L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.19 + 1.25i)3-s + (−0.499 + 0.866i)4-s + (−1.81 + 3.14i)5-s + (0.490 − 1.66i)6-s + (−0.330 − 0.571i)7-s + 0.999·8-s + (−0.151 + 2.99i)9-s + 3.62·10-s + (2.36 + 4.10i)11-s + (−1.68 + 0.405i)12-s + (1.96 − 3.41i)13-s + (−0.330 + 0.571i)14-s + (−6.10 + 1.47i)15-s + (−0.5 − 0.866i)16-s − 5.36·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.689 + 0.724i)3-s + (−0.249 + 0.433i)4-s + (−0.811 + 1.40i)5-s + (0.200 − 0.678i)6-s + (−0.124 − 0.216i)7-s + 0.353·8-s + (−0.0503 + 0.998i)9-s + 1.14·10-s + (0.714 + 1.23i)11-s + (−0.486 + 0.117i)12-s + (0.546 − 0.946i)13-s + (−0.0882 + 0.152i)14-s + (−1.57 + 0.380i)15-s + (−0.125 − 0.216i)16-s − 1.30·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.603 - 0.797i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.603 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.443047 + 0.890786i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.443047 + 0.890786i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.19 - 1.25i)T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (1.81 - 3.14i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.330 + 0.571i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.36 - 4.10i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.96 + 3.41i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 5.36T + 17T^{2} \) |
| 19 | \( 1 + 5.47T + 19T^{2} \) |
| 23 | \( 1 + (-3.52 + 6.10i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.45 - 7.72i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.83 - 8.37i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 6.71T + 37T^{2} \) |
| 43 | \( 1 + (1.03 + 1.79i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.32 + 4.02i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.71T + 53T^{2} \) |
| 59 | \( 1 + (3.23 - 5.60i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.29 - 9.16i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.72 + 4.72i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.42T + 71T^{2} \) |
| 73 | \( 1 + 2.58T + 73T^{2} \) |
| 79 | \( 1 + (-4.88 - 8.45i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.23 - 7.33i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 2.36T + 89T^{2} \) |
| 97 | \( 1 + (5.34 + 9.25i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57299534353797820917619941290, −10.22334419165248068083521374385, −8.794715559795023703595357361854, −8.523860187925727710186896726372, −7.08330735499457701320792823895, −6.83283162966707894356414835551, −4.80121745779145320058412569238, −3.92309064004683481372914378389, −3.17041148678778910226465183816, −2.16527462280590685484369754307,
0.52619265142247903577084219011, 1.83809963645597188696742475679, 3.72120487164473337308924939722, 4.46065831745367299120624465460, 5.92511759276946263389163423690, 6.60785392192296983514304681189, 7.69610489785448818020471794127, 8.538457837392866985099345327028, 8.861338678908151177987656859076, 9.424265939810202846460454641960