Properties

Label 738.2.e.j.247.5
Level $738$
Weight $2$
Character 738.247
Analytic conductor $5.893$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(247,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.247"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-7,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 4 x^{13} + 12 x^{12} - 31 x^{11} + 73 x^{10} - 150 x^{9} + 297 x^{8} - 549 x^{7} + 891 x^{6} + \cdots + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 247.5
Root \(1.19349 - 1.25522i\) of defining polynomial
Character \(\chi\) \(=\) 738.247
Dual form 738.2.e.j.493.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.19349 + 1.25522i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.81416 + 3.14221i) q^{5} +(0.490312 - 1.66120i) q^{6} +(-0.330242 - 0.571996i) q^{7} +1.00000 q^{8} +(-0.151175 + 2.99619i) q^{9} +3.62831 q^{10} +(2.36839 + 4.10218i) q^{11} +(-1.68380 + 0.405978i) q^{12} +(1.96949 - 3.41126i) q^{13} +(-0.330242 + 0.571996i) q^{14} +(-6.10935 + 1.47302i) q^{15} +(-0.500000 - 0.866025i) q^{16} -5.36010 q^{17} +(2.67036 - 1.36717i) q^{18} -5.47838 q^{19} +(-1.81416 - 3.14221i) q^{20} +(0.323843 - 1.09720i) q^{21} +(2.36839 - 4.10218i) q^{22} +(3.52508 - 6.10562i) q^{23} +(1.19349 + 1.25522i) q^{24} +(-4.08232 - 7.07079i) q^{25} -3.93899 q^{26} +(-3.94131 + 3.38616i) q^{27} +0.660484 q^{28} +(4.45981 + 7.72461i) q^{29} +(4.33034 + 4.55434i) q^{30} +(-4.83343 + 8.37175i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-2.32250 + 7.86876i) q^{33} +(2.68005 + 4.64198i) q^{34} +2.39644 q^{35} +(-2.51919 - 1.62902i) q^{36} -6.71665 q^{37} +(2.73919 + 4.74441i) q^{38} +(6.63246 - 1.59914i) q^{39} +(-1.81416 + 3.14221i) q^{40} +(-0.500000 + 0.866025i) q^{41} +(-1.11212 + 0.268142i) q^{42} +(-1.03815 - 1.79813i) q^{43} -4.73678 q^{44} +(-9.14040 - 5.91058i) q^{45} -7.05017 q^{46} +(-2.32171 - 4.02131i) q^{47} +(0.490312 - 1.66120i) q^{48} +(3.28188 - 5.68438i) q^{49} +(-4.08232 + 7.07079i) q^{50} +(-6.39721 - 6.72813i) q^{51} +(1.96949 + 3.41126i) q^{52} +5.71582 q^{53} +(4.90315 + 1.72020i) q^{54} -17.1865 q^{55} +(-0.330242 - 0.571996i) q^{56} +(-6.53838 - 6.87659i) q^{57} +(4.45981 - 7.72461i) q^{58} +(-3.23475 + 5.60275i) q^{59} +(1.77900 - 6.02736i) q^{60} +(5.29228 + 9.16650i) q^{61} +9.66687 q^{62} +(1.76373 - 0.902996i) q^{63} +1.00000 q^{64} +(7.14593 + 12.3771i) q^{65} +(7.97580 - 1.92303i) q^{66} +(2.72835 - 4.72564i) q^{67} +(2.68005 - 4.64198i) q^{68} +(11.8711 - 2.86222i) q^{69} +(-1.19822 - 2.07538i) q^{70} -3.42340 q^{71} +(-0.151175 + 2.99619i) q^{72} -2.58783 q^{73} +(3.35833 + 5.81679i) q^{74} +(4.00322 - 13.5631i) q^{75} +(2.73919 - 4.74441i) q^{76} +(1.56428 - 2.70942i) q^{77} +(-4.70113 - 4.94431i) q^{78} +(4.88118 + 8.45445i) q^{79} +3.62831 q^{80} +(-8.95429 - 0.905897i) q^{81} +1.00000 q^{82} +(4.23404 + 7.33358i) q^{83} +(0.788279 + 0.829055i) q^{84} +(9.72406 - 16.8426i) q^{85} +(-1.03815 + 1.79813i) q^{86} +(-4.37339 + 14.8173i) q^{87} +(2.36839 + 4.10218i) q^{88} +2.36259 q^{89} +(-0.548510 + 10.8711i) q^{90} -2.60164 q^{91} +(3.52508 + 6.10562i) q^{92} +(-16.2771 + 3.92454i) q^{93} +(-2.32171 + 4.02131i) q^{94} +(9.93863 - 17.2142i) q^{95} +(-1.68380 + 0.405978i) q^{96} +(-5.34250 - 9.25348i) q^{97} -6.56376 q^{98} +(-12.6489 + 6.47600i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 7 q^{2} + 4 q^{3} - 7 q^{4} + 5 q^{5} - 2 q^{6} - q^{7} + 14 q^{8} - 8 q^{9} - 10 q^{10} + 10 q^{11} - 2 q^{12} + 4 q^{13} - q^{14} - 5 q^{15} - 7 q^{16} - 26 q^{17} + 4 q^{18} - 2 q^{19} + 5 q^{20}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 1.19349 + 1.25522i 0.689060 + 0.724704i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.81416 + 3.14221i −0.811315 + 1.40524i 0.100629 + 0.994924i \(0.467914\pi\)
−0.911944 + 0.410315i \(0.865419\pi\)
\(6\) 0.490312 1.66120i 0.200169 0.678183i
\(7\) −0.330242 0.571996i −0.124820 0.216194i 0.796843 0.604187i \(-0.206502\pi\)
−0.921662 + 0.387993i \(0.873169\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.151175 + 2.99619i −0.0503917 + 0.998730i
\(10\) 3.62831 1.14737
\(11\) 2.36839 + 4.10218i 0.714097 + 1.23685i 0.963307 + 0.268403i \(0.0864958\pi\)
−0.249210 + 0.968450i \(0.580171\pi\)
\(12\) −1.68380 + 0.405978i −0.486071 + 0.117196i
\(13\) 1.96949 3.41126i 0.546239 0.946114i −0.452289 0.891872i \(-0.649392\pi\)
0.998528 0.0542422i \(-0.0172743\pi\)
\(14\) −0.330242 + 0.571996i −0.0882609 + 0.152872i
\(15\) −6.10935 + 1.47302i −1.57743 + 0.380331i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −5.36010 −1.30002 −0.650008 0.759928i \(-0.725234\pi\)
−0.650008 + 0.759928i \(0.725234\pi\)
\(18\) 2.67036 1.36717i 0.629411 0.322246i
\(19\) −5.47838 −1.25683 −0.628413 0.777880i \(-0.716295\pi\)
−0.628413 + 0.777880i \(0.716295\pi\)
\(20\) −1.81416 3.14221i −0.405657 0.702619i
\(21\) 0.323843 1.09720i 0.0706684 0.239428i
\(22\) 2.36839 4.10218i 0.504943 0.874587i
\(23\) 3.52508 6.10562i 0.735031 1.27311i −0.219679 0.975572i \(-0.570501\pi\)
0.954710 0.297538i \(-0.0961656\pi\)
\(24\) 1.19349 + 1.25522i 0.243620 + 0.256222i
\(25\) −4.08232 7.07079i −0.816464 1.41416i
\(26\) −3.93899 −0.772499
\(27\) −3.94131 + 3.38616i −0.758506 + 0.651666i
\(28\) 0.660484 0.124820
\(29\) 4.45981 + 7.72461i 0.828165 + 1.43442i 0.899476 + 0.436970i \(0.143948\pi\)
−0.0713112 + 0.997454i \(0.522718\pi\)
\(30\) 4.33034 + 4.55434i 0.790609 + 0.831505i
\(31\) −4.83343 + 8.37175i −0.868110 + 1.50361i −0.00418466 + 0.999991i \(0.501332\pi\)
−0.863925 + 0.503620i \(0.832001\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −2.32250 + 7.86876i −0.404296 + 1.36977i
\(34\) 2.68005 + 4.64198i 0.459625 + 0.796094i
\(35\) 2.39644 0.405072
\(36\) −2.51919 1.62902i −0.419865 0.271503i
\(37\) −6.71665 −1.10421 −0.552105 0.833774i \(-0.686175\pi\)
−0.552105 + 0.833774i \(0.686175\pi\)
\(38\) 2.73919 + 4.74441i 0.444355 + 0.769646i
\(39\) 6.63246 1.59914i 1.06204 0.256068i
\(40\) −1.81416 + 3.14221i −0.286843 + 0.496827i
\(41\) −0.500000 + 0.866025i −0.0780869 + 0.135250i
\(42\) −1.11212 + 0.268142i −0.171604 + 0.0413752i
\(43\) −1.03815 1.79813i −0.158316 0.274212i 0.775945 0.630800i \(-0.217273\pi\)
−0.934262 + 0.356588i \(0.883940\pi\)
\(44\) −4.73678 −0.714097
\(45\) −9.14040 5.91058i −1.36257 0.881097i
\(46\) −7.05017 −1.03949
\(47\) −2.32171 4.02131i −0.338656 0.586569i 0.645524 0.763740i \(-0.276639\pi\)
−0.984180 + 0.177171i \(0.943306\pi\)
\(48\) 0.490312 1.66120i 0.0707705 0.239774i
\(49\) 3.28188 5.68438i 0.468840 0.812055i
\(50\) −4.08232 + 7.07079i −0.577327 + 0.999960i
\(51\) −6.39721 6.72813i −0.895789 0.942126i
\(52\) 1.96949 + 3.41126i 0.273120 + 0.473057i
\(53\) 5.71582 0.785129 0.392564 0.919725i \(-0.371588\pi\)
0.392564 + 0.919725i \(0.371588\pi\)
\(54\) 4.90315 + 1.72020i 0.667235 + 0.234090i
\(55\) −17.1865 −2.31743
\(56\) −0.330242 0.571996i −0.0441304 0.0764361i
\(57\) −6.53838 6.87659i −0.866029 0.910827i
\(58\) 4.45981 7.72461i 0.585601 1.01429i
\(59\) −3.23475 + 5.60275i −0.421128 + 0.729416i −0.996050 0.0887925i \(-0.971699\pi\)
0.574922 + 0.818208i \(0.305033\pi\)
\(60\) 1.77900 6.02736i 0.229669 0.778129i
\(61\) 5.29228 + 9.16650i 0.677607 + 1.17365i 0.975699 + 0.219113i \(0.0703164\pi\)
−0.298092 + 0.954537i \(0.596350\pi\)
\(62\) 9.66687 1.22769
\(63\) 1.76373 0.902996i 0.222209 0.113767i
\(64\) 1.00000 0.125000
\(65\) 7.14593 + 12.3771i 0.886344 + 1.53519i
\(66\) 7.97580 1.92303i 0.981753 0.236709i
\(67\) 2.72835 4.72564i 0.333321 0.577329i −0.649840 0.760071i \(-0.725164\pi\)
0.983161 + 0.182742i \(0.0584974\pi\)
\(68\) 2.68005 4.64198i 0.325004 0.562923i
\(69\) 11.8711 2.86222i 1.42911 0.344570i
\(70\) −1.19822 2.07538i −0.143215 0.248055i
\(71\) −3.42340 −0.406283 −0.203141 0.979149i \(-0.565115\pi\)
−0.203141 + 0.979149i \(0.565115\pi\)
\(72\) −0.151175 + 2.99619i −0.0178161 + 0.353104i
\(73\) −2.58783 −0.302883 −0.151441 0.988466i \(-0.548392\pi\)
−0.151441 + 0.988466i \(0.548392\pi\)
\(74\) 3.35833 + 5.81679i 0.390397 + 0.676188i
\(75\) 4.00322 13.5631i 0.462252 1.56613i
\(76\) 2.73919 4.74441i 0.314207 0.544222i
\(77\) 1.56428 2.70942i 0.178267 0.308767i
\(78\) −4.70113 4.94431i −0.532298 0.559833i
\(79\) 4.88118 + 8.45445i 0.549176 + 0.951200i 0.998331 + 0.0577468i \(0.0183916\pi\)
−0.449155 + 0.893454i \(0.648275\pi\)
\(80\) 3.62831 0.405657
\(81\) −8.95429 0.905897i −0.994921 0.100655i
\(82\) 1.00000 0.110432
\(83\) 4.23404 + 7.33358i 0.464747 + 0.804965i 0.999190 0.0402395i \(-0.0128121\pi\)
−0.534444 + 0.845204i \(0.679479\pi\)
\(84\) 0.788279 + 0.829055i 0.0860083 + 0.0904573i
\(85\) 9.72406 16.8426i 1.05472 1.82683i
\(86\) −1.03815 + 1.79813i −0.111947 + 0.193897i
\(87\) −4.37339 + 14.8173i −0.468877 + 1.58858i
\(88\) 2.36839 + 4.10218i 0.252471 + 0.437293i
\(89\) 2.36259 0.250434 0.125217 0.992129i \(-0.460037\pi\)
0.125217 + 0.992129i \(0.460037\pi\)
\(90\) −0.548510 + 10.8711i −0.0578180 + 1.14591i
\(91\) −2.60164 −0.272726
\(92\) 3.52508 + 6.10562i 0.367515 + 0.636555i
\(93\) −16.2771 + 3.92454i −1.68785 + 0.406956i
\(94\) −2.32171 + 4.02131i −0.239466 + 0.414767i
\(95\) 9.93863 17.2142i 1.01968 1.76614i
\(96\) −1.68380 + 0.405978i −0.171852 + 0.0414350i
\(97\) −5.34250 9.25348i −0.542448 0.939548i −0.998763 0.0497295i \(-0.984164\pi\)
0.456314 0.889819i \(-0.349169\pi\)
\(98\) −6.56376 −0.663040
\(99\) −12.6489 + 6.47600i −1.27127 + 0.650863i
\(100\) 8.16464 0.816464
\(101\) 4.37833 + 7.58349i 0.435660 + 0.754585i 0.997349 0.0727631i \(-0.0231817\pi\)
−0.561689 + 0.827348i \(0.689848\pi\)
\(102\) −2.62812 + 8.90421i −0.260223 + 0.881649i
\(103\) −1.39354 + 2.41369i −0.137310 + 0.237828i −0.926477 0.376350i \(-0.877179\pi\)
0.789168 + 0.614178i \(0.210512\pi\)
\(104\) 1.96949 3.41126i 0.193125 0.334502i
\(105\) 2.86012 + 3.00807i 0.279119 + 0.293558i
\(106\) −2.85791 4.95005i −0.277585 0.480791i
\(107\) 2.61144 0.252458 0.126229 0.992001i \(-0.459713\pi\)
0.126229 + 0.992001i \(0.459713\pi\)
\(108\) −0.961840 5.10636i −0.0925531 0.491359i
\(109\) 20.5528 1.96861 0.984303 0.176487i \(-0.0564734\pi\)
0.984303 + 0.176487i \(0.0564734\pi\)
\(110\) 8.59326 + 14.8840i 0.819335 + 1.41913i
\(111\) −8.01624 8.43090i −0.760868 0.800226i
\(112\) −0.330242 + 0.571996i −0.0312049 + 0.0540485i
\(113\) 0.343880 0.595618i 0.0323495 0.0560310i −0.849397 0.527754i \(-0.823034\pi\)
0.881747 + 0.471723i \(0.156368\pi\)
\(114\) −2.68612 + 9.10070i −0.251578 + 0.852358i
\(115\) 12.7901 + 22.1531i 1.19268 + 2.06579i
\(116\) −8.91961 −0.828165
\(117\) 9.92305 + 6.41667i 0.917386 + 0.593221i
\(118\) 6.46950 0.595566
\(119\) 1.77013 + 3.06596i 0.162268 + 0.281056i
\(120\) −6.10935 + 1.47302i −0.557705 + 0.134467i
\(121\) −5.71856 + 9.90484i −0.519869 + 0.900440i
\(122\) 5.29228 9.16650i 0.479141 0.829896i
\(123\) −1.68380 + 0.405978i −0.151823 + 0.0366058i
\(124\) −4.83343 8.37175i −0.434055 0.751805i
\(125\) 11.4823 1.02701
\(126\) −1.66388 1.07594i −0.148230 0.0958522i
\(127\) 18.5262 1.64393 0.821966 0.569536i \(-0.192877\pi\)
0.821966 + 0.569536i \(0.192877\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 1.01804 3.44916i 0.0896330 0.303681i
\(130\) 7.14593 12.3771i 0.626740 1.08555i
\(131\) −3.48028 + 6.02802i −0.304073 + 0.526670i −0.977055 0.212989i \(-0.931680\pi\)
0.672981 + 0.739659i \(0.265013\pi\)
\(132\) −5.65329 5.94573i −0.492056 0.517509i
\(133\) 1.80919 + 3.13361i 0.156877 + 0.271718i
\(134\) −5.45670 −0.471387
\(135\) −3.48985 18.5274i −0.300359 1.59459i
\(136\) −5.36010 −0.459625
\(137\) 3.34224 + 5.78893i 0.285547 + 0.494581i 0.972742 0.231892i \(-0.0744915\pi\)
−0.687195 + 0.726473i \(0.741158\pi\)
\(138\) −8.41429 8.84954i −0.716272 0.753323i
\(139\) 10.4936 18.1755i 0.890059 1.54163i 0.0502556 0.998736i \(-0.483996\pi\)
0.839803 0.542891i \(-0.182670\pi\)
\(140\) −1.19822 + 2.07538i −0.101268 + 0.175401i
\(141\) 2.27672 7.71365i 0.191735 0.649607i
\(142\) 1.71170 + 2.96475i 0.143643 + 0.248796i
\(143\) 18.6581 1.56027
\(144\) 2.67036 1.36717i 0.222530 0.113931i
\(145\) −32.3631 −2.68761
\(146\) 1.29392 + 2.24113i 0.107085 + 0.185477i
\(147\) 11.0521 2.66475i 0.911558 0.219785i
\(148\) 3.35833 5.81679i 0.276053 0.478137i
\(149\) −9.20644 + 15.9460i −0.754221 + 1.30635i 0.191540 + 0.981485i \(0.438652\pi\)
−0.945761 + 0.324864i \(0.894681\pi\)
\(150\) −13.7476 + 3.31467i −1.12249 + 0.270642i
\(151\) −4.89962 8.48638i −0.398725 0.690612i 0.594844 0.803841i \(-0.297214\pi\)
−0.993569 + 0.113229i \(0.963881\pi\)
\(152\) −5.47838 −0.444355
\(153\) 0.810313 16.0599i 0.0655099 1.29836i
\(154\) −3.12857 −0.252107
\(155\) −17.5372 30.3753i −1.40862 2.43980i
\(156\) −1.93133 + 6.54345i −0.154630 + 0.523896i
\(157\) −12.2021 + 21.1346i −0.973832 + 1.68673i −0.290097 + 0.956997i \(0.593688\pi\)
−0.683735 + 0.729730i \(0.739646\pi\)
\(158\) 4.88118 8.45445i 0.388326 0.672600i
\(159\) 6.82176 + 7.17464i 0.541001 + 0.568986i
\(160\) −1.81416 3.14221i −0.143422 0.248413i
\(161\) −4.65652 −0.366985
\(162\) 3.69262 + 8.20759i 0.290119 + 0.644849i
\(163\) 13.1394 1.02916 0.514580 0.857443i \(-0.327948\pi\)
0.514580 + 0.857443i \(0.327948\pi\)
\(164\) −0.500000 0.866025i −0.0390434 0.0676252i
\(165\) −20.5119 21.5729i −1.59685 1.67945i
\(166\) 4.23404 7.33358i 0.328625 0.569196i
\(167\) 0.209486 0.362840i 0.0162105 0.0280774i −0.857806 0.513973i \(-0.828173\pi\)
0.874017 + 0.485896i \(0.161506\pi\)
\(168\) 0.323843 1.09720i 0.0249850 0.0846506i
\(169\) −1.25780 2.17858i −0.0967542 0.167583i
\(170\) −19.4481 −1.49160
\(171\) 0.828194 16.4143i 0.0633335 1.25523i
\(172\) 2.07630 0.158316
\(173\) 1.21748 + 2.10873i 0.0925629 + 0.160324i 0.908589 0.417692i \(-0.137161\pi\)
−0.816026 + 0.578015i \(0.803827\pi\)
\(174\) 15.0188 3.62117i 1.13858 0.274520i
\(175\) −2.69631 + 4.67014i −0.203822 + 0.353029i
\(176\) 2.36839 4.10218i 0.178524 0.309213i
\(177\) −10.8933 + 2.62648i −0.818794 + 0.197418i
\(178\) −1.18129 2.04606i −0.0885416 0.153359i
\(179\) 9.69531 0.724662 0.362331 0.932050i \(-0.381981\pi\)
0.362331 + 0.932050i \(0.381981\pi\)
\(180\) 9.68891 4.96053i 0.722168 0.369736i
\(181\) −2.80239 −0.208300 −0.104150 0.994562i \(-0.533212\pi\)
−0.104150 + 0.994562i \(0.533212\pi\)
\(182\) 1.30082 + 2.25308i 0.0964231 + 0.167010i
\(183\) −5.18974 + 17.5831i −0.383637 + 1.29978i
\(184\) 3.52508 6.10562i 0.259873 0.450113i
\(185\) 12.1850 21.1051i 0.895863 1.55168i
\(186\) 11.5373 + 12.1341i 0.845955 + 0.889714i
\(187\) −12.6948 21.9881i −0.928337 1.60793i
\(188\) 4.64341 0.338656
\(189\) 3.23845 + 1.13616i 0.235563 + 0.0826438i
\(190\) −19.8773 −1.44205
\(191\) 3.27445 + 5.67152i 0.236931 + 0.410377i 0.959832 0.280575i \(-0.0905251\pi\)
−0.722901 + 0.690952i \(0.757192\pi\)
\(192\) 1.19349 + 1.25522i 0.0861325 + 0.0905880i
\(193\) −0.705513 + 1.22198i −0.0507840 + 0.0879604i −0.890300 0.455375i \(-0.849505\pi\)
0.839516 + 0.543335i \(0.182839\pi\)
\(194\) −5.34250 + 9.25348i −0.383569 + 0.664361i
\(195\) −7.00748 + 23.7417i −0.501816 + 1.70018i
\(196\) 3.28188 + 5.68438i 0.234420 + 0.406027i
\(197\) −10.9087 −0.777212 −0.388606 0.921404i \(-0.627043\pi\)
−0.388606 + 0.921404i \(0.627043\pi\)
\(198\) 11.9328 + 7.71630i 0.848031 + 0.548373i
\(199\) 15.3713 1.08964 0.544820 0.838553i \(-0.316598\pi\)
0.544820 + 0.838553i \(0.316598\pi\)
\(200\) −4.08232 7.07079i −0.288664 0.499980i
\(201\) 9.18798 2.21530i 0.648070 0.156255i
\(202\) 4.37833 7.58349i 0.308058 0.533572i
\(203\) 2.94563 5.10198i 0.206743 0.358089i
\(204\) 9.02534 2.17609i 0.631900 0.152356i
\(205\) −1.81416 3.14221i −0.126706 0.219461i
\(206\) 2.78709 0.194185
\(207\) 17.7607 + 11.4848i 1.23445 + 0.798251i
\(208\) −3.93899 −0.273120
\(209\) −12.9749 22.4733i −0.897496 1.55451i
\(210\) 1.17500 3.98097i 0.0810830 0.274713i
\(211\) 6.06536 10.5055i 0.417557 0.723230i −0.578136 0.815940i \(-0.696220\pi\)
0.995693 + 0.0927106i \(0.0295531\pi\)
\(212\) −2.85791 + 4.95005i −0.196282 + 0.339971i
\(213\) −4.08579 4.29713i −0.279953 0.294435i
\(214\) −1.30572 2.26158i −0.0892573 0.154598i
\(215\) 7.53346 0.513778
\(216\) −3.94131 + 3.38616i −0.268172 + 0.230399i
\(217\) 6.38481 0.433429
\(218\) −10.2764 17.7993i −0.696007 1.20552i
\(219\) −3.08855 3.24831i −0.208705 0.219500i
\(220\) 8.59326 14.8840i 0.579358 1.00348i
\(221\) −10.5567 + 18.2847i −0.710119 + 1.22996i
\(222\) −3.29326 + 11.1577i −0.221029 + 0.748857i
\(223\) 0.472110 + 0.817718i 0.0316148 + 0.0547584i 0.881400 0.472371i \(-0.156602\pi\)
−0.849785 + 0.527129i \(0.823268\pi\)
\(224\) 0.660484 0.0441304
\(225\) 21.8026 11.1625i 1.45350 0.744165i
\(226\) −0.687760 −0.0457491
\(227\) 1.53359 + 2.65625i 0.101788 + 0.176301i 0.912421 0.409252i \(-0.134210\pi\)
−0.810634 + 0.585554i \(0.800877\pi\)
\(228\) 9.22449 2.22410i 0.610907 0.147295i
\(229\) 12.0947 20.9486i 0.799241 1.38433i −0.120871 0.992668i \(-0.538569\pi\)
0.920111 0.391657i \(-0.128098\pi\)
\(230\) 12.7901 22.1531i 0.843354 1.46073i
\(231\) 5.26788 1.27013i 0.346601 0.0835685i
\(232\) 4.45981 + 7.72461i 0.292801 + 0.507145i
\(233\) −22.4439 −1.47035 −0.735175 0.677877i \(-0.762900\pi\)
−0.735175 + 0.677877i \(0.762900\pi\)
\(234\) 0.595476 11.8019i 0.0389275 0.771517i
\(235\) 16.8477 1.09903
\(236\) −3.23475 5.60275i −0.210564 0.364708i
\(237\) −4.78661 + 16.2173i −0.310923 + 1.05342i
\(238\) 1.77013 3.06596i 0.114740 0.198736i
\(239\) −11.5182 + 19.9501i −0.745052 + 1.29047i 0.205119 + 0.978737i \(0.434242\pi\)
−0.950171 + 0.311731i \(0.899091\pi\)
\(240\) 4.33034 + 4.55434i 0.279522 + 0.293982i
\(241\) −1.03206 1.78759i −0.0664810 0.115149i 0.830869 0.556468i \(-0.187844\pi\)
−0.897350 + 0.441320i \(0.854511\pi\)
\(242\) 11.4371 0.735206
\(243\) −9.54973 12.3208i −0.612616 0.790381i
\(244\) −10.5846 −0.677607
\(245\) 11.9077 + 20.6247i 0.760754 + 1.31766i
\(246\) 1.19349 + 1.25522i 0.0760940 + 0.0800302i
\(247\) −10.7896 + 18.6882i −0.686528 + 1.18910i
\(248\) −4.83343 + 8.37175i −0.306923 + 0.531607i
\(249\) −4.15201 + 14.0672i −0.263123 + 0.891473i
\(250\) −5.74115 9.94396i −0.363102 0.628911i
\(251\) 13.5667 0.856324 0.428162 0.903702i \(-0.359161\pi\)
0.428162 + 0.903702i \(0.359161\pi\)
\(252\) −0.0998486 + 1.97893i −0.00628987 + 0.124661i
\(253\) 33.3951 2.09953
\(254\) −9.26309 16.0441i −0.581218 1.00670i
\(255\) 32.7467 7.89552i 2.05068 0.494436i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.13038 + 8.88608i −0.320025 + 0.554299i −0.980493 0.196555i \(-0.937024\pi\)
0.660468 + 0.750854i \(0.270358\pi\)
\(258\) −3.49607 + 0.842933i −0.217656 + 0.0524787i
\(259\) 2.21812 + 3.84190i 0.137827 + 0.238724i
\(260\) −14.2919 −0.886344
\(261\) −23.8186 + 12.1946i −1.47433 + 0.754830i
\(262\) 6.96055 0.430024
\(263\) −0.147800 0.255997i −0.00911373 0.0157854i 0.861433 0.507872i \(-0.169568\pi\)
−0.870546 + 0.492087i \(0.836234\pi\)
\(264\) −2.32250 + 7.86876i −0.142940 + 0.484289i
\(265\) −10.3694 + 17.9603i −0.636987 + 1.10329i
\(266\) 1.80919 3.13361i 0.110929 0.192134i
\(267\) 2.81972 + 2.96557i 0.172564 + 0.181490i
\(268\) 2.72835 + 4.72564i 0.166660 + 0.288664i
\(269\) −21.2825 −1.29762 −0.648810 0.760951i \(-0.724733\pi\)
−0.648810 + 0.760951i \(0.724733\pi\)
\(270\) −14.3003 + 12.2860i −0.870289 + 0.747704i
\(271\) 20.8083 1.26401 0.632006 0.774964i \(-0.282232\pi\)
0.632006 + 0.774964i \(0.282232\pi\)
\(272\) 2.68005 + 4.64198i 0.162502 + 0.281462i
\(273\) −3.10502 3.26564i −0.187924 0.197645i
\(274\) 3.34224 5.78893i 0.201912 0.349722i
\(275\) 19.3371 33.4928i 1.16607 2.01969i
\(276\) −3.45678 + 11.7118i −0.208074 + 0.704965i
\(277\) 1.63269 + 2.82791i 0.0980991 + 0.169913i 0.910898 0.412632i \(-0.135390\pi\)
−0.812799 + 0.582545i \(0.802057\pi\)
\(278\) −20.9873 −1.25873
\(279\) −24.3527 15.7475i −1.45796 0.942777i
\(280\) 2.39644 0.143215
\(281\) 0.818897 + 1.41837i 0.0488513 + 0.0846129i 0.889417 0.457097i \(-0.151111\pi\)
−0.840566 + 0.541709i \(0.817777\pi\)
\(282\) −7.81858 + 1.88513i −0.465590 + 0.112258i
\(283\) 2.95847 5.12423i 0.175863 0.304604i −0.764597 0.644509i \(-0.777062\pi\)
0.940460 + 0.339905i \(0.110395\pi\)
\(284\) 1.71170 2.96475i 0.101571 0.175926i
\(285\) 33.4693 8.06974i 1.98255 0.478010i
\(286\) −9.32906 16.1584i −0.551639 0.955467i
\(287\) 0.660484 0.0389871
\(288\) −2.51919 1.62902i −0.148445 0.0959907i
\(289\) 11.7307 0.690040
\(290\) 16.1816 + 28.0273i 0.950214 + 1.64582i
\(291\) 5.23898 17.7499i 0.307115 1.04052i
\(292\) 1.29392 2.24113i 0.0757207 0.131152i
\(293\) 14.0380 24.3145i 0.820106 1.42047i −0.0854967 0.996338i \(-0.527248\pi\)
0.905603 0.424127i \(-0.139419\pi\)
\(294\) −7.83377 8.23899i −0.456875 0.480508i
\(295\) −11.7367 20.3285i −0.683336 1.18357i
\(296\) −6.71665 −0.390397
\(297\) −23.2252 8.14822i −1.34766 0.472807i
\(298\) 18.4129 1.06663
\(299\) −13.8853 24.0500i −0.803005 1.39085i
\(300\) 9.74440 + 10.2485i 0.562593 + 0.591695i
\(301\) −0.685681 + 1.18763i −0.0395220 + 0.0684541i
\(302\) −4.89962 + 8.48638i −0.281941 + 0.488337i
\(303\) −4.29349 + 14.5466i −0.246655 + 0.835679i
\(304\) 2.73919 + 4.74441i 0.157103 + 0.272111i
\(305\) −38.4041 −2.19901
\(306\) −14.3134 + 7.32819i −0.818244 + 0.418924i
\(307\) −16.3136 −0.931067 −0.465534 0.885030i \(-0.654138\pi\)
−0.465534 + 0.885030i \(0.654138\pi\)
\(308\) 1.56428 + 2.70942i 0.0891334 + 0.154384i
\(309\) −4.69289 + 1.13150i −0.266969 + 0.0643686i
\(310\) −17.5372 + 30.3753i −0.996046 + 1.72520i
\(311\) 7.12309 12.3375i 0.403913 0.699598i −0.590281 0.807198i \(-0.700983\pi\)
0.994194 + 0.107600i \(0.0343164\pi\)
\(312\) 6.63246 1.59914i 0.375489 0.0905337i
\(313\) 12.4404 + 21.5473i 0.703170 + 1.21793i 0.967348 + 0.253453i \(0.0815663\pi\)
−0.264177 + 0.964474i \(0.585100\pi\)
\(314\) 24.4042 1.37721
\(315\) −0.362282 + 7.18019i −0.0204123 + 0.404558i
\(316\) −9.76236 −0.549176
\(317\) 12.8794 + 22.3077i 0.723378 + 1.25293i 0.959638 + 0.281238i \(0.0907450\pi\)
−0.236260 + 0.971690i \(0.575922\pi\)
\(318\) 2.80254 9.49514i 0.157159 0.532461i
\(319\) −21.1251 + 36.5898i −1.18278 + 2.04864i
\(320\) −1.81416 + 3.14221i −0.101414 + 0.175655i
\(321\) 3.11673 + 3.27795i 0.173959 + 0.182957i
\(322\) 2.32826 + 4.03267i 0.129749 + 0.224732i
\(323\) 29.3647 1.63389
\(324\) 5.26168 7.30170i 0.292315 0.405650i
\(325\) −32.1604 −1.78394
\(326\) −6.56971 11.3791i −0.363863 0.630229i
\(327\) 24.5296 + 25.7984i 1.35649 + 1.42666i
\(328\) −0.500000 + 0.866025i −0.0276079 + 0.0478183i
\(329\) −1.53345 + 2.65601i −0.0845418 + 0.146431i
\(330\) −8.42676 + 28.5503i −0.463878 + 1.57164i
\(331\) −7.75164 13.4262i −0.426069 0.737973i 0.570451 0.821332i \(-0.306769\pi\)
−0.996520 + 0.0833590i \(0.973435\pi\)
\(332\) −8.46809 −0.464747
\(333\) 1.01539 20.1244i 0.0556430 1.10281i
\(334\) −0.418972 −0.0229251
\(335\) 9.89930 + 17.1461i 0.540856 + 0.936791i
\(336\) −1.11212 + 0.268142i −0.0606713 + 0.0146284i
\(337\) −11.6724 + 20.2173i −0.635838 + 1.10130i 0.350499 + 0.936563i \(0.386012\pi\)
−0.986337 + 0.164741i \(0.947321\pi\)
\(338\) −1.25780 + 2.17858i −0.0684156 + 0.118499i
\(339\) 1.15805 0.279216i 0.0628967 0.0151649i
\(340\) 9.72406 + 16.8426i 0.527361 + 0.913416i
\(341\) −45.7899 −2.47966
\(342\) −14.6293 + 7.48989i −0.791060 + 0.405007i
\(343\) −8.95864 −0.483721
\(344\) −1.03815 1.79813i −0.0559733 0.0969486i
\(345\) −12.5423 + 42.4939i −0.675254 + 2.28779i
\(346\) 1.21748 2.10873i 0.0654519 0.113366i
\(347\) 5.80137 10.0483i 0.311434 0.539419i −0.667239 0.744844i \(-0.732524\pi\)
0.978673 + 0.205424i \(0.0658574\pi\)
\(348\) −10.6454 11.1961i −0.570656 0.600174i
\(349\) 3.48911 + 6.04331i 0.186768 + 0.323491i 0.944171 0.329457i \(-0.106866\pi\)
−0.757403 + 0.652948i \(0.773532\pi\)
\(350\) 5.39261 0.288247
\(351\) 3.78867 + 20.1139i 0.202224 + 1.07360i
\(352\) −4.73678 −0.252471
\(353\) −4.87070 8.43630i −0.259241 0.449019i 0.706798 0.707416i \(-0.250139\pi\)
−0.966039 + 0.258397i \(0.916806\pi\)
\(354\) 7.72127 + 8.12067i 0.410381 + 0.431609i
\(355\) 6.21058 10.7570i 0.329623 0.570924i
\(356\) −1.18129 + 2.04606i −0.0626084 + 0.108441i
\(357\) −1.73583 + 5.88109i −0.0918700 + 0.311260i
\(358\) −4.84766 8.39639i −0.256207 0.443763i
\(359\) 11.7818 0.621818 0.310909 0.950440i \(-0.399367\pi\)
0.310909 + 0.950440i \(0.399367\pi\)
\(360\) −9.14040 5.91058i −0.481741 0.311515i
\(361\) 11.0126 0.579612
\(362\) 1.40120 + 2.42694i 0.0736452 + 0.127557i
\(363\) −19.2578 + 4.64323i −1.01077 + 0.243706i
\(364\) 1.30082 2.25308i 0.0681814 0.118094i
\(365\) 4.69473 8.13151i 0.245733 0.425623i
\(366\) 17.8223 4.29711i 0.931586 0.224613i
\(367\) −8.71736 15.0989i −0.455043 0.788157i 0.543648 0.839313i \(-0.317043\pi\)
−0.998691 + 0.0511563i \(0.983709\pi\)
\(368\) −7.05017 −0.367515
\(369\) −2.51919 1.62902i −0.131144 0.0848032i
\(370\) −24.3701 −1.26694
\(371\) −1.88760 3.26943i −0.0979995 0.169740i
\(372\) 4.73978 16.0586i 0.245746 0.832601i
\(373\) −6.91811 + 11.9825i −0.358206 + 0.620431i −0.987661 0.156606i \(-0.949945\pi\)
0.629455 + 0.777037i \(0.283278\pi\)
\(374\) −12.6948 + 21.9881i −0.656434 + 1.13698i
\(375\) 13.7040 + 14.4129i 0.707670 + 0.744277i
\(376\) −2.32171 4.02131i −0.119733 0.207383i
\(377\) 35.1342 1.80950
\(378\) −0.635280 3.37267i −0.0326753 0.173471i
\(379\) 3.18952 0.163835 0.0819174 0.996639i \(-0.473896\pi\)
0.0819174 + 0.996639i \(0.473896\pi\)
\(380\) 9.93863 + 17.2142i 0.509841 + 0.883070i
\(381\) 22.1108 + 23.2545i 1.13277 + 1.19136i
\(382\) 3.27445 5.67152i 0.167536 0.290180i
\(383\) −6.76212 + 11.7123i −0.345528 + 0.598472i −0.985450 0.169968i \(-0.945633\pi\)
0.639922 + 0.768440i \(0.278967\pi\)
\(384\) 0.490312 1.66120i 0.0250211 0.0847729i
\(385\) 5.67571 + 9.83062i 0.289261 + 0.501015i
\(386\) 1.41103 0.0718194
\(387\) 5.54447 2.83866i 0.281841 0.144297i
\(388\) 10.6850 0.542448
\(389\) 8.73115 + 15.1228i 0.442687 + 0.766756i 0.997888 0.0649603i \(-0.0206921\pi\)
−0.555201 + 0.831716i \(0.687359\pi\)
\(390\) 24.0646 5.80219i 1.21856 0.293805i
\(391\) −18.8948 + 32.7268i −0.955551 + 1.65506i
\(392\) 3.28188 5.68438i 0.165760 0.287105i
\(393\) −11.7202 + 2.82583i −0.591205 + 0.142545i
\(394\) 5.45435 + 9.44721i 0.274786 + 0.475943i
\(395\) −35.4209 −1.78222
\(396\) 0.716083 14.1923i 0.0359845 0.713190i
\(397\) −14.0003 −0.702657 −0.351329 0.936252i \(-0.614270\pi\)
−0.351329 + 0.936252i \(0.614270\pi\)
\(398\) −7.68564 13.3119i −0.385246 0.667266i
\(399\) −1.77414 + 6.01086i −0.0888179 + 0.300919i
\(400\) −4.08232 + 7.07079i −0.204116 + 0.353539i
\(401\) 14.3421 24.8413i 0.716212 1.24052i −0.246278 0.969199i \(-0.579208\pi\)
0.962490 0.271317i \(-0.0874591\pi\)
\(402\) −6.51250 6.84938i −0.324814 0.341616i
\(403\) 19.0388 + 32.9762i 0.948391 + 1.64266i
\(404\) −8.75666 −0.435660
\(405\) 19.0910 26.4928i 0.948639 1.31644i
\(406\) −5.89126 −0.292378
\(407\) −15.9077 27.5529i −0.788513 1.36575i
\(408\) −6.39721 6.72813i −0.316709 0.333092i
\(409\) −12.5593 + 21.7533i −0.621016 + 1.07563i 0.368280 + 0.929715i \(0.379947\pi\)
−0.989297 + 0.145917i \(0.953387\pi\)
\(410\) −1.81416 + 3.14221i −0.0895948 + 0.155183i
\(411\) −3.27748 + 11.1043i −0.161666 + 0.547733i
\(412\) −1.39354 2.41369i −0.0686549 0.118914i
\(413\) 4.27300 0.210261
\(414\) 1.06581 21.1236i 0.0523816 1.03817i
\(415\) −30.7248 −1.50822
\(416\) 1.96949 + 3.41126i 0.0965623 + 0.167251i
\(417\) 35.3384 8.52038i 1.73053 0.417245i
\(418\) −12.9749 + 22.4733i −0.634625 + 1.09920i
\(419\) 13.9472 24.1572i 0.681363 1.18016i −0.293202 0.956051i \(-0.594721\pi\)
0.974565 0.224105i \(-0.0719459\pi\)
\(420\) −4.03513 + 0.972903i −0.196894 + 0.0474728i
\(421\) −3.65699 6.33409i −0.178231 0.308705i 0.763044 0.646347i \(-0.223704\pi\)
−0.941275 + 0.337642i \(0.890371\pi\)
\(422\) −12.1307 −0.590515
\(423\) 12.3996 6.34835i 0.602889 0.308667i
\(424\) 5.71582 0.277585
\(425\) 21.8816 + 37.9001i 1.06142 + 1.83843i
\(426\) −1.67853 + 5.68696i −0.0813253 + 0.275534i
\(427\) 3.49547 6.05433i 0.169158 0.292989i
\(428\) −1.30572 + 2.26158i −0.0631145 + 0.109317i
\(429\) 22.2682 + 23.4201i 1.07512 + 1.13073i
\(430\) −3.76673 6.52417i −0.181648 0.314623i
\(431\) 13.8729 0.668232 0.334116 0.942532i \(-0.391562\pi\)
0.334116 + 0.942532i \(0.391562\pi\)
\(432\) 4.90315 + 1.72020i 0.235903 + 0.0827632i
\(433\) 19.5255 0.938334 0.469167 0.883110i \(-0.344554\pi\)
0.469167 + 0.883110i \(0.344554\pi\)
\(434\) −3.19240 5.52941i −0.153240 0.265420i
\(435\) −38.6250 40.6230i −1.85193 1.94772i
\(436\) −10.2764 + 17.7993i −0.492151 + 0.852431i
\(437\) −19.3117 + 33.4489i −0.923806 + 1.60008i
\(438\) −1.26885 + 4.29892i −0.0606278 + 0.205410i
\(439\) 4.25502 + 7.36992i 0.203081 + 0.351747i 0.949520 0.313707i \(-0.101571\pi\)
−0.746438 + 0.665454i \(0.768238\pi\)
\(440\) −17.1865 −0.819335
\(441\) 16.5353 + 10.6925i 0.787398 + 0.509165i
\(442\) 21.1134 1.00426
\(443\) 4.40699 + 7.63313i 0.209382 + 0.362661i 0.951520 0.307586i \(-0.0995213\pi\)
−0.742138 + 0.670247i \(0.766188\pi\)
\(444\) 11.3095 2.72682i 0.536725 0.129409i
\(445\) −4.28610 + 7.42374i −0.203181 + 0.351919i
\(446\) 0.472110 0.817718i 0.0223550 0.0387201i
\(447\) −31.0036 + 7.47523i −1.46642 + 0.353566i
\(448\) −0.330242 0.571996i −0.0156025 0.0270243i
\(449\) 1.50547 0.0710476 0.0355238 0.999369i \(-0.488690\pi\)
0.0355238 + 0.999369i \(0.488690\pi\)
\(450\) −20.5683 13.3003i −0.969597 0.626983i
\(451\) −4.73678 −0.223046
\(452\) 0.343880 + 0.595618i 0.0161748 + 0.0280155i
\(453\) 4.80468 16.2785i 0.225744 0.764831i
\(454\) 1.53359 2.65625i 0.0719748 0.124664i
\(455\) 4.71977 8.17489i 0.221266 0.383245i
\(456\) −6.53838 6.87659i −0.306188 0.322026i
\(457\) 15.3760 + 26.6319i 0.719257 + 1.24579i 0.961294 + 0.275523i \(0.0888510\pi\)
−0.242037 + 0.970267i \(0.577816\pi\)
\(458\) −24.1894 −1.13030
\(459\) 21.1258 18.1501i 0.986070 0.847176i
\(460\) −25.5802 −1.19268
\(461\) 10.7165 + 18.5616i 0.499119 + 0.864499i 0.999999 0.00101711i \(-0.000323756\pi\)
−0.500881 + 0.865516i \(0.666990\pi\)
\(462\) −3.73391 3.92706i −0.173717 0.182703i
\(463\) 9.44942 16.3669i 0.439152 0.760633i −0.558472 0.829523i \(-0.688612\pi\)
0.997624 + 0.0688898i \(0.0219457\pi\)
\(464\) 4.45981 7.72461i 0.207041 0.358606i
\(465\) 17.1974 58.2657i 0.797510 2.70201i
\(466\) 11.2220 + 19.4370i 0.519847 + 0.900402i
\(467\) 10.6993 0.495104 0.247552 0.968875i \(-0.420374\pi\)
0.247552 + 0.968875i \(0.420374\pi\)
\(468\) −10.5185 + 5.38527i −0.486219 + 0.248934i
\(469\) −3.60406 −0.166420
\(470\) −8.42387 14.5906i −0.388564 0.673013i
\(471\) −41.0917 + 9.90757i −1.89341 + 0.456517i
\(472\) −3.23475 + 5.60275i −0.148891 + 0.257887i
\(473\) 4.91749 8.51735i 0.226107 0.391628i
\(474\) 16.4379 3.96331i 0.755016 0.182041i
\(475\) 22.3645 + 38.7364i 1.02615 + 1.77735i
\(476\) −3.54026 −0.162268
\(477\) −0.864089 + 17.1257i −0.0395639 + 0.784131i
\(478\) 23.0364 1.05366
\(479\) 11.6784 + 20.2276i 0.533600 + 0.924223i 0.999230 + 0.0392428i \(0.0124946\pi\)
−0.465630 + 0.884980i \(0.654172\pi\)
\(480\) 1.77900 6.02736i 0.0812001 0.275110i
\(481\) −13.2284 + 22.9123i −0.603163 + 1.04471i
\(482\) −1.03206 + 1.78759i −0.0470092 + 0.0814223i
\(483\) −5.55750 5.84498i −0.252875 0.265956i
\(484\) −5.71856 9.90484i −0.259935 0.450220i
\(485\) 38.7685 1.76039
\(486\) −5.89528 + 14.4307i −0.267415 + 0.654591i
\(487\) 3.08766 0.139915 0.0699576 0.997550i \(-0.477714\pi\)
0.0699576 + 0.997550i \(0.477714\pi\)
\(488\) 5.29228 + 9.16650i 0.239570 + 0.414948i
\(489\) 15.6817 + 16.4929i 0.709153 + 0.745836i
\(490\) 11.9077 20.6247i 0.537934 0.931729i
\(491\) 3.47926 6.02626i 0.157017 0.271961i −0.776775 0.629779i \(-0.783146\pi\)
0.933792 + 0.357817i \(0.116479\pi\)
\(492\) 0.490312 1.66120i 0.0221050 0.0748928i
\(493\) −23.9050 41.4047i −1.07663 1.86477i
\(494\) 21.5793 0.970897
\(495\) 2.59817 51.4941i 0.116779 2.31449i
\(496\) 9.66687 0.434055
\(497\) 1.13055 + 1.95817i 0.0507121 + 0.0878360i
\(498\) 14.2586 3.43786i 0.638941 0.154054i
\(499\) −8.01666 + 13.8853i −0.358875 + 0.621590i −0.987773 0.155898i \(-0.950173\pi\)
0.628898 + 0.777488i \(0.283506\pi\)
\(500\) −5.74115 + 9.94396i −0.256752 + 0.444707i
\(501\) 0.705465 0.170094i 0.0315178 0.00759922i
\(502\) −6.78336 11.7491i −0.302756 0.524389i
\(503\) −12.9027 −0.575302 −0.287651 0.957735i \(-0.592874\pi\)
−0.287651 + 0.957735i \(0.592874\pi\)
\(504\) 1.76373 0.902996i 0.0785628 0.0402226i
\(505\) −31.7719 −1.41383
\(506\) −16.6976 28.9210i −0.742297 1.28570i
\(507\) 1.23343 4.17894i 0.0547787 0.185593i
\(508\) −9.26309 + 16.0441i −0.410983 + 0.711844i
\(509\) 5.38684 9.33027i 0.238767 0.413557i −0.721594 0.692317i \(-0.756590\pi\)
0.960361 + 0.278760i \(0.0899233\pi\)
\(510\) −23.2111 24.4117i −1.02780 1.08097i
\(511\) 0.854611 + 1.48023i 0.0378058 + 0.0654815i
\(512\) 1.00000 0.0441942
\(513\) 21.5920 18.5506i 0.953310 0.819031i
\(514\) 10.2608 0.452583
\(515\) −5.05621 8.75761i −0.222803 0.385906i
\(516\) 2.47804 + 2.60622i 0.109090 + 0.114733i
\(517\) 10.9974 19.0481i 0.483666 0.837734i
\(518\) 2.21812 3.84190i 0.0974586 0.168803i
\(519\) −1.19389 + 4.04495i −0.0524058 + 0.177553i
\(520\) 7.14593 + 12.3771i 0.313370 + 0.542773i
\(521\) −14.9641 −0.655590 −0.327795 0.944749i \(-0.606306\pi\)
−0.327795 + 0.944749i \(0.606306\pi\)
\(522\) 22.4702 + 14.5302i 0.983493 + 0.635969i
\(523\) 12.3205 0.538736 0.269368 0.963037i \(-0.413185\pi\)
0.269368 + 0.963037i \(0.413185\pi\)
\(524\) −3.48028 6.02802i −0.152037 0.263335i
\(525\) −9.08008 + 2.18928i −0.396287 + 0.0955482i
\(526\) −0.147800 + 0.255997i −0.00644438 + 0.0111620i
\(527\) 25.9077 44.8734i 1.12856 1.95472i
\(528\) 7.97580 1.92303i 0.347102 0.0836892i
\(529\) −13.3524 23.1271i −0.580540 1.00553i
\(530\) 20.7388 0.900835
\(531\) −16.2979 10.5389i −0.707268 0.457350i
\(532\) −3.61838 −0.156877
\(533\) 1.96949 + 3.41126i 0.0853082 + 0.147758i
\(534\) 1.15840 3.92473i 0.0501291 0.169840i
\(535\) −4.73757 + 8.20570i −0.204823 + 0.354764i
\(536\) 2.72835 4.72564i 0.117847 0.204116i
\(537\) 11.5712 + 12.1698i 0.499336 + 0.525165i
\(538\) 10.6413 + 18.4312i 0.458778 + 0.794627i
\(539\) 31.0911 1.33919
\(540\) 17.7902 + 6.24142i 0.765567 + 0.268588i
\(541\) −15.1936 −0.653225 −0.326612 0.945158i \(-0.605907\pi\)
−0.326612 + 0.945158i \(0.605907\pi\)
\(542\) −10.4041 18.0205i −0.446896 0.774046i
\(543\) −3.34462 3.51763i −0.143531 0.150956i
\(544\) 2.68005 4.64198i 0.114906 0.199023i
\(545\) −37.2861 + 64.5814i −1.59716 + 2.76636i
\(546\) −1.27561 + 4.32185i −0.0545912 + 0.184958i
\(547\) −14.3810 24.9087i −0.614889 1.06502i −0.990404 0.138203i \(-0.955867\pi\)
0.375515 0.926816i \(-0.377466\pi\)
\(548\) −6.68448 −0.285547
\(549\) −28.2646 + 14.4709i −1.20631 + 0.617604i
\(550\) −38.6741 −1.64907
\(551\) −24.4325 42.3183i −1.04086 1.80282i
\(552\) 11.8711 2.86222i 0.505266 0.121824i
\(553\) 3.22394 5.58403i 0.137096 0.237457i
\(554\) 1.63269 2.82791i 0.0693665 0.120146i
\(555\) 41.0344 9.89373i 1.74181 0.419966i
\(556\) 10.4936 + 18.1755i 0.445029 + 0.770814i
\(557\) −34.5846 −1.46540 −0.732698 0.680554i \(-0.761739\pi\)
−0.732698 + 0.680554i \(0.761739\pi\)
\(558\) −1.46139 + 28.9638i −0.0618655 + 1.22613i
\(559\) −8.17852 −0.345914
\(560\) −1.19822 2.07538i −0.0506340 0.0877007i
\(561\) 12.4489 42.1773i 0.525591 1.78073i
\(562\) 0.818897 1.41837i 0.0345431 0.0598304i
\(563\) 0.976616 1.69155i 0.0411594 0.0712903i −0.844712 0.535221i \(-0.820228\pi\)
0.885871 + 0.463931i \(0.153562\pi\)
\(564\) 5.54186 + 5.82852i 0.233354 + 0.245425i
\(565\) 1.24770 + 2.16109i 0.0524913 + 0.0909176i
\(566\) −5.91695 −0.248708
\(567\) 2.43891 + 5.42098i 0.102425 + 0.227660i
\(568\) −3.42340 −0.143643
\(569\) 1.16997 + 2.02646i 0.0490479 + 0.0849534i 0.889507 0.456922i \(-0.151048\pi\)
−0.840459 + 0.541875i \(0.817715\pi\)
\(570\) −23.7233 24.9504i −0.993658 1.04506i
\(571\) 6.00568 10.4021i 0.251330 0.435316i −0.712562 0.701609i \(-0.752465\pi\)
0.963892 + 0.266293i \(0.0857988\pi\)
\(572\) −9.32906 + 16.1584i −0.390068 + 0.675617i
\(573\) −3.21101 + 10.8791i −0.134142 + 0.454479i
\(574\) −0.330242 0.571996i −0.0137840 0.0238746i
\(575\) −57.5621 −2.40050
\(576\) −0.151175 + 2.99619i −0.00629896 + 0.124841i
\(577\) −16.5875 −0.690547 −0.345274 0.938502i \(-0.612214\pi\)
−0.345274 + 0.938502i \(0.612214\pi\)
\(578\) −5.86534 10.1591i −0.243966 0.422562i
\(579\) −2.37589 + 0.572846i −0.0987385 + 0.0238067i
\(580\) 16.1816 28.0273i 0.671903 1.16377i
\(581\) 2.79652 4.84371i 0.116019 0.200951i
\(582\) −17.9914 + 4.33788i −0.745767 + 0.179811i
\(583\) 13.5373 + 23.4473i 0.560658 + 0.971088i
\(584\) −2.58783 −0.107085
\(585\) −38.1645 + 19.5395i −1.57791 + 0.807857i
\(586\) −28.0759 −1.15981
\(587\) −12.4396 21.5460i −0.513437 0.889299i −0.999879 0.0155860i \(-0.995039\pi\)
0.486441 0.873713i \(-0.338295\pi\)
\(588\) −3.21829 + 10.9037i −0.132720 + 0.449663i
\(589\) 26.4794 45.8636i 1.09106 1.88978i
\(590\) −11.7367 + 20.3285i −0.483191 + 0.836912i
\(591\) −13.0194 13.6929i −0.535546 0.563249i
\(592\) 3.35833 + 5.81679i 0.138026 + 0.239069i
\(593\) −29.8821 −1.22711 −0.613556 0.789652i \(-0.710261\pi\)
−0.613556 + 0.789652i \(0.710261\pi\)
\(594\) 4.55603 + 24.1877i 0.186936 + 0.992433i
\(595\) −12.8452 −0.526600
\(596\) −9.20644 15.9460i −0.377110 0.653174i
\(597\) 18.3454 + 19.2944i 0.750828 + 0.789667i
\(598\) −13.8853 + 24.0500i −0.567810 + 0.983476i
\(599\) 8.94748 15.4975i 0.365584 0.633210i −0.623286 0.781994i \(-0.714203\pi\)
0.988870 + 0.148784i \(0.0475359\pi\)
\(600\) 4.00322 13.5631i 0.163431 0.553712i
\(601\) −4.79337 8.30236i −0.195526 0.338660i 0.751547 0.659680i \(-0.229308\pi\)
−0.947073 + 0.321019i \(0.895975\pi\)
\(602\) 1.37136 0.0558926
\(603\) 13.7464 + 8.88904i 0.559799 + 0.361990i
\(604\) 9.79923 0.398725
\(605\) −20.7487 35.9378i −0.843555 1.46108i
\(606\) 14.7445 3.55501i 0.598953 0.144413i
\(607\) 21.0601 36.4771i 0.854802 1.48056i −0.0220273 0.999757i \(-0.507012\pi\)
0.876829 0.480802i \(-0.159655\pi\)
\(608\) 2.73919 4.74441i 0.111089 0.192411i
\(609\) 9.91970 2.39172i 0.401966 0.0969176i
\(610\) 19.2020 + 33.2589i 0.777468 + 1.34661i
\(611\) −18.2903 −0.739948
\(612\) 13.5031 + 8.73169i 0.545831 + 0.352958i
\(613\) 17.2436 0.696461 0.348231 0.937409i \(-0.386783\pi\)
0.348231 + 0.937409i \(0.386783\pi\)
\(614\) 8.15681 + 14.1280i 0.329182 + 0.570160i
\(615\) 1.77900 6.02736i 0.0717364 0.243047i
\(616\) 1.56428 2.70942i 0.0630268 0.109166i
\(617\) −0.279023 + 0.483282i −0.0112330 + 0.0194562i −0.871587 0.490240i \(-0.836909\pi\)
0.860354 + 0.509697i \(0.170242\pi\)
\(618\) 3.32635 + 3.49842i 0.133805 + 0.140727i
\(619\) −11.8233 20.4786i −0.475220 0.823105i 0.524377 0.851486i \(-0.324298\pi\)
−0.999597 + 0.0283811i \(0.990965\pi\)
\(620\) 35.0744 1.40862
\(621\) 6.78113 + 36.0007i 0.272117 + 1.44466i
\(622\) −14.2462 −0.571220
\(623\) −0.780225 1.35139i −0.0312590 0.0541423i
\(624\) −4.70113 4.94431i −0.188196 0.197931i
\(625\) −0.419071 + 0.725852i −0.0167628 + 0.0290341i
\(626\) 12.4404 21.5473i 0.497217 0.861204i
\(627\) 12.7235 43.1080i 0.508130 1.72157i
\(628\) −12.2021 21.1346i −0.486916 0.843364i
\(629\) 36.0019 1.43549
\(630\) 6.39937 3.27635i 0.254957 0.130533i
\(631\) 28.3065 1.12686 0.563432 0.826163i \(-0.309481\pi\)
0.563432 + 0.826163i \(0.309481\pi\)
\(632\) 4.88118 + 8.45445i 0.194163 + 0.336300i
\(633\) 20.4257 4.92481i 0.811849 0.195744i
\(634\) 12.8794 22.3077i 0.511506 0.885954i
\(635\) −33.6094 + 58.2131i −1.33375 + 2.31012i
\(636\) −9.62430 + 2.32050i −0.381628 + 0.0920139i
\(637\) −12.9273 22.3907i −0.512198 0.887152i
\(638\) 42.2503 1.67270
\(639\) 0.517532 10.2572i 0.0204733 0.405767i
\(640\) 3.62831 0.143422
\(641\) −7.38813 12.7966i −0.291814 0.505436i 0.682425 0.730956i \(-0.260925\pi\)
−0.974239 + 0.225520i \(0.927592\pi\)
\(642\) 1.28042 4.33814i 0.0505343 0.171213i
\(643\) 2.62046 4.53877i 0.103341 0.178992i −0.809718 0.586819i \(-0.800380\pi\)
0.913059 + 0.407827i \(0.133713\pi\)
\(644\) 2.32826 4.03267i 0.0917463 0.158909i
\(645\) 8.99109 + 9.45618i 0.354024 + 0.372337i
\(646\) −14.6823 25.4305i −0.577669 1.00055i
\(647\) −18.0038 −0.707804 −0.353902 0.935283i \(-0.615145\pi\)
−0.353902 + 0.935283i \(0.615145\pi\)
\(648\) −8.95429 0.905897i −0.351758 0.0355870i
\(649\) −30.6446 −1.20291
\(650\) 16.0802 + 27.8517i 0.630717 + 1.09243i
\(651\) 7.62019 + 8.01437i 0.298659 + 0.314108i
\(652\) −6.56971 + 11.3791i −0.257290 + 0.445639i
\(653\) 24.2522 42.0060i 0.949060 1.64382i 0.201650 0.979458i \(-0.435370\pi\)
0.747410 0.664363i \(-0.231297\pi\)
\(654\) 10.0773 34.1424i 0.394054 1.33508i
\(655\) −12.6275 21.8715i −0.493398 0.854591i
\(656\) 1.00000 0.0390434
\(657\) 0.391216 7.75364i 0.0152628 0.302498i
\(658\) 3.06690 0.119560
\(659\) −14.3204 24.8037i −0.557845 0.966215i −0.997676 0.0681348i \(-0.978295\pi\)
0.439832 0.898080i \(-0.355038\pi\)
\(660\) 28.9387 6.97736i 1.12644 0.271593i
\(661\) 8.25787 14.3031i 0.321194 0.556325i −0.659541 0.751669i \(-0.729249\pi\)
0.980735 + 0.195344i \(0.0625825\pi\)
\(662\) −7.75164 + 13.4262i −0.301276 + 0.521826i
\(663\) −35.5507 + 8.57157i −1.38067 + 0.332892i
\(664\) 4.23404 + 7.33358i 0.164313 + 0.284598i
\(665\) −13.1286 −0.509106
\(666\) −17.9359 + 9.18282i −0.695002 + 0.355827i
\(667\) 62.8847 2.43491
\(668\) 0.209486 + 0.362840i 0.00810525 + 0.0140387i
\(669\) −0.462962 + 1.56854i −0.0178992 + 0.0606432i
\(670\) 9.89930 17.1461i 0.382443 0.662411i
\(671\) −25.0684 + 43.4197i −0.967755 + 1.67620i
\(672\) 0.788279 + 0.829055i 0.0304085 + 0.0319815i
\(673\) −16.1284 27.9353i −0.621705 1.07683i −0.989168 0.146787i \(-0.953107\pi\)
0.367463 0.930038i \(-0.380227\pi\)
\(674\) 23.3449 0.899211
\(675\) 40.0325 + 14.0448i 1.54085 + 0.540585i
\(676\) 2.51561 0.0967542
\(677\) 8.16666 + 14.1451i 0.313870 + 0.543639i 0.979197 0.202913i \(-0.0650410\pi\)
−0.665326 + 0.746553i \(0.731708\pi\)
\(678\) −0.820833 0.863293i −0.0315239 0.0331546i
\(679\) −3.52863 + 6.11177i −0.135416 + 0.234548i
\(680\) 9.72406 16.8426i 0.372901 0.645883i
\(681\) −1.50387 + 5.09519i −0.0576285 + 0.195248i
\(682\) 22.8949 + 39.6552i 0.876692 + 1.51848i
\(683\) −16.7882 −0.642382 −0.321191 0.947014i \(-0.604083\pi\)
−0.321191 + 0.947014i \(0.604083\pi\)
\(684\) 13.8011 + 8.92436i 0.527697 + 0.341232i
\(685\) −24.2534 −0.926673
\(686\) 4.47932 + 7.75841i 0.171021 + 0.296218i
\(687\) 40.7301 9.82038i 1.55395 0.374671i
\(688\) −1.03815 + 1.79813i −0.0395791 + 0.0685530i
\(689\) 11.2573 19.4982i 0.428868 0.742821i
\(690\) 43.0719 10.3850i 1.63972 0.395351i
\(691\) 10.8536 + 18.7990i 0.412891 + 0.715149i 0.995205 0.0978156i \(-0.0311855\pi\)
−0.582313 + 0.812965i \(0.697852\pi\)
\(692\) −2.43495 −0.0925629
\(693\) 7.88145 + 5.09649i 0.299392 + 0.193600i
\(694\) −11.6027 −0.440434
\(695\) 38.0742 + 65.9464i 1.44424 + 2.50149i
\(696\) −4.37339 + 14.8173i −0.165773 + 0.561648i
\(697\) 2.68005 4.64198i 0.101514 0.175828i
\(698\) 3.48911 6.04331i 0.132065 0.228743i
\(699\) −26.7865 28.1721i −1.01316 1.06557i
\(700\) −2.69631 4.67014i −0.101911 0.176515i
\(701\) −23.6919 −0.894830 −0.447415 0.894326i \(-0.647655\pi\)
−0.447415 + 0.894326i \(0.647655\pi\)
\(702\) 15.5248 13.3380i 0.585945 0.503411i
\(703\) 36.7963 1.38780
\(704\) 2.36839 + 4.10218i 0.0892621 + 0.154607i
\(705\) 20.1076 + 21.1477i 0.757295 + 0.796468i
\(706\) −4.87070 + 8.43630i −0.183311 + 0.317504i
\(707\) 2.89181 5.00877i 0.108758 0.188374i
\(708\) 3.17207 10.7471i 0.119214 0.403903i
\(709\) 9.46772 + 16.3986i 0.355568 + 0.615862i 0.987215 0.159394i \(-0.0509542\pi\)
−0.631647 + 0.775256i \(0.717621\pi\)
\(710\) −12.4212 −0.466158
\(711\) −26.0691 + 13.3468i −0.977666 + 0.500546i
\(712\) 2.36259 0.0885416
\(713\) 34.0765 + 59.0222i 1.27618 + 2.21040i
\(714\) 5.96109 1.43727i 0.223088 0.0537885i
\(715\) −33.8487 + 58.6277i −1.26587 + 2.19255i
\(716\) −4.84766 + 8.39639i −0.181165 + 0.313788i
\(717\) −38.7888 + 9.35230i −1.44859 + 0.349268i
\(718\) −5.89089 10.2033i −0.219846 0.380784i
\(719\) −26.0896 −0.972978 −0.486489 0.873687i \(-0.661723\pi\)
−0.486489 + 0.873687i \(0.661723\pi\)
\(720\) −0.548510 + 10.8711i −0.0204418 + 0.405142i
\(721\) 1.84082 0.0685559
\(722\) −5.50631 9.53721i −0.204924 0.354938i
\(723\) 1.01207 3.42893i 0.0376391 0.127523i
\(724\) 1.40120 2.42694i 0.0520750 0.0901966i
\(725\) 36.4127 63.0686i 1.35233 2.34231i
\(726\) 13.6501 + 14.3562i 0.506601 + 0.532807i
\(727\) 18.0771 + 31.3105i 0.670444 + 1.16124i 0.977778 + 0.209641i \(0.0672296\pi\)
−0.307334 + 0.951602i \(0.599437\pi\)
\(728\) −2.60164 −0.0964231
\(729\) 4.06790 26.6918i 0.150663 0.988585i
\(730\) −9.38946 −0.347520
\(731\) 5.56459 + 9.63815i 0.205814 + 0.356480i
\(732\) −12.6325 13.2860i −0.466912 0.491065i
\(733\) −5.43844 + 9.41965i −0.200873 + 0.347923i −0.948810 0.315847i \(-0.897711\pi\)
0.747937 + 0.663770i \(0.231045\pi\)
\(734\) −8.71736 + 15.0989i −0.321764 + 0.557311i
\(735\) −11.6770 + 39.5621i −0.430711 + 1.45927i
\(736\) 3.52508 + 6.10562i 0.129936 + 0.225056i
\(737\) 25.8472 0.952094
\(738\) −0.151175 + 2.99619i −0.00556483 + 0.110291i
\(739\) −49.1155 −1.80674 −0.903372 0.428857i \(-0.858916\pi\)
−0.903372 + 0.428857i \(0.858916\pi\)
\(740\) 12.1850 + 21.1051i 0.447931 + 0.775840i
\(741\) −36.3351 + 8.76071i −1.33480 + 0.321833i
\(742\) −1.88760 + 3.26943i −0.0692961 + 0.120024i
\(743\) 0.986777 1.70915i 0.0362013 0.0627025i −0.847357 0.531024i \(-0.821808\pi\)
0.883558 + 0.468321i \(0.155141\pi\)
\(744\) −16.2771 + 3.92454i −0.596746 + 0.143881i
\(745\) −33.4038 57.8571i −1.22382 2.11972i
\(746\) 13.8362 0.506580
\(747\) −22.6129 + 11.5773i −0.827361 + 0.423593i
\(748\) 25.3896 0.928337
\(749\) −0.862408 1.49374i −0.0315117 0.0545799i
\(750\) 5.62991 19.0744i 0.205575 0.696499i
\(751\) −3.68967 + 6.39069i −0.134638 + 0.233200i −0.925459 0.378848i \(-0.876320\pi\)
0.790821 + 0.612047i \(0.209654\pi\)
\(752\) −2.32171 + 4.02131i −0.0846639 + 0.146642i
\(753\) 16.1917 + 17.0293i 0.590059 + 0.620581i
\(754\) −17.5671 30.4271i −0.639756 1.10809i
\(755\) 35.5547 1.29397
\(756\) −2.60317 + 2.23650i −0.0946765 + 0.0813407i
\(757\) 8.30767 0.301947 0.150974 0.988538i \(-0.451759\pi\)
0.150974 + 0.988538i \(0.451759\pi\)
\(758\) −1.59476 2.76221i −0.0579243 0.100328i
\(759\) 39.8567 + 41.9184i 1.44671 + 1.52154i
\(760\) 9.93863 17.2142i 0.360512 0.624425i
\(761\) 12.5922 21.8103i 0.456466 0.790622i −0.542305 0.840182i \(-0.682448\pi\)
0.998771 + 0.0495592i \(0.0157817\pi\)
\(762\) 9.08361 30.7757i 0.329065 1.11489i
\(763\) −6.78741 11.7561i −0.245721 0.425601i
\(764\) −6.54891 −0.236931
\(765\) 48.9935 + 31.6813i 1.77136 + 1.14544i
\(766\) 13.5242 0.488650
\(767\) 12.7416 + 22.0692i 0.460074 + 0.796871i
\(768\) −1.68380 + 0.405978i −0.0607589 + 0.0146495i
\(769\) −6.17144 + 10.6892i −0.222548 + 0.385464i −0.955581 0.294729i \(-0.904771\pi\)
0.733033 + 0.680193i \(0.238104\pi\)
\(770\) 5.67571 9.83062i 0.204538 0.354271i
\(771\) −17.2771 + 4.16565i −0.622219 + 0.150022i
\(772\) −0.705513 1.22198i −0.0253920 0.0439802i
\(773\) −30.3011 −1.08985 −0.544927 0.838483i \(-0.683443\pi\)
−0.544927 + 0.838483i \(0.683443\pi\)
\(774\) −5.23059 3.38233i −0.188010 0.121575i
\(775\) 78.9265 2.83512
\(776\) −5.34250 9.25348i −0.191784 0.332180i
\(777\) −2.17514 + 7.36949i −0.0780328 + 0.264379i
\(778\) 8.73115 15.1228i 0.313027 0.542178i
\(779\) 2.73919 4.74441i 0.0981416 0.169986i
\(780\) −17.0572 17.9395i −0.610744 0.642337i
\(781\) −8.10795 14.0434i −0.290125 0.502512i
\(782\) 37.7896 1.35135
\(783\) −43.7342 15.3435i −1.56293 0.548332i
\(784\) −6.56376 −0.234420
\(785\) −44.2730 76.6830i −1.58017 2.73693i
\(786\) 8.30733 + 8.73705i 0.296313 + 0.311640i
\(787\) −1.76402 + 3.05538i −0.0628807 + 0.108913i −0.895752 0.444554i \(-0.853362\pi\)
0.832871 + 0.553467i \(0.186695\pi\)
\(788\) 5.45435 9.44721i 0.194303 0.336543i
\(789\) 0.144936 0.491051i 0.00515986 0.0174819i
\(790\) 17.7104 + 30.6754i 0.630109 + 1.09138i
\(791\) −0.454255 −0.0161514
\(792\) −12.6489 + 6.47600i −0.449460 + 0.230115i
\(793\) 41.6925 1.48054
\(794\) 7.00017 + 12.1247i 0.248427 + 0.430288i
\(795\) −34.9200 + 8.41950i −1.23848 + 0.298609i
\(796\) −7.68564 + 13.3119i −0.272410 + 0.471828i
\(797\) −4.87117 + 8.43711i −0.172546 + 0.298858i −0.939309 0.343072i \(-0.888533\pi\)
0.766764 + 0.641930i \(0.221866\pi\)
\(798\) 6.09263 1.46898i 0.215677 0.0520015i
\(799\) 12.4446 + 21.5547i 0.440258 + 0.762549i
\(800\) 8.16464 0.288664
\(801\) −0.357164 + 7.07875i −0.0126198 + 0.250115i
\(802\) −28.6843 −1.01288
\(803\) −6.12900 10.6157i −0.216288 0.374622i
\(804\) −2.67548 + 9.06468i −0.0943571 + 0.319687i
\(805\) 8.44765 14.6318i 0.297741 0.515702i
\(806\) 19.0388 32.9762i 0.670614 1.16154i
\(807\) −25.4005 26.7144i −0.894138 0.940390i
\(808\) 4.37833 + 7.58349i 0.154029 + 0.266786i
\(809\) −20.5928 −0.724006 −0.362003 0.932177i \(-0.617907\pi\)
−0.362003 + 0.932177i \(0.617907\pi\)
\(810\) −32.4890 3.28688i −1.14155 0.115489i
\(811\) −36.8727 −1.29478 −0.647388 0.762161i \(-0.724139\pi\)
−0.647388 + 0.762161i \(0.724139\pi\)
\(812\) 2.94563 + 5.10198i 0.103371 + 0.179044i
\(813\) 24.8344 + 26.1190i 0.870980 + 0.916034i
\(814\) −15.9077 + 27.5529i −0.557563 + 0.965728i
\(815\) −23.8370 + 41.2868i −0.834972 + 1.44621i
\(816\) −2.62812 + 8.90421i −0.0920027 + 0.311710i
\(817\) 5.68738 + 9.85083i 0.198976 + 0.344637i
\(818\) 25.1186 0.878250
\(819\) 0.393302 7.79499i 0.0137431 0.272379i
\(820\) 3.62831 0.126706
\(821\) −11.2759 19.5304i −0.393532 0.681617i 0.599381 0.800464i \(-0.295413\pi\)
−0.992913 + 0.118847i \(0.962080\pi\)
\(822\) 11.2553 2.71375i 0.392574 0.0946530i
\(823\) 24.4831 42.4059i 0.853426 1.47818i −0.0246721 0.999696i \(-0.507854\pi\)
0.878098 0.478481i \(-0.158812\pi\)
\(824\) −1.39354 + 2.41369i −0.0485464 + 0.0840848i
\(825\) 65.1195 15.7009i 2.26717 0.546634i
\(826\) −2.13650 3.70053i −0.0743383 0.128758i
\(827\) 14.7353 0.512398 0.256199 0.966624i \(-0.417530\pi\)
0.256199 + 0.966624i \(0.417530\pi\)
\(828\) −18.8265 + 9.63880i −0.654266 + 0.334971i
\(829\) −3.00541 −0.104382 −0.0521912 0.998637i \(-0.516621\pi\)
−0.0521912 + 0.998637i \(0.516621\pi\)
\(830\) 15.3624 + 26.6085i 0.533237 + 0.923594i
\(831\) −1.60106 + 5.42447i −0.0555401 + 0.188173i
\(832\) 1.96949 3.41126i 0.0682799 0.118264i
\(833\) −17.5912 + 30.4689i −0.609499 + 1.05568i
\(834\) −25.0481 26.3437i −0.867343 0.912209i
\(835\) 0.760080 + 1.31650i 0.0263037 + 0.0455593i
\(836\) 25.9499 0.897496
\(837\) −9.29798 49.3624i −0.321385 1.70622i
\(838\) −27.8943 −0.963593
\(839\) −24.7488 42.8662i −0.854423 1.47990i −0.877179 0.480164i \(-0.840577\pi\)
0.0227554 0.999741i \(-0.492756\pi\)
\(840\) 2.86012 + 3.00807i 0.0986836 + 0.103788i
\(841\) −25.2797 + 43.7858i −0.871715 + 1.50985i
\(842\) −3.65699 + 6.33409i −0.126028 + 0.218287i
\(843\) −0.803030 + 2.72071i −0.0276578 + 0.0937061i
\(844\) 6.06536 + 10.5055i 0.208778 + 0.361615i
\(845\) 9.12741 0.313993
\(846\) −11.6976 7.56419i −0.402173 0.260062i
\(847\) 7.55403 0.259560
\(848\) −2.85791 4.95005i −0.0981411 0.169985i
\(849\) 9.96296 2.40215i 0.341928 0.0824417i
\(850\) 21.8816 37.9001i 0.750534 1.29996i
\(851\) −23.6768 + 41.0093i −0.811629 + 1.40578i
\(852\) 5.76432 1.38983i 0.197482 0.0476147i
\(853\) 4.94650 + 8.56759i 0.169365 + 0.293349i 0.938197 0.346102i \(-0.112495\pi\)
−0.768832 + 0.639451i \(0.779162\pi\)
\(854\) −6.99093 −0.239225
\(855\) 50.0745 + 32.3804i 1.71251 + 1.10739i
\(856\) 2.61144 0.0892573
\(857\) 8.05916 + 13.9589i 0.275296 + 0.476826i 0.970210 0.242267i \(-0.0778909\pi\)
−0.694914 + 0.719093i \(0.744558\pi\)
\(858\) 9.14831 30.9949i 0.312318 1.05815i
\(859\) −23.8119 + 41.2435i −0.812453 + 1.40721i 0.0986896 + 0.995118i \(0.468535\pi\)
−0.911143 + 0.412091i \(0.864798\pi\)
\(860\) −3.76673 + 6.52417i −0.128444 + 0.222472i
\(861\) 0.788279 + 0.829055i 0.0268645 + 0.0282541i
\(862\) −6.93643 12.0142i −0.236256 0.409207i
\(863\) −10.9306 −0.372082 −0.186041 0.982542i \(-0.559566\pi\)
−0.186041 + 0.982542i \(0.559566\pi\)
\(864\) −0.961840 5.10636i −0.0327225 0.173722i
\(865\) −8.83476 −0.300391
\(866\) −9.76273 16.9095i −0.331751 0.574610i
\(867\) 14.0004 + 14.7246i 0.475480 + 0.500075i
\(868\) −3.19240 + 5.52941i −0.108357 + 0.187680i
\(869\) −23.1211 + 40.0469i −0.784330 + 1.35850i
\(870\) −15.8680 + 53.7617i −0.537977 + 1.82269i
\(871\) −10.7469 18.6142i −0.364146 0.630719i
\(872\) 20.5528 0.696007
\(873\) 28.5328 14.6082i 0.965689 0.494414i
\(874\) 38.6235 1.30646
\(875\) −3.79194 6.56782i −0.128191 0.222033i
\(876\) 4.35739 1.05060i 0.147223 0.0354966i
\(877\) 25.0515 43.3905i 0.845930 1.46519i −0.0388804 0.999244i \(-0.512379\pi\)
0.884811 0.465951i \(-0.154288\pi\)
\(878\) 4.25502 7.36992i 0.143600 0.248723i
\(879\) 47.2742 11.3982i 1.59452 0.384452i
\(880\) 8.59326 + 14.8840i 0.289679 + 0.501738i
\(881\) 33.8071 1.13899 0.569496 0.821994i \(-0.307139\pi\)
0.569496 + 0.821994i \(0.307139\pi\)
\(882\) 0.992276 19.6663i 0.0334117 0.662198i
\(883\) 4.02371 0.135409 0.0677043 0.997705i \(-0.478433\pi\)
0.0677043 + 0.997705i \(0.478433\pi\)
\(884\) −10.5567 18.2847i −0.355060 0.614981i
\(885\) 11.5093 38.9940i 0.386880 1.31077i
\(886\) 4.40699 7.63313i 0.148056 0.256440i
\(887\) 27.5020 47.6348i 0.923426 1.59942i 0.129353 0.991599i \(-0.458710\pi\)
0.794073 0.607822i \(-0.207957\pi\)
\(888\) −8.01624 8.43090i −0.269007 0.282923i
\(889\) −6.11812 10.5969i −0.205195 0.355409i
\(890\) 8.57220 0.287341
\(891\) −17.4911 38.8776i −0.585975 1.30245i
\(892\) −0.944219 −0.0316148
\(893\) 12.7192 + 22.0303i 0.425631 + 0.737215i
\(894\) 21.9755 + 23.1123i 0.734972 + 0.772991i
\(895\) −17.5888 + 30.4647i −0.587929 + 1.01832i
\(896\) −0.330242 + 0.571996i −0.0110326 + 0.0191090i
\(897\) 13.6162 46.1324i 0.454632 1.54032i
\(898\) −0.752736 1.30378i −0.0251191 0.0435076i
\(899\) −86.2247 −2.87575
\(900\) −1.23429 + 24.4628i −0.0411430 + 0.815427i
\(901\) −30.6374 −1.02068
\(902\) 2.36839 + 4.10218i 0.0788588 + 0.136587i
\(903\) −2.30910 + 0.556744i −0.0768420 + 0.0185273i
\(904\) 0.343880 0.595618i 0.0114373 0.0198100i
\(905\) 5.08397 8.80570i 0.168997 0.292711i
\(906\) −16.4999 + 3.97828i −0.548174 + 0.132169i
\(907\) −2.04026 3.53383i −0.0677457 0.117339i 0.830163 0.557521i \(-0.188247\pi\)
−0.897909 + 0.440182i \(0.854914\pi\)
\(908\) −3.06717 −0.101788
\(909\) −23.3834 + 11.9719i −0.775580 + 0.397082i
\(910\) −9.43955 −0.312918
\(911\) 1.02806 + 1.78065i 0.0340611 + 0.0589956i 0.882553 0.470212i \(-0.155823\pi\)
−0.848492 + 0.529208i \(0.822489\pi\)
\(912\) −2.68612 + 9.10070i −0.0889462 + 0.301354i
\(913\) −20.0557 + 34.7376i −0.663748 + 1.14965i
\(914\) 15.3760 26.6319i 0.508592 0.880907i
\(915\) −45.8348 48.2057i −1.51525 1.59363i
\(916\) 12.0947 + 20.9486i 0.399620 + 0.692163i
\(917\) 4.59733 0.151817
\(918\) −26.2814 9.22045i −0.867415 0.304320i
\(919\) 19.4256 0.640792 0.320396 0.947284i \(-0.396184\pi\)
0.320396 + 0.947284i \(0.396184\pi\)
\(920\) 12.7901 + 22.1531i 0.421677 + 0.730366i
\(921\) −19.4701 20.4772i −0.641561 0.674748i
\(922\) 10.7165 18.5616i 0.352930 0.611293i
\(923\) −6.74236 + 11.6781i −0.221928 + 0.384390i
\(924\) −1.53398 + 5.19719i −0.0504641 + 0.170975i
\(925\) 27.4195 + 47.4920i 0.901548 + 1.56153i
\(926\) −18.8988 −0.621055
\(927\) −7.02119 4.54021i −0.230606 0.149120i
\(928\) −8.91961 −0.292801
\(929\) −14.9383 25.8739i −0.490110 0.848895i 0.509826 0.860278i \(-0.329710\pi\)
−0.999935 + 0.0113829i \(0.996377\pi\)
\(930\) −59.0583 + 14.2394i −1.93660 + 0.466930i
\(931\) −17.9794 + 31.1412i −0.589250 + 1.02061i
\(932\) 11.2220 19.4370i 0.367588 0.636680i
\(933\) 23.9877 5.78364i 0.785322 0.189348i
\(934\) −5.34964 9.26585i −0.175046 0.303188i
\(935\) 92.1215 3.01270
\(936\) 9.92305 + 6.41667i 0.324345 + 0.209735i
\(937\) 14.7397 0.481524 0.240762 0.970584i \(-0.422603\pi\)
0.240762 + 0.970584i \(0.422603\pi\)
\(938\) 1.80203 + 3.12121i 0.0588384 + 0.101911i
\(939\) −12.1993 + 41.3319i −0.398110 + 1.34882i
\(940\) −8.42387 + 14.5906i −0.274756 + 0.475892i
\(941\) −14.5513 + 25.2035i −0.474358 + 0.821612i −0.999569 0.0293603i \(-0.990653\pi\)
0.525211 + 0.850972i \(0.323986\pi\)
\(942\) 29.1261 + 30.6327i 0.948979 + 0.998067i
\(943\) 3.52508 + 6.10562i 0.114793 + 0.198826i
\(944\) 6.46950 0.210564
\(945\) −9.44512 + 8.11472i −0.307250 + 0.263972i
\(946\) −9.83499 −0.319763
\(947\) −5.14493 8.91129i −0.167188 0.289578i 0.770242 0.637752i \(-0.220135\pi\)
−0.937430 + 0.348174i \(0.886802\pi\)
\(948\) −11.6513 12.2540i −0.378415 0.397990i
\(949\) −5.09672 + 8.82778i −0.165447 + 0.286562i
\(950\) 22.3645 38.7364i 0.725600 1.25678i
\(951\) −12.6298 + 42.7905i −0.409550 + 1.38758i
\(952\) 1.77013 + 3.06596i 0.0573702 + 0.0993682i
\(953\) −45.9593 −1.48877 −0.744385 0.667751i \(-0.767257\pi\)
−0.744385 + 0.667751i \(0.767257\pi\)
\(954\) 15.2633 7.81452i 0.494168 0.253004i
\(955\) −23.7615 −0.768903
\(956\) −11.5182 19.9501i −0.372526 0.645234i
\(957\) −71.1410 + 17.1527i −2.29966 + 0.554468i
\(958\) 11.6784 20.2276i 0.377312 0.653524i
\(959\) 2.20749 3.82349i 0.0712837 0.123467i
\(960\) −6.10935 + 1.47302i −0.197178 + 0.0475414i
\(961\) −31.2241 54.0818i −1.00723 1.74457i
\(962\) 26.4568 0.853001
\(963\) −0.394785 + 7.82438i −0.0127218 + 0.252137i
\(964\) 2.06413 0.0664810
\(965\) −2.55982 4.43374i −0.0824036 0.142727i
\(966\) −2.28315 + 7.73543i −0.0734591 + 0.248883i
\(967\) −8.49482 + 14.7135i −0.273175 + 0.473153i −0.969673 0.244406i \(-0.921407\pi\)
0.696498 + 0.717559i \(0.254740\pi\)
\(968\) −5.71856 + 9.90484i −0.183802 + 0.318354i
\(969\) 35.0464 + 36.8592i 1.12585 + 1.18409i
\(970\) −19.3842 33.5745i −0.622390 1.07801i
\(971\) 13.5910 0.436155 0.218078 0.975931i \(-0.430021\pi\)
0.218078 + 0.975931i \(0.430021\pi\)
\(972\) 15.4450 2.10990i 0.495399 0.0676751i
\(973\) −13.8618 −0.444388
\(974\) −1.54383 2.67399i −0.0494675 0.0856802i
\(975\) −38.3830 40.3685i −1.22924 1.29283i
\(976\) 5.29228 9.16650i 0.169402 0.293413i
\(977\) 10.0125 17.3421i 0.320327 0.554823i −0.660228 0.751065i \(-0.729540\pi\)
0.980555 + 0.196242i \(0.0628738\pi\)
\(978\) 6.44242 21.8273i 0.206006 0.697959i
\(979\) 5.59553 + 9.69174i 0.178834 + 0.309749i
\(980\) −23.8154 −0.760754
\(981\) −3.10708 + 61.5802i −0.0992013 + 1.96610i
\(982\) −6.95852 −0.222055
\(983\) 17.0448 + 29.5225i 0.543646 + 0.941622i 0.998691 + 0.0511538i \(0.0162899\pi\)
−0.455045 + 0.890468i \(0.650377\pi\)
\(984\) −1.68380 + 0.405978i −0.0536776 + 0.0129421i
\(985\) 19.7901 34.2774i 0.630564 1.09217i
\(986\) −23.9050 + 41.4047i −0.761291 + 1.31859i
\(987\) −5.16404 + 1.24510i −0.164373 + 0.0396318i
\(988\) −10.7896 18.6882i −0.343264 0.594550i
\(989\) −14.6383 −0.465470
\(990\) −45.8943 + 23.4970i −1.45862 + 0.746782i
\(991\) 51.4879 1.63557 0.817783 0.575526i \(-0.195203\pi\)
0.817783 + 0.575526i \(0.195203\pi\)
\(992\) −4.83343 8.37175i −0.153462 0.265803i
\(993\) 7.60145 25.7541i 0.241225 0.817282i
\(994\) 1.13055 1.95817i 0.0358589 0.0621094i
\(995\) −27.8859 + 48.2998i −0.884042 + 1.53121i
\(996\) −10.1066 10.6293i −0.320238 0.336804i
\(997\) −17.5717 30.4350i −0.556500 0.963887i −0.997785 0.0665198i \(-0.978810\pi\)
0.441285 0.897367i \(-0.354523\pi\)
\(998\) 16.0333 0.507526
\(999\) 26.4724 22.7436i 0.837550 0.719576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.e.j.247.5 14
3.2 odd 2 2214.2.e.j.739.7 14
9.2 odd 6 2214.2.e.j.1477.7 14
9.4 even 3 6642.2.a.bv.1.7 7
9.5 odd 6 6642.2.a.bu.1.1 7
9.7 even 3 inner 738.2.e.j.493.5 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.e.j.247.5 14 1.1 even 1 trivial
738.2.e.j.493.5 yes 14 9.7 even 3 inner
2214.2.e.j.739.7 14 3.2 odd 2
2214.2.e.j.1477.7 14 9.2 odd 6
6642.2.a.bu.1.1 7 9.5 odd 6
6642.2.a.bv.1.7 7 9.4 even 3