)
\(662\) −15.5637 30.5456i −0.604902 1.18719i
\(663\) 0 0
\(664\) −3.78736 5.21285i −0.146978 0.202298i
\(665\) 0.680012i 0.0263697i
\(666\) 0 0
\(667\) −7.68211 1.21673i −0.297452 0.0471118i
\(668\) 3.31974 + 20.9600i 0.128445 + 0.810967i
\(669\) 0 0
\(670\) −25.9807 + 25.9807i −1.00372 + 1.00372i
\(671\) 0.963478 0.152600i 0.0371946 0.00589105i
\(672\) 0 0
\(673\) 0.0178699 0.112826i 0.000688834 0.00434912i −0.987342 0.158609i \(-0.949299\pi\)
0.988030 + 0.154260i \(0.0492992\pi\)
\(674\) −1.81666 + 5.59111i −0.0699752 + 0.215361i
\(675\) 0 0
\(676\) −12.2475 + 3.97944i −0.471057 + 0.153056i
\(677\) 33.3233 10.8274i 1.28072 0.416131i 0.411885 0.911236i \(-0.364871\pi\)
0.868833 + 0.495105i \(0.164871\pi\)
\(678\) 0 0
\(679\) 0.245307 0.754976i 0.00941401 0.0289733i
\(680\) 3.66824 23.1603i 0.140670 0.888158i
\(681\) 0 0
\(682\) −0.399701 + 0.0633065i −0.0153054 + 0.00242413i
\(683\) −8.17370 + 8.17370i −0.312758 + 0.312758i −0.845977 0.533219i \(-0.820982\pi\)
0.533219 + 0.845977i \(0.320982\pi\)
\(684\) 0 0
\(685\) −9.89342 62.4646i −0.378008 2.38665i
\(686\) 1.05474 + 0.167055i 0.0402702 + 0.00637817i
\(687\) 0 0
\(688\) 0.503363i 0.0191905i
\(689\) −1.59135 2.19031i −0.0606257 0.0834441i
\(690\) 0 0
\(691\) −16.9993 33.3630i −0.646683 1.26919i −0.948788 0.315913i \(-0.897689\pi\)
0.302105 0.953275i \(-0.402311\pi\)
\(692\) 8.87938 12.2214i 0.337544 0.464589i
\(693\) 0 0
\(694\) 8.73606 + 8.73606i 0.331616 + 0.331616i
\(695\) 31.2559 + 10.1557i 1.18560 + 0.385226i
\(696\) 0 0
\(697\) 43.4143 20.2278i 1.64443 0.766182i
\(698\) 5.92610 0.224306
\(699\) 0 0
\(700\) −0.260492 0.260492i −0.00984568 0.00984568i
\(701\) 42.0177 + 30.5277i 1.58699 + 1.15301i 0.908086 + 0.418784i \(0.137544\pi\)
0.678901 + 0.734229i \(0.262456\pi\)
\(702\) 0 0
\(703\) −2.27786 4.47056i −0.0859113 0.168610i
\(704\) −0.0464099 + 0.0910845i −0.00174914 + 0.00343288i
\(705\) 0 0
\(706\) 1.07549i 0.0404766i
\(707\) 0.0462103 0.0335737i 0.00173792 0.00126267i
\(708\) 0 0
\(709\) −2.35597 14.8750i −0.0884804 0.558643i −0.991609 0.129273i \(-0.958736\pi\)
0.903129 0.429370i \(-0.141264\pi\)
\(710\) −35.1810 + 17.9256i −1.32032 + 0.672737i
\(711\) 0 0
\(712\) 6.76817 1.07197i 0.253648 0.0401739i
\(713\) −2.65218 8.16256i −0.0993248 0.305690i
\(714\) 0 0
\(715\) 0.0346251 0.106565i 0.00129490 0.00398531i
\(716\) 15.5583 + 7.92734i 0.581441 + 0.296259i
\(717\) 0 0
\(718\) 3.55531 1.15519i 0.132683 0.0431113i
\(719\) 13.5445 + 6.90127i 0.505125 + 0.257374i 0.687932 0.725775i \(-0.258519\pi\)
−0.182808 + 0.983149i \(0.558519\pi\)
\(720\) 0 0
\(721\) −0.0229743 + 0.145054i −0.000855606 + 0.00540208i
\(722\) −3.37436 10.3852i −0.125581 0.386498i
\(723\) 0 0
\(724\) −15.2416 + 15.2416i −0.566449 + 0.566449i
\(725\) 15.4314 7.86267i 0.573107 0.292012i
\(726\) 0 0
\(727\) 25.0156 + 3.96208i 0.927776 + 0.146945i 0.601995 0.798500i \(-0.294373\pi\)
0.325781 + 0.945445i \(0.394373\pi\)
\(728\) −0.0215853 + 0.0156826i −0.000800003 + 0.000581236i
\(729\) 0 0
\(730\) −10.8287 14.9045i −0.400790 0.551640i
\(731\) −1.70934 + 3.35477i −0.0632223 + 0.124081i
\(732\) 0 0
\(733\) 22.8520 31.4530i 0.844057 1.16174i −0.141084 0.989998i \(-0.545059\pi\)
0.985141 0.171747i \(-0.0549411\pi\)
\(734\) 29.2915 + 21.2815i 1.08117 + 0.785516i
\(735\) 0 0
\(736\) −2.06193 0.669963i −0.0760039 0.0246952i
\(737\) 1.19813 0.0441338
\(738\) 0 0
\(739\) −20.0669 −0.738173 −0.369087 0.929395i \(-0.620329\pi\)
−0.369087 + 0.929395i \(0.620329\pi\)
\(740\) −5.26255 1.70991i −0.193455 0.0628574i
\(741\) 0 0
\(742\) 0.478038 + 0.347315i 0.0175493 + 0.0127503i
\(743\) 16.7059 22.9936i 0.612879 0.843555i −0.383932 0.923361i \(-0.625430\pi\)
0.996810 + 0.0798065i \(0.0254302\pi\)
\(744\) 0 0
\(745\) 30.3465 59.5583i 1.11181 2.18205i
\(746\) −15.8368 21.7974i −0.579825 0.798061i
\(747\) 0 0
\(748\) −0.618618 + 0.449452i −0.0226189 + 0.0164336i
\(749\) 0.721163 + 0.114221i 0.0263507 + 0.00417354i
\(750\) 0 0
\(751\) 13.9453 7.10551i 0.508873 0.259284i −0.180650 0.983547i \(-0.557820\pi\)
0.689523 + 0.724264i \(0.257820\pi\)
\(752\) 7.08944 7.08944i 0.258525 0.258525i
\(753\) 0 0
\(754\) −0.387611 1.19294i −0.0141160 0.0434444i
\(755\) −7.06149 + 44.5845i −0.256994 + 1.62260i
\(756\) 0 0
\(757\) 7.65445 + 3.90014i 0.278206 + 0.141753i 0.587527 0.809205i \(-0.300102\pi\)
−0.309321 + 0.950958i \(0.600102\pi\)
\(758\) 26.1024 8.48117i 0.948081 0.308050i
\(759\) 0 0
\(760\) 7.93998 + 4.04562i 0.288013 + 0.146750i
\(761\) 15.5421 47.8336i 0.563400 1.73397i −0.109257 0.994014i \(-0.534847\pi\)
0.672657 0.739954i \(-0.265153\pi\)
\(762\) 0 0
\(763\) −0.0713570 0.219614i −0.00258330 0.00795057i
\(764\) 20.4636 3.24111i 0.740346 0.117259i
\(765\) 0 0
\(766\) −9.18631 + 4.68066i −0.331915 + 0.169119i
\(767\) 0.511356 + 3.22857i 0.0184640 + 0.116577i
\(768\) 0 0
\(769\) −29.3994 + 21.3599i −1.06017 + 0.770258i −0.974120 0.226033i \(-0.927424\pi\)
−0.0860497 + 0.996291i \(0.527424\pi\)
\(770\) 0.0244549i 0.000881293i
\(771\) 0 0
\(772\) 2.66729 5.23485i 0.0959979 0.188406i
\(773\) 8.83075 + 17.3313i 0.317620 + 0.623365i 0.993524 0.113625i \(-0.0362464\pi\)
−0.675904 + 0.736990i \(0.736246\pi\)
\(774\) 0 0
\(775\) 15.4611 + 11.2332i 0.555380 + 0.403507i
\(776\) 7.35586 + 7.35586i 0.264060 + 0.264060i
\(777\) 0 0
\(778\) −5.42487 −0.194491
\(779\) 2.21252 + 18.0665i 0.0792719 + 0.647300i
\(780\) 0 0
\(781\) 1.22454 + 0.397878i 0.0438176 + 0.0142372i
\(782\) −11.4671 11.4671i −0.410063 0.410063i
\(783\) 0 0
\(784\) −4.11107 + 5.65841i −0.146824 + 0.202086i
\(785\) 10.5870 + 20.7781i 0.377866 + 0.741603i
\(786\) 0 0
\(787\) −5.54324 7.62961i −0.197595 0.271966i 0.698709 0.715406i \(-0.253758\pi\)
−0.896304 + 0.443439i \(0.853758\pi\)
\(788\) 8.37992i 0.298522i
\(789\) 0 0
\(790\) −35.1290 5.56389i −1.24983 0.197954i
\(791\) −0.238233 1.50415i −0.00847060 0.0534813i
\(792\) 0 0
\(793\) −2.35920 + 2.35920i −0.0837776 + 0.0837776i
\(794\) −17.4192 + 2.75894i −0.618186 + 0.0979110i
\(795\) 0 0
\(796\) −0.0801641 + 0.506136i −0.00284134 + 0.0179395i
\(797\) 9.68767 29.8156i 0.343155 1.05612i −0.619409 0.785068i \(-0.712628\pi\)
0.962564 0.271054i \(-0.0873721\pi\)
\(798\) 0 0
\(799\) 71.3238 23.1745i 2.52325 0.819855i
\(800\) 4.59132 1.49181i 0.162328 0.0527435i
\(801\) 0 0
\(802\) 6.40245 19.7047i 0.226078 0.695798i
\(803\) −0.0939792 + 0.593362i −0.00331646 + 0.0209393i
\(804\) 0 0
\(805\) −0.512260 + 0.0811340i −0.0180548 + 0.00285960i
\(806\) 0.978720 0.978720i 0.0344739 0.0344739i
\(807\) 0 0
\(808\) 0.117094 + 0.739303i 0.00411936 + 0.0260086i
\(809\) 29.3235 + 4.64439i 1.03096 + 0.163288i 0.648919 0.760858i \(-0.275221\pi\)
0.382041 + 0.924146i \(0.375221\pi\)
\(810\) 0 0
\(811\) 1.62308i 0.0569940i −0.999594 0.0284970i \(-0.990928\pi\)
0.999594 0.0284970i \(-0.00907211\pi\)
\(812\) 0.160912 + 0.221477i 0.00564692 + 0.00777231i
\(813\) 0 0
\(814\) 0.0819175 + 0.160772i 0.00287121 + 0.00563506i
\(815\) 21.8727 30.1051i 0.766166 1.05454i
\(816\) 0 0
\(817\) −1.01177 1.01177i −0.0353973 0.0353973i
\(818\) −10.0088 3.25207i −0.349951 0.113706i
\(819\) 0 0
\(820\) 15.8140 + 12.3632i 0.552248 + 0.431743i
\(821\) −31.6850 −1.10581 −0.552907 0.833243i \(-0.686482\pi\)
−0.552907 + 0.833243i \(0.686482\pi\)
\(822\) 0 0
\(823\) −19.5106 19.5106i −0.680097 0.680097i 0.279925 0.960022i \(-0.409690\pi\)
−0.960022 + 0.279925i \(0.909690\pi\)
\(824\) −1.55700 1.13123i −0.0542406 0.0394081i
\(825\) 0 0
\(826\) −0.323888 0.635666i −0.0112695 0.0221176i
\(827\) 7.48768 14.6954i 0.260372 0.511009i −0.723400 0.690429i \(-0.757422\pi\)
0.983773 + 0.179419i \(0.0574219\pi\)
\(828\) 0 0
\(829\) 5.35467i 0.185975i −0.995667 0.0929877i \(-0.970358\pi\)
0.995667 0.0929877i \(-0.0296417\pi\)
\(830\) 16.3418 11.8730i 0.567231 0.412117i
\(831\) 0 0
\(832\) −0.0546958 0.345335i −0.00189623 0.0119724i
\(833\) −46.6142 + 23.7511i −1.61509 + 0.822928i
\(834\) 0 0
\(835\) −65.7075 + 10.4070i −2.27390 + 0.360151i
\(836\) −0.0897967 0.276366i −0.00310569 0.00955832i
\(837\) 0 0
\(838\) 3.70999 11.4182i 0.128159 0.394434i
\(839\) −35.7376 18.2092i −1.23380 0.628652i −0.289323 0.957232i \(-0.593430\pi\)
−0.944476 + 0.328580i \(0.893430\pi\)
\(840\) 0 0
\(841\) 15.3404 4.98439i 0.528978 0.171875i
\(842\) 7.78849 + 3.96843i 0.268409 + 0.136761i
\(843\) 0 0
\(844\) −0.246361 + 1.55546i −0.00848009 + 0.0535412i
\(845\) −12.4752 38.3946i −0.429159 1.32081i
\(846\) 0 0
\(847\) −0.592984 + 0.592984i −0.0203752 + 0.0203752i
\(848\) −6.89934 + 3.51539i −0.236924 + 0.120719i
\(849\) 0 0
\(850\) 35.6658 + 5.64891i 1.22333 + 0.193756i
\(851\) −3.09594 + 2.24933i −0.106127 + 0.0771061i
\(852\) 0 0
\(853\) −22.2833 30.6703i −0.762964 1.05013i −0.996962 0.0778928i \(-0.975181\pi\)
0.233998 0.972237i \(-0.424819\pi\)
\(854\) 0.330585 0.648810i 0.0113124 0.0222018i
\(855\) 0 0
\(856\) −5.62411 + 7.74092i −0.192228 + 0.264579i
\(857\) 38.3161 + 27.8383i 1.30885 + 0.950937i 1.00000 0.000173000i \(-5.50676e-5\pi\)
0.308852 + 0.951110i \(0.400055\pi\)
\(858\) 0 0
\(859\) 29.5117 + 9.58895i 1.00693 + 0.327171i 0.765631 0.643281i \(-0.222427\pi\)
0.241297 + 0.970451i \(0.422427\pi\)
\(860\) −1.57799 −0.0538091
\(861\) 0 0
\(862\) −15.2599 −0.519753
\(863\) −41.0186 13.3278i −1.39629 0.453682i −0.488301 0.872676i \(-0.662383\pi\)
−0.907989 + 0.418993i \(0.862383\pi\)
\(864\) 0 0
\(865\) 38.3129 + 27.8360i 1.30268 + 0.946452i
\(866\) −22.9051 + 31.5262i −0.778347 + 1.07130i
\(867\) 0 0
\(868\) −0.137144 + 0.269160i −0.00465497 + 0.00913590i
\(869\) 0.681717 + 0.938303i 0.0231257 + 0.0318298i
\(870\) 0 0
\(871\) −3.31528 + 2.40869i −0.112334 + 0.0816155i
\(872\) 2.98879 + 0.473378i 0.101213 + 0.0160306i
\(873\) 0 0
\(874\) 5.49116 2.79788i 0.185741 0.0946398i
\(875\) −0.0291626 + 0.0291626i −0.000985875 + 0.000985875i
\(876\) 0 0
\(877\) 9.93757 + 30.5847i 0.335568 + 1.03277i 0.966442 + 0.256886i \(0.0826965\pi\)
−0.630874 + 0.775885i \(0.717303\pi\)
\(878\) −2.50768 + 15.8329i −0.0846300 + 0.534333i
\(879\) 0 0
\(880\) −0.285541 0.145490i −0.00962558 0.00490448i
\(881\) −44.0316 + 14.3067i −1.48346 + 0.482006i −0.935145 0.354265i \(-0.884731\pi\)
−0.548317 + 0.836271i \(0.684731\pi\)
\(882\) 0 0
\(883\) −45.0914 22.9752i −1.51745 0.773178i −0.520698 0.853741i \(-0.674328\pi\)
−0.996750 + 0.0805632i \(0.974328\pi\)
\(884\) 0.808174 2.48730i 0.0271818 0.0836571i
\(885\) 0 0
\(886\) −5.82009 17.9124i −0.195530 0.601779i
\(887\) 12.6960 2.01085i 0.426289 0.0675176i 0.0603962 0.998174i \(-0.480764\pi\)
0.365893 + 0.930657i \(0.380764\pi\)
\(888\) 0 0
\(889\) 0.607096 0.309331i 0.0203613 0.0103746i
\(890\) 3.36053 + 21.2175i 0.112645 + 0.711214i
\(891\) 0 0
\(892\) −8.46919 + 6.15323i −0.283569 + 0.206025i
\(893\) 28.4998i 0.953709i
\(894\) 0 0
\(895\) −24.8514 + 48.7737i −0.830692 + 1.63032i
\(896\) 0.0346438 + 0.0679922i 0.00115737 + 0.00227146i
\(897\) 0 0
\(898\) 19.1534 + 13.9158i 0.639158 + 0.464375i
\(899\) −10.0422 10.0422i −0.334926 0.334926i
\(900\) 0 0
\(901\) −57.9199 −1.92959
\(902\) −0.0795677 0.649715i −0.00264931 0.0216331i
\(903\) 0 0
\(904\) 18.9801 + 6.16700i 0.631268 + 0.205111i
\(905\) −47.7808 47.7808i −1.58829 1.58829i
\(906\) 0 0
\(907\) −19.2845 + 26.5428i −0.640331 + 0.881339i −0.998633 0.0522661i \(-0.983356\pi\)
0.358303 + 0.933605i \(0.383356\pi\)
\(908\) 0.532171 + 1.04445i 0.0176607 + 0.0346611i
\(909\) 0 0
\(910\) −0.0491634 0.0676676i −0.00162975 0.00224316i
\(911\) 45.2623i 1.49961i −0.661661 0.749803i \(-0.730148\pi\)
0.661661 0.749803i \(-0.269852\pi\)
\(912\) 0 0
\(913\) −0.650580 0.103042i −0.0215311 0.00341019i
\(914\) 0.582085 + 3.67514i 0.0192537 + 0.121563i
\(915\) 0 0
\(916\) −5.83796 + 5.83796i −0.192891 + 0.192891i
\(917\) −1.15369 + 0.182726i −0.0380981 + 0.00603415i
\(918\) 0 0
\(919\) 6.87308 43.3949i 0.226722 1.43147i −0.567267 0.823534i \(-0.691999\pi\)
0.793989 0.607933i \(-0.208001\pi\)
\(920\) 2.10027 6.46395i 0.0692437 0.213110i
\(921\) 0 0
\(922\) −33.7052 + 10.9515i −1.11002 + 0.360668i
\(923\) −4.18824 + 1.36084i −0.137858 + 0.0447926i
\(924\) 0 0
\(925\) 2.63318 8.10408i 0.0865783 0.266461i
\(926\) −3.82726 + 24.1644i −0.125772 + 0.794091i
\(927\) 0 0
\(928\) −3.54333 + 0.561209i −0.116316 + 0.0184226i
\(929\) −6.34123 + 6.34123i −0.208049 + 0.208049i −0.803438 0.595389i \(-0.796998\pi\)
0.595389 + 0.803438i \(0.296998\pi\)
\(930\) 0 0
\(931\) −3.11017 19.6368i −0.101932 0.643571i
\(932\) 23.4622 + 3.71605i 0.768531 + 0.121723i
\(933\) 0 0
\(934\) 12.7768i 0.418069i
\(935\) −1.40899 1.93930i −0.0460788 0.0634220i
\(936\) 0 0
\(937\) 11.6366 + 22.8381i 0.380151 + 0.746089i 0.999230 0.0392404i \(-0.0124938\pi\)
−0.619079 + 0.785329i \(0.712494\pi\)
\(938\) 0.525701 0.723565i 0.0171647 0.0236252i
\(939\) 0 0
\(940\) 22.2247 + 22.2247i 0.724889 + 0.724889i
\(941\) −11.2410 3.65241i −0.366445 0.119065i 0.120006 0.992773i \(-0.461709\pi\)
−0.486451 + 0.873708i \(0.661709\pi\)
\(942\) 0 0
\(943\) 13.3457 3.82227i 0.434595 0.124470i
\(944\) 9.34910 0.304287
\(945\) 0 0
\(946\) 0.0363856 + 0.0363856i 0.00118300 + 0.00118300i
\(947\) −3.49686 2.54062i −0.113633 0.0825590i 0.529518 0.848299i \(-0.322373\pi\)
−0.643150 + 0.765740i \(0.722373\pi\)
\(948\) 0 0
\(949\) −0.932833 1.83079i −0.0302810 0.0594299i
\(950\) −6.23007 + 12.2272i −0.202130 + 0.396703i
\(951\) 0 0
\(952\) 0.570794i 0.0184995i
\(953\) 3.23986 2.35389i 0.104949 0.0762501i −0.534073 0.845438i \(-0.679339\pi\)
0.639022 + 0.769188i \(0.279339\pi\)
\(954\) 0 0
\(955\) 10.1606 + 64.1512i 0.328788 + 2.07588i
\(956\) −17.8134 + 9.07637i −0.576126 + 0.293551i
\(957\) 0 0
\(958\) 12.5312 1.98475i 0.404864 0.0641242i
\(959\) 0.475720 + 1.46411i 0.0153618 + 0.0472787i
\(960\) 0 0
\(961\) −4.73684 + 14.5785i −0.152801 + 0.470274i
\(962\) −0.549881 0.280178i −0.0177289 0.00903331i
\(963\) 0 0
\(964\) −7.56484 + 2.45797i −0.243647 + 0.0791658i
\(965\) 16.4107 + 8.36169i 0.528280 + 0.269172i
\(966\) 0 0
\(967\) −8.58410 + 54.1979i −0.276046 + 1.74289i 0.326859 + 0.945073i \(0.394010\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(968\) −3.39596 10.4517i −0.109150 0.335930i
\(969\) 0 0
\(970\) −23.0599 + 23.0599i −0.740409 + 0.740409i
\(971\) −0.962775 + 0.490558i −0.0308969 + 0.0157428i −0.469371 0.883001i \(-0.655519\pi\)
0.438474 + 0.898744i \(0.355519\pi\)
\(972\) 0 0
\(973\) −0.790133 0.125145i −0.0253305 0.00401196i
\(974\) 23.2454 16.8887i 0.744829 0.541150i
\(975\) 0 0
\(976\) 5.60889 + 7.71997i 0.179536 + 0.247110i
\(977\) 4.50300 8.83764i 0.144064 0.282741i −0.807688 0.589610i \(-0.799281\pi\)
0.951752 + 0.306869i \(0.0992814\pi\)
\(978\) 0 0
\(979\) 0.411750 0.566725i 0.0131596 0.0181126i
\(980\) −17.7385 12.8878i −0.566637 0.411686i
\(981\) 0 0
\(982\) −36.7556 11.9426i −1.17292 0.381104i
\(983\) 38.2748 1.22078 0.610389 0.792102i \(-0.291013\pi\)
0.610389 + 0.792102i \(0.291013\pi\)
\(984\) 0 0
\(985\) 26.2702 0.837039
\(986\) −25.5211 8.29232i −0.812758 0.264081i
\(987\) 0 0
\(988\) 0.804069 + 0.584191i 0.0255809 + 0.0185856i
\(989\) −0.641458 + 0.882891i −0.0203972 + 0.0280743i
\(990\) 0 0
\(991\) −8.39811 + 16.4822i −0.266775 + 0.523575i −0.985068 0.172166i \(-0.944924\pi\)
0.718293 + 0.695740i \(0.244924\pi\)
\(992\) −2.32686 3.20265i −0.0738780 0.101684i
\(993\) 0 0
\(994\) 0.777571 0.564938i 0.0246630 0.0179188i
\(995\) −1.58669 0.251306i −0.0503014 0.00796695i
\(996\) 0 0
\(997\) −7.91767 + 4.03425i −0.250755 + 0.127766i −0.574851 0.818258i \(-0.694940\pi\)
0.324096 + 0.946024i \(0.394940\pi\)
\(998\) 14.5798 14.5798i 0.461515 0.461515i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.u.f.595.1 32
3.2 odd 2 246.2.n.b.103.2 yes 32
41.2 even 20 inner 738.2.u.f.289.1 32
123.2 odd 20 246.2.n.b.43.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
246.2.n.b.43.2 32 123.2 odd 20
246.2.n.b.103.2 yes 32 3.2 odd 2
738.2.u.f.289.1 32 41.2 even 20 inner
738.2.u.f.595.1 32 1.1 even 1 trivial