L(s) = 1 | + 2-s + 4-s − 4.27·5-s − 2i·7-s + 8-s − 4.27·10-s + 4i·11-s + 4.27i·13-s − 2i·14-s + 16-s + 6.27i·17-s + 6.27i·19-s − 4.27·20-s + 4i·22-s + 13.2·25-s + 4.27i·26-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 1.91·5-s − 0.755i·7-s + 0.353·8-s − 1.35·10-s + 1.20i·11-s + 1.18i·13-s − 0.534i·14-s + 0.250·16-s + 1.52i·17-s + 1.43i·19-s − 0.955·20-s + 0.852i·22-s + 2.65·25-s + 0.838i·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.199 - 0.979i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.199 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.729603 + 0.892748i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.729603 + 0.892748i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 41 | \( 1 + (1.27 + 6.27i)T \) |
good | 5 | \( 1 + 4.27T + 5T^{2} \) |
| 7 | \( 1 + 2iT - 7T^{2} \) |
| 11 | \( 1 - 4iT - 11T^{2} \) |
| 13 | \( 1 - 4.27iT - 13T^{2} \) |
| 17 | \( 1 - 6.27iT - 17T^{2} \) |
| 19 | \( 1 - 6.27iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 6.54iT - 29T^{2} \) |
| 31 | \( 1 + 1.72T + 31T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 43 | \( 1 + 12.5T + 43T^{2} \) |
| 47 | \( 1 - 2.54iT - 47T^{2} \) |
| 53 | \( 1 - 2iT - 53T^{2} \) |
| 59 | \( 1 - 2.27T + 59T^{2} \) |
| 61 | \( 1 + 6.54T + 61T^{2} \) |
| 67 | \( 1 - 1.72iT - 67T^{2} \) |
| 71 | \( 1 - 3.72iT - 71T^{2} \) |
| 73 | \( 1 - 0.274T + 73T^{2} \) |
| 79 | \( 1 + 6.54iT - 79T^{2} \) |
| 83 | \( 1 - 6.27T + 83T^{2} \) |
| 89 | \( 1 - 14.8iT - 89T^{2} \) |
| 97 | \( 1 - 0.549iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73325489841058080359300442581, −10.07713406056604444116735468301, −8.631828901267069459741375521646, −7.79178637437816718491693511866, −7.20730830704759436184571451709, −6.36467108543336768451781308691, −4.82100130013478974467469849290, −3.96136705892344774785044281909, −3.72848067465408593127622399440, −1.77304287294618449852133934945,
0.47185678393638216328726749294, 3.03921360710154388789808561906, 3.29849242470671372853185714123, 4.77161400987192467133138022766, 5.32773746847089667115698774035, 6.72191412550350711063132886544, 7.45862718969343034702582694988, 8.375576232923724443608983213584, 8.954516554343402465561531920916, 10.51035014208524928805407186059