Properties

Label 738.2.ba.d.17.4
Level $738$
Weight $2$
Character 738.17
Analytic conductor $5.893$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,0,-4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(4\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 17.4
Character \(\chi\) \(=\) 738.17
Dual form 738.2.ba.d.521.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.987688 - 0.156434i) q^{2} +(0.951057 - 0.309017i) q^{4} +(1.06405 - 2.08832i) q^{5} +(-1.59404 - 0.976830i) q^{7} +(0.891007 - 0.453990i) q^{8} +(0.724268 - 2.22907i) q^{10} +(-2.43855 + 0.191918i) q^{11} +(1.53962 - 6.41296i) q^{13} +(-1.72723 - 0.715440i) q^{14} +(0.809017 - 0.587785i) q^{16} +(-0.438953 + 0.513948i) q^{17} +(0.468536 + 1.95159i) q^{19} +(0.366648 - 2.31493i) q^{20} +(-2.37851 + 0.571029i) q^{22} +(-0.837387 - 0.608397i) q^{23} +(-0.289962 - 0.399098i) q^{25} +(0.517452 - 6.57486i) q^{26} +(-1.81788 - 0.436434i) q^{28} +(-6.03260 - 7.06326i) q^{29} +(9.30139 + 3.02221i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-0.353150 + 0.576288i) q^{34} +(-3.73608 + 2.28948i) q^{35} +(1.48034 + 4.55602i) q^{37} +(0.768064 + 1.85427i) q^{38} -2.34378i q^{40} +(5.69026 - 2.93614i) q^{41} +(0.303537 + 1.91646i) q^{43} +(-2.25990 + 0.936079i) q^{44} +(-0.922252 - 0.469911i) q^{46} +(1.67861 + 2.73924i) q^{47} +(-1.59116 - 3.12283i) q^{49} +(-0.348825 - 0.348825i) q^{50} +(-0.517452 - 6.57486i) q^{52} +(-1.20437 + 1.02863i) q^{53} +(-2.19397 + 5.29670i) q^{55} +(-1.86377 - 0.146682i) q^{56} +(-7.06326 - 6.03260i) q^{58} +(-5.80669 + 7.99222i) q^{59} +(1.75573 + 0.278080i) q^{61} +(9.65965 + 1.52994i) q^{62} +(0.587785 - 0.809017i) q^{64} +(-11.7541 - 10.0390i) q^{65} +(7.52800 + 0.592466i) q^{67} +(-0.258650 + 0.624437i) q^{68} +(-3.33193 + 2.84574i) q^{70} +(-0.392536 - 4.98765i) q^{71} +(5.81775 + 5.81775i) q^{73} +(2.17483 + 4.26835i) q^{74} +(1.04868 + 1.71129i) q^{76} +(4.07462 + 2.07613i) q^{77} +(14.7847 - 6.12403i) q^{79} +(-0.366648 - 2.31493i) q^{80} +(5.16089 - 3.79015i) q^{82} +9.15572i q^{83} +(0.606220 + 1.46354i) q^{85} +(0.599600 + 1.84538i) q^{86} +(-2.08564 + 1.27808i) q^{88} +(4.70364 - 7.67565i) q^{89} +(-8.71858 + 8.71858i) q^{91} +(-0.984407 - 0.319853i) q^{92} +(2.08646 + 2.44293i) q^{94} +(4.57411 + 1.09815i) q^{95} +(-1.16288 + 14.7757i) q^{97} +(-2.06009 - 2.83547i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 4 q^{7} + 8 q^{11} + 16 q^{13} - 4 q^{14} + 16 q^{16} + 16 q^{17} + 4 q^{19} - 4 q^{22} - 48 q^{23} + 40 q^{25} + 20 q^{26} + 4 q^{28} - 4 q^{29} + 40 q^{31} + 4 q^{34} + 52 q^{35} + 8 q^{37} - 16 q^{38}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{33}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.987688 0.156434i 0.698401 0.110616i
\(3\) 0 0
\(4\) 0.951057 0.309017i 0.475528 0.154508i
\(5\) 1.06405 2.08832i 0.475860 0.933927i −0.520910 0.853612i \(-0.674407\pi\)
0.996769 0.0803155i \(-0.0255928\pi\)
\(6\) 0 0
\(7\) −1.59404 0.976830i −0.602491 0.369207i 0.187555 0.982254i \(-0.439944\pi\)
−0.790046 + 0.613047i \(0.789944\pi\)
\(8\) 0.891007 0.453990i 0.315018 0.160510i
\(9\) 0 0
\(10\) 0.724268 2.22907i 0.229034 0.704893i
\(11\) −2.43855 + 0.191918i −0.735251 + 0.0578655i −0.440555 0.897725i \(-0.645218\pi\)
−0.294696 + 0.955591i \(0.595218\pi\)
\(12\) 0 0
\(13\) 1.53962 6.41296i 0.427013 1.77864i −0.179708 0.983720i \(-0.557515\pi\)
0.606721 0.794915i \(-0.292485\pi\)
\(14\) −1.72723 0.715440i −0.461620 0.191209i
\(15\) 0 0
\(16\) 0.809017 0.587785i 0.202254 0.146946i
\(17\) −0.438953 + 0.513948i −0.106462 + 0.124651i −0.811078 0.584938i \(-0.801119\pi\)
0.704617 + 0.709588i \(0.251119\pi\)
\(18\) 0 0
\(19\) 0.468536 + 1.95159i 0.107490 + 0.447726i 0.999995 0.00331147i \(-0.00105408\pi\)
−0.892505 + 0.451037i \(0.851054\pi\)
\(20\) 0.366648 2.31493i 0.0819850 0.517633i
\(21\) 0 0
\(22\) −2.37851 + 0.571029i −0.507100 + 0.121744i
\(23\) −0.837387 0.608397i −0.174607 0.126860i 0.497049 0.867722i \(-0.334417\pi\)
−0.671656 + 0.740863i \(0.734417\pi\)
\(24\) 0 0
\(25\) −0.289962 0.399098i −0.0579924 0.0798197i
\(26\) 0.517452 6.57486i 0.101481 1.28944i
\(27\) 0 0
\(28\) −1.81788 0.436434i −0.343547 0.0824783i
\(29\) −6.03260 7.06326i −1.12022 1.31161i −0.944994 0.327088i \(-0.893933\pi\)
−0.175231 0.984527i \(-0.556067\pi\)
\(30\) 0 0
\(31\) 9.30139 + 3.02221i 1.67058 + 0.542804i 0.983048 0.183350i \(-0.0586943\pi\)
0.687532 + 0.726154i \(0.258694\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) −0.353150 + 0.576288i −0.0605646 + 0.0988325i
\(35\) −3.73608 + 2.28948i −0.631513 + 0.386992i
\(36\) 0 0
\(37\) 1.48034 + 4.55602i 0.243366 + 0.749004i 0.995901 + 0.0904516i \(0.0288311\pi\)
−0.752535 + 0.658553i \(0.771169\pi\)
\(38\) 0.768064 + 1.85427i 0.124596 + 0.300802i
\(39\) 0 0
\(40\) 2.34378i 0.370584i
\(41\) 5.69026 2.93614i 0.888669 0.458549i
\(42\) 0 0
\(43\) 0.303537 + 1.91646i 0.0462889 + 0.292257i 0.999963 0.00858448i \(-0.00273256\pi\)
−0.953674 + 0.300841i \(0.902733\pi\)
\(44\) −2.25990 + 0.936079i −0.340692 + 0.141119i
\(45\) 0 0
\(46\) −0.922252 0.469911i −0.135979 0.0692846i
\(47\) 1.67861 + 2.73924i 0.244850 + 0.399560i 0.951330 0.308174i \(-0.0997178\pi\)
−0.706480 + 0.707733i \(0.749718\pi\)
\(48\) 0 0
\(49\) −1.59116 3.12283i −0.227309 0.446119i
\(50\) −0.348825 0.348825i −0.0493313 0.0493313i
\(51\) 0 0
\(52\) −0.517452 6.57486i −0.0717577 0.911768i
\(53\) −1.20437 + 1.02863i −0.165433 + 0.141293i −0.728311 0.685247i \(-0.759694\pi\)
0.562878 + 0.826540i \(0.309694\pi\)
\(54\) 0 0
\(55\) −2.19397 + 5.29670i −0.295834 + 0.714207i
\(56\) −1.86377 0.146682i −0.249057 0.0196012i
\(57\) 0 0
\(58\) −7.06326 6.03260i −0.927452 0.792119i
\(59\) −5.80669 + 7.99222i −0.755966 + 1.04050i 0.241572 + 0.970383i \(0.422337\pi\)
−0.997539 + 0.0701158i \(0.977663\pi\)
\(60\) 0 0
\(61\) 1.75573 + 0.278080i 0.224798 + 0.0356045i 0.267817 0.963470i \(-0.413698\pi\)
−0.0430193 + 0.999074i \(0.513698\pi\)
\(62\) 9.65965 + 1.52994i 1.22678 + 0.194302i
\(63\) 0 0
\(64\) 0.587785 0.809017i 0.0734732 0.101127i
\(65\) −11.7541 10.0390i −1.45792 1.24518i
\(66\) 0 0
\(67\) 7.52800 + 0.592466i 0.919691 + 0.0723813i 0.529459 0.848335i \(-0.322395\pi\)
0.390232 + 0.920717i \(0.372395\pi\)
\(68\) −0.258650 + 0.624437i −0.0313660 + 0.0757241i
\(69\) 0 0
\(70\) −3.33193 + 2.84574i −0.398242 + 0.340131i
\(71\) −0.392536 4.98765i −0.0465855 0.591925i −0.975265 0.221041i \(-0.929055\pi\)
0.928679 0.370884i \(-0.120945\pi\)
\(72\) 0 0
\(73\) 5.81775 + 5.81775i 0.680916 + 0.680916i 0.960207 0.279291i \(-0.0900993\pi\)
−0.279291 + 0.960207i \(0.590099\pi\)
\(74\) 2.17483 + 4.26835i 0.252819 + 0.496185i
\(75\) 0 0
\(76\) 1.04868 + 1.71129i 0.120292 + 0.196298i
\(77\) 4.07462 + 2.07613i 0.464347 + 0.236596i
\(78\) 0 0
\(79\) 14.7847 6.12403i 1.66341 0.689008i 0.665081 0.746771i \(-0.268397\pi\)
0.998330 + 0.0577634i \(0.0183969\pi\)
\(80\) −0.366648 2.31493i −0.0409925 0.258817i
\(81\) 0 0
\(82\) 5.16089 3.79015i 0.569925 0.418552i
\(83\) 9.15572i 1.00497i 0.864586 + 0.502486i \(0.167581\pi\)
−0.864586 + 0.502486i \(0.832419\pi\)
\(84\) 0 0
\(85\) 0.606220 + 1.46354i 0.0657538 + 0.158744i
\(86\) 0.599600 + 1.84538i 0.0646565 + 0.198992i
\(87\) 0 0
\(88\) −2.08564 + 1.27808i −0.222330 + 0.136244i
\(89\) 4.70364 7.67565i 0.498585 0.813617i −0.500042 0.866001i \(-0.666682\pi\)
0.998627 + 0.0523842i \(0.0166821\pi\)
\(90\) 0 0
\(91\) −8.71858 + 8.71858i −0.913955 + 0.913955i
\(92\) −0.984407 0.319853i −0.102632 0.0333470i
\(93\) 0 0
\(94\) 2.08646 + 2.44293i 0.215201 + 0.251969i
\(95\) 4.57411 + 1.09815i 0.469293 + 0.112667i
\(96\) 0 0
\(97\) −1.16288 + 14.7757i −0.118072 + 1.50025i 0.597589 + 0.801802i \(0.296125\pi\)
−0.715661 + 0.698447i \(0.753875\pi\)
\(98\) −2.06009 2.83547i −0.208101 0.286426i
\(99\) 0 0
\(100\) −0.399098 0.289962i −0.0399098 0.0289962i
\(101\) −5.09166 + 1.22240i −0.506639 + 0.121633i −0.478704 0.877977i \(-0.658893\pi\)
−0.0279350 + 0.999610i \(0.508893\pi\)
\(102\) 0 0
\(103\) 2.16284 13.6556i 0.213111 1.34553i −0.616574 0.787297i \(-0.711480\pi\)
0.829685 0.558232i \(-0.188520\pi\)
\(104\) −1.53962 6.41296i −0.150972 0.628843i
\(105\) 0 0
\(106\) −1.02863 + 1.20437i −0.0999095 + 0.116979i
\(107\) −3.34533 + 2.43053i −0.323406 + 0.234968i −0.737627 0.675208i \(-0.764054\pi\)
0.414222 + 0.910176i \(0.364054\pi\)
\(108\) 0 0
\(109\) −3.98800 1.65188i −0.381981 0.158222i 0.183426 0.983033i \(-0.441281\pi\)
−0.565407 + 0.824812i \(0.691281\pi\)
\(110\) −1.33837 + 5.57470i −0.127608 + 0.531527i
\(111\) 0 0
\(112\) −1.86377 + 0.146682i −0.176110 + 0.0138602i
\(113\) −4.15993 + 12.8030i −0.391333 + 1.20440i 0.540447 + 0.841378i \(0.318255\pi\)
−0.931780 + 0.363022i \(0.881745\pi\)
\(114\) 0 0
\(115\) −2.16156 + 1.10137i −0.201566 + 0.102703i
\(116\) −7.92001 4.85339i −0.735354 0.450626i
\(117\) 0 0
\(118\) −4.48494 + 8.80219i −0.412872 + 0.810307i
\(119\) 1.20175 0.390472i 0.110164 0.0357945i
\(120\) 0 0
\(121\) −4.95486 + 0.784773i −0.450442 + 0.0713430i
\(122\) 1.77761 0.160938
\(123\) 0 0
\(124\) 9.78006 0.878275
\(125\) 10.4326 1.65237i 0.933124 0.147792i
\(126\) 0 0
\(127\) 5.24751 1.70502i 0.465641 0.151296i −0.0667941 0.997767i \(-0.521277\pi\)
0.532435 + 0.846471i \(0.321277\pi\)
\(128\) 0.453990 0.891007i 0.0401275 0.0787546i
\(129\) 0 0
\(130\) −13.1798 8.07661i −1.15595 0.708366i
\(131\) −7.78361 + 3.96595i −0.680057 + 0.346506i −0.759660 0.650320i \(-0.774635\pi\)
0.0796032 + 0.996827i \(0.474635\pi\)
\(132\) 0 0
\(133\) 1.15951 3.56860i 0.100542 0.309437i
\(134\) 7.52800 0.592466i 0.650320 0.0511813i
\(135\) 0 0
\(136\) −0.157782 + 0.657211i −0.0135297 + 0.0563554i
\(137\) 10.6518 + 4.41213i 0.910047 + 0.376954i 0.788074 0.615580i \(-0.211078\pi\)
0.121972 + 0.992534i \(0.461078\pi\)
\(138\) 0 0
\(139\) −16.2288 + 11.7909i −1.37651 + 1.00009i −0.379308 + 0.925270i \(0.623838\pi\)
−0.997197 + 0.0748194i \(0.976162\pi\)
\(140\) −2.84574 + 3.33193i −0.240509 + 0.281600i
\(141\) 0 0
\(142\) −1.16794 4.86483i −0.0980116 0.408248i
\(143\) −2.52367 + 15.9338i −0.211040 + 1.33245i
\(144\) 0 0
\(145\) −21.1694 + 5.08232i −1.75802 + 0.422064i
\(146\) 6.65622 + 4.83603i 0.550873 + 0.400232i
\(147\) 0 0
\(148\) 2.81577 + 3.87558i 0.231455 + 0.318571i
\(149\) −0.848452 + 10.7806i −0.0695079 + 0.883181i 0.859026 + 0.511933i \(0.171070\pi\)
−0.928534 + 0.371249i \(0.878930\pi\)
\(150\) 0 0
\(151\) 1.73061 + 0.415483i 0.140835 + 0.0338115i 0.303250 0.952911i \(-0.401928\pi\)
−0.162415 + 0.986723i \(0.551928\pi\)
\(152\) 1.30347 + 1.52617i 0.105726 + 0.123789i
\(153\) 0 0
\(154\) 4.34924 + 1.41315i 0.350471 + 0.113875i
\(155\) 16.2085 16.2085i 1.30190 1.30190i
\(156\) 0 0
\(157\) −0.150656 + 0.245849i −0.0120237 + 0.0196209i −0.858596 0.512654i \(-0.828663\pi\)
0.846572 + 0.532274i \(0.178663\pi\)
\(158\) 13.6447 8.36148i 1.08551 0.665203i
\(159\) 0 0
\(160\) −0.724268 2.22907i −0.0572584 0.176223i
\(161\) 0.740529 + 1.78779i 0.0583618 + 0.140898i
\(162\) 0 0
\(163\) 15.4940i 1.21358i 0.794861 + 0.606792i \(0.207544\pi\)
−0.794861 + 0.606792i \(0.792456\pi\)
\(164\) 4.50444 4.55083i 0.351738 0.355360i
\(165\) 0 0
\(166\) 1.43227 + 9.04300i 0.111166 + 0.701873i
\(167\) −21.2819 + 8.81526i −1.64685 + 0.682146i −0.996962 0.0778885i \(-0.975182\pi\)
−0.649883 + 0.760034i \(0.725182\pi\)
\(168\) 0 0
\(169\) −27.1726 13.8451i −2.09020 1.06501i
\(170\) 0.827705 + 1.35069i 0.0634821 + 0.103593i
\(171\) 0 0
\(172\) 0.880898 + 1.72886i 0.0671679 + 0.131824i
\(173\) 8.60874 + 8.60874i 0.654511 + 0.654511i 0.954076 0.299565i \(-0.0968416\pi\)
−0.299565 + 0.954076i \(0.596842\pi\)
\(174\) 0 0
\(175\) 0.0723601 + 0.919423i 0.00546991 + 0.0695018i
\(176\) −1.86002 + 1.58861i −0.140205 + 0.119746i
\(177\) 0 0
\(178\) 3.44500 8.31696i 0.258213 0.623382i
\(179\) 12.6936 + 0.999009i 0.948765 + 0.0746695i 0.543390 0.839481i \(-0.317141\pi\)
0.405376 + 0.914150i \(0.367141\pi\)
\(180\) 0 0
\(181\) −1.94237 1.65894i −0.144375 0.123308i 0.574327 0.818626i \(-0.305264\pi\)
−0.718702 + 0.695318i \(0.755264\pi\)
\(182\) −7.24735 + 9.97513i −0.537210 + 0.739406i
\(183\) 0 0
\(184\) −1.02232 0.161920i −0.0753667 0.0119369i
\(185\) 11.0896 + 1.75642i 0.815324 + 0.129135i
\(186\) 0 0
\(187\) 0.971774 1.33753i 0.0710631 0.0978100i
\(188\) 2.44293 + 2.08646i 0.178169 + 0.152170i
\(189\) 0 0
\(190\) 4.68958 + 0.369078i 0.340218 + 0.0267757i
\(191\) 3.23068 7.79955i 0.233764 0.564356i −0.762850 0.646575i \(-0.776201\pi\)
0.996614 + 0.0822191i \(0.0262007\pi\)
\(192\) 0 0
\(193\) 10.1075 8.63262i 0.727554 0.621390i −0.206531 0.978440i \(-0.566217\pi\)
0.934085 + 0.357050i \(0.116217\pi\)
\(194\) 1.16288 + 14.7757i 0.0834897 + 1.06084i
\(195\) 0 0
\(196\) −2.47829 2.47829i −0.177021 0.177021i
\(197\) −0.724660 1.42223i −0.0516299 0.101329i 0.863750 0.503921i \(-0.168110\pi\)
−0.915380 + 0.402591i \(0.868110\pi\)
\(198\) 0 0
\(199\) 8.61190 + 14.0533i 0.610481 + 0.996215i 0.997255 + 0.0740401i \(0.0235893\pi\)
−0.386774 + 0.922174i \(0.626411\pi\)
\(200\) −0.439545 0.223959i −0.0310805 0.0158363i
\(201\) 0 0
\(202\) −4.83774 + 2.00386i −0.340382 + 0.140991i
\(203\) 2.71660 + 17.1519i 0.190668 + 1.20383i
\(204\) 0 0
\(205\) −0.0768749 15.0073i −0.00536918 1.04816i
\(206\) 13.8258i 0.963293i
\(207\) 0 0
\(208\) −2.52387 6.09316i −0.174999 0.422484i
\(209\) −1.51710 4.66914i −0.104940 0.322971i
\(210\) 0 0
\(211\) 3.30131 2.02304i 0.227271 0.139272i −0.404202 0.914670i \(-0.632451\pi\)
0.631473 + 0.775398i \(0.282451\pi\)
\(212\) −0.827562 + 1.35046i −0.0568372 + 0.0927498i
\(213\) 0 0
\(214\) −2.92393 + 2.92393i −0.199876 + 0.199876i
\(215\) 4.32516 + 1.40533i 0.294974 + 0.0958427i
\(216\) 0 0
\(217\) −11.8746 13.9034i −0.806102 0.943824i
\(218\) −4.19731 1.00769i −0.284278 0.0682491i
\(219\) 0 0
\(220\) −0.449815 + 5.71544i −0.0303265 + 0.385335i
\(221\) 2.62011 + 3.60627i 0.176248 + 0.242584i
\(222\) 0 0
\(223\) −9.50051 6.90253i −0.636201 0.462227i 0.222342 0.974969i \(-0.428630\pi\)
−0.858543 + 0.512741i \(0.828630\pi\)
\(224\) −1.81788 + 0.436434i −0.121462 + 0.0291605i
\(225\) 0 0
\(226\) −2.10589 + 13.2961i −0.140082 + 0.884442i
\(227\) −0.457727 1.90657i −0.0303804 0.126543i 0.955119 0.296222i \(-0.0957269\pi\)
−0.985499 + 0.169679i \(0.945727\pi\)
\(228\) 0 0
\(229\) 0.649097 0.759995i 0.0428935 0.0502219i −0.738544 0.674205i \(-0.764487\pi\)
0.781438 + 0.623983i \(0.214487\pi\)
\(230\) −1.96265 + 1.42595i −0.129413 + 0.0940244i
\(231\) 0 0
\(232\) −8.58174 3.55467i −0.563419 0.233376i
\(233\) 2.47050 10.2904i 0.161848 0.674144i −0.831154 0.556043i \(-0.812319\pi\)
0.993002 0.118102i \(-0.0376808\pi\)
\(234\) 0 0
\(235\) 7.50656 0.590779i 0.489674 0.0385382i
\(236\) −3.05276 + 9.39542i −0.198718 + 0.611590i
\(237\) 0 0
\(238\) 1.12587 0.573659i 0.0729793 0.0371848i
\(239\) −3.44794 2.11290i −0.223029 0.136672i 0.406496 0.913653i \(-0.366750\pi\)
−0.629525 + 0.776980i \(0.716750\pi\)
\(240\) 0 0
\(241\) 10.8848 21.3626i 0.701151 1.37609i −0.215543 0.976494i \(-0.569152\pi\)
0.916693 0.399591i \(-0.130848\pi\)
\(242\) −4.77110 + 1.55022i −0.306698 + 0.0996521i
\(243\) 0 0
\(244\) 1.75573 0.278080i 0.112399 0.0178022i
\(245\) −8.21457 −0.524810
\(246\) 0 0
\(247\) 13.2369 0.842241
\(248\) 9.65965 1.52994i 0.613389 0.0971512i
\(249\) 0 0
\(250\) 10.0457 3.26405i 0.635347 0.206437i
\(251\) 9.90370 19.4371i 0.625116 1.22686i −0.333660 0.942694i \(-0.608284\pi\)
0.958775 0.284165i \(-0.0917164\pi\)
\(252\) 0 0
\(253\) 2.15878 + 1.32290i 0.135721 + 0.0831700i
\(254\) 4.91618 2.50492i 0.308468 0.157173i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −3.97955 + 0.313197i −0.248237 + 0.0195367i −0.201967 0.979392i \(-0.564733\pi\)
−0.0462700 + 0.998929i \(0.514733\pi\)
\(258\) 0 0
\(259\) 2.09073 8.70851i 0.129912 0.541121i
\(260\) −14.2810 5.91540i −0.885672 0.366857i
\(261\) 0 0
\(262\) −7.06737 + 5.13474i −0.436623 + 0.317225i
\(263\) 5.40619 6.32983i 0.333360 0.390314i −0.568256 0.822852i \(-0.692382\pi\)
0.901616 + 0.432538i \(0.142382\pi\)
\(264\) 0 0
\(265\) 0.866598 + 3.60964i 0.0532347 + 0.221738i
\(266\) 0.586981 3.70605i 0.0359901 0.227232i
\(267\) 0 0
\(268\) 7.34263 1.76281i 0.448523 0.107681i
\(269\) 16.5789 + 12.0453i 1.01083 + 0.734413i 0.964384 0.264508i \(-0.0852094\pi\)
0.0464493 + 0.998921i \(0.485209\pi\)
\(270\) 0 0
\(271\) 5.07588 + 6.98635i 0.308338 + 0.424391i 0.934862 0.355011i \(-0.115523\pi\)
−0.626524 + 0.779402i \(0.715523\pi\)
\(272\) −0.0530294 + 0.673803i −0.00321538 + 0.0408553i
\(273\) 0 0
\(274\) 11.2109 + 2.69150i 0.677275 + 0.162599i
\(275\) 0.783682 + 0.917574i 0.0472578 + 0.0553318i
\(276\) 0 0
\(277\) −18.3442 5.96039i −1.10220 0.358125i −0.299248 0.954175i \(-0.596736\pi\)
−0.802947 + 0.596050i \(0.796736\pi\)
\(278\) −14.1845 + 14.1845i −0.850727 + 0.850727i
\(279\) 0 0
\(280\) −2.28948 + 3.73608i −0.136822 + 0.223274i
\(281\) 25.8060 15.8139i 1.53946 0.943379i 0.544975 0.838452i \(-0.316539\pi\)
0.994480 0.104927i \(-0.0334610\pi\)
\(282\) 0 0
\(283\) −7.33793 22.5838i −0.436194 1.34247i −0.891858 0.452316i \(-0.850598\pi\)
0.455663 0.890152i \(-0.349402\pi\)
\(284\) −1.91459 4.62223i −0.113610 0.274279i
\(285\) 0 0
\(286\) 16.1324i 0.953931i
\(287\) −11.9386 0.878080i −0.704714 0.0518314i
\(288\) 0 0
\(289\) 2.58792 + 16.3395i 0.152231 + 0.961147i
\(290\) −20.1137 + 8.33137i −1.18112 + 0.489235i
\(291\) 0 0
\(292\) 7.33079 + 3.73523i 0.429002 + 0.218588i
\(293\) −10.3803 16.9391i −0.606425 0.989595i −0.997597 0.0692779i \(-0.977930\pi\)
0.391173 0.920317i \(-0.372070\pi\)
\(294\) 0 0
\(295\) 10.5117 + 20.6304i 0.612016 + 1.20115i
\(296\) 3.38738 + 3.38738i 0.196887 + 0.196887i
\(297\) 0 0
\(298\) 0.848452 + 10.7806i 0.0491495 + 0.624503i
\(299\) −5.19088 + 4.43343i −0.300196 + 0.256392i
\(300\) 0 0
\(301\) 1.38820 3.35141i 0.0800146 0.193172i
\(302\) 1.77430 + 0.139640i 0.102099 + 0.00803540i
\(303\) 0 0
\(304\) 1.52617 + 1.30347i 0.0875319 + 0.0747593i
\(305\) 2.44891 3.37064i 0.140224 0.193002i
\(306\) 0 0
\(307\) −19.1046 3.02588i −1.09036 0.172696i −0.414735 0.909942i \(-0.636126\pi\)
−0.675624 + 0.737246i \(0.736126\pi\)
\(308\) 4.51676 + 0.715384i 0.257366 + 0.0407628i
\(309\) 0 0
\(310\) 13.4734 18.5446i 0.765238 1.05326i
\(311\) −21.6034 18.4510i −1.22501 1.04626i −0.997367 0.0725173i \(-0.976897\pi\)
−0.227647 0.973744i \(-0.573103\pi\)
\(312\) 0 0
\(313\) −12.8356 1.01018i −0.725510 0.0570989i −0.289675 0.957125i \(-0.593547\pi\)
−0.435836 + 0.900026i \(0.643547\pi\)
\(314\) −0.110342 + 0.266390i −0.00622698 + 0.0150332i
\(315\) 0 0
\(316\) 12.1687 10.3930i 0.684542 0.584654i
\(317\) −1.70237 21.6306i −0.0956145 1.21490i −0.838282 0.545237i \(-0.816440\pi\)
0.742667 0.669660i \(-0.233560\pi\)
\(318\) 0 0
\(319\) 16.0664 + 16.0664i 0.899544 + 0.899544i
\(320\) −1.06405 2.08832i −0.0594825 0.116741i
\(321\) 0 0
\(322\) 1.01108 + 1.64994i 0.0563455 + 0.0919475i
\(323\) −1.20868 0.615854i −0.0672529 0.0342670i
\(324\) 0 0
\(325\) −3.00583 + 1.24506i −0.166734 + 0.0690633i
\(326\) 2.42379 + 15.3032i 0.134242 + 0.847568i
\(327\) 0 0
\(328\) 3.73708 5.19945i 0.206346 0.287091i
\(329\) 6.00618i 0.331131i
\(330\) 0 0
\(331\) 2.07805 + 5.01686i 0.114220 + 0.275752i 0.970644 0.240522i \(-0.0773187\pi\)
−0.856424 + 0.516274i \(0.827319\pi\)
\(332\) 2.82927 + 8.70761i 0.155277 + 0.477892i
\(333\) 0 0
\(334\) −19.6409 + 12.0360i −1.07470 + 0.658578i
\(335\) 9.24746 15.0905i 0.505243 0.824482i
\(336\) 0 0
\(337\) −9.63812 + 9.63812i −0.525022 + 0.525022i −0.919084 0.394062i \(-0.871070\pi\)
0.394062 + 0.919084i \(0.371070\pi\)
\(338\) −29.0039 9.42393i −1.57760 0.512594i
\(339\) 0 0
\(340\) 1.02881 + 1.20458i 0.0557950 + 0.0653276i
\(341\) −23.2620 5.58470i −1.25971 0.302429i
\(342\) 0 0
\(343\) −1.54087 + 19.5786i −0.0831992 + 1.05715i
\(344\) 1.14051 + 1.56977i 0.0614920 + 0.0846364i
\(345\) 0 0
\(346\) 9.84946 + 7.15605i 0.529510 + 0.384712i
\(347\) −27.6510 + 6.63842i −1.48438 + 0.356369i −0.893013 0.450031i \(-0.851413\pi\)
−0.591371 + 0.806400i \(0.701413\pi\)
\(348\) 0 0
\(349\) 0.423743 2.67541i 0.0226824 0.143211i −0.973748 0.227628i \(-0.926903\pi\)
0.996431 + 0.0844172i \(0.0269028\pi\)
\(350\) 0.215299 + 0.896783i 0.0115082 + 0.0479351i
\(351\) 0 0
\(352\) −1.58861 + 1.86002i −0.0846732 + 0.0991396i
\(353\) −1.51453 + 1.10037i −0.0806106 + 0.0585670i −0.627361 0.778729i \(-0.715865\pi\)
0.546750 + 0.837296i \(0.315865\pi\)
\(354\) 0 0
\(355\) −10.8335 4.48739i −0.574983 0.238166i
\(356\) 2.10152 8.75348i 0.111381 0.463934i
\(357\) 0 0
\(358\) 12.6936 0.999009i 0.670878 0.0527993i
\(359\) −7.19685 + 22.1496i −0.379835 + 1.16901i 0.560323 + 0.828274i \(0.310677\pi\)
−0.940158 + 0.340738i \(0.889323\pi\)
\(360\) 0 0
\(361\) 13.3399 6.79704i 0.702102 0.357739i
\(362\) −2.17797 1.33466i −0.114472 0.0701483i
\(363\) 0 0
\(364\) −5.59767 + 10.9861i −0.293398 + 0.575826i
\(365\) 18.3398 5.95895i 0.959947 0.311906i
\(366\) 0 0
\(367\) 27.1174 4.29498i 1.41552 0.224196i 0.598646 0.801014i \(-0.295706\pi\)
0.816873 + 0.576818i \(0.195706\pi\)
\(368\) −1.03507 −0.0539566
\(369\) 0 0
\(370\) 11.2278 0.583707
\(371\) 2.92462 0.463214i 0.151839 0.0240489i
\(372\) 0 0
\(373\) −6.46737 + 2.10138i −0.334868 + 0.108805i −0.471624 0.881799i \(-0.656332\pi\)
0.136757 + 0.990605i \(0.456332\pi\)
\(374\) 0.750574 1.47308i 0.0388112 0.0761713i
\(375\) 0 0
\(376\) 2.73924 + 1.67861i 0.141266 + 0.0865677i
\(377\) −54.5843 + 27.8121i −2.81123 + 1.43240i
\(378\) 0 0
\(379\) 1.06475 3.27696i 0.0546924 0.168326i −0.919979 0.391968i \(-0.871795\pi\)
0.974671 + 0.223642i \(0.0717945\pi\)
\(380\) 4.68958 0.369078i 0.240570 0.0189333i
\(381\) 0 0
\(382\) 1.97079 8.20892i 0.100834 0.420005i
\(383\) 26.5589 + 11.0011i 1.35710 + 0.562129i 0.938260 0.345932i \(-0.112437\pi\)
0.418839 + 0.908061i \(0.362437\pi\)
\(384\) 0 0
\(385\) 8.67125 6.30003i 0.441928 0.321079i
\(386\) 8.63262 10.1075i 0.439389 0.514458i
\(387\) 0 0
\(388\) 3.46000 + 14.4119i 0.175655 + 0.731654i
\(389\) 2.41753 15.2637i 0.122574 0.773900i −0.847447 0.530880i \(-0.821862\pi\)
0.970021 0.243021i \(-0.0781384\pi\)
\(390\) 0 0
\(391\) 0.680258 0.163315i 0.0344021 0.00825922i
\(392\) −2.83547 2.06009i −0.143213 0.104050i
\(393\) 0 0
\(394\) −0.938224 1.29135i −0.0472670 0.0650575i
\(395\) 2.94278 37.3916i 0.148068 1.88138i
\(396\) 0 0
\(397\) −36.4180 8.74318i −1.82777 0.438808i −0.834142 0.551550i \(-0.814036\pi\)
−0.993624 + 0.112743i \(0.964036\pi\)
\(398\) 10.7043 + 12.5331i 0.536558 + 0.628228i
\(399\) 0 0
\(400\) −0.469168 0.152442i −0.0234584 0.00762210i
\(401\) 5.37453 5.37453i 0.268391 0.268391i −0.560061 0.828452i \(-0.689222\pi\)
0.828452 + 0.560061i \(0.189222\pi\)
\(402\) 0 0
\(403\) 33.7019 54.9964i 1.67881 2.73957i
\(404\) −4.46471 + 2.73598i −0.222128 + 0.136120i
\(405\) 0 0
\(406\) 5.36631 + 16.5158i 0.266326 + 0.819666i
\(407\) −4.48427 10.8260i −0.222277 0.536624i
\(408\) 0 0
\(409\) 17.1920i 0.850090i −0.905172 0.425045i \(-0.860258\pi\)
0.905172 0.425045i \(-0.139742\pi\)
\(410\) −2.42359 14.8105i −0.119693 0.731440i
\(411\) 0 0
\(412\) −2.16284 13.6556i −0.106555 0.672765i
\(413\) 17.0631 7.06778i 0.839622 0.347783i
\(414\) 0 0
\(415\) 19.1201 + 9.74219i 0.938570 + 0.478225i
\(416\) −3.44598 5.62332i −0.168953 0.275706i
\(417\) 0 0
\(418\) −2.22883 4.37433i −0.109016 0.213955i
\(419\) 7.31893 + 7.31893i 0.357553 + 0.357553i 0.862910 0.505357i \(-0.168639\pi\)
−0.505357 + 0.862910i \(0.668639\pi\)
\(420\) 0 0
\(421\) 1.84081 + 23.3897i 0.0897156 + 1.13995i 0.862767 + 0.505602i \(0.168729\pi\)
−0.773051 + 0.634343i \(0.781271\pi\)
\(422\) 2.94419 2.51458i 0.143321 0.122408i
\(423\) 0 0
\(424\) −0.606115 + 1.46329i −0.0294355 + 0.0710637i
\(425\) 0.332395 + 0.0261601i 0.0161235 + 0.00126895i
\(426\) 0 0
\(427\) −2.52706 2.15832i −0.122293 0.104448i
\(428\) −2.43053 + 3.34533i −0.117484 + 0.161703i
\(429\) 0 0
\(430\) 4.49175 + 0.711424i 0.216612 + 0.0343079i
\(431\) −15.1672 2.40225i −0.730577 0.115712i −0.219946 0.975512i \(-0.570588\pi\)
−0.510631 + 0.859800i \(0.670588\pi\)
\(432\) 0 0
\(433\) 6.74841 9.28839i 0.324308 0.446372i −0.615468 0.788162i \(-0.711033\pi\)
0.939776 + 0.341790i \(0.111033\pi\)
\(434\) −13.9034 11.8746i −0.667384 0.570000i
\(435\) 0 0
\(436\) −4.30327 0.338675i −0.206089 0.0162196i
\(437\) 0.794998 1.91929i 0.0380299 0.0918123i
\(438\) 0 0
\(439\) 28.5463 24.3809i 1.36244 1.16364i 0.392654 0.919686i \(-0.371557\pi\)
0.969788 0.243949i \(-0.0784429\pi\)
\(440\) 0.449815 + 5.71544i 0.0214441 + 0.272473i
\(441\) 0 0
\(442\) 3.15200 + 3.15200i 0.149925 + 0.149925i
\(443\) 11.8854 + 23.3264i 0.564691 + 1.10827i 0.980076 + 0.198623i \(0.0636470\pi\)
−0.415385 + 0.909646i \(0.636353\pi\)
\(444\) 0 0
\(445\) −11.0243 17.9900i −0.522603 0.852810i
\(446\) −10.4633 5.33134i −0.495453 0.252446i
\(447\) 0 0
\(448\) −1.72723 + 0.715440i −0.0816037 + 0.0338014i
\(449\) −6.16329 38.9135i −0.290864 1.83644i −0.509300 0.860589i \(-0.670096\pi\)
0.218436 0.975851i \(-0.429904\pi\)
\(450\) 0 0
\(451\) −13.3125 + 8.25201i −0.626861 + 0.388572i
\(452\) 13.4618i 0.633191i
\(453\) 0 0
\(454\) −0.750345 1.81149i −0.0352154 0.0850176i
\(455\) 8.93018 + 27.4843i 0.418653 + 1.28848i
\(456\) 0 0
\(457\) −12.9539 + 7.93814i −0.605956 + 0.371330i −0.791377 0.611329i \(-0.790635\pi\)
0.185421 + 0.982659i \(0.440635\pi\)
\(458\) 0.522216 0.852179i 0.0244015 0.0398197i
\(459\) 0 0
\(460\) −1.71542 + 1.71542i −0.0799819 + 0.0799819i
\(461\) −15.0701 4.89657i −0.701884 0.228056i −0.0637330 0.997967i \(-0.520301\pi\)
−0.638151 + 0.769911i \(0.720301\pi\)
\(462\) 0 0
\(463\) −0.888764 1.04061i −0.0413044 0.0483612i 0.739369 0.673300i \(-0.235124\pi\)
−0.780674 + 0.624939i \(0.785124\pi\)
\(464\) −9.03215 2.16843i −0.419307 0.100667i
\(465\) 0 0
\(466\) 0.830314 10.5501i 0.0384636 0.488726i
\(467\) 10.5470 + 14.5167i 0.488057 + 0.671753i 0.980028 0.198859i \(-0.0637235\pi\)
−0.491971 + 0.870611i \(0.663723\pi\)
\(468\) 0 0
\(469\) −11.4212 8.29799i −0.527382 0.383165i
\(470\) 7.32172 1.75779i 0.337726 0.0810808i
\(471\) 0 0
\(472\) −1.54540 + 9.75730i −0.0711330 + 0.449116i
\(473\) −1.10799 4.61513i −0.0509456 0.212204i
\(474\) 0 0
\(475\) 0.643020 0.752880i 0.0295038 0.0345445i
\(476\) 1.02227 0.742721i 0.0468556 0.0340426i
\(477\) 0 0
\(478\) −3.73602 1.54751i −0.170882 0.0707816i
\(479\) −4.98866 + 20.7793i −0.227938 + 0.949429i 0.734647 + 0.678449i \(0.237348\pi\)
−0.962585 + 0.270980i \(0.912652\pi\)
\(480\) 0 0
\(481\) 31.4967 2.47884i 1.43613 0.113026i
\(482\) 7.40893 22.8023i 0.337468 1.03862i
\(483\) 0 0
\(484\) −4.46985 + 2.27750i −0.203175 + 0.103523i
\(485\) 29.6192 + 18.1507i 1.34494 + 0.824179i
\(486\) 0 0
\(487\) −8.78084 + 17.2334i −0.397898 + 0.780919i −0.999845 0.0176174i \(-0.994392\pi\)
0.601947 + 0.798536i \(0.294392\pi\)
\(488\) 1.69061 0.549313i 0.0765303 0.0248662i
\(489\) 0 0
\(490\) −8.11344 + 1.28504i −0.366528 + 0.0580523i
\(491\) 24.0558 1.08563 0.542813 0.839854i \(-0.317359\pi\)
0.542813 + 0.839854i \(0.317359\pi\)
\(492\) 0 0
\(493\) 6.27817 0.282755
\(494\) 13.0739 2.07070i 0.588222 0.0931652i
\(495\) 0 0
\(496\) 9.30139 3.02221i 0.417645 0.135701i
\(497\) −4.24636 + 8.33396i −0.190475 + 0.373829i
\(498\) 0 0
\(499\) −18.8040 11.5231i −0.841781 0.515844i 0.0335110 0.999438i \(-0.489331\pi\)
−0.875292 + 0.483594i \(0.839331\pi\)
\(500\) 9.41143 4.79536i 0.420892 0.214455i
\(501\) 0 0
\(502\) 6.74113 20.7471i 0.300871 0.925987i
\(503\) −29.9427 + 2.35654i −1.33508 + 0.105073i −0.725813 0.687892i \(-0.758536\pi\)
−0.609267 + 0.792965i \(0.708536\pi\)
\(504\) 0 0
\(505\) −2.86503 + 11.9337i −0.127492 + 0.531044i
\(506\) 2.33914 + 0.968905i 0.103988 + 0.0430731i
\(507\) 0 0
\(508\) 4.46380 3.24314i 0.198049 0.143891i
\(509\) −5.43511 + 6.36370i −0.240907 + 0.282066i −0.867666 0.497147i \(-0.834381\pi\)
0.626759 + 0.779213i \(0.284381\pi\)
\(510\) 0 0
\(511\) −3.59078 14.9567i −0.158847 0.661645i
\(512\) 0.156434 0.987688i 0.00691349 0.0436501i
\(513\) 0 0
\(514\) −3.88156 + 0.931879i −0.171208 + 0.0411034i
\(515\) −26.2160 19.0470i −1.15522 0.839313i
\(516\) 0 0
\(517\) −4.61909 6.35763i −0.203147 0.279608i
\(518\) 0.702677 8.92836i 0.0308739 0.392290i
\(519\) 0 0
\(520\) −15.0306 3.60852i −0.659135 0.158244i
\(521\) 13.1104 + 15.3503i 0.574376 + 0.672508i 0.969208 0.246245i \(-0.0791969\pi\)
−0.394831 + 0.918754i \(0.629197\pi\)
\(522\) 0 0
\(523\) −0.0117671 0.00382336i −0.000514539 0.000167184i 0.308760 0.951140i \(-0.400086\pi\)
−0.309274 + 0.950973i \(0.600086\pi\)
\(524\) −6.17711 + 6.17711i −0.269848 + 0.269848i
\(525\) 0 0
\(526\) 4.34942 7.09761i 0.189644 0.309471i
\(527\) −5.63613 + 3.45382i −0.245514 + 0.150451i
\(528\) 0 0
\(529\) −6.77632 20.8554i −0.294623 0.906755i
\(530\) 1.42060 + 3.42963i 0.0617070 + 0.148974i
\(531\) 0 0
\(532\) 3.75225i 0.162680i
\(533\) −10.0686 41.0119i −0.436118 1.77642i
\(534\) 0 0
\(535\) 1.51611 + 9.57236i 0.0655473 + 0.413849i
\(536\) 6.97647 2.88975i 0.301338 0.124818i
\(537\) 0 0
\(538\) 18.2591 + 9.30346i 0.787205 + 0.401101i
\(539\) 4.47946 + 7.30982i 0.192944 + 0.314856i
\(540\) 0 0
\(541\) 11.6032 + 22.7725i 0.498860 + 0.979067i 0.993909 + 0.110203i \(0.0351500\pi\)
−0.495049 + 0.868865i \(0.664850\pi\)
\(542\) 6.10630 + 6.10630i 0.262288 + 0.262288i
\(543\) 0 0
\(544\) 0.0530294 + 0.673803i 0.00227362 + 0.0288890i
\(545\) −7.69312 + 6.57054i −0.329537 + 0.281451i
\(546\) 0 0
\(547\) −7.96968 + 19.2405i −0.340759 + 0.822665i 0.656880 + 0.753995i \(0.271876\pi\)
−0.997639 + 0.0686702i \(0.978124\pi\)
\(548\) 11.4939 + 0.904590i 0.490995 + 0.0386422i
\(549\) 0 0
\(550\) 0.917574 + 0.783682i 0.0391255 + 0.0334163i
\(551\) 10.9581 15.0826i 0.466832 0.642539i
\(552\) 0 0
\(553\) −29.5496 4.68020i −1.25658 0.199022i
\(554\) −19.0507 3.01734i −0.809389 0.128195i
\(555\) 0 0
\(556\) −11.7909 + 16.2288i −0.500045 + 0.688253i
\(557\) 5.27262 + 4.50324i 0.223408 + 0.190809i 0.754106 0.656752i \(-0.228070\pi\)
−0.530698 + 0.847561i \(0.678070\pi\)
\(558\) 0 0
\(559\) 12.7575 + 1.00404i 0.539584 + 0.0424662i
\(560\) −1.67684 + 4.04824i −0.0708592 + 0.171069i
\(561\) 0 0
\(562\) 23.0144 19.6562i 0.970805 0.829145i
\(563\) −1.85704 23.5960i −0.0782651 0.994452i −0.903199 0.429222i \(-0.858788\pi\)
0.824934 0.565229i \(-0.191212\pi\)
\(564\) 0 0
\(565\) 22.3103 + 22.3103i 0.938603 + 0.938603i
\(566\) −10.7805 21.1579i −0.453137 0.889332i
\(567\) 0 0
\(568\) −2.61410 4.26582i −0.109685 0.178990i
\(569\) 16.7865 + 8.55315i 0.703727 + 0.358567i 0.768954 0.639304i \(-0.220777\pi\)
−0.0652274 + 0.997870i \(0.520777\pi\)
\(570\) 0 0
\(571\) −31.3264 + 12.9758i −1.31097 + 0.543020i −0.925166 0.379562i \(-0.876075\pi\)
−0.385801 + 0.922582i \(0.626075\pi\)
\(572\) 2.52367 + 15.9338i 0.105520 + 0.666227i
\(573\) 0 0
\(574\) −11.9290 + 1.00034i −0.497907 + 0.0417535i
\(575\) 0.510612i 0.0212940i
\(576\) 0 0
\(577\) 15.4218 + 37.2316i 0.642020 + 1.54997i 0.823951 + 0.566662i \(0.191765\pi\)
−0.181931 + 0.983311i \(0.558235\pi\)
\(578\) 5.11212 + 15.7335i 0.212636 + 0.654427i
\(579\) 0 0
\(580\) −18.5628 + 11.3753i −0.770777 + 0.472333i
\(581\) 8.94358 14.5946i 0.371042 0.605486i
\(582\) 0 0
\(583\) 2.73951 2.73951i 0.113459 0.113459i
\(584\) 7.82486 + 2.54245i 0.323795 + 0.105207i
\(585\) 0 0
\(586\) −12.9024 15.1068i −0.532993 0.624054i
\(587\) 4.73968 + 1.13790i 0.195628 + 0.0469660i 0.330075 0.943955i \(-0.392926\pi\)
−0.134447 + 0.990921i \(0.542926\pi\)
\(588\) 0 0
\(589\) −1.54008 + 19.5685i −0.0634578 + 0.806308i
\(590\) 13.6096 + 18.7320i 0.560299 + 0.771185i
\(591\) 0 0
\(592\) 3.87558 + 2.81577i 0.159285 + 0.115728i
\(593\) 12.0898 2.90250i 0.496467 0.119191i 0.0225233 0.999746i \(-0.492830\pi\)
0.473944 + 0.880555i \(0.342830\pi\)
\(594\) 0 0
\(595\) 0.463294 2.92512i 0.0189932 0.119918i
\(596\) 2.52446 + 10.5151i 0.103406 + 0.430717i
\(597\) 0 0
\(598\) −4.43343 + 5.19088i −0.181297 + 0.212271i
\(599\) 9.53529 6.92780i 0.389601 0.283062i −0.375691 0.926745i \(-0.622594\pi\)
0.765292 + 0.643683i \(0.222594\pi\)
\(600\) 0 0
\(601\) −24.7967 10.2711i −1.01148 0.418968i −0.185485 0.982647i \(-0.559386\pi\)
−0.825994 + 0.563679i \(0.809386\pi\)
\(602\) 0.846833 3.52731i 0.0345143 0.143763i
\(603\) 0 0
\(604\) 1.77430 0.139640i 0.0721952 0.00568189i
\(605\) −3.63338 + 11.1824i −0.147718 + 0.454629i
\(606\) 0 0
\(607\) −10.0572 + 5.12439i −0.408208 + 0.207993i −0.646023 0.763318i \(-0.723569\pi\)
0.237815 + 0.971311i \(0.423569\pi\)
\(608\) 1.71129 + 1.04868i 0.0694019 + 0.0425296i
\(609\) 0 0
\(610\) 1.89148 3.71223i 0.0765837 0.150304i
\(611\) 20.1511 6.54748i 0.815225 0.264883i
\(612\) 0 0
\(613\) 23.7239 3.75750i 0.958201 0.151764i 0.342303 0.939590i \(-0.388793\pi\)
0.615898 + 0.787826i \(0.288793\pi\)
\(614\) −19.3428 −0.780611
\(615\) 0 0
\(616\) 4.57306 0.184254
\(617\) 22.5934 3.57844i 0.909576 0.144063i 0.315924 0.948784i \(-0.397685\pi\)
0.593652 + 0.804722i \(0.297685\pi\)
\(618\) 0 0
\(619\) −18.9948 + 6.17177i −0.763464 + 0.248064i −0.664765 0.747053i \(-0.731468\pi\)
−0.0986991 + 0.995117i \(0.531468\pi\)
\(620\) 10.4065 20.4239i 0.417936 0.820245i
\(621\) 0 0
\(622\) −24.2238 14.8443i −0.971284 0.595204i
\(623\) −14.9956 + 7.64064i −0.600786 + 0.306116i
\(624\) 0 0
\(625\) 8.41243 25.8908i 0.336497 1.03563i
\(626\) −12.8356 + 1.01018i −0.513013 + 0.0403750i
\(627\) 0 0
\(628\) −0.0673112 + 0.280371i −0.00268601 + 0.0111880i
\(629\) −2.99135 1.23906i −0.119273 0.0494045i
\(630\) 0 0
\(631\) 13.8279 10.0466i 0.550482 0.399948i −0.277481 0.960731i \(-0.589500\pi\)
0.827963 + 0.560783i \(0.189500\pi\)
\(632\) 10.3930 12.1687i 0.413413 0.484044i
\(633\) 0 0
\(634\) −5.06518 21.0980i −0.201164 0.837909i
\(635\) 2.02300 12.7727i 0.0802804 0.506870i
\(636\) 0 0
\(637\) −22.4764 + 5.39610i −0.890547 + 0.213801i
\(638\) 18.3819 + 13.3552i 0.727747 + 0.528739i
\(639\) 0 0
\(640\) −1.37764 1.89616i −0.0544560 0.0749523i
\(641\) 0.838993 10.6604i 0.0331382 0.421061i −0.957865 0.287220i \(-0.907269\pi\)
0.991003 0.133841i \(-0.0427312\pi\)
\(642\) 0 0
\(643\) −37.6510 9.03919i −1.48481 0.356471i −0.591644 0.806200i \(-0.701521\pi\)
−0.893165 + 0.449729i \(0.851521\pi\)
\(644\) 1.25674 + 1.47146i 0.0495226 + 0.0579836i
\(645\) 0 0
\(646\) −1.29014 0.419192i −0.0507599 0.0164929i
\(647\) −32.8897 + 32.8897i −1.29303 + 1.29303i −0.360125 + 0.932904i \(0.617266\pi\)
−0.932904 + 0.360125i \(0.882734\pi\)
\(648\) 0 0
\(649\) 12.6261 20.6039i 0.495616 0.808772i
\(650\) −2.77406 + 1.69994i −0.108807 + 0.0666773i
\(651\) 0 0
\(652\) 4.78791 + 14.7357i 0.187509 + 0.577093i
\(653\) 14.5796 + 35.1983i 0.570544 + 1.37742i 0.901093 + 0.433627i \(0.142766\pi\)
−0.330548 + 0.943789i \(0.607234\pi\)
\(654\) 0 0
\(655\) 20.4747i 0.800012i
\(656\) 2.87769 5.72004i 0.112355 0.223330i
\(657\) 0 0
\(658\) −0.939574 5.93223i −0.0366284 0.231263i
\(659\) −37.1213 + 15.3761i −1.44604 + 0.598970i −0.961254 0.275663i \(-0.911103\pi\)
−0.484786 + 0.874633i \(0.661103\pi\)
\(660\) 0 0
\(661\) 15.1700 + 7.72950i 0.590044 + 0.300643i 0.723404 0.690425i \(-0.242576\pi\)
−0.133359 + 0.991068i \(0.542576\pi\)
\(662\) 2.83728 + 4.63002i 0.110274 + 0.179951i
\(663\) 0 0
\(664\) 4.15661 + 8.15781i 0.161308 + 0.316584i
\(665\) −6.21861 6.21861i −0.241147 0.241147i
\(666\) 0 0
\(667\) 0.754348 + 9.58490i 0.0292085 + 0.371129i
\(668\) −17.5163 + 14.9603i −0.677724 + 0.578831i
\(669\) 0 0
\(670\) 6.77294 16.3513i 0.261661 0.631707i
\(671\) −4.33480 0.341156i −0.167343 0.0131702i
\(672\) 0 0
\(673\) 15.4996 + 13.2379i 0.597464 + 0.510283i 0.895964 0.444127i \(-0.146486\pi\)
−0.298499 + 0.954410i \(0.596486\pi\)
\(674\) −8.01173 + 11.0272i −0.308600 + 0.424752i
\(675\) 0 0
\(676\) −30.1210 4.77070i −1.15850 0.183488i
\(677\) −1.62364 0.257159i −0.0624015 0.00988342i 0.125156 0.992137i \(-0.460057\pi\)
−0.187557 + 0.982254i \(0.560057\pi\)
\(678\) 0 0
\(679\) 16.2871 22.4172i 0.625040 0.860294i
\(680\) 1.20458 + 1.02881i 0.0461936 + 0.0394531i
\(681\) 0 0
\(682\) −23.8492 1.87697i −0.913233 0.0718730i
\(683\) 1.40971 3.40335i 0.0539412 0.130225i −0.894612 0.446845i \(-0.852548\pi\)
0.948553 + 0.316619i \(0.102548\pi\)
\(684\) 0 0
\(685\) 20.5481 17.5497i 0.785102 0.670540i
\(686\) 1.54087 + 19.5786i 0.0588307 + 0.747515i
\(687\) 0 0
\(688\) 1.37203 + 1.37203i 0.0523082 + 0.0523082i
\(689\) 4.74230 + 9.30729i 0.180667 + 0.354579i
\(690\) 0 0
\(691\) 3.26695 + 5.33117i 0.124281 + 0.202807i 0.908729 0.417387i \(-0.137054\pi\)
−0.784449 + 0.620194i \(0.787054\pi\)
\(692\) 10.8477 + 5.52715i 0.412366 + 0.210111i
\(693\) 0 0
\(694\) −26.2721 + 10.8823i −0.997275 + 0.413085i
\(695\) 7.35491 + 46.4371i 0.278988 + 1.76146i
\(696\) 0 0
\(697\) −0.988731 + 4.21333i −0.0374509 + 0.159591i
\(698\) 2.70876i 0.102528i
\(699\) 0 0
\(700\) 0.352936 + 0.852062i 0.0133397 + 0.0322049i
\(701\) 15.6243 + 48.0868i 0.590123 + 1.81621i 0.577642 + 0.816290i \(0.303973\pi\)
0.0124806 + 0.999922i \(0.496027\pi\)
\(702\) 0 0
\(703\) −8.19789 + 5.02368i −0.309189 + 0.189472i
\(704\) −1.27808 + 2.08564i −0.0481695 + 0.0786054i
\(705\) 0 0
\(706\) −1.32375 + 1.32375i −0.0498201 + 0.0498201i
\(707\) 9.31038 + 3.02513i 0.350153 + 0.113772i
\(708\) 0 0
\(709\) −10.5698 12.3756i −0.396956 0.464776i 0.525547 0.850764i \(-0.323861\pi\)
−0.922504 + 0.385988i \(0.873861\pi\)
\(710\) −11.4021 2.73740i −0.427914 0.102733i
\(711\) 0 0
\(712\) 0.706305 8.97446i 0.0264699 0.336332i
\(713\) −5.95016 8.18970i −0.222835 0.306707i
\(714\) 0 0
\(715\) 30.5897 + 22.2247i 1.14399 + 0.831157i
\(716\) 12.3811 2.97243i 0.462702 0.111085i
\(717\) 0 0
\(718\) −3.64328 + 23.0028i −0.135966 + 0.858455i
\(719\) 11.1897 + 46.6083i 0.417304 + 1.73820i 0.644739 + 0.764403i \(0.276966\pi\)
−0.227435 + 0.973793i \(0.573034\pi\)
\(720\) 0 0
\(721\) −16.7869 + 19.6549i −0.625176 + 0.731987i
\(722\) 12.1124 8.80018i 0.450777 0.327509i
\(723\) 0 0
\(724\) −2.35994 0.977520i −0.0877066 0.0363293i
\(725\) −1.06971 + 4.45568i −0.0397282 + 0.165480i
\(726\) 0 0
\(727\) −48.0671 + 3.78296i −1.78271 + 0.140302i −0.926492 0.376315i \(-0.877191\pi\)
−0.856217 + 0.516617i \(0.827191\pi\)
\(728\) −3.81016 + 11.7265i −0.141214 + 0.434612i
\(729\) 0 0
\(730\) 17.1818 8.75455i 0.635926 0.324021i
\(731\) −1.11820 0.685232i −0.0413580 0.0253442i
\(732\) 0 0
\(733\) 10.1557 19.9317i 0.375110 0.736195i −0.623862 0.781535i \(-0.714437\pi\)
0.998972 + 0.0453401i \(0.0144372\pi\)
\(734\) 26.1117 8.48421i 0.963800 0.313158i
\(735\) 0 0
\(736\) −1.02232 + 0.161920i −0.0376834 + 0.00596846i
\(737\) −18.4711 −0.680393
\(738\) 0 0
\(739\) 0.864088 0.0317860 0.0158930 0.999874i \(-0.494941\pi\)
0.0158930 + 0.999874i \(0.494941\pi\)
\(740\) 11.0896 1.75642i 0.407662 0.0645673i
\(741\) 0 0
\(742\) 2.81615 0.915021i 0.103384 0.0335915i
\(743\) 13.1351 25.7791i 0.481881 0.945745i −0.514231 0.857652i \(-0.671923\pi\)
0.996112 0.0880933i \(-0.0280774\pi\)
\(744\) 0 0
\(745\) 21.6106 + 13.2430i 0.791751 + 0.485186i
\(746\) −6.05902 + 3.08723i −0.221837 + 0.113031i
\(747\) 0 0
\(748\) 0.510892 1.57236i 0.0186801 0.0574913i
\(749\) 7.70681 0.606539i 0.281601 0.0221625i
\(750\) 0 0
\(751\) −11.4154 + 47.5486i −0.416554 + 1.73507i 0.230908 + 0.972976i \(0.425830\pi\)
−0.647462 + 0.762098i \(0.724170\pi\)
\(752\) 2.96811 + 1.22943i 0.108236 + 0.0448328i
\(753\) 0 0
\(754\) −49.5615 + 36.0085i −1.80492 + 1.31135i
\(755\) 2.70913 3.17198i 0.0985952 0.115440i
\(756\) 0 0
\(757\) 0.0914912 + 0.381088i 0.00332530 + 0.0138509i 0.974008 0.226514i \(-0.0727329\pi\)
−0.970683 + 0.240365i \(0.922733\pi\)
\(758\) 0.539010 3.40318i 0.0195777 0.123609i
\(759\) 0 0
\(760\) 4.57411 1.09815i 0.165920 0.0398339i
\(761\) −23.6216 17.1621i −0.856284 0.622126i 0.0705877 0.997506i \(-0.477513\pi\)
−0.926871 + 0.375379i \(0.877513\pi\)
\(762\) 0 0
\(763\) 4.74343 + 6.52876i 0.171724 + 0.236357i
\(764\) 0.662365 8.41615i 0.0239635 0.304486i
\(765\) 0 0
\(766\) 27.9529 + 6.71090i 1.00998 + 0.242475i
\(767\) 42.3137 + 49.5430i 1.52786 + 1.78889i
\(768\) 0 0
\(769\) 35.6289 + 11.5765i 1.28481 + 0.417461i 0.870272 0.492571i \(-0.163943\pi\)
0.414539 + 0.910031i \(0.363943\pi\)
\(770\) 7.57895 7.57895i 0.273126 0.273126i
\(771\) 0 0
\(772\) 6.94518 11.3335i 0.249962 0.407902i
\(773\) 6.12840 3.75549i 0.220423 0.135076i −0.407904 0.913025i \(-0.633740\pi\)
0.628327 + 0.777949i \(0.283740\pi\)
\(774\) 0 0
\(775\) −1.49089 4.58850i −0.0535544 0.164824i
\(776\) 5.67192 + 13.6932i 0.203610 + 0.491558i
\(777\) 0 0
\(778\) 15.4540i 0.554052i
\(779\) 8.39625 + 9.72938i 0.300827 + 0.348591i
\(780\) 0 0
\(781\) 1.91444 + 12.0873i 0.0685041 + 0.432518i
\(782\) 0.646335 0.267721i 0.0231129 0.00957367i
\(783\) 0 0
\(784\) −3.12283 1.59116i −0.111530 0.0568272i
\(785\) 0.353106 + 0.576216i 0.0126029 + 0.0205660i
\(786\) 0 0
\(787\) 8.38653 + 16.4595i 0.298948 + 0.586718i 0.990802 0.135319i \(-0.0432060\pi\)
−0.691854 + 0.722037i \(0.743206\pi\)
\(788\) −1.12868 1.12868i −0.0402077 0.0402077i
\(789\) 0 0
\(790\) −2.94278 37.3916i −0.104700 1.33033i
\(791\) 19.1374 16.3449i 0.680448 0.581157i
\(792\) 0 0
\(793\) 4.48646 10.8313i 0.159319 0.384630i
\(794\) −37.3373 2.93851i −1.32505 0.104284i
\(795\) 0 0
\(796\) 12.5331 + 10.7043i 0.444225 + 0.379404i
\(797\) −15.0776 + 20.7525i −0.534076 + 0.735092i −0.987745 0.156078i \(-0.950115\pi\)
0.453669 + 0.891170i \(0.350115\pi\)
\(798\) 0 0
\(799\) −2.14466 0.339681i −0.0758726 0.0120170i
\(800\) −0.487239 0.0771711i −0.0172265 0.00272841i
\(801\) 0 0
\(802\) 4.46760 6.14912i 0.157756 0.217133i
\(803\) −15.3034 13.0704i −0.540046 0.461243i
\(804\) 0 0
\(805\) 4.52146 + 0.355847i 0.159360 + 0.0125419i
\(806\) 24.6836 59.5915i 0.869442 2.09902i
\(807\) 0 0
\(808\) −3.98174 + 3.40073i −0.140077 + 0.119637i
\(809\) 3.89378 + 49.4752i 0.136898 + 1.73946i 0.555705 + 0.831380i \(0.312449\pi\)
−0.418806 + 0.908076i \(0.637551\pi\)
\(810\) 0 0
\(811\) −18.5814 18.5814i −0.652481 0.652481i 0.301109 0.953590i \(-0.402643\pi\)
−0.953590 + 0.301109i \(0.902643\pi\)
\(812\) 7.88389 + 15.4730i 0.276670 + 0.542996i
\(813\) 0 0
\(814\) −6.12262 9.99120i −0.214598 0.350191i
\(815\) 32.3565 + 16.4865i 1.13340 + 0.577495i
\(816\) 0 0
\(817\) −3.59792 + 1.49031i −0.125875 + 0.0521393i
\(818\) −2.68942 16.9803i −0.0940335 0.593704i
\(819\) 0 0
\(820\) −4.71063 14.2491i −0.164502 0.497599i
\(821\) 53.1876i 1.85626i −0.372256 0.928130i \(-0.621416\pi\)
0.372256 0.928130i \(-0.378584\pi\)
\(822\) 0 0
\(823\) 14.1511 + 34.1639i 0.493278 + 1.19088i 0.953042 + 0.302837i \(0.0979337\pi\)
−0.459765 + 0.888041i \(0.652066\pi\)
\(824\) −4.27242 13.1492i −0.148837 0.458073i
\(825\) 0 0
\(826\) 15.7474 9.65003i 0.547923 0.335767i
\(827\) 18.1999 29.6996i 0.632874 1.03276i −0.362053 0.932157i \(-0.617924\pi\)
0.994927 0.100599i \(-0.0320759\pi\)
\(828\) 0 0
\(829\) −26.6511 + 26.6511i −0.925630 + 0.925630i −0.997420 0.0717900i \(-0.977129\pi\)
0.0717900 + 0.997420i \(0.477129\pi\)
\(830\) 20.4087 + 6.63120i 0.708398 + 0.230172i
\(831\) 0 0
\(832\) −4.28323 5.01502i −0.148494 0.173864i
\(833\) 2.30342 + 0.553002i 0.0798087 + 0.0191604i
\(834\) 0 0
\(835\) −4.23600 + 53.8235i −0.146593 + 1.86264i
\(836\) −2.88569 3.97181i −0.0998036 0.137368i
\(837\) 0 0
\(838\) 8.37375 + 6.08389i 0.289267 + 0.210164i
\(839\) −24.0245 + 5.76778i −0.829419 + 0.199126i −0.625859 0.779937i \(-0.715251\pi\)
−0.203560 + 0.979062i \(0.565251\pi\)
\(840\) 0 0
\(841\) −8.96086 + 56.5767i −0.308995 + 1.95092i
\(842\) 5.47710 + 22.8138i 0.188754 + 0.786215i
\(843\) 0 0
\(844\) 2.51458 2.94419i 0.0865552 0.101343i
\(845\) −57.8262 + 42.0132i −1.98928 + 1.44530i
\(846\) 0 0
\(847\) 8.66484 + 3.58910i 0.297728 + 0.123323i
\(848\) −0.369743 + 1.54009i −0.0126970 + 0.0528870i
\(849\) 0 0
\(850\) 0.332395 0.0261601i 0.0114011 0.000897284i
\(851\) 1.53225 4.71578i 0.0525249 0.161655i
\(852\) 0 0
\(853\) 5.50774 2.80634i 0.188582 0.0960871i −0.357150 0.934047i \(-0.616252\pi\)
0.545732 + 0.837960i \(0.316252\pi\)
\(854\) −2.83359 1.73642i −0.0969634 0.0594192i
\(855\) 0 0
\(856\) −1.87728 + 3.68437i −0.0641641 + 0.125929i
\(857\) −20.7231 + 6.73334i −0.707887 + 0.230006i −0.640764 0.767738i \(-0.721382\pi\)
−0.0671233 + 0.997745i \(0.521382\pi\)
\(858\) 0 0
\(859\) −18.4687 + 2.92516i −0.630145 + 0.0998051i −0.463334 0.886184i \(-0.653347\pi\)
−0.166811 + 0.985989i \(0.553347\pi\)
\(860\) 4.54774 0.155077
\(861\) 0 0
\(862\) −15.3562 −0.523036
\(863\) −10.1249 + 1.60362i −0.344655 + 0.0545880i −0.326363 0.945245i \(-0.605823\pi\)
−0.0182925 + 0.999833i \(0.505823\pi\)
\(864\) 0 0
\(865\) 27.1380 8.81768i 0.922721 0.299810i
\(866\) 5.21230 10.2297i 0.177121 0.347620i
\(867\) 0 0
\(868\) −15.5898 9.55345i −0.529153 0.324265i
\(869\) −34.8780 + 17.7712i −1.18316 + 0.602848i
\(870\) 0 0
\(871\) 15.3897 47.3646i 0.521460 1.60489i
\(872\) −4.30327 + 0.338675i −0.145727 + 0.0114690i
\(873\) 0 0
\(874\) 0.484966 2.02003i 0.0164042 0.0683285i
\(875\) −18.2441 7.55697i −0.616765 0.255472i
\(876\) 0 0
\(877\) −21.0913 + 15.3237i −0.712203 + 0.517445i −0.883883 0.467707i \(-0.845080\pi\)
0.171681 + 0.985153i \(0.445080\pi\)
\(878\) 24.3809 28.5463i 0.822814 0.963392i
\(879\) 0 0
\(880\) 1.33837 + 5.57470i 0.0451164 + 0.187923i
\(881\) −5.33957 + 33.7127i −0.179895 + 1.13581i 0.718144 + 0.695894i \(0.244992\pi\)
−0.898039 + 0.439916i \(0.855008\pi\)
\(882\) 0 0
\(883\) 12.9648 3.11258i 0.436302 0.104747i −0.00934362 0.999956i \(-0.502974\pi\)
0.445645 + 0.895210i \(0.352974\pi\)
\(884\) 3.60627 + 2.62011i 0.121292 + 0.0881238i
\(885\) 0 0
\(886\) 15.3881 + 21.1799i 0.516973 + 0.711553i
\(887\) −4.16570 + 52.9303i −0.139871 + 1.77722i 0.381963 + 0.924178i \(0.375248\pi\)
−0.521834 + 0.853047i \(0.674752\pi\)
\(888\) 0 0
\(889\) −10.0303 2.40805i −0.336404 0.0807634i
\(890\) −13.7028 16.0440i −0.459320 0.537795i
\(891\) 0 0
\(892\) −11.1685 3.62887i −0.373950 0.121504i
\(893\) −4.55940 + 4.55940i −0.152574 + 0.152574i
\(894\) 0 0
\(895\) 15.5930 25.4454i 0.521215 0.850546i
\(896\) −1.59404 + 0.976830i −0.0532532 + 0.0326336i
\(897\) 0 0
\(898\) −12.1748 37.4702i −0.406279 1.25040i
\(899\) −34.7649 83.9299i −1.15947 2.79922i
\(900\) 0 0
\(901\) 1.07051i 0.0356637i
\(902\) −11.8577 + 10.2329i −0.394818 + 0.340720i
\(903\) 0 0
\(904\) 2.10589 + 13.2961i 0.0700409 + 0.442221i
\(905\) −5.53119 + 2.29109i −0.183863 + 0.0761586i
\(906\) 0 0
\(907\) −45.1866 23.0237i −1.50040 0.764490i −0.505257 0.862969i \(-0.668602\pi\)
−0.995139 + 0.0984792i \(0.968602\pi\)
\(908\) −1.02449 1.67181i −0.0339988 0.0554810i
\(909\) 0 0
\(910\) 13.1197 + 25.7489i 0.434915 + 0.853568i
\(911\) −35.6505 35.6505i −1.18115 1.18115i −0.979446 0.201708i \(-0.935351\pi\)
−0.201708 0.979446i \(-0.564649\pi\)
\(912\) 0 0
\(913\) −1.75715 22.3267i −0.0581532 0.738906i
\(914\) −11.5526 + 9.86683i −0.382125 + 0.326366i
\(915\) 0 0
\(916\) 0.382476 0.923380i 0.0126374 0.0305093i
\(917\) 16.2814 + 1.28138i 0.537661 + 0.0423148i
\(918\) 0 0
\(919\) −23.8934 20.4069i −0.788170 0.673161i 0.161340 0.986899i \(-0.448419\pi\)
−0.949509 + 0.313738i \(0.898419\pi\)
\(920\) −1.42595 + 1.96265i −0.0470122 + 0.0647067i
\(921\) 0 0
\(922\) −15.6505 2.47880i −0.515423 0.0816350i
\(923\) −32.5899 5.16174i −1.07271 0.169901i
\(924\) 0 0
\(925\) 1.38906 1.91187i 0.0456719 0.0628620i
\(926\) −1.04061 0.888764i −0.0341965 0.0292066i
\(927\) 0 0
\(928\) −9.26017 0.728791i −0.303980 0.0239237i
\(929\) −14.8199 + 35.7785i −0.486226 + 1.17385i 0.470378 + 0.882465i \(0.344117\pi\)
−0.956605 + 0.291389i \(0.905883\pi\)
\(930\) 0 0
\(931\) 5.34898 4.56846i 0.175306 0.149725i
\(932\) −0.830314 10.5501i −0.0271978 0.345581i
\(933\) 0 0
\(934\) 12.6881 + 12.6881i 0.415166 + 0.415166i
\(935\) −1.75918 3.45259i −0.0575314 0.112912i
\(936\) 0 0
\(937\) 21.0687 + 34.3810i 0.688285 + 1.12318i 0.985713 + 0.168435i \(0.0538712\pi\)
−0.297428 + 0.954744i \(0.596129\pi\)
\(938\) −12.5787 6.40916i −0.410708 0.209266i
\(939\) 0 0
\(940\) 6.95660 2.88152i 0.226899 0.0939848i
\(941\) −9.05607 57.1777i −0.295219 1.86394i −0.474655 0.880172i \(-0.657427\pi\)
0.179436 0.983770i \(-0.442573\pi\)
\(942\) 0 0
\(943\) −6.55129 1.00325i −0.213339 0.0326703i
\(944\) 9.87893i 0.321532i
\(945\) 0 0
\(946\) −1.81632 4.38498i −0.0590536 0.142568i
\(947\) 3.62357 + 11.1522i 0.117750 + 0.362397i 0.992511 0.122158i \(-0.0389814\pi\)
−0.874761 + 0.484555i \(0.838981\pi\)
\(948\) 0 0
\(949\) 46.2661 28.3519i 1.50186 0.920342i
\(950\) 0.517327 0.844201i 0.0167843 0.0273895i
\(951\) 0 0
\(952\) 0.893495 0.893495i 0.0289583 0.0289583i
\(953\) 40.3558 + 13.1124i 1.30725 + 0.424752i 0.878099 0.478479i \(-0.158812\pi\)
0.429154 + 0.903231i \(0.358812\pi\)
\(954\) 0 0
\(955\) −12.8504 15.0459i −0.415829 0.486873i
\(956\) −3.93211 0.944017i −0.127174 0.0305317i
\(957\) 0 0
\(958\) −1.67665 + 21.3038i −0.0541700 + 0.688296i
\(959\) −12.6695 17.4381i −0.409121 0.563107i
\(960\) 0 0
\(961\) 52.3026 + 38.0001i 1.68718 + 1.22581i
\(962\) 30.7211 7.37550i 0.990490 0.237796i
\(963\) 0 0
\(964\) 3.75064 23.6806i 0.120800 0.762701i
\(965\) −7.27279 30.2933i −0.234119 0.975177i
\(966\) 0 0
\(967\) −2.09524 + 2.45321i −0.0673785 + 0.0788900i −0.793071 0.609129i \(-0.791519\pi\)
0.725693 + 0.688019i \(0.241519\pi\)
\(968\) −4.05854 + 2.94870i −0.130446 + 0.0947748i
\(969\) 0 0
\(970\) 32.0939 + 13.2937i 1.03047 + 0.426836i
\(971\) 5.66635 23.6020i 0.181842 0.757425i −0.804668 0.593725i \(-0.797657\pi\)
0.986510 0.163701i \(-0.0523432\pi\)
\(972\) 0 0
\(973\) 37.3870 2.94242i 1.19857 0.0943297i
\(974\) −5.97684 + 18.3948i −0.191510 + 0.589408i
\(975\) 0 0
\(976\) 1.58386 0.807019i 0.0506983 0.0258321i
\(977\) −10.5296 6.45253i −0.336871 0.206435i 0.343766 0.939055i \(-0.388297\pi\)
−0.680638 + 0.732620i \(0.738297\pi\)
\(978\) 0 0
\(979\) −9.99699 + 19.6202i −0.319505 + 0.627064i
\(980\) −7.81252 + 2.53844i −0.249562 + 0.0810876i
\(981\) 0 0
\(982\) 23.7597 3.76316i 0.758202 0.120087i
\(983\) 37.2264 1.18734 0.593668 0.804710i \(-0.297679\pi\)
0.593668 + 0.804710i \(0.297679\pi\)
\(984\) 0 0
\(985\) −3.74115 −0.119203
\(986\) 6.20088 0.982123i 0.197476 0.0312772i
\(987\) 0 0
\(988\) 12.5890 4.09041i 0.400509 0.130133i
\(989\) 0.911789 1.78949i 0.0289932 0.0569024i
\(990\) 0 0
\(991\) −9.54979 5.85212i −0.303359 0.185899i 0.362485 0.931990i \(-0.381928\pi\)
−0.665844 + 0.746091i \(0.731928\pi\)
\(992\) 8.71410 4.44006i 0.276673 0.140972i
\(993\) 0 0
\(994\) −2.89036 + 8.89563i −0.0916768 + 0.282152i
\(995\) 38.5115 3.03092i 1.22090 0.0960865i
\(996\) 0 0
\(997\) −9.99162 + 41.6181i −0.316438 + 1.31806i 0.556752 + 0.830679i \(0.312047\pi\)
−0.873190 + 0.487380i \(0.837953\pi\)
\(998\) −20.3751 8.43963i −0.644962 0.267152i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.d.17.4 yes 64
3.2 odd 2 738.2.ba.c.17.1 64
41.29 odd 40 738.2.ba.c.521.1 yes 64
123.29 even 40 inner 738.2.ba.d.521.4 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.c.17.1 64 3.2 odd 2
738.2.ba.c.521.1 yes 64 41.29 odd 40
738.2.ba.d.17.4 yes 64 1.1 even 1 trivial
738.2.ba.d.521.4 yes 64 123.29 even 40 inner