Properties

Label 738.2.e.j
Level $738$
Weight $2$
Character orbit 738.e
Analytic conductor $5.893$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(247,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.247"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-7,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 4 x^{13} + 12 x^{12} - 31 x^{11} + 73 x^{10} - 150 x^{9} + 297 x^{8} - 549 x^{7} + 891 x^{6} + \cdots + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - \beta_{8} q^{3} + (\beta_{2} - 1) q^{4} + (\beta_{11} - \beta_{10} + \beta_{7} + \cdots + 1) q^{5} + (\beta_{8} - \beta_{7}) q^{6} + \beta_{3} q^{7} + q^{8} + ( - \beta_{13} - \beta_{8} - \beta_{4} + \cdots - 1) q^{9}+ \cdots + ( - \beta_{13} + \beta_{12} + \cdots - 2 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 7 q^{2} + 4 q^{3} - 7 q^{4} + 5 q^{5} - 2 q^{6} - q^{7} + 14 q^{8} - 8 q^{9} - 10 q^{10} + 10 q^{11} - 2 q^{12} + 4 q^{13} - q^{14} - 5 q^{15} - 7 q^{16} - 26 q^{17} + 4 q^{18} - 2 q^{19} + 5 q^{20}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} - 4 x^{13} + 12 x^{12} - 31 x^{11} + 73 x^{10} - 150 x^{9} + 297 x^{8} - 549 x^{7} + 891 x^{6} + \cdots + 2187 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 8 \nu^{13} + 419 \nu^{12} - 573 \nu^{11} + 1769 \nu^{10} - 5102 \nu^{9} + 10668 \nu^{8} + \cdots + 250047 ) / 159651 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 130 \nu^{13} + 841 \nu^{12} - 1044 \nu^{11} + 331 \nu^{10} - 892 \nu^{9} + 5601 \nu^{8} + \cdots + 457812 ) / 478953 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 203 \nu^{13} - 914 \nu^{12} + 1701 \nu^{11} - 623 \nu^{10} + 5345 \nu^{9} - 3192 \nu^{8} + \cdots + 925830 ) / 478953 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 203 \nu^{13} - 914 \nu^{12} + 1701 \nu^{11} - 623 \nu^{10} + 5345 \nu^{9} - 3192 \nu^{8} + \cdots + 446877 ) / 478953 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 253 \nu^{13} - 1340 \nu^{12} + 3204 \nu^{11} - 10166 \nu^{10} + 30548 \nu^{9} - 48174 \nu^{8} + \cdots - 1744497 ) / 478953 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 124 \nu^{13} + 472 \nu^{12} - 231 \nu^{11} + 2125 \nu^{10} - 3745 \nu^{9} + 3294 \nu^{8} + \cdots + 17496 ) / 159651 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{13} - 4 \nu^{12} + 12 \nu^{11} - 31 \nu^{10} + 73 \nu^{9} - 150 \nu^{8} + 297 \nu^{7} + \cdots - 2916 ) / 729 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 1100 \nu^{13} - 313 \nu^{12} - 495 \nu^{11} - 838 \nu^{10} + 7159 \nu^{9} - 16437 \nu^{8} + \cdots - 289413 ) / 478953 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 43 \nu^{13} + 53 \nu^{12} - 169 \nu^{11} + 502 \nu^{10} - 1052 \nu^{9} + 1897 \nu^{8} + \cdots - 1944 ) / 17739 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 1370 \nu^{13} + 1838 \nu^{12} - 6858 \nu^{11} + 15011 \nu^{10} - 31334 \nu^{9} + 65040 \nu^{8} + \cdots + 207036 ) / 478953 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 1381 \nu^{13} + 4522 \nu^{12} - 12546 \nu^{11} + 32308 \nu^{10} - 67969 \nu^{9} + 131502 \nu^{8} + \cdots + 1422279 ) / 478953 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 26 \nu^{13} - 80 \nu^{12} + 207 \nu^{11} - 509 \nu^{10} + 1073 \nu^{9} - 2112 \nu^{8} + 4302 \nu^{7} + \cdots - 25515 ) / 6561 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{12} - \beta_{11} + \beta_{9} + \beta_{8} - \beta_{7} - \beta_{5} + \beta_{4} - \beta_{3} + 2\beta_{2} - \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2 \beta_{13} + 2 \beta_{12} + \beta_{11} - 3 \beta_{10} + 2 \beta_{9} - \beta_{8} + \beta_{7} + \beta_{5} + \cdots - 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{13} + 6\beta_{11} - 6\beta_{10} + 3\beta_{7} - 4\beta_{3} + 2\beta_{2} - 8\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 6 \beta_{13} - 5 \beta_{12} - 4 \beta_{11} - 3 \beta_{10} + 4 \beta_{9} - 2 \beta_{8} - \beta_{7} + \cdots - 7 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 2 \beta_{13} - 4 \beta_{12} - 11 \beta_{11} - 3 \beta_{10} + 5 \beta_{9} - 25 \beta_{8} + 7 \beta_{7} + \cdots - 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 7 \beta_{13} + 3 \beta_{12} + 3 \beta_{11} + 12 \beta_{10} - 15 \beta_{9} - 6 \beta_{8} - 9 \beta_{7} + \cdots + 49 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 27 \beta_{13} - 2 \beta_{12} - 7 \beta_{11} + 6 \beta_{10} - 29 \beta_{9} + 19 \beta_{8} - 13 \beta_{7} + \cdots + 50 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - \beta_{13} + 17 \beta_{12} - 5 \beta_{11} - 3 \beta_{10} - 64 \beta_{9} - 40 \beta_{8} + 85 \beta_{7} + \cdots + 36 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 49 \beta_{13} + 15 \beta_{12} - 63 \beta_{11} + 192 \beta_{10} - 12 \beta_{9} + 78 \beta_{8} + \cdots - 146 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 48 \beta_{13} + 28 \beta_{12} - 37 \beta_{11} - 66 \beta_{10} + 46 \beta_{9} + 175 \beta_{8} + \cdots - 244 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 131 \beta_{13} + 227 \beta_{12} + 460 \beta_{11} - 759 \beta_{10} - 349 \beta_{9} - 28 \beta_{8} + \cdots + 75 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1 + \beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
247.1
−1.24171 + 1.20754i
−0.932393 1.45967i
−0.170865 + 1.72360i
0.132454 1.72698i
1.19349 1.25522i
1.33574 + 1.10264i
1.68329 + 0.408093i
−1.24171 1.20754i
−0.932393 + 1.45967i
−0.170865 1.72360i
0.132454 + 1.72698i
1.19349 + 1.25522i
1.33574 1.10264i
1.68329 0.408093i
−0.500000 0.866025i −1.24171 1.20754i −0.500000 + 0.866025i 1.44490 2.50264i −0.424909 + 1.67912i −2.37697 4.11703i 1.00000 0.0836779 + 2.99883i −2.88980
247.2 −0.500000 0.866025i −0.932393 + 1.45967i −0.500000 + 0.866025i 0.285913 0.495215i 1.73031 + 0.0776401i 0.871584 + 1.50963i 1.00000 −1.26129 2.72198i −0.571825
247.3 −0.500000 0.866025i −0.170865 1.72360i −0.500000 + 0.866025i −0.205691 + 0.356267i −1.40725 + 1.00977i 0.217780 + 0.377206i 1.00000 −2.94161 + 0.589007i 0.411382
247.4 −0.500000 0.866025i 0.132454 + 1.72698i −0.500000 + 0.866025i 1.61620 2.79935i 1.42938 0.978198i 1.41515 + 2.45112i 1.00000 −2.96491 + 0.457489i −3.23241
247.5 −0.500000 0.866025i 1.19349 + 1.25522i −0.500000 + 0.866025i −1.81416 + 3.14221i 0.490312 1.66120i −0.330242 0.571996i 1.00000 −0.151175 + 2.99619i 3.62831
247.6 −0.500000 0.866025i 1.33574 1.10264i −0.500000 + 0.866025i −0.726439 + 1.25823i −1.62278 0.605464i 0.415712 + 0.720035i 1.00000 0.568385 2.94566i 1.45288
247.7 −0.500000 0.866025i 1.68329 0.408093i −0.500000 + 0.866025i 1.89927 3.28963i −1.19506 1.25372i −0.713019 1.23498i 1.00000 2.66692 1.37388i −3.79853
493.1 −0.500000 + 0.866025i −1.24171 + 1.20754i −0.500000 0.866025i 1.44490 + 2.50264i −0.424909 1.67912i −2.37697 + 4.11703i 1.00000 0.0836779 2.99883i −2.88980
493.2 −0.500000 + 0.866025i −0.932393 1.45967i −0.500000 0.866025i 0.285913 + 0.495215i 1.73031 0.0776401i 0.871584 1.50963i 1.00000 −1.26129 + 2.72198i −0.571825
493.3 −0.500000 + 0.866025i −0.170865 + 1.72360i −0.500000 0.866025i −0.205691 0.356267i −1.40725 1.00977i 0.217780 0.377206i 1.00000 −2.94161 0.589007i 0.411382
493.4 −0.500000 + 0.866025i 0.132454 1.72698i −0.500000 0.866025i 1.61620 + 2.79935i 1.42938 + 0.978198i 1.41515 2.45112i 1.00000 −2.96491 0.457489i −3.23241
493.5 −0.500000 + 0.866025i 1.19349 1.25522i −0.500000 0.866025i −1.81416 3.14221i 0.490312 + 1.66120i −0.330242 + 0.571996i 1.00000 −0.151175 2.99619i 3.62831
493.6 −0.500000 + 0.866025i 1.33574 + 1.10264i −0.500000 0.866025i −0.726439 1.25823i −1.62278 + 0.605464i 0.415712 0.720035i 1.00000 0.568385 + 2.94566i 1.45288
493.7 −0.500000 + 0.866025i 1.68329 + 0.408093i −0.500000 0.866025i 1.89927 + 3.28963i −1.19506 + 1.25372i −0.713019 + 1.23498i 1.00000 2.66692 + 1.37388i −3.79853
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 247.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 738.2.e.j 14
3.b odd 2 1 2214.2.e.j 14
9.c even 3 1 inner 738.2.e.j 14
9.c even 3 1 6642.2.a.bv 7
9.d odd 6 1 2214.2.e.j 14
9.d odd 6 1 6642.2.a.bu 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
738.2.e.j 14 1.a even 1 1 trivial
738.2.e.j 14 9.c even 3 1 inner
2214.2.e.j 14 3.b odd 2 1
2214.2.e.j 14 9.d odd 6 1
6642.2.a.bu 7 9.d odd 6 1
6642.2.a.bv 7 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(738, [\chi])\):

\( T_{5}^{14} - 5 T_{5}^{13} + 37 T_{5}^{12} - 102 T_{5}^{11} + 567 T_{5}^{10} - 1356 T_{5}^{9} + \cdots + 1936 \) Copy content Toggle raw display
\( T_{7}^{14} + T_{7}^{13} + 19 T_{7}^{12} - 36 T_{7}^{11} + 273 T_{7}^{10} - 270 T_{7}^{9} + 829 T_{7}^{8} + \cdots + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{7} \) Copy content Toggle raw display
$3$ \( T^{14} - 4 T^{13} + \cdots + 2187 \) Copy content Toggle raw display
$5$ \( T^{14} - 5 T^{13} + \cdots + 1936 \) Copy content Toggle raw display
$7$ \( T^{14} + T^{13} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{14} - 10 T^{13} + \cdots + 1227664 \) Copy content Toggle raw display
$13$ \( T^{14} - 4 T^{13} + \cdots + 808201 \) Copy content Toggle raw display
$17$ \( (T^{7} + 13 T^{6} + \cdots - 7688)^{2} \) Copy content Toggle raw display
$19$ \( (T^{7} + T^{6} - 60 T^{5} + \cdots - 4335)^{2} \) Copy content Toggle raw display
$23$ \( T^{14} + \cdots + 20597129289 \) Copy content Toggle raw display
$29$ \( T^{14} - 30 T^{13} + \cdots + 4100625 \) Copy content Toggle raw display
$31$ \( T^{14} + \cdots + 1782106225 \) Copy content Toggle raw display
$37$ \( (T^{7} - 7 T^{6} + \cdots + 147880)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + T + 1)^{7} \) Copy content Toggle raw display
$43$ \( T^{14} - 5 T^{13} + \cdots + 1089936 \) Copy content Toggle raw display
$47$ \( T^{14} + \cdots + 793210896 \) Copy content Toggle raw display
$53$ \( (T^{7} + 12 T^{6} + \cdots - 311796)^{2} \) Copy content Toggle raw display
$59$ \( T^{14} + \cdots + 154876879936 \) Copy content Toggle raw display
$61$ \( T^{14} + \cdots + 9981608464 \) Copy content Toggle raw display
$67$ \( T^{14} - 15 T^{13} + \cdots + 85766121 \) Copy content Toggle raw display
$71$ \( (T^{7} + 12 T^{6} + \cdots + 325368)^{2} \) Copy content Toggle raw display
$73$ \( (T^{7} - 270 T^{5} + \cdots + 93192)^{2} \) Copy content Toggle raw display
$79$ \( T^{14} + \cdots + 1821923856 \) Copy content Toggle raw display
$83$ \( T^{14} + \cdots + 23364956736 \) Copy content Toggle raw display
$89$ \( (T^{7} + 16 T^{6} + \cdots - 9980)^{2} \) Copy content Toggle raw display
$97$ \( T^{14} + \cdots + 229263326405136 \) Copy content Toggle raw display
show more
show less