Properties

Label 738.2.u.f.289.1
Level $738$
Weight $2$
Character 738.289
Analytic conductor $5.893$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(289,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.u (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,8,0,0,4,0,0,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 246)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 289.1
Character \(\chi\) \(=\) 738.289
Dual form 738.2.u.f.595.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.951057 - 0.309017i) q^{2} +(0.809017 - 0.587785i) q^{4} +(-1.84265 - 2.53619i) q^{5} +(0.0346438 + 0.0679922i) q^{7} +(0.587785 - 0.809017i) q^{8} +(-2.53619 - 1.84265i) q^{10} +(0.100968 - 0.0159917i) q^{11} +(-0.311532 - 0.158733i) q^{13} +(0.0539589 + 0.0539589i) q^{14} +(0.309017 - 0.951057i) q^{16} +(-1.17013 - 7.38790i) q^{17} +(-2.53277 + 1.29051i) q^{19} +(-2.98147 - 0.968737i) q^{20} +(0.0910845 - 0.0464099i) q^{22} +(-0.669963 - 2.06193i) q^{23} +(-1.49181 + 4.59132i) q^{25} +(-0.345335 - 0.0546958i) q^{26} +(0.0679922 + 0.0346438i) q^{28} +(0.561209 - 3.54333i) q^{29} +(-3.20265 - 2.32686i) q^{31} -1.00000i q^{32} +(-3.39585 - 6.66472i) q^{34} +(0.108605 - 0.213149i) q^{35} +(1.42799 - 1.03749i) q^{37} +(-2.01002 + 2.01002i) q^{38} -3.13490 q^{40} +(-3.57891 + 5.30956i) q^{41} +(0.478727 - 0.155548i) q^{43} +(0.0722851 - 0.0722851i) q^{44} +(-1.27434 - 1.75398i) q^{46} +(-4.55170 + 8.93321i) q^{47} +(4.11107 - 5.65841i) q^{49} +4.82760i q^{50} +(-0.345335 + 0.0546958i) q^{52} +(1.21132 - 7.64797i) q^{53} +(-0.226606 - 0.226606i) q^{55} +(0.0753700 + 0.0119374i) q^{56} +(-0.561209 - 3.54333i) q^{58} +(2.88903 + 8.89152i) q^{59} +(9.07537 + 2.94877i) q^{61} +(-3.76494 - 1.22330i) q^{62} +(-0.309017 - 0.951057i) q^{64} +(0.171466 + 1.08259i) q^{65} +(11.5761 + 1.83347i) q^{67} +(-5.28915 - 5.28915i) q^{68} +(0.0374227 - 0.236277i) q^{70} +(12.4401 - 1.97032i) q^{71} -5.87673i q^{73} +(1.03749 - 1.42799i) q^{74} +(-1.29051 + 2.53277i) q^{76} +(0.00458522 + 0.00631102i) q^{77} +(8.02245 - 8.02245i) q^{79} +(-2.98147 + 0.968737i) q^{80} +(-1.76301 + 6.15563i) q^{82} -6.44344 q^{83} +(-16.5810 + 16.5810i) q^{85} +(0.407229 - 0.295869i) q^{86} +(0.0464099 - 0.0910845i) q^{88} +(3.11099 + 6.10566i) q^{89} -0.0266808i q^{91} +(-1.75398 - 1.27434i) q^{92} +(-1.56841 + 9.90254i) q^{94} +(7.93998 + 4.04562i) q^{95} +(10.2747 + 1.62735i) q^{97} +(2.16132 - 6.65186i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{4} + 4 q^{7} - 4 q^{10} + 4 q^{11} - 12 q^{13} - 4 q^{14} - 8 q^{16} + 4 q^{17} - 4 q^{19} - 4 q^{22} - 40 q^{23} + 12 q^{25} - 8 q^{26} - 4 q^{28} - 16 q^{29} - 4 q^{31} - 16 q^{34} + 8 q^{35}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951057 0.309017i 0.672499 0.218508i
\(3\) 0 0
\(4\) 0.809017 0.587785i 0.404508 0.293893i
\(5\) −1.84265 2.53619i −0.824057 1.13422i −0.989000 0.147914i \(-0.952744\pi\)
0.164943 0.986303i \(-0.447256\pi\)
\(6\) 0 0
\(7\) 0.0346438 + 0.0679922i 0.0130941 + 0.0256986i 0.897461 0.441094i \(-0.145409\pi\)
−0.884367 + 0.466793i \(0.845409\pi\)
\(8\) 0.587785 0.809017i 0.207813 0.286031i
\(9\) 0 0
\(10\) −2.53619 1.84265i −0.802013 0.582696i
\(11\) 0.100968 0.0159917i 0.0304430 0.00482169i −0.141194 0.989982i \(-0.545094\pi\)
0.171637 + 0.985160i \(0.445094\pi\)
\(12\) 0 0
\(13\) −0.311532 0.158733i −0.0864033 0.0440247i 0.410255 0.911971i \(-0.365440\pi\)
−0.496658 + 0.867946i \(0.665440\pi\)
\(14\) 0.0539589 + 0.0539589i 0.0144211 + 0.0144211i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) −1.17013 7.38790i −0.283798 1.79183i −0.557670 0.830063i \(-0.688304\pi\)
0.273872 0.961766i \(-0.411696\pi\)
\(18\) 0 0
\(19\) −2.53277 + 1.29051i −0.581057 + 0.296063i −0.719707 0.694278i \(-0.755724\pi\)
0.138650 + 0.990341i \(0.455724\pi\)
\(20\) −2.98147 0.968737i −0.666676 0.216616i
\(21\) 0 0
\(22\) 0.0910845 0.0464099i 0.0194193 0.00989462i
\(23\) −0.669963 2.06193i −0.139697 0.429943i 0.856594 0.515991i \(-0.172576\pi\)
−0.996291 + 0.0860481i \(0.972576\pi\)
\(24\) 0 0
\(25\) −1.49181 + 4.59132i −0.298362 + 0.918264i
\(26\) −0.345335 0.0546958i −0.0677259 0.0107267i
\(27\) 0 0
\(28\) 0.0679922 + 0.0346438i 0.0128493 + 0.00654706i
\(29\) 0.561209 3.54333i 0.104214 0.657981i −0.879179 0.476492i \(-0.841908\pi\)
0.983393 0.181489i \(-0.0580917\pi\)
\(30\) 0 0
\(31\) −3.20265 2.32686i −0.575213 0.417917i 0.261782 0.965127i \(-0.415690\pi\)
−0.836995 + 0.547210i \(0.815690\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −3.39585 6.66472i −0.582383 1.14299i
\(35\) 0.108605 0.213149i 0.0183576 0.0360287i
\(36\) 0 0
\(37\) 1.42799 1.03749i 0.234759 0.170563i −0.464186 0.885738i \(-0.653653\pi\)
0.698945 + 0.715175i \(0.253653\pi\)
\(38\) −2.01002 + 2.01002i −0.326068 + 0.326068i
\(39\) 0 0
\(40\) −3.13490 −0.495671
\(41\) −3.57891 + 5.30956i −0.558932 + 0.829213i
\(42\) 0 0
\(43\) 0.478727 0.155548i 0.0730051 0.0237208i −0.272287 0.962216i \(-0.587780\pi\)
0.345292 + 0.938495i \(0.387780\pi\)
\(44\) 0.0722851 0.0722851i 0.0108974 0.0108974i
\(45\) 0 0
\(46\) −1.27434 1.75398i −0.187892 0.258611i
\(47\) −4.55170 + 8.93321i −0.663934 + 1.30304i 0.275826 + 0.961208i \(0.411049\pi\)
−0.939760 + 0.341836i \(0.888951\pi\)
\(48\) 0 0
\(49\) 4.11107 5.65841i 0.587296 0.808344i
\(50\) 4.82760i 0.682726i
\(51\) 0 0
\(52\) −0.345335 + 0.0546958i −0.0478894 + 0.00758494i
\(53\) 1.21132 7.64797i 0.166388 1.05053i −0.753242 0.657743i \(-0.771511\pi\)
0.919630 0.392787i \(-0.128489\pi\)
\(54\) 0 0
\(55\) −0.226606 0.226606i −0.0305556 0.0305556i
\(56\) 0.0753700 + 0.0119374i 0.0100717 + 0.00159521i
\(57\) 0 0
\(58\) −0.561209 3.54333i −0.0736904 0.465263i
\(59\) 2.88903 + 8.89152i 0.376120 + 1.15758i 0.942720 + 0.333584i \(0.108258\pi\)
−0.566601 + 0.823993i \(0.691742\pi\)
\(60\) 0 0
\(61\) 9.07537 + 2.94877i 1.16198 + 0.377551i 0.825645 0.564190i \(-0.190812\pi\)
0.336338 + 0.941741i \(0.390812\pi\)
\(62\) −3.76494 1.22330i −0.478148 0.155360i
\(63\) 0 0
\(64\) −0.309017 0.951057i −0.0386271 0.118882i
\(65\) 0.171466 + 1.08259i 0.0212677 + 0.134279i
\(66\) 0 0
\(67\) 11.5761 + 1.83347i 1.41424 + 0.223994i 0.816339 0.577573i \(-0.196000\pi\)
0.597904 + 0.801567i \(0.296000\pi\)
\(68\) −5.28915 5.28915i −0.641404 0.641404i
\(69\) 0 0
\(70\) 0.0374227 0.236277i 0.00447286 0.0282405i
\(71\) 12.4401 1.97032i 1.47637 0.233834i 0.634250 0.773128i \(-0.281309\pi\)
0.842118 + 0.539294i \(0.181309\pi\)
\(72\) 0 0
\(73\) 5.87673i 0.687819i −0.939003 0.343910i \(-0.888249\pi\)
0.939003 0.343910i \(-0.111751\pi\)
\(74\) 1.03749 1.42799i 0.120606 0.166000i
\(75\) 0 0
\(76\) −1.29051 + 2.53277i −0.148032 + 0.290529i
\(77\) 0.00458522 + 0.00631102i 0.000522535 + 0.000719208i
\(78\) 0 0
\(79\) 8.02245 8.02245i 0.902596 0.902596i −0.0930639 0.995660i \(-0.529666\pi\)
0.995660 + 0.0930639i \(0.0296661\pi\)
\(80\) −2.98147 + 0.968737i −0.333338 + 0.108308i
\(81\) 0 0
\(82\) −1.76301 + 6.15563i −0.194691 + 0.679776i
\(83\) −6.44344 −0.707259 −0.353629 0.935386i \(-0.615053\pi\)
−0.353629 + 0.935386i \(0.615053\pi\)
\(84\) 0 0
\(85\) −16.5810 + 16.5810i −1.79846 + 1.79846i
\(86\) 0.407229 0.295869i 0.0439127 0.0319044i
\(87\) 0 0
\(88\) 0.0464099 0.0910845i 0.00494731 0.00970964i
\(89\) 3.11099 + 6.10566i 0.329764 + 0.647198i 0.995048 0.0993917i \(-0.0316897\pi\)
−0.665284 + 0.746590i \(0.731690\pi\)
\(90\) 0 0
\(91\) 0.0266808i 0.00279691i
\(92\) −1.75398 1.27434i −0.182866 0.132860i
\(93\) 0 0
\(94\) −1.56841 + 9.90254i −0.161769 + 1.02137i
\(95\) 7.93998 + 4.04562i 0.814624 + 0.415072i
\(96\) 0 0
\(97\) 10.2747 + 1.62735i 1.04324 + 0.165232i 0.654458 0.756099i \(-0.272897\pi\)
0.388779 + 0.921331i \(0.372897\pi\)
\(98\) 2.16132 6.65186i 0.218326 0.671939i
\(99\) 0 0
\(100\) 1.49181 + 4.59132i 0.149181 + 0.459132i
\(101\) 0.666935 0.339820i 0.0663625 0.0338134i −0.420494 0.907295i \(-0.638143\pi\)
0.486857 + 0.873482i \(0.338143\pi\)
\(102\) 0 0
\(103\) −1.83036 0.594721i −0.180351 0.0585996i 0.217449 0.976072i \(-0.430226\pi\)
−0.397800 + 0.917472i \(0.630226\pi\)
\(104\) −0.311532 + 0.158733i −0.0305482 + 0.0155651i
\(105\) 0 0
\(106\) −1.21132 7.64797i −0.117654 0.742837i
\(107\) 2.95677 9.10000i 0.285842 0.879730i −0.700304 0.713845i \(-0.746952\pi\)
0.986145 0.165885i \(-0.0530479\pi\)
\(108\) 0 0
\(109\) 2.13974 + 2.13974i 0.204950 + 0.204950i 0.802117 0.597167i \(-0.203707\pi\)
−0.597167 + 0.802117i \(0.703707\pi\)
\(110\) −0.285541 0.145490i −0.0272252 0.0138720i
\(111\) 0 0
\(112\) 0.0753700 0.0119374i 0.00712179 0.00112798i
\(113\) 16.1454 + 11.7303i 1.51883 + 1.10350i 0.962062 + 0.272831i \(0.0879600\pi\)
0.556771 + 0.830666i \(0.312040\pi\)
\(114\) 0 0
\(115\) −3.99494 + 5.49857i −0.372530 + 0.512744i
\(116\) −1.62869 3.19649i −0.151220 0.296787i
\(117\) 0 0
\(118\) 5.49526 + 7.56358i 0.505880 + 0.696284i
\(119\) 0.461782 0.335504i 0.0423315 0.0307556i
\(120\) 0 0
\(121\) −10.4517 + 3.39596i −0.950153 + 0.308723i
\(122\) 9.54241 0.863929
\(123\) 0 0
\(124\) −3.95869 −0.355501
\(125\) −0.514007 + 0.167011i −0.0459742 + 0.0149379i
\(126\) 0 0
\(127\) 7.22363 5.24828i 0.640994 0.465709i −0.219198 0.975680i \(-0.570344\pi\)
0.860191 + 0.509971i \(0.170344\pi\)
\(128\) −0.587785 0.809017i −0.0519534 0.0715077i
\(129\) 0 0
\(130\) 0.497613 + 0.976621i 0.0436435 + 0.0856553i
\(131\) −8.99722 + 12.3836i −0.786091 + 1.08196i 0.208493 + 0.978024i \(0.433144\pi\)
−0.994584 + 0.103938i \(0.966856\pi\)
\(132\) 0 0
\(133\) −0.175489 0.127500i −0.0152169 0.0110557i
\(134\) 11.5761 1.83347i 1.00002 0.158388i
\(135\) 0 0
\(136\) −6.66472 3.39585i −0.571495 0.291191i
\(137\) −14.2651 14.2651i −1.21875 1.21875i −0.968070 0.250681i \(-0.919345\pi\)
−0.250681 0.968070i \(-0.580655\pi\)
\(138\) 0 0
\(139\) −3.23954 + 9.97029i −0.274775 + 0.845669i 0.714504 + 0.699631i \(0.246652\pi\)
−0.989279 + 0.146038i \(0.953348\pi\)
\(140\) −0.0374227 0.236277i −0.00316279 0.0199691i
\(141\) 0 0
\(142\) 11.2224 5.71809i 0.941761 0.479851i
\(143\) −0.0339931 0.0110450i −0.00284265 0.000923632i
\(144\) 0 0
\(145\) −10.0207 + 5.10579i −0.832172 + 0.424013i
\(146\) −1.81601 5.58910i −0.150294 0.462558i
\(147\) 0 0
\(148\) 0.545442 1.67870i 0.0448351 0.137988i
\(149\) −21.0600 3.33557i −1.72530 0.273261i −0.786466 0.617634i \(-0.788092\pi\)
−0.938833 + 0.344373i \(0.888092\pi\)
\(150\) 0 0
\(151\) 12.8298 + 6.53713i 1.04408 + 0.531984i 0.889946 0.456066i \(-0.150742\pi\)
0.154132 + 0.988050i \(0.450742\pi\)
\(152\) −0.444679 + 2.80760i −0.0360683 + 0.227726i
\(153\) 0 0
\(154\) 0.00631102 + 0.00458522i 0.000508557 + 0.000369488i
\(155\) 12.4101i 0.996804i
\(156\) 0 0
\(157\) 3.37714 + 6.62800i 0.269525 + 0.528972i 0.985609 0.169042i \(-0.0540673\pi\)
−0.716084 + 0.698014i \(0.754067\pi\)
\(158\) 5.15073 10.1089i 0.409770 0.804219i
\(159\) 0 0
\(160\) −2.53619 + 1.84265i −0.200503 + 0.145674i
\(161\) 0.116985 0.116985i 0.00921974 0.00921974i
\(162\) 0 0
\(163\) −11.8702 −0.929748 −0.464874 0.885377i \(-0.653900\pi\)
−0.464874 + 0.885377i \(0.653900\pi\)
\(164\) 0.225477 + 6.39915i 0.0176068 + 0.499690i
\(165\) 0 0
\(166\) −6.12807 + 1.99113i −0.475631 + 0.154542i
\(167\) 15.0057 15.0057i 1.16118 1.16118i 0.176958 0.984218i \(-0.443374\pi\)
0.984218 0.176958i \(-0.0566256\pi\)
\(168\) 0 0
\(169\) −7.56935 10.4183i −0.582258 0.801409i
\(170\) −10.6456 + 20.8932i −0.816483 + 1.60244i
\(171\) 0 0
\(172\) 0.295869 0.407229i 0.0225598 0.0310509i
\(173\) 15.1065i 1.14853i 0.818671 + 0.574263i \(0.194711\pi\)
−0.818671 + 0.574263i \(0.805289\pi\)
\(174\) 0 0
\(175\) −0.363856 + 0.0576291i −0.0275049 + 0.00435635i
\(176\) 0.0159917 0.100968i 0.00120542 0.00761074i
\(177\) 0 0
\(178\) 4.84548 + 4.84548i 0.363184 + 0.363184i
\(179\) 17.2465 + 2.73158i 1.28906 + 0.204168i 0.763067 0.646319i \(-0.223693\pi\)
0.525996 + 0.850487i \(0.323693\pi\)
\(180\) 0 0
\(181\) −3.37192 21.2895i −0.250633 1.58243i −0.716505 0.697582i \(-0.754259\pi\)
0.465872 0.884852i \(-0.345741\pi\)
\(182\) −0.00824484 0.0253750i −0.000611148 0.00188092i
\(183\) 0 0
\(184\) −2.06193 0.669963i −0.152008 0.0493903i
\(185\) −5.26255 1.70991i −0.386911 0.125715i
\(186\) 0 0
\(187\) −0.236291 0.727229i −0.0172793 0.0531802i
\(188\) 1.56841 + 9.90254i 0.114388 + 0.722217i
\(189\) 0 0
\(190\) 8.80153 + 1.39403i 0.638530 + 0.101133i
\(191\) 14.6503 + 14.6503i 1.06006 + 1.06006i 0.998077 + 0.0619807i \(0.0197417\pi\)
0.0619807 + 0.998077i \(0.480258\pi\)
\(192\) 0 0
\(193\) −0.919085 + 5.80288i −0.0661572 + 0.417700i 0.932276 + 0.361747i \(0.117820\pi\)
−0.998433 + 0.0559529i \(0.982180\pi\)
\(194\) 10.2747 1.62735i 0.737680 0.116837i
\(195\) 0 0
\(196\) 6.99418i 0.499584i
\(197\) −4.92559 + 6.77950i −0.350934 + 0.483019i −0.947595 0.319474i \(-0.896494\pi\)
0.596661 + 0.802493i \(0.296494\pi\)
\(198\) 0 0
\(199\) 0.232645 0.456592i 0.0164918 0.0323670i −0.882614 0.470099i \(-0.844218\pi\)
0.899105 + 0.437732i \(0.144218\pi\)
\(200\) 2.83759 + 3.90561i 0.200648 + 0.276168i
\(201\) 0 0
\(202\) 0.529283 0.529283i 0.0372402 0.0372402i
\(203\) 0.260362 0.0845966i 0.0182738 0.00593752i
\(204\) 0 0
\(205\) 20.0607 0.706848i 1.40110 0.0493684i
\(206\) −1.92456 −0.134090
\(207\) 0 0
\(208\) −0.247233 + 0.247233i −0.0171425 + 0.0171425i
\(209\) −0.235091 + 0.170804i −0.0162616 + 0.0118147i
\(210\) 0 0
\(211\) 0.714967 1.40320i 0.0492204 0.0966004i −0.865086 0.501623i \(-0.832736\pi\)
0.914307 + 0.405023i \(0.132736\pi\)
\(212\) −3.51539 6.89934i −0.241438 0.473848i
\(213\) 0 0
\(214\) 9.56830i 0.654076i
\(215\) −1.27662 0.927521i −0.0870650 0.0632564i
\(216\) 0 0
\(217\) 0.0472566 0.298367i 0.00320799 0.0202545i
\(218\) 2.69623 + 1.37380i 0.182612 + 0.0930453i
\(219\) 0 0
\(220\) −0.316524 0.0501325i −0.0213401 0.00337994i
\(221\) −0.808174 + 2.48730i −0.0543637 + 0.167314i
\(222\) 0 0
\(223\) −3.23494 9.95613i −0.216628 0.666712i −0.999034 0.0439434i \(-0.986008\pi\)
0.782406 0.622768i \(-0.213992\pi\)
\(224\) 0.0679922 0.0346438i 0.00454292 0.00231473i
\(225\) 0 0
\(226\) 18.9801 + 6.16700i 1.26254 + 0.410223i
\(227\) 1.04445 0.532171i 0.0693223 0.0353215i −0.418986 0.907993i \(-0.637614\pi\)
0.488308 + 0.872671i \(0.337614\pi\)
\(228\) 0 0
\(229\) −1.29154 8.15447i −0.0853474 0.538863i −0.992903 0.118930i \(-0.962054\pi\)
0.907555 0.419933i \(-0.137946\pi\)
\(230\) −2.10027 + 6.46395i −0.138487 + 0.426221i
\(231\) 0 0
\(232\) −2.53675 2.53675i −0.166546 0.166546i
\(233\) 21.1656 + 10.7844i 1.38660 + 0.706510i 0.978466 0.206410i \(-0.0661781\pi\)
0.408138 + 0.912920i \(0.366178\pi\)
\(234\) 0 0
\(235\) 31.0435 4.91680i 2.02505 0.320737i
\(236\) 7.56358 + 5.49526i 0.492347 + 0.357711i
\(237\) 0 0
\(238\) 0.335504 0.461782i 0.0217475 0.0299329i
\(239\) −9.07637 17.8134i −0.587102 1.15225i −0.973236 0.229810i \(-0.926190\pi\)
0.386134 0.922443i \(-0.373810\pi\)
\(240\) 0 0
\(241\) −4.67533 6.43504i −0.301165 0.414517i 0.631436 0.775428i \(-0.282466\pi\)
−0.932600 + 0.360911i \(0.882466\pi\)
\(242\) −8.89073 + 6.45950i −0.571518 + 0.415232i
\(243\) 0 0
\(244\) 9.07537 2.94877i 0.580991 0.188776i
\(245\) −21.9260 −1.40080
\(246\) 0 0
\(247\) 0.993884 0.0632394
\(248\) −3.76494 + 1.22330i −0.239074 + 0.0776799i
\(249\) 0 0
\(250\) −0.437240 + 0.317674i −0.0276535 + 0.0200915i
\(251\) −2.14543 2.95293i −0.135418 0.186387i 0.735922 0.677066i \(-0.236749\pi\)
−0.871341 + 0.490679i \(0.836749\pi\)
\(252\) 0 0
\(253\) −0.100619 0.197475i −0.00632584 0.0124152i
\(254\) 5.24828 7.22363i 0.329306 0.453251i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −0.665902 + 0.105469i −0.0415379 + 0.00657895i −0.177169 0.984180i \(-0.556694\pi\)
0.135631 + 0.990759i \(0.456694\pi\)
\(258\) 0 0
\(259\) 0.120012 + 0.0611493i 0.00745720 + 0.00379963i
\(260\) 0.775050 + 0.775050i 0.0480666 + 0.0480666i
\(261\) 0 0
\(262\) −4.73012 + 14.5578i −0.292228 + 0.899385i
\(263\) −2.92611 18.4747i −0.180432 1.13920i −0.897113 0.441800i \(-0.854340\pi\)
0.716682 0.697400i \(-0.245660\pi\)
\(264\) 0 0
\(265\) −21.6287 + 11.0204i −1.32864 + 0.676977i
\(266\) −0.206300 0.0670310i −0.0126491 0.00410993i
\(267\) 0 0
\(268\) 10.4429 5.32094i 0.637904 0.325028i
\(269\) −1.07493 3.30831i −0.0655399 0.201711i 0.912924 0.408130i \(-0.133819\pi\)
−0.978464 + 0.206419i \(0.933819\pi\)
\(270\) 0 0
\(271\) 3.06228 9.42473i 0.186020 0.572511i −0.813944 0.580943i \(-0.802684\pi\)
0.999964 + 0.00843170i \(0.00268392\pi\)
\(272\) −7.38790 1.17013i −0.447957 0.0709495i
\(273\) 0 0
\(274\) −17.9751 9.15877i −1.08592 0.553301i
\(275\) −0.0772018 + 0.487433i −0.00465544 + 0.0293933i
\(276\) 0 0
\(277\) 6.93279 + 5.03697i 0.416551 + 0.302642i 0.776249 0.630427i \(-0.217120\pi\)
−0.359697 + 0.933069i \(0.617120\pi\)
\(278\) 10.4834i 0.628752i
\(279\) 0 0
\(280\) −0.108605 0.213149i −0.00649038 0.0127381i
\(281\) 0.403383 0.791683i 0.0240638 0.0472279i −0.878662 0.477445i \(-0.841563\pi\)
0.902725 + 0.430217i \(0.141563\pi\)
\(282\) 0 0
\(283\) −19.4643 + 14.1416i −1.15703 + 0.840633i −0.989400 0.145217i \(-0.953612\pi\)
−0.167632 + 0.985850i \(0.553612\pi\)
\(284\) 8.90613 8.90613i 0.528481 0.528481i
\(285\) 0 0
\(286\) −0.0357425 −0.00211350
\(287\) −0.484996 0.0593952i −0.0286284 0.00350599i
\(288\) 0 0
\(289\) −37.0439 + 12.0363i −2.17905 + 0.708018i
\(290\) −7.95245 + 7.95245i −0.466984 + 0.466984i
\(291\) 0 0
\(292\) −3.45426 4.75438i −0.202145 0.278229i
\(293\) −2.02289 + 3.97014i −0.118178 + 0.231938i −0.942517 0.334160i \(-0.891548\pi\)
0.824338 + 0.566098i \(0.191548\pi\)
\(294\) 0 0
\(295\) 17.2271 23.7111i 1.00300 1.38051i
\(296\) 1.76509i 0.102594i
\(297\) 0 0
\(298\) −21.0600 + 3.33557i −1.21997 + 0.193224i
\(299\) −0.118583 + 0.748703i −0.00685782 + 0.0432986i
\(300\) 0 0
\(301\) 0.0271609 + 0.0271609i 0.00156553 + 0.00156553i
\(302\) 14.2220 + 2.25254i 0.818384 + 0.129619i
\(303\) 0 0
\(304\) 0.444679 + 2.80760i 0.0255041 + 0.161027i
\(305\) −9.24409 28.4504i −0.529315 1.62906i
\(306\) 0 0
\(307\) 26.9559 + 8.75849i 1.53845 + 0.499874i 0.950949 0.309348i \(-0.100111\pi\)
0.587504 + 0.809221i \(0.300111\pi\)
\(308\) 0.00741905 + 0.00241060i 0.000422740 + 0.000137356i
\(309\) 0 0
\(310\) 3.83494 + 11.8027i 0.217810 + 0.670349i
\(311\) −4.45454 28.1249i −0.252594 1.59482i −0.709108 0.705099i \(-0.750902\pi\)
0.456514 0.889716i \(-0.349098\pi\)
\(312\) 0 0
\(313\) −22.7528 3.60369i −1.28606 0.203692i −0.524292 0.851538i \(-0.675670\pi\)
−0.761771 + 0.647846i \(0.775670\pi\)
\(314\) 5.26001 + 5.26001i 0.296840 + 0.296840i
\(315\) 0 0
\(316\) 1.77482 11.2058i 0.0998415 0.630374i
\(317\) 6.37254 1.00931i 0.357917 0.0566885i 0.0251135 0.999685i \(-0.492005\pi\)
0.332804 + 0.942996i \(0.392005\pi\)
\(318\) 0 0
\(319\) 0.366738i 0.0205334i
\(320\) −1.84265 + 2.53619i −0.103007 + 0.141777i
\(321\) 0 0
\(322\) 0.0751092 0.147410i 0.00418567 0.00821485i
\(323\) 12.4978 + 17.2018i 0.695398 + 0.957133i
\(324\) 0 0
\(325\) 1.19354 1.19354i 0.0662058 0.0662058i
\(326\) −11.2893 + 3.66810i −0.625254 + 0.203157i
\(327\) 0 0
\(328\) 2.19189 + 6.01628i 0.121027 + 0.332193i
\(329\) −0.765077 −0.0421801
\(330\) 0 0
\(331\) −24.2411 + 24.2411i −1.33241 + 1.33241i −0.429204 + 0.903208i \(0.641206\pi\)
−0.903208 + 0.429204i \(0.858794\pi\)
\(332\) −5.21285 + 3.78736i −0.286092 + 0.207858i
\(333\) 0 0
\(334\) 9.63426 18.9083i 0.527163 1.03462i
\(335\) −16.6806 32.7376i −0.911359 1.78864i
\(336\) 0 0
\(337\) 5.87884i 0.320241i −0.987097 0.160120i \(-0.948812\pi\)
0.987097 0.160120i \(-0.0511882\pi\)
\(338\) −10.4183 7.56935i −0.566682 0.411719i
\(339\) 0 0
\(340\) −3.66824 + 23.1603i −0.198938 + 1.25605i
\(341\) −0.360576 0.183722i −0.0195263 0.00994913i
\(342\) 0 0
\(343\) 1.05474 + 0.167055i 0.0569506 + 0.00902010i
\(344\) 0.155548 0.478727i 0.00838657 0.0258112i
\(345\) 0 0
\(346\) 4.66817 + 14.3671i 0.250962 + 0.772383i
\(347\) 11.0081 5.60890i 0.590945 0.301101i −0.132829 0.991139i \(-0.542406\pi\)
0.723773 + 0.690038i \(0.242406\pi\)
\(348\) 0 0
\(349\) 5.63605 + 1.83127i 0.301691 + 0.0980254i 0.455951 0.890005i \(-0.349299\pi\)
−0.154260 + 0.988030i \(0.549299\pi\)
\(350\) −0.328239 + 0.167246i −0.0175451 + 0.00893969i
\(351\) 0 0
\(352\) −0.0159917 0.100968i −0.000852363 0.00538161i
\(353\) 0.332345 1.02285i 0.0176889 0.0544409i −0.941822 0.336111i \(-0.890888\pi\)
0.959511 + 0.281670i \(0.0908883\pi\)
\(354\) 0 0
\(355\) −27.9198 27.9198i −1.48183 1.48183i
\(356\) 6.10566 + 3.11099i 0.323599 + 0.164882i
\(357\) 0 0
\(358\) 17.2465 2.73158i 0.911506 0.144368i
\(359\) 3.02432 + 2.19730i 0.159618 + 0.115969i 0.664727 0.747086i \(-0.268548\pi\)
−0.505109 + 0.863055i \(0.668548\pi\)
\(360\) 0 0
\(361\) −6.41842 + 8.83420i −0.337811 + 0.464958i
\(362\) −9.78570 19.2055i −0.514325 1.00942i
\(363\) 0 0
\(364\) −0.0156826 0.0215853i −0.000821992 0.00113138i
\(365\) −14.9045 + 10.8287i −0.780137 + 0.566803i
\(366\) 0 0
\(367\) 34.4342 11.1884i 1.79745 0.584028i 0.797635 0.603140i \(-0.206084\pi\)
0.999817 + 0.0191125i \(0.00608407\pi\)
\(368\) −2.16804 −0.113017
\(369\) 0 0
\(370\) −5.53337 −0.287666
\(371\) 0.561968 0.182594i 0.0291759 0.00947982i
\(372\) 0 0
\(373\) −21.7974 + 15.8368i −1.12863 + 0.819997i −0.985495 0.169706i \(-0.945718\pi\)
−0.143134 + 0.989703i \(0.545718\pi\)
\(374\) −0.449452 0.618618i −0.0232406 0.0319880i
\(375\) 0 0
\(376\) 4.55170 + 8.93321i 0.234736 + 0.460695i
\(377\) −0.737280 + 1.01478i −0.0379718 + 0.0522637i
\(378\) 0 0
\(379\) 22.2040 + 16.1322i 1.14054 + 0.828653i 0.987195 0.159519i \(-0.0509944\pi\)
0.153348 + 0.988172i \(0.450994\pi\)
\(380\) 8.80153 1.39403i 0.451509 0.0715120i
\(381\) 0 0
\(382\) 18.4604 + 9.40607i 0.944519 + 0.481256i
\(383\) −7.29030 7.29030i −0.372517 0.372517i 0.495876 0.868393i \(-0.334847\pi\)
−0.868393 + 0.495876i \(0.834847\pi\)
\(384\) 0 0
\(385\) 0.00755698 0.0232580i 0.000385139 0.00118534i
\(386\) 0.919085 + 5.80288i 0.0467802 + 0.295359i
\(387\) 0 0
\(388\) 9.26893 4.72276i 0.470559 0.239762i
\(389\) −5.15936 1.67638i −0.261590 0.0849957i 0.175286 0.984518i \(-0.443915\pi\)
−0.436876 + 0.899522i \(0.643915\pi\)
\(390\) 0 0
\(391\) −14.4494 + 7.36234i −0.730738 + 0.372330i
\(392\) −2.16132 6.65186i −0.109163 0.335970i
\(393\) 0 0
\(394\) −2.58954 + 7.96978i −0.130459 + 0.401512i
\(395\) −35.1290 5.56389i −1.76753 0.279950i
\(396\) 0 0
\(397\) −15.7141 8.00674i −0.788669 0.401847i 0.0127737 0.999918i \(-0.495934\pi\)
−0.801443 + 0.598071i \(0.795934\pi\)
\(398\) 0.0801641 0.506136i 0.00401826 0.0253703i
\(399\) 0 0
\(400\) 3.90561 + 2.83759i 0.195280 + 0.141880i
\(401\) 20.7188i 1.03465i 0.855790 + 0.517323i \(0.173071\pi\)
−0.855790 + 0.517323i \(0.826929\pi\)
\(402\) 0 0
\(403\) 0.628377 + 1.23326i 0.0313017 + 0.0614330i
\(404\) 0.339820 0.666935i 0.0169067 0.0331813i
\(405\) 0 0
\(406\) 0.221477 0.160912i 0.0109917 0.00798595i
\(407\) 0.127589 0.127589i 0.00632438 0.00632438i
\(408\) 0 0
\(409\) −10.5239 −0.520375 −0.260187 0.965558i \(-0.583784\pi\)
−0.260187 + 0.965558i \(0.583784\pi\)
\(410\) 18.8604 6.87135i 0.931451 0.339352i
\(411\) 0 0
\(412\) −1.83036 + 0.594721i −0.0901754 + 0.0292998i
\(413\) −0.504467 + 0.504467i −0.0248232 + 0.0248232i
\(414\) 0 0
\(415\) 11.8730 + 16.3418i 0.582822 + 0.802185i
\(416\) −0.158733 + 0.311532i −0.00778254 + 0.0152741i
\(417\) 0 0
\(418\) −0.170804 + 0.235091i −0.00835427 + 0.0114987i
\(419\) 12.0058i 0.586520i 0.956033 + 0.293260i \(0.0947402\pi\)
−0.956033 + 0.293260i \(0.905260\pi\)
\(420\) 0 0
\(421\) 8.63360 1.36743i 0.420776 0.0666444i 0.0575438 0.998343i \(-0.481673\pi\)
0.363232 + 0.931699i \(0.381673\pi\)
\(422\) 0.246361 1.55546i 0.0119927 0.0757187i
\(423\) 0 0
\(424\) −5.47535 5.47535i −0.265906 0.265906i
\(425\) 35.6658 + 5.64891i 1.73005 + 0.274012i
\(426\) 0 0
\(427\) 0.113912 + 0.719211i 0.00551258 + 0.0348051i
\(428\) −2.95677 9.10000i −0.142921 0.439865i
\(429\) 0 0
\(430\) −1.50076 0.487627i −0.0723731 0.0235154i
\(431\) −14.5130 4.71556i −0.699067 0.227140i −0.0621428 0.998067i \(-0.519793\pi\)
−0.636924 + 0.770927i \(0.719793\pi\)
\(432\) 0 0
\(433\) −12.0419 37.0613i −0.578698 1.78105i −0.623226 0.782042i \(-0.714178\pi\)
0.0445275 0.999008i \(-0.485822\pi\)
\(434\) −0.0472566 0.298367i −0.00226839 0.0143221i
\(435\) 0 0
\(436\) 2.98879 + 0.473378i 0.143137 + 0.0226707i
\(437\) 4.35781 + 4.35781i 0.208462 + 0.208462i
\(438\) 0 0
\(439\) 2.50768 15.8329i 0.119685 0.755661i −0.852721 0.522366i \(-0.825049\pi\)
0.972406 0.233294i \(-0.0749506\pi\)
\(440\) −0.316524 + 0.0501325i −0.0150897 + 0.00238998i
\(441\) 0 0
\(442\) 2.61531i 0.124397i
\(443\) −11.0705 + 15.2372i −0.525974 + 0.723941i −0.986510 0.163700i \(-0.947657\pi\)
0.460536 + 0.887641i \(0.347657\pi\)
\(444\) 0 0
\(445\) 9.75264 19.1406i 0.462319 0.907353i
\(446\) −6.15323 8.46919i −0.291364 0.401028i
\(447\) 0 0
\(448\) 0.0539589 0.0539589i 0.00254932 0.00254932i
\(449\) 22.5162 7.31595i 1.06260 0.345261i 0.275001 0.961444i \(-0.411322\pi\)
0.787603 + 0.616183i \(0.211322\pi\)
\(450\) 0 0
\(451\) −0.276446 + 0.593328i −0.0130174 + 0.0279387i
\(452\) 19.9568 0.938691
\(453\) 0 0
\(454\) 0.828876 0.828876i 0.0389011 0.0389011i
\(455\) −0.0676676 + 0.0491634i −0.00317231 + 0.00230482i
\(456\) 0 0
\(457\) 1.68928 3.31539i 0.0790211 0.155088i −0.848115 0.529812i \(-0.822263\pi\)
0.927136 + 0.374724i \(0.122263\pi\)
\(458\) −3.74820 7.35625i −0.175142 0.343735i
\(459\) 0 0
\(460\) 6.79660i 0.316893i
\(461\) −28.6714 20.8310i −1.33536 0.970195i −0.999601 0.0282468i \(-0.991008\pi\)
−0.335758 0.941948i \(-0.608992\pi\)
\(462\) 0 0
\(463\) 3.82726 24.1644i 0.177868 1.12301i −0.723616 0.690203i \(-0.757521\pi\)
0.901484 0.432812i \(-0.142479\pi\)
\(464\) −3.19649 1.62869i −0.148393 0.0756101i
\(465\) 0 0
\(466\) 23.4622 + 3.71605i 1.08687 + 0.172143i
\(467\) 3.94825 12.1514i 0.182703 0.562302i −0.817198 0.576357i \(-0.804474\pi\)
0.999901 + 0.0140547i \(0.00447389\pi\)
\(468\) 0 0
\(469\) 0.276377 + 0.850602i 0.0127619 + 0.0392771i
\(470\) 28.0047 14.2691i 1.29176 0.658186i
\(471\) 0 0
\(472\) 8.89152 + 2.88903i 0.409265 + 0.132978i
\(473\) 0.0458486 0.0233610i 0.00210812 0.00107414i
\(474\) 0 0
\(475\) −2.14673 13.5539i −0.0984989 0.621898i
\(476\) 0.176385 0.542858i 0.00808460 0.0248818i
\(477\) 0 0
\(478\) −14.1368 14.1368i −0.646602 0.646602i
\(479\) 11.3045 + 5.75996i 0.516518 + 0.263179i 0.692761 0.721168i \(-0.256394\pi\)
−0.176243 + 0.984347i \(0.556394\pi\)
\(480\) 0 0
\(481\) −0.609547 + 0.0965428i −0.0277930 + 0.00440197i
\(482\) −6.43504 4.67533i −0.293108 0.212955i
\(483\) 0 0
\(484\) −6.45950 + 8.89073i −0.293613 + 0.404124i
\(485\) −14.8054 29.0572i −0.672277 1.31942i
\(486\) 0 0
\(487\) 16.8887 + 23.2454i 0.765302 + 1.05335i 0.996754 + 0.0805016i \(0.0256522\pi\)
−0.231453 + 0.972846i \(0.574348\pi\)
\(488\) 7.71997 5.60889i 0.349467 0.253902i
\(489\) 0 0
\(490\) −20.8529 + 6.77552i −0.942038 + 0.306087i
\(491\) −38.6471 −1.74412 −0.872061 0.489398i \(-0.837217\pi\)
−0.872061 + 0.489398i \(0.837217\pi\)
\(492\) 0 0
\(493\) −26.8345 −1.20856
\(494\) 0.945240 0.307127i 0.0425284 0.0138183i
\(495\) 0 0
\(496\) −3.20265 + 2.32686i −0.143803 + 0.104479i
\(497\) 0.564938 + 0.777571i 0.0253409 + 0.0348788i
\(498\) 0 0
\(499\) 9.36080 + 18.3716i 0.419047 + 0.822426i 0.999964 + 0.00846356i \(0.00269407\pi\)
−0.580917 + 0.813963i \(0.697306\pi\)
\(500\) −0.317674 + 0.437240i −0.0142068 + 0.0195540i
\(501\) 0 0
\(502\) −2.95293 2.14543i −0.131796 0.0957552i
\(503\) 24.1383 3.82313i 1.07627 0.170465i 0.406960 0.913446i \(-0.366589\pi\)
0.669313 + 0.742981i \(0.266589\pi\)
\(504\) 0 0
\(505\) −2.09077 1.06530i −0.0930383 0.0474054i
\(506\) −0.156717 0.156717i −0.00696693 0.00696693i
\(507\) 0 0
\(508\) 2.75918 8.49189i 0.122419 0.376767i
\(509\) 1.97806 + 12.4890i 0.0876760 + 0.553564i 0.991952 + 0.126616i \(0.0404115\pi\)
−0.904276 + 0.426949i \(0.859588\pi\)
\(510\) 0 0
\(511\) 0.399572 0.203592i 0.0176760 0.00900639i
\(512\) −0.951057 0.309017i −0.0420312 0.0136568i
\(513\) 0 0
\(514\) −0.600719 + 0.306082i −0.0264966 + 0.0135007i
\(515\) 1.86439 + 5.73800i 0.0821548 + 0.252847i
\(516\) 0 0
\(517\) −0.316718 + 0.974758i −0.0139292 + 0.0428698i
\(518\) 0.133035 + 0.0210706i 0.00584521 + 0.000925790i
\(519\) 0 0
\(520\) 0.976621 + 0.497613i 0.0428276 + 0.0218218i
\(521\) −5.86475 + 37.0286i −0.256939 + 1.62225i 0.435094 + 0.900385i \(0.356715\pi\)
−0.692033 + 0.721866i \(0.743285\pi\)
\(522\) 0 0
\(523\) 4.02853 + 2.92690i 0.176155 + 0.127984i 0.672369 0.740216i \(-0.265277\pi\)
−0.496214 + 0.868200i \(0.665277\pi\)
\(524\) 15.3070i 0.668689i
\(525\) 0 0
\(526\) −8.49190 16.6663i −0.370264 0.726685i
\(527\) −13.4431 + 26.3836i −0.585591 + 1.14929i
\(528\) 0 0
\(529\) 14.8047 10.7562i 0.643681 0.467662i
\(530\) −17.1647 + 17.1647i −0.745585 + 0.745585i
\(531\) 0 0
\(532\) −0.216917 −0.00940453
\(533\) 1.95775 1.08600i 0.0847995 0.0470400i
\(534\) 0 0
\(535\) −28.5276 + 9.26917i −1.23335 + 0.400741i
\(536\) 8.28756 8.28756i 0.357968 0.357968i
\(537\) 0 0
\(538\) −2.04465 2.81421i −0.0881510 0.121329i
\(539\) 0.324599 0.637061i 0.0139815 0.0274402i
\(540\) 0 0
\(541\) 15.1504 20.8527i 0.651366 0.896529i −0.347791 0.937572i \(-0.613068\pi\)
0.999157 + 0.0410431i \(0.0130681\pi\)
\(542\) 9.90974i 0.425660i
\(543\) 0 0
\(544\) −7.38790 + 1.17013i −0.316754 + 0.0501689i
\(545\) 1.48399 9.36956i 0.0635673 0.401348i
\(546\) 0 0
\(547\) −11.2671 11.2671i −0.481745 0.481745i 0.423943 0.905689i \(-0.360646\pi\)
−0.905689 + 0.423943i \(0.860646\pi\)
\(548\) −19.9255 3.15590i −0.851177 0.134813i
\(549\) 0 0
\(550\) 0.0772018 + 0.487433i 0.00329189 + 0.0207842i
\(551\) 3.15130 + 9.69869i 0.134250 + 0.413178i
\(552\) 0 0
\(553\) 0.823392 + 0.267536i 0.0350142 + 0.0113768i
\(554\) 8.14999 + 2.64809i 0.346260 + 0.112507i
\(555\) 0 0
\(556\) 3.23954 + 9.97029i 0.137387 + 0.422835i
\(557\) −1.32538 8.36812i −0.0561581 0.354569i −0.999726 0.0233905i \(-0.992554\pi\)
0.943568 0.331178i \(-0.107446\pi\)
\(558\) 0 0
\(559\) −0.173829 0.0275318i −0.00735219 0.00116447i
\(560\) −0.169156 0.169156i −0.00714814 0.00714814i
\(561\) 0 0
\(562\) 0.138996 0.877588i 0.00586320 0.0370188i
\(563\) 15.5576 2.46409i 0.655676 0.103849i 0.180272 0.983617i \(-0.442302\pi\)
0.475403 + 0.879768i \(0.342302\pi\)
\(564\) 0 0
\(565\) 62.5627i 2.63203i
\(566\) −14.1416 + 19.4643i −0.594417 + 0.818145i
\(567\) 0 0
\(568\) 5.71809 11.2224i 0.239926 0.470880i
\(569\) −3.44570 4.74260i −0.144451 0.198820i 0.730660 0.682741i \(-0.239212\pi\)
−0.875112 + 0.483921i \(0.839212\pi\)
\(570\) 0 0
\(571\) −0.103268 + 0.103268i −0.00432161 + 0.00432161i −0.709264 0.704943i \(-0.750973\pi\)
0.704943 + 0.709264i \(0.250973\pi\)
\(572\) −0.0339931 + 0.0110450i −0.00142132 + 0.000461816i
\(573\) 0 0
\(574\) −0.479612 + 0.0933836i −0.0200186 + 0.00389776i
\(575\) 10.4665 0.436481
\(576\) 0 0
\(577\) 4.85491 4.85491i 0.202112 0.202112i −0.598792 0.800905i \(-0.704352\pi\)
0.800905 + 0.598792i \(0.204352\pi\)
\(578\) −31.5114 + 22.8944i −1.31070 + 0.952282i
\(579\) 0 0
\(580\) −5.10579 + 10.0207i −0.212006 + 0.416086i
\(581\) −0.223225 0.438104i −0.00926093 0.0181756i
\(582\) 0 0
\(583\) 0.791571i 0.0327835i
\(584\) −4.75438 3.45426i −0.196737 0.142938i
\(585\) 0 0
\(586\) −0.697040 + 4.40094i −0.0287945 + 0.181801i
\(587\) 40.6886 + 20.7319i 1.67940 + 0.855697i 0.991532 + 0.129862i \(0.0414533\pi\)
0.687868 + 0.725836i \(0.258547\pi\)
\(588\) 0 0
\(589\) 11.1144 + 1.76035i 0.457961 + 0.0725340i
\(590\) 9.05682 27.8740i 0.372863 1.14756i
\(591\) 0 0
\(592\) −0.545442 1.67870i −0.0224175 0.0689941i
\(593\) 1.13116 0.576353i 0.0464510 0.0236680i −0.430611 0.902538i \(-0.641702\pi\)
0.477062 + 0.878870i \(0.341702\pi\)
\(594\) 0 0
\(595\) −1.70180 0.552950i −0.0697672 0.0226687i
\(596\) −18.9985 + 9.68020i −0.778207 + 0.396516i
\(597\) 0 0
\(598\) 0.118583 + 0.748703i 0.00484921 + 0.0306167i
\(599\) −9.29638 + 28.6113i −0.379840 + 1.16903i 0.560315 + 0.828280i \(0.310680\pi\)
−0.940155 + 0.340747i \(0.889320\pi\)
\(600\) 0 0
\(601\) −18.3006 18.3006i −0.746498 0.746498i 0.227322 0.973820i \(-0.427003\pi\)
−0.973820 + 0.227322i \(0.927003\pi\)
\(602\) 0.0342248 + 0.0174384i 0.00139490 + 0.000710736i
\(603\) 0 0
\(604\) 14.2220 2.25254i 0.578685 0.0916546i
\(605\) 27.8716 + 20.2499i 1.13314 + 0.823274i
\(606\) 0 0
\(607\) −10.0423 + 13.8221i −0.407606 + 0.561022i −0.962633 0.270811i \(-0.912708\pi\)
0.555026 + 0.831833i \(0.312708\pi\)
\(608\) 1.29051 + 2.53277i 0.0523371 + 0.102717i
\(609\) 0 0
\(610\) −17.5833 24.2013i −0.711927 0.979884i
\(611\) 2.83600 2.06047i 0.114732 0.0833578i
\(612\) 0 0
\(613\) 11.1033 3.60769i 0.448459 0.145713i −0.0760759 0.997102i \(-0.524239\pi\)
0.524535 + 0.851389i \(0.324239\pi\)
\(614\) 28.3431 1.14383
\(615\) 0 0
\(616\) 0.00780085 0.000314305
\(617\) 37.3173 12.1251i 1.50234 0.488140i 0.561640 0.827381i \(-0.310170\pi\)
0.940699 + 0.339242i \(0.110170\pi\)
\(618\) 0 0
\(619\) −10.8801 + 7.90485i −0.437308 + 0.317723i −0.784564 0.620048i \(-0.787113\pi\)
0.347257 + 0.937770i \(0.387113\pi\)
\(620\) 7.29448 + 10.0400i 0.292953 + 0.403216i
\(621\) 0 0
\(622\) −12.9276 25.3718i −0.518349 1.01732i
\(623\) −0.307361 + 0.423046i −0.0123142 + 0.0169490i
\(624\) 0 0
\(625\) 20.8988 + 15.1838i 0.835950 + 0.607353i
\(626\) −22.7528 + 3.60369i −0.909384 + 0.144032i
\(627\) 0 0
\(628\) 6.62800 + 3.37714i 0.264486 + 0.134762i
\(629\) −9.33582 9.33582i −0.372244 0.372244i
\(630\) 0 0
\(631\) −6.85341 + 21.0926i −0.272830 + 0.839684i 0.716956 + 0.697119i \(0.245535\pi\)
−0.989785 + 0.142565i \(0.954465\pi\)
\(632\) −1.77482 11.2058i −0.0705986 0.445742i
\(633\) 0 0
\(634\) 5.74875 2.92913i 0.228312 0.116331i
\(635\) −26.6212 8.64976i −1.05643 0.343255i
\(636\) 0 0
\(637\) −2.17891 + 1.11021i −0.0863314 + 0.0439881i
\(638\) −0.113328 0.348788i −0.00448671 0.0138087i
\(639\) 0 0
\(640\) −0.968737 + 2.98147i −0.0382927 + 0.117853i
\(641\) −24.4147 3.86690i −0.964321 0.152733i −0.345633 0.938370i \(-0.612336\pi\)
−0.618689 + 0.785636i \(0.712336\pi\)
\(642\) 0 0
\(643\) −3.14347 1.60168i −0.123966 0.0631639i 0.390908 0.920430i \(-0.372161\pi\)
−0.514874 + 0.857266i \(0.672161\pi\)
\(644\) 0.0258809 0.163405i 0.00101985 0.00643908i
\(645\) 0 0
\(646\) 17.2018 + 12.4978i 0.676795 + 0.491720i
\(647\) 12.6164i 0.496003i −0.968760 0.248002i \(-0.920226\pi\)
0.968760 0.248002i \(-0.0797739\pi\)
\(648\) 0 0
\(649\) 0.433890 + 0.851558i 0.0170317 + 0.0334266i
\(650\) 0.766301 1.50395i 0.0300568 0.0589898i
\(651\) 0 0
\(652\) −9.60322 + 6.97715i −0.376091 + 0.273246i
\(653\) −18.4555 + 18.4555i −0.722220 + 0.722220i −0.969057 0.246837i \(-0.920609\pi\)
0.246837 + 0.969057i \(0.420609\pi\)
\(654\) 0 0
\(655\) 47.9859 1.87496
\(656\) 3.94374 + 5.04449i 0.153977 + 0.196954i
\(657\) 0 0
\(658\) −0.727632 + 0.236422i −0.0283660 + 0.00921668i
\(659\) −10.7342 + 10.7342i −0.418144 + 0.418144i −0.884563 0.466420i \(-0.845544\pi\)
0.466420 + 0.884563i \(0.345544\pi\)
\(660\) 0 0
\(661\) 29.8730 + 41.1166i 1.16192 + 1.59925i 0.703876 + 0.710323i \(0.251451\pi\)
0.458048 + 0.888928i \(0.348549\pi\)
\(662\) −15.5637 + 30.5456i −0.604902 + 1.18719i
\(663\) 0 0
\(664\) −3.78736 + 5.21285i −0.146978 + 0.202298i
\(665\) 0.680012i 0.0263697i
\(666\) 0 0
\(667\) −7.68211 + 1.21673i −0.297452 + 0.0471118i
\(668\) 3.31974 20.9600i 0.128445 0.810967i
\(669\) 0 0
\(670\) −25.9807 25.9807i −1.00372 1.00372i
\(671\) 0.963478 + 0.152600i 0.0371946 + 0.00589105i
\(672\) 0 0
\(673\) 0.0178699 + 0.112826i 0.000688834 + 0.00434912i 0.988030 0.154260i \(-0.0492992\pi\)
−0.987342 + 0.158609i \(0.949299\pi\)
\(674\) −1.81666 5.59111i −0.0699752 0.215361i
\(675\) 0 0
\(676\) −12.2475 3.97944i −0.471057 0.153056i
\(677\) 33.3233 + 10.8274i 1.28072 + 0.416131i 0.868833 0.495105i \(-0.164871\pi\)
0.411885 + 0.911236i \(0.364871\pi\)
\(678\) 0 0
\(679\) 0.245307 + 0.754976i 0.00941401 + 0.0289733i
\(680\) 3.66824 + 23.1603i 0.140670 + 0.888158i
\(681\) 0 0
\(682\) −0.399701 0.0633065i −0.0153054 0.00242413i
\(683\) −8.17370 8.17370i −0.312758 0.312758i 0.533219 0.845977i \(-0.320982\pi\)
−0.845977 + 0.533219i \(0.820982\pi\)
\(684\) 0 0
\(685\) −9.89342 + 62.4646i −0.378008 + 2.38665i
\(686\) 1.05474 0.167055i 0.0402702 0.00637817i
\(687\) 0 0
\(688\) 0.503363i 0.0191905i
\(689\) −1.59135 + 2.19031i −0.0606257 + 0.0834441i
\(690\) 0 0
\(691\) −16.9993 + 33.3630i −0.646683 + 1.26919i 0.302105 + 0.953275i \(0.402311\pi\)
−0.948788 + 0.315913i \(0.897689\pi\)
\(692\) 8.87938 + 12.2214i 0.337544 + 0.464589i
\(693\) 0 0
\(694\) 8.73606 8.73606i 0.331616 0.331616i
\(695\) 31.2559 10.1557i 1.18560 0.385226i
\(696\) 0 0
\(697\) 43.4143 + 20.2278i 1.64443 + 0.766182i
\(698\) 5.92610 0.224306
\(699\) 0 0
\(700\) −0.260492 + 0.260492i −0.00984568 + 0.00984568i
\(701\) 42.0177 30.5277i 1.58699 1.15301i 0.678901 0.734229i \(-0.262456\pi\)
0.908086 0.418784i \(-0.137544\pi\)
\(702\) 0 0
\(703\) −2.27786 + 4.47056i −0.0859113 + 0.168610i
\(704\) −0.0464099 0.0910845i −0.00174914 0.00343288i
\(705\) 0 0
\(706\) 1.07549i 0.0404766i
\(707\) 0.0462103 + 0.0335737i 0.00173792 + 0.00126267i
\(708\) 0 0
\(709\) −2.35597 + 14.8750i −0.0884804 + 0.558643i 0.903129 + 0.429370i \(0.141264\pi\)
−0.991609 + 0.129273i \(0.958736\pi\)
\(710\) −35.1810 17.9256i −1.32032 0.672737i
\(711\) 0 0
\(712\) 6.76817 + 1.07197i 0.253648 + 0.0401739i
\(713\) −2.65218 + 8.16256i −0.0993248 + 0.305690i
\(714\) 0 0
\(715\) 0.0346251 + 0.106565i 0.00129490 + 0.00398531i
\(716\) 15.5583 7.92734i 0.581441 0.296259i
\(717\) 0 0
\(718\) 3.55531 + 1.15519i 0.132683 + 0.0431113i
\(719\) 13.5445 6.90127i 0.505125 0.257374i −0.182808 0.983149i \(-0.558519\pi\)
0.687932 + 0.725775i \(0.258519\pi\)
\(720\) 0 0
\(721\) −0.0229743 0.145054i −0.000855606 0.00540208i
\(722\) −3.37436 + 10.3852i −0.125581 + 0.386498i
\(723\) 0 0
\(724\) −15.2416 15.2416i −0.566449 0.566449i
\(725\) 15.4314 + 7.86267i 0.573107 + 0.292012i
\(726\) 0 0
\(727\) 25.0156 3.96208i 0.927776 0.146945i 0.325781 0.945445i \(-0.394373\pi\)
0.601995 + 0.798500i \(0.294373\pi\)
\(728\) −0.0215853 0.0156826i −0.000800003 0.000581236i
\(729\) 0 0
\(730\) −10.8287 + 14.9045i −0.400790 + 0.551640i
\(731\) −1.70934 3.35477i −0.0632223 0.124081i
\(732\) 0 0
\(733\) 22.8520 + 31.4530i 0.844057 + 1.16174i 0.985141 + 0.171747i \(0.0549411\pi\)
−0.141084 + 0.989998i \(0.545059\pi\)
\(734\) 29.2915 21.2815i 1.08117 0.785516i
\(735\) 0 0
\(736\) −2.06193 + 0.669963i −0.0760039 + 0.0246952i
\(737\) 1.19813 0.0441338
\(738\) 0 0
\(739\) −20.0669 −0.738173 −0.369087 0.929395i \(-0.620329\pi\)
−0.369087 + 0.929395i \(0.620329\pi\)
\(740\) −5.26255 + 1.70991i −0.193455 + 0.0628574i
\(741\) 0 0
\(742\) 0.478038 0.347315i 0.0175493 0.0127503i
\(743\) 16.7059 + 22.9936i 0.612879 + 0.843555i 0.996810 0.0798065i \(-0.0254302\pi\)
−0.383932 + 0.923361i \(0.625430\pi\)
\(744\) 0 0
\(745\) 30.3465 + 59.5583i 1.11181 + 2.18205i
\(746\) −15.8368 + 21.7974i −0.579825 + 0.798061i
\(747\) 0 0
\(748\) −0.618618 0.449452i −0.0226189 0.0164336i
\(749\) 0.721163 0.114221i 0.0263507 0.00417354i
\(750\) 0 0
\(751\) 13.9453 + 7.10551i 0.508873 + 0.259284i 0.689523 0.724264i \(-0.257820\pi\)
−0.180650 + 0.983547i \(0.557820\pi\)
\(752\) 7.08944 + 7.08944i 0.258525 + 0.258525i
\(753\) 0 0
\(754\) −0.387611 + 1.19294i −0.0141160 + 0.0434444i
\(755\) −7.06149 44.5845i −0.256994 1.62260i
\(756\) 0 0
\(757\) 7.65445 3.90014i 0.278206 0.141753i −0.309321 0.950958i \(-0.600102\pi\)
0.587527 + 0.809205i \(0.300102\pi\)
\(758\) 26.1024 + 8.48117i 0.948081 + 0.308050i
\(759\) 0 0
\(760\) 7.93998 4.04562i 0.288013 0.146750i
\(761\) 15.5421 + 47.8336i 0.563400 + 1.73397i 0.672657 + 0.739954i \(0.265153\pi\)
−0.109257 + 0.994014i \(0.534847\pi\)
\(762\) 0 0
\(763\) −0.0713570 + 0.219614i −0.00258330 + 0.00795057i
\(764\) 20.4636 + 3.24111i 0.740346 + 0.117259i
\(765\) 0 0
\(766\) −9.18631 4.68066i −0.331915 0.169119i
\(767\) 0.511356 3.22857i 0.0184640 0.116577i
\(768\) 0 0
\(769\) −29.3994 21.3599i −1.06017 0.770258i −0.0860497 0.996291i \(-0.527424\pi\)
−0.974120 + 0.226033i \(0.927424\pi\)
\(770\) 0.0244549i 0.000881293i
\(771\) 0 0
\(772\) 2.66729 + 5.23485i 0.0959979 + 0.188406i
\(773\) 8.83075 17.3313i 0.317620 0.623365i −0.675904 0.736990i \(-0.736246\pi\)
0.993524 + 0.113625i \(0.0362464\pi\)
\(774\) 0 0
\(775\) 15.4611 11.2332i 0.555380 0.403507i
\(776\) 7.35586 7.35586i 0.264060 0.264060i
\(777\) 0 0
\(778\) −5.42487 −0.194491
\(779\) 2.21252 18.0665i 0.0792719 0.647300i
\(780\) 0 0
\(781\) 1.22454 0.397878i 0.0438176 0.0142372i
\(782\) −11.4671 + 11.4671i −0.410063 + 0.410063i
\(783\) 0 0
\(784\) −4.11107 5.65841i −0.146824 0.202086i
\(785\) 10.5870 20.7781i 0.377866 0.741603i
\(786\) 0 0
\(787\) −5.54324 + 7.62961i −0.197595 + 0.271966i −0.896304 0.443439i \(-0.853758\pi\)
0.698709 + 0.715406i \(0.253758\pi\)
\(788\) 8.37992i 0.298522i
\(789\) 0 0
\(790\) −35.1290 + 5.56389i −1.24983 + 0.197954i
\(791\) −0.238233 + 1.50415i −0.00847060 + 0.0534813i
\(792\) 0 0
\(793\) −2.35920 2.35920i −0.0837776 0.0837776i
\(794\) −17.4192 2.75894i −0.618186 0.0979110i
\(795\) 0 0
\(796\) −0.0801641 0.506136i −0.00284134 0.0179395i
\(797\) 9.68767 + 29.8156i 0.343155 + 1.05612i 0.962564 + 0.271054i \(0.0873721\pi\)
−0.619409 + 0.785068i \(0.712628\pi\)
\(798\) 0 0
\(799\) 71.3238 + 23.1745i 2.52325 + 0.819855i
\(800\) 4.59132 + 1.49181i 0.162328 + 0.0527435i
\(801\) 0 0
\(802\) 6.40245 + 19.7047i 0.226078 + 0.695798i
\(803\) −0.0939792 0.593362i −0.00331646 0.0209393i
\(804\) 0 0
\(805\) −0.512260 0.0811340i −0.0180548 0.00285960i
\(806\) 0.978720 + 0.978720i 0.0344739 + 0.0344739i
\(807\) 0 0
\(808\) 0.117094 0.739303i 0.00411936 0.0260086i
\(809\) 29.3235 4.64439i 1.03096 0.163288i 0.382041 0.924146i \(-0.375221\pi\)
0.648919 + 0.760858i \(0.275221\pi\)
\(810\) 0 0
\(811\) 1.62308i 0.0569940i 0.999594 + 0.0284970i \(0.00907211\pi\)
−0.999594 + 0.0284970i \(0.990928\pi\)
\(812\) 0.160912 0.221477i 0.00564692 0.00777231i
\(813\) 0 0
\(814\) 0.0819175 0.160772i 0.00287121 0.00563506i
\(815\) 21.8727 + 30.1051i 0.766166 + 1.05454i
\(816\) 0 0
\(817\) −1.01177 + 1.01177i −0.0353973 + 0.0353973i
\(818\) −10.0088 + 3.25207i −0.349951 + 0.113706i
\(819\) 0 0
\(820\) 15.8140 12.3632i 0.552248 0.431743i
\(821\) −31.6850 −1.10581 −0.552907 0.833243i \(-0.686482\pi\)
−0.552907 + 0.833243i \(0.686482\pi\)
\(822\) 0 0
\(823\) −19.5106 + 19.5106i −0.680097 + 0.680097i −0.960022 0.279925i \(-0.909690\pi\)
0.279925 + 0.960022i \(0.409690\pi\)
\(824\) −1.55700 + 1.13123i −0.0542406 + 0.0394081i
\(825\) 0 0
\(826\) −0.323888 + 0.635666i −0.0112695 + 0.0221176i
\(827\) 7.48768 + 14.6954i 0.260372 + 0.511009i 0.983773 0.179419i \(-0.0574219\pi\)
−0.723400 + 0.690429i \(0.757422\pi\)
\(828\) 0 0
\(829\) 5.35467i 0.185975i 0.995667 + 0.0929877i \(0.0296417\pi\)
−0.995667 + 0.0929877i \(0.970358\pi\)
\(830\) 16.3418 + 11.8730i 0.567231 + 0.412117i
\(831\) 0 0
\(832\) −0.0546958 + 0.345335i −0.00189623 + 0.0119724i
\(833\) −46.6142 23.7511i −1.61509 0.822928i
\(834\) 0 0
\(835\) −65.7075 10.4070i −2.27390 0.360151i
\(836\) −0.0897967 + 0.276366i −0.00310569 + 0.00955832i
\(837\) 0 0
\(838\) 3.70999 + 11.4182i 0.128159 + 0.394434i
\(839\) −35.7376 + 18.2092i −1.23380 + 0.628652i −0.944476 0.328580i \(-0.893430\pi\)
−0.289323 + 0.957232i \(0.593430\pi\)
\(840\) 0 0
\(841\) 15.3404 + 4.98439i 0.528978 + 0.171875i
\(842\) 7.78849 3.96843i 0.268409 0.136761i
\(843\) 0 0
\(844\) −0.246361 1.55546i −0.00848009 0.0535412i
\(845\) −12.4752 + 38.3946i −0.429159 + 1.32081i
\(846\) 0 0
\(847\) −0.592984 0.592984i −0.0203752 0.0203752i
\(848\) −6.89934 3.51539i −0.236924 0.120719i
\(849\) 0 0
\(850\) 35.6658 5.64891i 1.22333 0.193756i
\(851\) −3.09594 2.24933i −0.106127 0.0771061i
\(852\) 0 0
\(853\) −22.2833 + 30.6703i −0.762964 + 1.05013i 0.233998 + 0.972237i \(0.424819\pi\)
−0.996962 + 0.0778928i \(0.975181\pi\)
\(854\) 0.330585 + 0.648810i 0.0113124 + 0.0222018i
\(855\) 0 0
\(856\) −5.62411 7.74092i −0.192228 0.264579i
\(857\) 38.3161 27.8383i 1.30885 0.950937i 0.308852 0.951110i \(-0.400055\pi\)
1.00000 0.000173000i \(5.50676e-5\pi\)
\(858\) 0 0
\(859\) 29.5117 9.58895i 1.00693 0.327171i 0.241297 0.970451i \(-0.422427\pi\)
0.765631 + 0.643281i \(0.222427\pi\)
\(860\) −1.57799 −0.0538091
\(861\) 0 0
\(862\) −15.2599 −0.519753
\(863\) −41.0186 + 13.3278i −1.39629 + 0.453682i −0.907989 0.418993i \(-0.862383\pi\)
−0.488301 + 0.872676i \(0.662383\pi\)
\(864\) 0 0
\(865\) 38.3129 27.8360i 1.30268 0.946452i
\(866\) −22.9051 31.5262i −0.778347 1.07130i
\(867\) 0 0
\(868\) −0.137144 0.269160i −0.00465497 0.00913590i
\(869\) 0.681717 0.938303i 0.0231257 0.0318298i
\(870\) 0 0
\(871\) −3.31528 2.40869i −0.112334 0.0816155i
\(872\) 2.98879 0.473378i 0.101213 0.0160306i
\(873\) 0 0
\(874\) 5.49116 + 2.79788i 0.185741 + 0.0946398i
\(875\) −0.0291626 0.0291626i −0.000985875 0.000985875i
\(876\) 0 0
\(877\) 9.93757 30.5847i 0.335568 1.03277i −0.630874 0.775885i \(-0.717303\pi\)
0.966442 0.256886i \(-0.0826965\pi\)
\(878\) −2.50768 15.8329i −0.0846300 0.534333i
\(879\) 0 0
\(880\) −0.285541 + 0.145490i −0.00962558 + 0.00490448i
\(881\) −44.0316 14.3067i −1.48346 0.482006i −0.548317 0.836271i \(-0.684731\pi\)
−0.935145 + 0.354265i \(0.884731\pi\)
\(882\) 0 0
\(883\) −45.0914 + 22.9752i −1.51745 + 0.773178i −0.996750 0.0805632i \(-0.974328\pi\)
−0.520698 + 0.853741i \(0.674328\pi\)
\(884\) 0.808174 + 2.48730i 0.0271818 + 0.0836571i
\(885\) 0 0
\(886\) −5.82009 + 17.9124i −0.195530 + 0.601779i
\(887\) 12.6960 + 2.01085i 0.426289 + 0.0675176i 0.365893 0.930657i \(-0.380764\pi\)
0.0603962 + 0.998174i \(0.480764\pi\)
\(888\) 0 0
\(889\) 0.607096 + 0.309331i 0.0203613 + 0.0103746i
\(890\) 3.36053 21.2175i 0.112645 0.711214i
\(891\) 0 0
\(892\) −8.46919 6.15323i −0.283569 0.206025i
\(893\) 28.4998i 0.953709i
\(894\) 0 0
\(895\) −24.8514 48.7737i −0.830692 1.63032i
\(896\) 0.0346438 0.0679922i 0.00115737 0.00227146i
\(897\) 0 0
\(898\) 19.1534 13.9158i 0.639158 0.464375i
\(899\) −10.0422 + 10.0422i −0.334926 + 0.334926i
\(900\) 0 0
\(901\) −57.9199 −1.92959
\(902\) −0.0795677 + 0.649715i −0.00264931 + 0.0216331i
\(903\) 0 0
\(904\) 18.9801 6.16700i 0.631268 0.205111i
\(905\) −47.7808 + 47.7808i −1.58829 + 1.58829i
\(906\) 0 0
\(907\) −19.2845 26.5428i −0.640331 0.881339i 0.358303 0.933605i \(-0.383356\pi\)
−0.998633 + 0.0522661i \(0.983356\pi\)
\(908\) 0.532171 1.04445i 0.0176607 0.0346611i
\(909\) 0 0
\(910\) −0.0491634 + 0.0676676i −0.00162975 + 0.00224316i
\(911\) 45.2623i 1.49961i 0.661661 + 0.749803i \(0.269852\pi\)
−0.661661 + 0.749803i \(0.730148\pi\)
\(912\) 0 0
\(913\) −0.650580 + 0.103042i −0.0215311 + 0.00341019i
\(914\) 0.582085 3.67514i 0.0192537 0.121563i
\(915\) 0 0
\(916\) −5.83796 5.83796i −0.192891 0.192891i
\(917\) −1.15369 0.182726i −0.0380981 0.00603415i
\(918\) 0 0
\(919\) 6.87308 + 43.3949i 0.226722 + 1.43147i 0.793989 + 0.607933i \(0.208001\pi\)
−0.567267 + 0.823534i \(0.691999\pi\)
\(920\) 2.10027 + 6.46395i 0.0692437 + 0.213110i
\(921\) 0 0
\(922\) −33.7052 10.9515i −1.11002 0.360668i
\(923\) −4.18824 1.36084i −0.137858 0.0447926i
\(924\) 0 0
\(925\) 2.63318 + 8.10408i 0.0865783 + 0.266461i
\(926\) −3.82726 24.1644i −0.125772 0.794091i
\(927\) 0 0
\(928\) −3.54333 0.561209i −0.116316 0.0184226i
\(929\) −6.34123 6.34123i −0.208049 0.208049i 0.595389 0.803438i \(-0.296998\pi\)
−0.803438 + 0.595389i \(0.796998\pi\)
\(930\) 0 0
\(931\) −3.11017 + 19.6368i −0.101932 + 0.643571i
\(932\) 23.4622 3.71605i 0.768531 0.121723i
\(933\) 0 0
\(934\) 12.7768i 0.418069i
\(935\) −1.40899 + 1.93930i −0.0460788 + 0.0634220i
\(936\) 0 0
\(937\) 11.6366 22.8381i 0.380151 0.746089i −0.619079 0.785329i \(-0.712494\pi\)
0.999230 + 0.0392404i \(0.0124938\pi\)
\(938\) 0.525701 + 0.723565i 0.0171647 + 0.0236252i
\(939\) 0 0
\(940\) 22.2247 22.2247i 0.724889 0.724889i
\(941\) −11.2410 + 3.65241i −0.366445 + 0.119065i −0.486451 0.873708i \(-0.661709\pi\)
0.120006 + 0.992773i \(0.461709\pi\)
\(942\) 0 0
\(943\) 13.3457 + 3.82227i 0.434595 + 0.124470i
\(944\) 9.34910 0.304287
\(945\) 0 0
\(946\) 0.0363856 0.0363856i 0.00118300 0.00118300i
\(947\) −3.49686 + 2.54062i −0.113633 + 0.0825590i −0.643150 0.765740i \(-0.722373\pi\)
0.529518 + 0.848299i \(0.322373\pi\)
\(948\) 0 0
\(949\) −0.932833 + 1.83079i −0.0302810 + 0.0594299i
\(950\) −6.23007 12.2272i −0.202130 0.396703i
\(951\) 0 0
\(952\) 0.570794i 0.0184995i
\(953\) 3.23986 + 2.35389i 0.104949 + 0.0762501i 0.639022 0.769188i \(-0.279339\pi\)
−0.534073 + 0.845438i \(0.679339\pi\)
\(954\) 0 0
\(955\) 10.1606 64.1512i 0.328788 2.07588i
\(956\) −17.8134 9.07637i −0.576126 0.293551i
\(957\) 0 0
\(958\) 12.5312 + 1.98475i 0.404864 + 0.0641242i
\(959\) 0.475720 1.46411i 0.0153618 0.0472787i
\(960\) 0 0
\(961\) −4.73684 14.5785i −0.152801 0.470274i
\(962\) −0.549881 + 0.280178i −0.0177289 + 0.00903331i
\(963\) 0 0
\(964\) −7.56484 2.45797i −0.243647 0.0791658i
\(965\) 16.4107 8.36169i 0.528280 0.269172i
\(966\) 0 0
\(967\) −8.58410 54.1979i −0.276046 1.74289i −0.602905 0.797813i \(-0.705990\pi\)
0.326859 0.945073i \(-0.394010\pi\)
\(968\) −3.39596 + 10.4517i −0.109150 + 0.335930i
\(969\) 0 0
\(970\) −23.0599 23.0599i −0.740409 0.740409i
\(971\) −0.962775 0.490558i −0.0308969 0.0157428i 0.438474 0.898744i \(-0.355519\pi\)
−0.469371 + 0.883001i \(0.655519\pi\)
\(972\) 0 0
\(973\) −0.790133 + 0.125145i −0.0253305 + 0.00401196i
\(974\) 23.2454 + 16.8887i 0.744829 + 0.541150i
\(975\) 0 0
\(976\) 5.60889 7.71997i 0.179536 0.247110i
\(977\) 4.50300 + 8.83764i 0.144064 + 0.282741i 0.951752 0.306869i \(-0.0992814\pi\)
−0.807688 + 0.589610i \(0.799281\pi\)
\(978\) 0 0
\(979\) 0.411750 + 0.566725i 0.0131596 + 0.0181126i
\(980\) −17.7385 + 12.8878i −0.566637 + 0.411686i
\(981\) 0 0
\(982\) −36.7556 + 11.9426i −1.17292 + 0.381104i
\(983\) 38.2748 1.22078 0.610389 0.792102i \(-0.291013\pi\)
0.610389 + 0.792102i \(0.291013\pi\)
\(984\) 0 0
\(985\) 26.2702 0.837039
\(986\) −25.5211 + 8.29232i −0.812758 + 0.264081i
\(987\) 0 0
\(988\) 0.804069 0.584191i 0.0255809 0.0185856i
\(989\) −0.641458 0.882891i −0.0203972 0.0280743i
\(990\) 0 0
\(991\) −8.39811 16.4822i −0.266775 0.523575i 0.718293 0.695740i \(-0.244924\pi\)
−0.985068 + 0.172166i \(0.944924\pi\)
\(992\) −2.32686 + 3.20265i −0.0738780 + 0.101684i
\(993\) 0 0
\(994\) 0.777571 + 0.564938i 0.0246630 + 0.0179188i
\(995\) −1.58669 + 0.251306i −0.0503014 + 0.00796695i
\(996\) 0 0
\(997\) −7.91767 4.03425i −0.250755 0.127766i 0.324096 0.946024i \(-0.394940\pi\)
−0.574851 + 0.818258i \(0.694940\pi\)
\(998\) 14.5798 + 14.5798i 0.461515 + 0.461515i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.u.f.289.1 32
3.2 odd 2 246.2.n.b.43.2 32
41.21 even 20 inner 738.2.u.f.595.1 32
123.62 odd 20 246.2.n.b.103.2 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
246.2.n.b.43.2 32 3.2 odd 2
246.2.n.b.103.2 yes 32 123.62 odd 20
738.2.u.f.289.1 32 1.1 even 1 trivial
738.2.u.f.595.1 32 41.21 even 20 inner