Properties

Label 246.2.d.b
Level $246$
Weight $2$
Character orbit 246.d
Analytic conductor $1.964$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [246,2,Mod(163,246)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(246, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("246.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 246 = 2 \cdot 3 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 246.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.96431988972\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{57})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 29x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_{2} q^{3} + q^{4} + \beta_{3} q^{5} + \beta_{2} q^{6} + 2 \beta_{2} q^{7} - q^{8} - q^{9} - \beta_{3} q^{10} + 4 \beta_{2} q^{11} - \beta_{2} q^{12} + ( - \beta_{2} - \beta_1) q^{13}+ \cdots - 4 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} + 2 q^{5} - 4 q^{8} - 4 q^{9} - 2 q^{10} + 4 q^{16} + 4 q^{18} + 2 q^{20} + 8 q^{21} + 38 q^{25} - 22 q^{31} - 4 q^{32} + 16 q^{33} - 4 q^{36} - 24 q^{37} - 2 q^{39} - 2 q^{40} - 10 q^{41}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 29x^{2} + 196 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 15\nu ) / 14 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 15 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 14\beta_{2} - 15\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/246\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(211\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
4.27492i
3.27492i
4.27492i
3.27492i
−1.00000 1.00000i 1.00000 −3.27492 1.00000i 2.00000i −1.00000 −1.00000 3.27492
163.2 −1.00000 1.00000i 1.00000 4.27492 1.00000i 2.00000i −1.00000 −1.00000 −4.27492
163.3 −1.00000 1.00000i 1.00000 −3.27492 1.00000i 2.00000i −1.00000 −1.00000 3.27492
163.4 −1.00000 1.00000i 1.00000 4.27492 1.00000i 2.00000i −1.00000 −1.00000 −4.27492
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
41.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 246.2.d.b 4
3.b odd 2 1 738.2.d.h 4
4.b odd 2 1 1968.2.j.c 4
41.b even 2 1 inner 246.2.d.b 4
123.b odd 2 1 738.2.d.h 4
164.d odd 2 1 1968.2.j.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
246.2.d.b 4 1.a even 1 1 trivial
246.2.d.b 4 41.b even 2 1 inner
738.2.d.h 4 3.b odd 2 1
738.2.d.h 4 123.b odd 2 1
1968.2.j.c 4 4.b odd 2 1
1968.2.j.c 4 164.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - T_{5} - 14 \) acting on \(S_{2}^{\mathrm{new}}(246, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - T - 14)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 29T^{2} + 196 \) Copy content Toggle raw display
$17$ \( T^{4} + 41T^{2} + 64 \) Copy content Toggle raw display
$19$ \( T^{4} + 41T^{2} + 64 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 116T^{2} + 3136 \) Copy content Toggle raw display
$31$ \( (T^{2} + 11 T + 16)^{2} \) Copy content Toggle raw display
$37$ \( (T + 6)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 10 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$43$ \( (T^{2} + 10 T - 32)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 164T^{2} + 1024 \) Copy content Toggle raw display
$53$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 3 T - 12)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 2 T - 56)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 89T^{2} + 256 \) Copy content Toggle raw display
$71$ \( T^{4} + 141T^{2} + 1764 \) Copy content Toggle raw display
$73$ \( (T^{2} + 7 T - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 116T^{2} + 3136 \) Copy content Toggle raw display
$83$ \( (T^{2} + 5 T - 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 281 T^{2} + 13456 \) Copy content Toggle raw display
$97$ \( T^{4} + 212T^{2} + 64 \) Copy content Toggle raw display
show more
show less