Properties

Label 738.2.d.h
Level $738$
Weight $2$
Character orbit 738.d
Analytic conductor $5.893$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(163,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,-2,0,0,4,0,-2,0,0,0,0,0,4,0,0,0,-2,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{57})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 29x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 246)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - \beta_{3} q^{5} - \beta_{2} q^{7} + q^{8} - \beta_{3} q^{10} + 2 \beta_{2} q^{11} - \beta_1 q^{13} - \beta_{2} q^{14} + q^{16} + (\beta_{2} - \beta_1) q^{17} + (\beta_{2} - \beta_1) q^{19}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} - 2 q^{5} + 4 q^{8} - 2 q^{10} + 4 q^{16} - 2 q^{20} + 38 q^{25} - 22 q^{31} + 4 q^{32} - 24 q^{37} - 2 q^{40} + 10 q^{41} - 20 q^{43} + 12 q^{49} + 38 q^{50} - 6 q^{59} + 4 q^{61}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 29x^{2} + 196 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} - 29\nu ) / 14 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 15\nu ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} - 2\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 15 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 29\beta_{2} + 30\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
3.27492i
3.27492i
4.27492i
4.27492i
1.00000 0 1.00000 −4.27492 0 2.00000i 1.00000 0 −4.27492
163.2 1.00000 0 1.00000 −4.27492 0 2.00000i 1.00000 0 −4.27492
163.3 1.00000 0 1.00000 3.27492 0 2.00000i 1.00000 0 3.27492
163.4 1.00000 0 1.00000 3.27492 0 2.00000i 1.00000 0 3.27492
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
41.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 738.2.d.h 4
3.b odd 2 1 246.2.d.b 4
12.b even 2 1 1968.2.j.c 4
41.b even 2 1 inner 738.2.d.h 4
123.b odd 2 1 246.2.d.b 4
492.d even 2 1 1968.2.j.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
246.2.d.b 4 3.b odd 2 1
246.2.d.b 4 123.b odd 2 1
738.2.d.h 4 1.a even 1 1 trivial
738.2.d.h 4 41.b even 2 1 inner
1968.2.j.c 4 12.b even 2 1
1968.2.j.c 4 492.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(738, [\chi])\):

\( T_{5}^{2} + T_{5} - 14 \) Copy content Toggle raw display
\( T_{7}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + T - 14)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 29T^{2} + 196 \) Copy content Toggle raw display
$17$ \( T^{4} + 41T^{2} + 64 \) Copy content Toggle raw display
$19$ \( T^{4} + 41T^{2} + 64 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 116T^{2} + 3136 \) Copy content Toggle raw display
$31$ \( (T^{2} + 11 T + 16)^{2} \) Copy content Toggle raw display
$37$ \( (T + 6)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} - 10 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$43$ \( (T^{2} + 10 T - 32)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 164T^{2} + 1024 \) Copy content Toggle raw display
$53$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 3 T - 12)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 2 T - 56)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 89T^{2} + 256 \) Copy content Toggle raw display
$71$ \( T^{4} + 141T^{2} + 1764 \) Copy content Toggle raw display
$73$ \( (T^{2} + 7 T - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 116T^{2} + 3136 \) Copy content Toggle raw display
$83$ \( (T^{2} - 5 T - 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 281 T^{2} + 13456 \) Copy content Toggle raw display
$97$ \( T^{4} + 212T^{2} + 64 \) Copy content Toggle raw display
show more
show less