Newspace parameters
Level: | \( N \) | \(=\) | \( 738 = 2 \cdot 3^{2} \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 738.u (of order \(20\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.89295966917\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{20})\) |
Twist minimal: | no (minimal twist has level 246) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
289.1 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | −1.84265 | − | 2.53619i | 0 | 0.0346438 | + | 0.0679922i | 0.587785 | − | 0.809017i | 0 | −2.53619 | − | 1.84265i | ||||||
289.2 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | −0.761749 | − | 1.04846i | 0 | 1.24897 | + | 2.45124i | 0.587785 | − | 0.809017i | 0 | −1.04846 | − | 0.761749i | ||||||
289.3 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | 0.0603073 | + | 0.0830058i | 0 | −2.01841 | − | 3.96135i | 0.587785 | − | 0.809017i | 0 | 0.0830058 | + | 0.0603073i | ||||||
289.4 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | 1.36852 | + | 1.88361i | 0 | 0.450716 | + | 0.884580i | 0.587785 | − | 0.809017i | 0 | 1.88361 | + | 1.36852i | ||||||
307.1 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | −1.96776 | + | 2.70839i | 0 | 0.898760 | + | 0.457941i | −0.587785 | − | 0.809017i | 0 | 2.70839 | − | 1.96776i | ||||||
307.2 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | −0.763524 | + | 1.05090i | 0 | 0.161080 | + | 0.0820744i | −0.587785 | − | 0.809017i | 0 | 1.05090 | − | 0.763524i | ||||||
307.3 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | 1.83795 | − | 2.52972i | 0 | −0.370027 | − | 0.188538i | −0.587785 | − | 0.809017i | 0 | −2.52972 | + | 1.83795i | ||||||
307.4 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | 2.06891 | − | 2.84761i | 0 | 2.83033 | + | 1.44213i | −0.587785 | − | 0.809017i | 0 | −2.84761 | + | 2.06891i | ||||||
361.1 | −0.587785 | + | 0.809017i | 0 | −0.309017 | − | 0.951057i | −3.52711 | + | 1.14603i | 0 | −0.702798 | + | 4.43729i | 0.951057 | + | 0.309017i | 0 | 1.14603 | − | 3.52711i | ||||||
361.2 | −0.587785 | + | 0.809017i | 0 | −0.309017 | − | 0.951057i | −2.20810 | + | 0.717455i | 0 | 0.160226 | − | 1.01163i | 0.951057 | + | 0.309017i | 0 | 0.717455 | − | 2.20810i | ||||||
361.3 | −0.587785 | + | 0.809017i | 0 | −0.309017 | − | 0.951057i | −0.166180 | + | 0.0539952i | 0 | 0.415581 | − | 2.62387i | 0.951057 | + | 0.309017i | 0 | 0.0539952 | − | 0.166180i | ||||||
361.4 | −0.587785 | + | 0.809017i | 0 | −0.309017 | − | 0.951057i | 3.99928 | − | 1.29944i | 0 | 0.684527 | − | 4.32193i | 0.951057 | + | 0.309017i | 0 | −1.29944 | + | 3.99928i | ||||||
415.1 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | −3.52711 | − | 1.14603i | 0 | −0.702798 | − | 4.43729i | 0.951057 | − | 0.309017i | 0 | 1.14603 | + | 3.52711i | ||||||
415.2 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | −2.20810 | − | 0.717455i | 0 | 0.160226 | + | 1.01163i | 0.951057 | − | 0.309017i | 0 | 0.717455 | + | 2.20810i | ||||||
415.3 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | −0.166180 | − | 0.0539952i | 0 | 0.415581 | + | 2.62387i | 0.951057 | − | 0.309017i | 0 | 0.0539952 | + | 0.166180i | ||||||
415.4 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | 3.99928 | + | 1.29944i | 0 | 0.684527 | + | 4.32193i | 0.951057 | − | 0.309017i | 0 | −1.29944 | − | 3.99928i | ||||||
487.1 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | −2.14845 | − | 0.698074i | 0 | −0.0615361 | + | 0.00974637i | −0.951057 | + | 0.309017i | 0 | −0.698074 | − | 2.14845i | ||||||
487.2 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | −0.134590 | − | 0.0437310i | 0 | −1.21079 | + | 0.191771i | −0.951057 | + | 0.309017i | 0 | −0.0437310 | − | 0.134590i | ||||||
487.3 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | 1.70227 | + | 0.553100i | 0 | −4.40876 | + | 0.698278i | −0.951057 | + | 0.309017i | 0 | 0.553100 | + | 1.70227i | ||||||
487.4 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | 2.48289 | + | 0.806739i | 0 | 3.88748 | − | 0.615717i | −0.951057 | + | 0.309017i | 0 | 0.806739 | + | 2.48289i | ||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
41.g | even | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 738.2.u.f | 32 | |
3.b | odd | 2 | 1 | 246.2.n.b | ✓ | 32 | |
41.g | even | 20 | 1 | inner | 738.2.u.f | 32 | |
123.m | odd | 20 | 1 | 246.2.n.b | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
246.2.n.b | ✓ | 32 | 3.b | odd | 2 | 1 | |
246.2.n.b | ✓ | 32 | 123.m | odd | 20 | 1 | |
738.2.u.f | 32 | 1.a | even | 1 | 1 | trivial | |
738.2.u.f | 32 | 41.g | even | 20 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{32} - 26 T_{5}^{30} + 448 T_{5}^{28} - 6332 T_{5}^{26} + 1700 T_{5}^{25} + 99624 T_{5}^{24} + \cdots + 192721 \)
acting on \(S_{2}^{\mathrm{new}}(738, [\chi])\).