Properties

Label 738.2.ba.a.89.1
Level $738$
Weight $2$
Character 738.89
Analytic conductor $5.893$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,-4,0,4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(3\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 89.1
Character \(\chi\) \(=\) 738.89
Dual form 738.2.ba.a.539.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.891007 + 0.453990i) q^{2} +(0.587785 - 0.809017i) q^{4} +(-2.53900 + 0.402138i) q^{5} +(1.91317 + 0.150570i) q^{7} +(-0.156434 + 0.987688i) q^{8} +(2.07970 - 1.51099i) q^{10} +(-0.481597 - 2.00600i) q^{11} +(-1.04091 - 0.889022i) q^{13} +(-1.77301 + 0.734404i) q^{14} +(-0.309017 - 0.951057i) q^{16} +(-2.39754 + 3.91244i) q^{17} +(-2.79249 + 2.38501i) q^{19} +(-1.16705 + 2.29046i) q^{20} +(1.33981 + 1.56872i) q^{22} +(1.05344 - 3.24217i) q^{23} +(1.52952 - 0.496972i) q^{25} +(1.33107 + 0.319561i) q^{26} +(1.24635 - 1.45929i) q^{28} +(-2.25879 - 3.68601i) q^{29} +(1.46148 + 2.01155i) q^{31} +(0.707107 + 0.707107i) q^{32} +(0.360018 - 4.57447i) q^{34} +(-4.91810 + 0.387063i) q^{35} +(-7.99481 - 5.80857i) q^{37} +(1.40535 - 3.39282i) q^{38} -2.57065i q^{40} +(-6.13781 + 1.82408i) q^{41} +(-4.39530 - 8.62626i) q^{43} +(-1.90596 - 0.789475i) q^{44} +(0.533288 + 3.36705i) q^{46} +(0.0235479 + 0.299204i) q^{47} +(-3.27625 - 0.518907i) q^{49} +(-1.13719 + 1.13719i) q^{50} +(-1.33107 + 0.319561i) q^{52} +(0.335935 - 0.205861i) q^{53} +(2.02946 + 4.89955i) q^{55} +(-0.448003 + 1.86607i) q^{56} +(3.68601 + 2.25879i) q^{58} +(-3.35065 - 1.08869i) q^{59} +(1.10029 + 0.560625i) q^{61} +(-2.21541 - 1.12881i) q^{62} +(-0.951057 - 0.309017i) q^{64} +(3.00038 + 1.83864i) q^{65} +(0.716549 - 2.98464i) q^{67} +(1.75599 + 4.23933i) q^{68} +(4.20634 - 2.57765i) q^{70} +(-10.1802 + 2.44406i) q^{71} +(-7.20995 + 7.20995i) q^{73} +(9.76046 + 1.54590i) q^{74} +(0.288130 + 3.66104i) q^{76} +(-0.619336 - 3.91034i) q^{77} +(0.632092 + 0.261821i) q^{79} +(1.16705 + 2.29046i) q^{80} +(4.64072 - 4.41177i) q^{82} -12.6379i q^{83} +(4.51402 - 10.8978i) q^{85} +(7.83248 + 5.69063i) q^{86} +(2.05664 - 0.161861i) q^{88} +(0.333231 - 4.23410i) q^{89} +(-1.85759 - 1.85759i) q^{91} +(-2.00377 - 2.75795i) q^{92} +(-0.156817 - 0.255902i) q^{94} +(6.13102 - 7.17850i) q^{95} +(-3.33298 - 0.800177i) q^{97} +(3.15474 - 1.02504i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{5} + 4 q^{7} - 8 q^{11} - 4 q^{13} + 4 q^{14} + 12 q^{16} - 16 q^{17} - 4 q^{19} + 16 q^{20} + 20 q^{22} - 40 q^{25} - 20 q^{26} - 4 q^{28} + 32 q^{29} - 40 q^{31} - 4 q^{34} - 52 q^{35} - 24 q^{37}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{39}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.891007 + 0.453990i −0.630037 + 0.321020i
\(3\) 0 0
\(4\) 0.587785 0.809017i 0.293893 0.404508i
\(5\) −2.53900 + 0.402138i −1.13548 + 0.179842i −0.695745 0.718289i \(-0.744926\pi\)
−0.439730 + 0.898130i \(0.644926\pi\)
\(6\) 0 0
\(7\) 1.91317 + 0.150570i 0.723112 + 0.0569102i 0.434673 0.900588i \(-0.356864\pi\)
0.288439 + 0.957498i \(0.406864\pi\)
\(8\) −0.156434 + 0.987688i −0.0553079 + 0.349201i
\(9\) 0 0
\(10\) 2.07970 1.51099i 0.657658 0.477817i
\(11\) −0.481597 2.00600i −0.145207 0.604831i −0.996751 0.0805471i \(-0.974333\pi\)
0.851544 0.524283i \(-0.175667\pi\)
\(12\) 0 0
\(13\) −1.04091 0.889022i −0.288697 0.246570i 0.493291 0.869865i \(-0.335794\pi\)
−0.781987 + 0.623294i \(0.785794\pi\)
\(14\) −1.77301 + 0.734404i −0.473857 + 0.196278i
\(15\) 0 0
\(16\) −0.309017 0.951057i −0.0772542 0.237764i
\(17\) −2.39754 + 3.91244i −0.581490 + 0.948905i 0.417697 + 0.908586i \(0.362837\pi\)
−0.999187 + 0.0403188i \(0.987163\pi\)
\(18\) 0 0
\(19\) −2.79249 + 2.38501i −0.640640 + 0.547158i −0.909334 0.416067i \(-0.863408\pi\)
0.268694 + 0.963226i \(0.413408\pi\)
\(20\) −1.16705 + 2.29046i −0.260960 + 0.512163i
\(21\) 0 0
\(22\) 1.33981 + 1.56872i 0.285648 + 0.334451i
\(23\) 1.05344 3.24217i 0.219658 0.676039i −0.779132 0.626860i \(-0.784340\pi\)
0.998790 0.0491788i \(-0.0156604\pi\)
\(24\) 0 0
\(25\) 1.52952 0.496972i 0.305904 0.0993943i
\(26\) 1.33107 + 0.319561i 0.261044 + 0.0626710i
\(27\) 0 0
\(28\) 1.24635 1.45929i 0.235538 0.275780i
\(29\) −2.25879 3.68601i −0.419447 0.684476i 0.571217 0.820799i \(-0.306471\pi\)
−0.990664 + 0.136323i \(0.956471\pi\)
\(30\) 0 0
\(31\) 1.46148 + 2.01155i 0.262489 + 0.361285i 0.919836 0.392303i \(-0.128322\pi\)
−0.657347 + 0.753588i \(0.728322\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 0.360018 4.57447i 0.0617427 0.784515i
\(35\) −4.91810 + 0.387063i −0.831311 + 0.0654256i
\(36\) 0 0
\(37\) −7.99481 5.80857i −1.31434 0.954922i −0.999984 0.00561644i \(-0.998212\pi\)
−0.314354 0.949306i \(-0.601788\pi\)
\(38\) 1.40535 3.39282i 0.227978 0.550388i
\(39\) 0 0
\(40\) 2.57065i 0.406455i
\(41\) −6.13781 + 1.82408i −0.958565 + 0.284873i
\(42\) 0 0
\(43\) −4.39530 8.62626i −0.670277 1.31549i −0.936190 0.351495i \(-0.885673\pi\)
0.265913 0.963997i \(-0.414327\pi\)
\(44\) −1.90596 0.789475i −0.287334 0.119018i
\(45\) 0 0
\(46\) 0.533288 + 3.36705i 0.0786290 + 0.496444i
\(47\) 0.0235479 + 0.299204i 0.00343481 + 0.0436434i 0.998396 0.0566186i \(-0.0180319\pi\)
−0.994961 + 0.100262i \(0.968032\pi\)
\(48\) 0 0
\(49\) −3.27625 0.518907i −0.468036 0.0741296i
\(50\) −1.13719 + 1.13719i −0.160823 + 0.160823i
\(51\) 0 0
\(52\) −1.33107 + 0.319561i −0.184586 + 0.0443151i
\(53\) 0.335935 0.205861i 0.0461442 0.0282772i −0.499235 0.866467i \(-0.666386\pi\)
0.545379 + 0.838189i \(0.316386\pi\)
\(54\) 0 0
\(55\) 2.02946 + 4.89955i 0.273653 + 0.660656i
\(56\) −0.448003 + 1.86607i −0.0598669 + 0.249364i
\(57\) 0 0
\(58\) 3.68601 + 2.25879i 0.483997 + 0.296594i
\(59\) −3.35065 1.08869i −0.436218 0.141736i 0.0826720 0.996577i \(-0.473655\pi\)
−0.518890 + 0.854841i \(0.673655\pi\)
\(60\) 0 0
\(61\) 1.10029 + 0.560625i 0.140878 + 0.0717807i 0.523008 0.852328i \(-0.324810\pi\)
−0.382131 + 0.924108i \(0.624810\pi\)
\(62\) −2.21541 1.12881i −0.281357 0.143359i
\(63\) 0 0
\(64\) −0.951057 0.309017i −0.118882 0.0386271i
\(65\) 3.00038 + 1.83864i 0.372152 + 0.228055i
\(66\) 0 0
\(67\) 0.716549 2.98464i 0.0875404 0.364632i −0.911355 0.411621i \(-0.864963\pi\)
0.998895 + 0.0469892i \(0.0149626\pi\)
\(68\) 1.75599 + 4.23933i 0.212945 + 0.514094i
\(69\) 0 0
\(70\) 4.20634 2.57765i 0.502753 0.308088i
\(71\) −10.1802 + 2.44406i −1.20817 + 0.290057i −0.787017 0.616931i \(-0.788376\pi\)
−0.421156 + 0.906988i \(0.638376\pi\)
\(72\) 0 0
\(73\) −7.20995 + 7.20995i −0.843861 + 0.843861i −0.989359 0.145498i \(-0.953522\pi\)
0.145498 + 0.989359i \(0.453522\pi\)
\(74\) 9.76046 + 1.54590i 1.13463 + 0.179708i
\(75\) 0 0
\(76\) 0.288130 + 3.66104i 0.0330508 + 0.419950i
\(77\) −0.619336 3.91034i −0.0705799 0.445624i
\(78\) 0 0
\(79\) 0.632092 + 0.261821i 0.0711159 + 0.0294572i 0.417958 0.908466i \(-0.362746\pi\)
−0.346842 + 0.937924i \(0.612746\pi\)
\(80\) 1.16705 + 2.29046i 0.130480 + 0.256082i
\(81\) 0 0
\(82\) 4.64072 4.41177i 0.512481 0.487199i
\(83\) 12.6379i 1.38719i −0.720367 0.693593i \(-0.756027\pi\)
0.720367 0.693593i \(-0.243973\pi\)
\(84\) 0 0
\(85\) 4.51402 10.8978i 0.489615 1.18203i
\(86\) 7.83248 + 5.69063i 0.844598 + 0.613636i
\(87\) 0 0
\(88\) 2.05664 0.161861i 0.219238 0.0172544i
\(89\) 0.333231 4.23410i 0.0353224 0.448813i −0.953671 0.300852i \(-0.902729\pi\)
0.988993 0.147961i \(-0.0472711\pi\)
\(90\) 0 0
\(91\) −1.85759 1.85759i −0.194728 0.194728i
\(92\) −2.00377 2.75795i −0.208908 0.287537i
\(93\) 0 0
\(94\) −0.156817 0.255902i −0.0161744 0.0263943i
\(95\) 6.13102 7.17850i 0.629029 0.736499i
\(96\) 0 0
\(97\) −3.33298 0.800177i −0.338413 0.0812457i 0.0606774 0.998157i \(-0.480674\pi\)
−0.399090 + 0.916912i \(0.630674\pi\)
\(98\) 3.15474 1.02504i 0.318677 0.103544i
\(99\) 0 0
\(100\) 0.496972 1.52952i 0.0496972 0.152952i
\(101\) 8.59715 + 10.0660i 0.855448 + 1.00160i 0.999927 + 0.0120932i \(0.00384949\pi\)
−0.144479 + 0.989508i \(0.546151\pi\)
\(102\) 0 0
\(103\) −3.44361 + 6.75846i −0.339309 + 0.665931i −0.996109 0.0881342i \(-0.971910\pi\)
0.656800 + 0.754065i \(0.271910\pi\)
\(104\) 1.04091 0.889022i 0.102070 0.0871758i
\(105\) 0 0
\(106\) −0.205861 + 0.335935i −0.0199950 + 0.0326289i
\(107\) −0.115813 0.356436i −0.0111961 0.0344580i 0.945302 0.326195i \(-0.105767\pi\)
−0.956498 + 0.291737i \(0.905767\pi\)
\(108\) 0 0
\(109\) −7.04095 + 2.91646i −0.674400 + 0.279346i −0.693484 0.720472i \(-0.743925\pi\)
0.0190835 + 0.999818i \(0.493925\pi\)
\(110\) −4.03262 3.44418i −0.384495 0.328390i
\(111\) 0 0
\(112\) −0.448003 1.86607i −0.0423323 0.176327i
\(113\) 9.26527 6.73161i 0.871603 0.633257i −0.0594132 0.998233i \(-0.518923\pi\)
0.931017 + 0.364976i \(0.118923\pi\)
\(114\) 0 0
\(115\) −1.37090 + 8.65550i −0.127837 + 0.807129i
\(116\) −4.30973 0.339183i −0.400149 0.0314924i
\(117\) 0 0
\(118\) 3.47971 0.551132i 0.320333 0.0507358i
\(119\) −5.17602 + 7.12418i −0.474485 + 0.653072i
\(120\) 0 0
\(121\) 6.00899 3.06173i 0.546272 0.278339i
\(122\) −1.23488 −0.111801
\(123\) 0 0
\(124\) 2.48641 0.223286
\(125\) 7.76872 3.95836i 0.694855 0.354047i
\(126\) 0 0
\(127\) −7.82662 + 10.7724i −0.694501 + 0.955898i 0.305493 + 0.952194i \(0.401179\pi\)
−0.999993 + 0.00370359i \(0.998821\pi\)
\(128\) 0.987688 0.156434i 0.0873001 0.0138270i
\(129\) 0 0
\(130\) −3.50809 0.276092i −0.307679 0.0242149i
\(131\) 0.811861 5.12589i 0.0709327 0.447851i −0.926503 0.376287i \(-0.877201\pi\)
0.997436 0.0715646i \(-0.0227992\pi\)
\(132\) 0 0
\(133\) −5.70162 + 4.14247i −0.494394 + 0.359198i
\(134\) 0.716549 + 2.98464i 0.0619004 + 0.257834i
\(135\) 0 0
\(136\) −3.48921 2.98007i −0.299197 0.255539i
\(137\) 0.168936 0.0699756i 0.0144332 0.00597842i −0.375455 0.926841i \(-0.622514\pi\)
0.389888 + 0.920862i \(0.372514\pi\)
\(138\) 0 0
\(139\) 3.49345 + 10.7517i 0.296310 + 0.911949i 0.982778 + 0.184789i \(0.0591602\pi\)
−0.686468 + 0.727160i \(0.740840\pi\)
\(140\) −2.57765 + 4.20634i −0.217851 + 0.355500i
\(141\) 0 0
\(142\) 7.96109 6.79941i 0.668080 0.570594i
\(143\) −1.28208 + 2.51622i −0.107213 + 0.210416i
\(144\) 0 0
\(145\) 7.21736 + 8.45044i 0.599369 + 0.701771i
\(146\) 3.15086 9.69736i 0.260767 0.802559i
\(147\) 0 0
\(148\) −9.39846 + 3.05374i −0.772548 + 0.251016i
\(149\) 20.1245 + 4.83146i 1.64866 + 0.395809i 0.948148 0.317830i \(-0.102954\pi\)
0.700514 + 0.713638i \(0.252954\pi\)
\(150\) 0 0
\(151\) −8.65374 + 10.1322i −0.704232 + 0.824549i −0.991058 0.133433i \(-0.957400\pi\)
0.286826 + 0.957983i \(0.407400\pi\)
\(152\) −1.91880 3.13120i −0.155636 0.253974i
\(153\) 0 0
\(154\) 2.32709 + 3.20296i 0.187522 + 0.258102i
\(155\) −4.51960 4.51960i −0.363023 0.363023i
\(156\) 0 0
\(157\) 1.16204 14.7651i 0.0927408 1.17838i −0.757805 0.652482i \(-0.773728\pi\)
0.850545 0.525902i \(-0.176272\pi\)
\(158\) −0.682062 + 0.0536795i −0.0542620 + 0.00427051i
\(159\) 0 0
\(160\) −2.07970 1.51099i −0.164415 0.119454i
\(161\) 2.50360 6.04422i 0.197311 0.476351i
\(162\) 0 0
\(163\) 12.7606i 0.999490i 0.866173 + 0.499745i \(0.166573\pi\)
−0.866173 + 0.499745i \(0.833427\pi\)
\(164\) −2.13201 + 6.03776i −0.166482 + 0.471470i
\(165\) 0 0
\(166\) 5.73747 + 11.2604i 0.445314 + 0.873978i
\(167\) 18.1191 + 7.50516i 1.40210 + 0.580767i 0.950295 0.311352i \(-0.100782\pi\)
0.451801 + 0.892119i \(0.350782\pi\)
\(168\) 0 0
\(169\) −1.74051 10.9892i −0.133886 0.845320i
\(170\) 0.925481 + 11.7593i 0.0709811 + 0.901901i
\(171\) 0 0
\(172\) −9.56228 1.51452i −0.729117 0.115481i
\(173\) −7.16154 + 7.16154i −0.544482 + 0.544482i −0.924840 0.380357i \(-0.875801\pi\)
0.380357 + 0.924840i \(0.375801\pi\)
\(174\) 0 0
\(175\) 3.00107 0.720493i 0.226860 0.0544642i
\(176\) −1.75899 + 1.07791i −0.132589 + 0.0812507i
\(177\) 0 0
\(178\) 1.62533 + 3.92389i 0.121824 + 0.294108i
\(179\) −0.435114 + 1.81238i −0.0325220 + 0.135464i −0.986269 0.165146i \(-0.947190\pi\)
0.953747 + 0.300610i \(0.0971903\pi\)
\(180\) 0 0
\(181\) 1.96858 + 1.20634i 0.146323 + 0.0896669i 0.593733 0.804662i \(-0.297654\pi\)
−0.447410 + 0.894329i \(0.647654\pi\)
\(182\) 2.49845 + 0.811795i 0.185197 + 0.0601742i
\(183\) 0 0
\(184\) 3.03746 + 1.54766i 0.223924 + 0.114095i
\(185\) 22.6347 + 11.5329i 1.66413 + 0.847918i
\(186\) 0 0
\(187\) 9.00298 + 2.92525i 0.658363 + 0.213915i
\(188\) 0.255902 + 0.156817i 0.0186636 + 0.0114371i
\(189\) 0 0
\(190\) −2.20381 + 9.17951i −0.159881 + 0.665952i
\(191\) 0.763208 + 1.84255i 0.0552238 + 0.133322i 0.949083 0.315025i \(-0.102013\pi\)
−0.893860 + 0.448347i \(0.852013\pi\)
\(192\) 0 0
\(193\) 14.6704 8.99000i 1.05600 0.647115i 0.117735 0.993045i \(-0.462437\pi\)
0.938260 + 0.345930i \(0.112437\pi\)
\(194\) 3.33298 0.800177i 0.239294 0.0574494i
\(195\) 0 0
\(196\) −2.34554 + 2.34554i −0.167538 + 0.167538i
\(197\) −9.22733 1.46147i −0.657420 0.104125i −0.181193 0.983448i \(-0.557996\pi\)
−0.476227 + 0.879322i \(0.657996\pi\)
\(198\) 0 0
\(199\) 1.75167 + 22.2571i 0.124173 + 1.57776i 0.671604 + 0.740911i \(0.265606\pi\)
−0.547431 + 0.836851i \(0.684394\pi\)
\(200\) 0.251583 + 1.58843i 0.0177896 + 0.112319i
\(201\) 0 0
\(202\) −12.2300 5.06582i −0.860498 0.356430i
\(203\) −3.76646 7.39210i −0.264354 0.518823i
\(204\) 0 0
\(205\) 14.8504 7.09958i 1.03720 0.495856i
\(206\) 7.58519i 0.528486i
\(207\) 0 0
\(208\) −0.523851 + 1.26469i −0.0363225 + 0.0876904i
\(209\) 6.12917 + 4.45310i 0.423964 + 0.308028i
\(210\) 0 0
\(211\) 14.6251 1.15102i 1.00683 0.0792395i 0.435696 0.900094i \(-0.356502\pi\)
0.571138 + 0.820854i \(0.306502\pi\)
\(212\) 0.0309124 0.392779i 0.00212307 0.0269762i
\(213\) 0 0
\(214\) 0.265009 + 0.265009i 0.0181157 + 0.0181157i
\(215\) 14.6286 + 20.1346i 0.997663 + 1.37317i
\(216\) 0 0
\(217\) 2.49318 + 4.06850i 0.169248 + 0.276188i
\(218\) 4.94949 5.79510i 0.335222 0.392494i
\(219\) 0 0
\(220\) 5.15671 + 1.23802i 0.347665 + 0.0834671i
\(221\) 5.97387 1.94103i 0.401846 0.130568i
\(222\) 0 0
\(223\) 1.77149 5.45209i 0.118628 0.365099i −0.874058 0.485821i \(-0.838521\pi\)
0.992686 + 0.120721i \(0.0385208\pi\)
\(224\) 1.24635 + 1.45929i 0.0832752 + 0.0975028i
\(225\) 0 0
\(226\) −5.19933 + 10.2043i −0.345854 + 0.678777i
\(227\) −15.5710 + 13.2989i −1.03348 + 0.882677i −0.993189 0.116511i \(-0.962829\pi\)
−0.0402926 + 0.999188i \(0.512829\pi\)
\(228\) 0 0
\(229\) −1.62599 + 2.65338i −0.107448 + 0.175340i −0.901845 0.432059i \(-0.857787\pi\)
0.794397 + 0.607399i \(0.207787\pi\)
\(230\) −2.70804 8.33448i −0.178563 0.549559i
\(231\) 0 0
\(232\) 3.99399 1.65436i 0.262218 0.108614i
\(233\) −12.3687 10.5639i −0.810302 0.692064i 0.144435 0.989514i \(-0.453864\pi\)
−0.954737 + 0.297451i \(0.903864\pi\)
\(234\) 0 0
\(235\) −0.180109 0.750209i −0.0117490 0.0489383i
\(236\) −2.85024 + 2.07082i −0.185535 + 0.134799i
\(237\) 0 0
\(238\) 1.37756 8.69755i 0.0892937 0.563778i
\(239\) −27.4961 2.16399i −1.77858 0.139977i −0.853827 0.520557i \(-0.825724\pi\)
−0.924748 + 0.380580i \(0.875724\pi\)
\(240\) 0 0
\(241\) 23.1443 3.66569i 1.49085 0.236128i 0.642799 0.766035i \(-0.277773\pi\)
0.848056 + 0.529907i \(0.177773\pi\)
\(242\) −3.96405 + 5.45605i −0.254819 + 0.350728i
\(243\) 0 0
\(244\) 1.10029 0.560625i 0.0704388 0.0358903i
\(245\) 8.52707 0.544775
\(246\) 0 0
\(247\) 5.02706 0.319864
\(248\) −2.21541 + 1.12881i −0.140679 + 0.0716793i
\(249\) 0 0
\(250\) −5.12492 + 7.05385i −0.324129 + 0.446125i
\(251\) 25.3508 4.01517i 1.60013 0.253435i 0.708334 0.705877i \(-0.249447\pi\)
0.891794 + 0.452442i \(0.149447\pi\)
\(252\) 0 0
\(253\) −7.01112 0.551787i −0.440785 0.0346905i
\(254\) 2.08300 13.1515i 0.130699 0.825199i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 0.857305 + 3.57093i 0.0534772 + 0.222749i 0.992709 0.120535i \(-0.0384609\pi\)
−0.939232 + 0.343283i \(0.888461\pi\)
\(258\) 0 0
\(259\) −14.4209 12.3166i −0.896069 0.765315i
\(260\) 3.25107 1.34664i 0.201623 0.0835149i
\(261\) 0 0
\(262\) 1.60373 + 4.93578i 0.0990789 + 0.304934i
\(263\) −14.3466 + 23.4116i −0.884652 + 1.44362i 0.0115298 + 0.999934i \(0.496330\pi\)
−0.896182 + 0.443687i \(0.853670\pi\)
\(264\) 0 0
\(265\) −0.770154 + 0.657774i −0.0473102 + 0.0404067i
\(266\) 3.19954 6.27945i 0.196176 0.385018i
\(267\) 0 0
\(268\) −1.99345 2.33403i −0.121769 0.142574i
\(269\) 1.35339 4.16531i 0.0825177 0.253963i −0.901282 0.433232i \(-0.857373\pi\)
0.983800 + 0.179269i \(0.0573731\pi\)
\(270\) 0 0
\(271\) −7.25283 + 2.35659i −0.440578 + 0.143152i −0.520902 0.853616i \(-0.674404\pi\)
0.0803244 + 0.996769i \(0.474404\pi\)
\(272\) 4.46183 + 1.07119i 0.270538 + 0.0649505i
\(273\) 0 0
\(274\) −0.118755 + 0.139044i −0.00717425 + 0.00839997i
\(275\) −1.73354 2.82887i −0.104536 0.170588i
\(276\) 0 0
\(277\) 9.77554 + 13.4549i 0.587355 + 0.808425i 0.994478 0.104948i \(-0.0334678\pi\)
−0.407122 + 0.913374i \(0.633468\pi\)
\(278\) −7.99386 7.99386i −0.479440 0.479440i
\(279\) 0 0
\(280\) 0.387063 4.91810i 0.0231314 0.293913i
\(281\) 7.67457 0.604002i 0.457827 0.0360317i 0.152551 0.988296i \(-0.451251\pi\)
0.305276 + 0.952264i \(0.401251\pi\)
\(282\) 0 0
\(283\) −8.53895 6.20391i −0.507588 0.368784i 0.304320 0.952570i \(-0.401571\pi\)
−0.811908 + 0.583786i \(0.801571\pi\)
\(284\) −4.00651 + 9.67258i −0.237743 + 0.573962i
\(285\) 0 0
\(286\) 2.82401i 0.166987i
\(287\) −12.0174 + 2.56561i −0.709362 + 0.151443i
\(288\) 0 0
\(289\) −1.84110 3.61336i −0.108300 0.212551i
\(290\) −10.2671 4.25279i −0.602907 0.249732i
\(291\) 0 0
\(292\) 1.59507 + 10.0709i 0.0933444 + 0.589353i
\(293\) −1.43752 18.2655i −0.0839810 1.06708i −0.884118 0.467263i \(-0.845240\pi\)
0.800137 0.599817i \(-0.204760\pi\)
\(294\) 0 0
\(295\) 8.94512 + 1.41677i 0.520805 + 0.0824874i
\(296\) 6.98772 6.98772i 0.406153 0.406153i
\(297\) 0 0
\(298\) −20.1245 + 4.83146i −1.16578 + 0.279879i
\(299\) −3.97891 + 2.43828i −0.230106 + 0.141009i
\(300\) 0 0
\(301\) −7.11012 17.1653i −0.409820 0.989394i
\(302\) 3.11060 12.9566i 0.178995 0.745569i
\(303\) 0 0
\(304\) 3.13120 + 1.91880i 0.179587 + 0.110051i
\(305\) −3.01908 0.980959i −0.172872 0.0561695i
\(306\) 0 0
\(307\) −27.0545 13.7850i −1.54408 0.786750i −0.545406 0.838172i \(-0.683625\pi\)
−0.998677 + 0.0514219i \(0.983625\pi\)
\(308\) −3.52756 1.79738i −0.201002 0.102415i
\(309\) 0 0
\(310\) 6.07886 + 1.97514i 0.345256 + 0.112180i
\(311\) −7.47254 4.57918i −0.423729 0.259661i 0.294247 0.955729i \(-0.404931\pi\)
−0.717976 + 0.696068i \(0.754931\pi\)
\(312\) 0 0
\(313\) 6.39853 26.6518i 0.361666 1.50645i −0.434111 0.900859i \(-0.642937\pi\)
0.795777 0.605589i \(-0.207063\pi\)
\(314\) 5.66783 + 13.6834i 0.319854 + 0.772196i
\(315\) 0 0
\(316\) 0.583352 0.357479i 0.0328161 0.0201097i
\(317\) −22.8603 + 5.48827i −1.28396 + 0.308252i −0.817315 0.576191i \(-0.804538\pi\)
−0.466648 + 0.884443i \(0.654538\pi\)
\(318\) 0 0
\(319\) −6.30630 + 6.30630i −0.353085 + 0.353085i
\(320\) 2.53900 + 0.402138i 0.141934 + 0.0224802i
\(321\) 0 0
\(322\) 0.513296 + 6.52205i 0.0286049 + 0.363460i
\(323\) −2.63608 16.6436i −0.146676 0.926074i
\(324\) 0 0
\(325\) −2.03392 0.842475i −0.112821 0.0467321i
\(326\) −5.79321 11.3698i −0.320856 0.629715i
\(327\) 0 0
\(328\) −0.841455 6.34759i −0.0464616 0.350487i
\(329\) 0.575975i 0.0317545i
\(330\) 0 0
\(331\) 4.82306 11.6439i 0.265099 0.640006i −0.734140 0.678998i \(-0.762415\pi\)
0.999240 + 0.0389917i \(0.0124146\pi\)
\(332\) −10.2242 7.42835i −0.561128 0.407684i
\(333\) 0 0
\(334\) −19.5515 + 1.53873i −1.06981 + 0.0841958i
\(335\) −0.619080 + 7.86616i −0.0338240 + 0.429774i
\(336\) 0 0
\(337\) −20.4989 20.4989i −1.11665 1.11665i −0.992230 0.124418i \(-0.960294\pi\)
−0.124418 0.992230i \(-0.539706\pi\)
\(338\) 6.53978 + 9.00124i 0.355717 + 0.489603i
\(339\) 0 0
\(340\) −6.16324 10.0575i −0.334249 0.545444i
\(341\) 3.33132 3.90047i 0.180401 0.211222i
\(342\) 0 0
\(343\) −19.2524 4.62209i −1.03953 0.249569i
\(344\) 9.20763 2.99174i 0.496442 0.161304i
\(345\) 0 0
\(346\) 3.12971 9.63226i 0.168254 0.517833i
\(347\) −16.5885 19.4226i −0.890515 1.04266i −0.998821 0.0485415i \(-0.984543\pi\)
0.108306 0.994118i \(-0.465457\pi\)
\(348\) 0 0
\(349\) 12.2921 24.1246i 0.657980 1.29136i −0.285007 0.958526i \(-0.591996\pi\)
0.942986 0.332832i \(-0.108004\pi\)
\(350\) −2.34688 + 2.00442i −0.125446 + 0.107141i
\(351\) 0 0
\(352\) 1.07791 1.75899i 0.0574529 0.0937547i
\(353\) 3.50640 + 10.7916i 0.186627 + 0.574378i 0.999973 0.00740243i \(-0.00235629\pi\)
−0.813346 + 0.581780i \(0.802356\pi\)
\(354\) 0 0
\(355\) 24.8648 10.2993i 1.31969 0.546632i
\(356\) −3.22959 2.75833i −0.171168 0.146191i
\(357\) 0 0
\(358\) −0.435114 1.81238i −0.0229965 0.0957873i
\(359\) −17.9672 + 13.0539i −0.948273 + 0.688961i −0.950398 0.311037i \(-0.899324\pi\)
0.00212446 + 0.999998i \(0.499324\pi\)
\(360\) 0 0
\(361\) −0.862542 + 5.44588i −0.0453969 + 0.286625i
\(362\) −2.30168 0.181146i −0.120974 0.00952084i
\(363\) 0 0
\(364\) −2.59468 + 0.410957i −0.135998 + 0.0215400i
\(365\) 15.4067 21.2055i 0.806422 1.10994i
\(366\) 0 0
\(367\) 15.3346 7.81339i 0.800462 0.407856i −0.00538058 0.999986i \(-0.501713\pi\)
0.805843 + 0.592130i \(0.201713\pi\)
\(368\) −3.40902 −0.177707
\(369\) 0 0
\(370\) −25.4035 −1.32066
\(371\) 0.673699 0.343267i 0.0349767 0.0178215i
\(372\) 0 0
\(373\) −8.85992 + 12.1946i −0.458749 + 0.631414i −0.974249 0.225476i \(-0.927606\pi\)
0.515499 + 0.856890i \(0.327606\pi\)
\(374\) −9.34975 + 1.48085i −0.483464 + 0.0765732i
\(375\) 0 0
\(376\) −0.299204 0.0235479i −0.0154303 0.00121439i
\(377\) −0.925746 + 5.84493i −0.0476784 + 0.301029i
\(378\) 0 0
\(379\) −7.58056 + 5.50760i −0.389387 + 0.282906i −0.765204 0.643788i \(-0.777362\pi\)
0.375817 + 0.926694i \(0.377362\pi\)
\(380\) −2.20381 9.17951i −0.113053 0.470899i
\(381\) 0 0
\(382\) −1.51652 1.29523i −0.0775921 0.0662699i
\(383\) 10.9579 4.53890i 0.559921 0.231927i −0.0847298 0.996404i \(-0.527003\pi\)
0.644651 + 0.764477i \(0.277003\pi\)
\(384\) 0 0
\(385\) 3.14499 + 9.67928i 0.160283 + 0.493302i
\(386\) −8.99000 + 14.6704i −0.457579 + 0.746701i
\(387\) 0 0
\(388\) −2.60643 + 2.22610i −0.132322 + 0.113013i
\(389\) −2.94937 + 5.78846i −0.149539 + 0.293487i −0.953609 0.301048i \(-0.902664\pi\)
0.804070 + 0.594535i \(0.202664\pi\)
\(390\) 0 0
\(391\) 10.1591 + 11.8948i 0.513768 + 0.601545i
\(392\) 1.02504 3.15474i 0.0517722 0.159338i
\(393\) 0 0
\(394\) 8.88511 2.88695i 0.447625 0.145442i
\(395\) −1.71017 0.410575i −0.0860479 0.0206583i
\(396\) 0 0
\(397\) 14.6930 17.2033i 0.737419 0.863406i −0.257269 0.966340i \(-0.582823\pi\)
0.994688 + 0.102933i \(0.0328228\pi\)
\(398\) −11.6652 19.0359i −0.584726 0.954186i
\(399\) 0 0
\(400\) −0.945296 1.30109i −0.0472648 0.0650544i
\(401\) 7.80732 + 7.80732i 0.389879 + 0.389879i 0.874644 0.484765i \(-0.161095\pi\)
−0.484765 + 0.874644i \(0.661095\pi\)
\(402\) 0 0
\(403\) 0.267045 3.39313i 0.0133025 0.169024i
\(404\) 13.1968 1.03861i 0.656566 0.0516729i
\(405\) 0 0
\(406\) 6.71188 + 4.87647i 0.333105 + 0.242015i
\(407\) −7.80169 + 18.8349i −0.386715 + 0.933613i
\(408\) 0 0
\(409\) 8.26551i 0.408703i −0.978898 0.204352i \(-0.934491\pi\)
0.978898 0.204352i \(-0.0655086\pi\)
\(410\) −10.0086 + 13.0677i −0.494291 + 0.645368i
\(411\) 0 0
\(412\) 3.44361 + 6.75846i 0.169654 + 0.332965i
\(413\) −6.24646 2.58737i −0.307368 0.127316i
\(414\) 0 0
\(415\) 5.08216 + 32.0875i 0.249474 + 1.57511i
\(416\) −0.107402 1.36467i −0.00526581 0.0669084i
\(417\) 0 0
\(418\) −7.48280 1.18516i −0.365996 0.0579680i
\(419\) −4.06301 + 4.06301i −0.198491 + 0.198491i −0.799353 0.600862i \(-0.794824\pi\)
0.600862 + 0.799353i \(0.294824\pi\)
\(420\) 0 0
\(421\) −3.80998 + 0.914694i −0.185687 + 0.0445795i −0.325222 0.945638i \(-0.605439\pi\)
0.139535 + 0.990217i \(0.455439\pi\)
\(422\) −12.5085 + 7.66523i −0.608905 + 0.373137i
\(423\) 0 0
\(424\) 0.150775 + 0.364003i 0.00732227 + 0.0176775i
\(425\) −1.72273 + 7.17567i −0.0835644 + 0.348071i
\(426\) 0 0
\(427\) 2.02063 + 1.23824i 0.0977852 + 0.0599228i
\(428\) −0.356436 0.115813i −0.0172290 0.00559804i
\(429\) 0 0
\(430\) −22.1751 11.2988i −1.06938 0.544875i
\(431\) 29.9852 + 15.2782i 1.44433 + 0.735925i 0.988082 0.153925i \(-0.0491916\pi\)
0.456252 + 0.889851i \(0.349192\pi\)
\(432\) 0 0
\(433\) −15.9904 5.19561i −0.768451 0.249685i −0.101549 0.994831i \(-0.532380\pi\)
−0.666902 + 0.745146i \(0.732380\pi\)
\(434\) −4.06850 2.49318i −0.195294 0.119676i
\(435\) 0 0
\(436\) −1.77910 + 7.41050i −0.0852036 + 0.354898i
\(437\) 4.79087 + 11.5662i 0.229179 + 0.553286i
\(438\) 0 0
\(439\) 16.2516 9.95896i 0.775644 0.475315i −0.0774988 0.996992i \(-0.524693\pi\)
0.853143 + 0.521677i \(0.174693\pi\)
\(440\) −5.15671 + 1.23802i −0.245837 + 0.0590201i
\(441\) 0 0
\(442\) −4.44155 + 4.44155i −0.211263 + 0.211263i
\(443\) 3.10369 + 0.491577i 0.147461 + 0.0233555i 0.229728 0.973255i \(-0.426216\pi\)
−0.0822676 + 0.996610i \(0.526216\pi\)
\(444\) 0 0
\(445\) 0.856619 + 10.8844i 0.0406076 + 0.515969i
\(446\) 0.896787 + 5.66209i 0.0424641 + 0.268108i
\(447\) 0 0
\(448\) −1.77301 0.734404i −0.0837668 0.0346973i
\(449\) −12.4359 24.4068i −0.586886 1.15183i −0.973307 0.229506i \(-0.926289\pi\)
0.386421 0.922322i \(-0.373711\pi\)
\(450\) 0 0
\(451\) 6.61504 + 11.4340i 0.311490 + 0.538404i
\(452\) 11.4525i 0.538681i
\(453\) 0 0
\(454\) 7.83628 18.9185i 0.367775 0.887887i
\(455\) 5.46341 + 3.96940i 0.256129 + 0.186088i
\(456\) 0 0
\(457\) 20.6523 1.62537i 0.966076 0.0760318i 0.414404 0.910093i \(-0.363990\pi\)
0.551672 + 0.834061i \(0.313990\pi\)
\(458\) 0.244161 3.10236i 0.0114089 0.144964i
\(459\) 0 0
\(460\) 6.19665 + 6.19665i 0.288920 + 0.288920i
\(461\) 13.3255 + 18.3410i 0.620630 + 0.854224i 0.997399 0.0720832i \(-0.0229647\pi\)
−0.376768 + 0.926308i \(0.622965\pi\)
\(462\) 0 0
\(463\) −4.34044 7.08296i −0.201717 0.329173i 0.735745 0.677258i \(-0.236832\pi\)
−0.937463 + 0.348085i \(0.886832\pi\)
\(464\) −2.80760 + 3.28728i −0.130340 + 0.152608i
\(465\) 0 0
\(466\) 15.8165 + 3.79721i 0.732686 + 0.175902i
\(467\) 12.8235 4.16659i 0.593399 0.192807i 0.00310468 0.999995i \(-0.499012\pi\)
0.590294 + 0.807188i \(0.299012\pi\)
\(468\) 0 0
\(469\) 1.82028 5.60225i 0.0840528 0.258688i
\(470\) 0.501067 + 0.586674i 0.0231125 + 0.0270612i
\(471\) 0 0
\(472\) 1.59945 3.13909i 0.0736206 0.144488i
\(473\) −15.1875 + 12.9713i −0.698321 + 0.596423i
\(474\) 0 0
\(475\) −3.08589 + 5.03571i −0.141590 + 0.231054i
\(476\) 2.72119 + 8.37497i 0.124726 + 0.383866i
\(477\) 0 0
\(478\) 25.4816 10.5548i 1.16550 0.482767i
\(479\) −22.4383 19.1641i −1.02523 0.875630i −0.0329272 0.999458i \(-0.510483\pi\)
−0.992304 + 0.123828i \(0.960483\pi\)
\(480\) 0 0
\(481\) 3.15794 + 13.1538i 0.143990 + 0.599760i
\(482\) −18.9575 + 13.7734i −0.863491 + 0.627363i
\(483\) 0 0
\(484\) 1.05500 6.66101i 0.0479546 0.302773i
\(485\) 8.78421 + 0.691332i 0.398870 + 0.0313918i
\(486\) 0 0
\(487\) 38.6574 6.12272i 1.75173 0.277447i 0.803564 0.595218i \(-0.202934\pi\)
0.948168 + 0.317771i \(0.102934\pi\)
\(488\) −0.725846 + 0.999041i −0.0328575 + 0.0452245i
\(489\) 0 0
\(490\) −7.59768 + 3.87121i −0.343228 + 0.174883i
\(491\) −12.1593 −0.548744 −0.274372 0.961624i \(-0.588470\pi\)
−0.274372 + 0.961624i \(0.588470\pi\)
\(492\) 0 0
\(493\) 19.8368 0.893407
\(494\) −4.47914 + 2.28224i −0.201526 + 0.102683i
\(495\) 0 0
\(496\) 1.46148 2.01155i 0.0656222 0.0903212i
\(497\) −19.8446 + 3.14308i −0.890152 + 0.140986i
\(498\) 0 0
\(499\) −25.0086 1.96822i −1.11954 0.0881097i −0.494847 0.868980i \(-0.664776\pi\)
−0.624693 + 0.780870i \(0.714776\pi\)
\(500\) 1.36396 8.61169i 0.0609981 0.385127i
\(501\) 0 0
\(502\) −20.7649 + 15.0866i −0.926782 + 0.673346i
\(503\) −7.02443 29.2588i −0.313204 1.30459i −0.877723 0.479168i \(-0.840939\pi\)
0.564520 0.825420i \(-0.309061\pi\)
\(504\) 0 0
\(505\) −25.8761 22.1002i −1.15147 0.983448i
\(506\) 6.49746 2.69133i 0.288847 0.119644i
\(507\) 0 0
\(508\) 4.11470 + 12.6637i 0.182560 + 0.561863i
\(509\) −20.5299 + 33.5018i −0.909973 + 1.48494i −0.0357824 + 0.999360i \(0.511392\pi\)
−0.874191 + 0.485582i \(0.838608\pi\)
\(510\) 0 0
\(511\) −14.8795 + 12.7083i −0.658230 + 0.562182i
\(512\) 0.453990 0.891007i 0.0200637 0.0393773i
\(513\) 0 0
\(514\) −2.38503 2.79251i −0.105199 0.123173i
\(515\) 6.02548 18.5445i 0.265514 0.817170i
\(516\) 0 0
\(517\) 0.588862 0.191333i 0.0258981 0.00841480i
\(518\) 18.4407 + 4.42722i 0.810238 + 0.194521i
\(519\) 0 0
\(520\) −2.28536 + 2.67582i −0.100220 + 0.117342i
\(521\) 2.99896 + 4.89386i 0.131387 + 0.214404i 0.911568 0.411150i \(-0.134873\pi\)
−0.780181 + 0.625554i \(0.784873\pi\)
\(522\) 0 0
\(523\) −14.3430 19.7415i −0.627176 0.863234i 0.370674 0.928763i \(-0.379127\pi\)
−0.997851 + 0.0655289i \(0.979127\pi\)
\(524\) −3.66973 3.66973i −0.160313 0.160313i
\(525\) 0 0
\(526\) 2.15431 27.3731i 0.0939324 1.19352i
\(527\) −11.3740 + 0.895153i −0.495459 + 0.0389935i
\(528\) 0 0
\(529\) 9.20547 + 6.68816i 0.400238 + 0.290790i
\(530\) 0.387589 0.935723i 0.0168358 0.0406452i
\(531\) 0 0
\(532\) 7.04760i 0.305552i
\(533\) 8.01057 + 3.55795i 0.346976 + 0.154112i
\(534\) 0 0
\(535\) 0.437386 + 0.858419i 0.0189099 + 0.0371127i
\(536\) 2.83580 + 1.17463i 0.122488 + 0.0507362i
\(537\) 0 0
\(538\) 0.685131 + 4.32574i 0.0295381 + 0.186496i
\(539\) 0.536907 + 6.82205i 0.0231262 + 0.293847i
\(540\) 0 0
\(541\) 36.8518 + 5.83675i 1.58438 + 0.250941i 0.885619 0.464412i \(-0.153734\pi\)
0.698763 + 0.715354i \(0.253734\pi\)
\(542\) 5.39245 5.39245i 0.231625 0.231625i
\(543\) 0 0
\(544\) −4.46183 + 1.07119i −0.191299 + 0.0459269i
\(545\) 16.7041 10.2363i 0.715527 0.438475i
\(546\) 0 0
\(547\) −12.4529 30.0640i −0.532448 1.28544i −0.929898 0.367818i \(-0.880105\pi\)
0.397450 0.917624i \(-0.369895\pi\)
\(548\) 0.0426867 0.177803i 0.00182349 0.00759536i
\(549\) 0 0
\(550\) 2.82887 + 1.73354i 0.120624 + 0.0739182i
\(551\) 15.0988 + 4.90590i 0.643231 + 0.208999i
\(552\) 0 0
\(553\) 1.16988 + 0.596084i 0.0497483 + 0.0253481i
\(554\) −14.8185 7.55038i −0.629576 0.320785i
\(555\) 0 0
\(556\) 10.7517 + 3.49345i 0.455975 + 0.148155i
\(557\) −3.55029 2.17562i −0.150431 0.0921840i 0.445246 0.895408i \(-0.353116\pi\)
−0.595677 + 0.803224i \(0.703116\pi\)
\(558\) 0 0
\(559\) −3.09382 + 12.8867i −0.130855 + 0.545049i
\(560\) 1.88790 + 4.55778i 0.0797781 + 0.192601i
\(561\) 0 0
\(562\) −6.56388 + 4.02235i −0.276881 + 0.169673i
\(563\) 1.67568 0.402294i 0.0706213 0.0169547i −0.197981 0.980206i \(-0.563438\pi\)
0.268602 + 0.963251i \(0.413438\pi\)
\(564\) 0 0
\(565\) −20.8175 + 20.8175i −0.875798 + 0.875798i
\(566\) 10.4248 + 1.65112i 0.438186 + 0.0694019i
\(567\) 0 0
\(568\) −0.821429 10.4372i −0.0344664 0.437937i
\(569\) −2.53041 15.9764i −0.106080 0.669765i −0.982224 0.187715i \(-0.939892\pi\)
0.876143 0.482051i \(-0.160108\pi\)
\(570\) 0 0
\(571\) 34.4968 + 14.2891i 1.44365 + 0.597978i 0.960680 0.277659i \(-0.0895587\pi\)
0.482968 + 0.875638i \(0.339559\pi\)
\(572\) 1.28208 + 2.51622i 0.0536063 + 0.105208i
\(573\) 0 0
\(574\) 9.54278 7.74174i 0.398308 0.323134i
\(575\) 5.48250i 0.228636i
\(576\) 0 0
\(577\) 3.26807 7.88982i 0.136052 0.328458i −0.841140 0.540818i \(-0.818115\pi\)
0.977192 + 0.212360i \(0.0681149\pi\)
\(578\) 3.28086 + 2.38369i 0.136466 + 0.0991483i
\(579\) 0 0
\(580\) 11.0788 0.871921i 0.460022 0.0362046i
\(581\) 1.90288 24.1784i 0.0789449 1.00309i
\(582\) 0 0
\(583\) −0.574742 0.574742i −0.0238034 0.0238034i
\(584\) −5.99330 8.24907i −0.248005 0.341349i
\(585\) 0 0
\(586\) 9.57319 + 15.6220i 0.395465 + 0.645340i
\(587\) −2.11936 + 2.48145i −0.0874754 + 0.102420i −0.802417 0.596763i \(-0.796453\pi\)
0.714942 + 0.699184i \(0.246453\pi\)
\(588\) 0 0
\(589\) −8.87871 2.13159i −0.365841 0.0878306i
\(590\) −8.61336 + 2.79865i −0.354606 + 0.115219i
\(591\) 0 0
\(592\) −3.05374 + 9.39846i −0.125508 + 0.386274i
\(593\) 9.99778 + 11.7059i 0.410560 + 0.480704i 0.926701 0.375800i \(-0.122632\pi\)
−0.516141 + 0.856504i \(0.672632\pi\)
\(594\) 0 0
\(595\) 10.2770 20.1698i 0.421316 0.826879i
\(596\) 15.7376 13.4412i 0.644638 0.550573i
\(597\) 0 0
\(598\) 2.43828 3.97891i 0.0997085 0.162710i
\(599\) −1.75393 5.39803i −0.0716635 0.220558i 0.908810 0.417211i \(-0.136993\pi\)
−0.980473 + 0.196654i \(0.936993\pi\)
\(600\) 0 0
\(601\) −34.7984 + 14.4140i −1.41946 + 0.587958i −0.954724 0.297494i \(-0.903849\pi\)
−0.464732 + 0.885451i \(0.653849\pi\)
\(602\) 14.1281 + 12.0665i 0.575817 + 0.491794i
\(603\) 0 0
\(604\) 3.11060 + 12.9566i 0.126569 + 0.527197i
\(605\) −14.0256 + 10.1902i −0.570221 + 0.414290i
\(606\) 0 0
\(607\) −4.92019 + 31.0649i −0.199704 + 1.26088i 0.660458 + 0.750863i \(0.270362\pi\)
−0.860162 + 0.510021i \(0.829638\pi\)
\(608\) −3.66104 0.288130i −0.148475 0.0116852i
\(609\) 0 0
\(610\) 3.13537 0.496593i 0.126947 0.0201065i
\(611\) 0.241488 0.332380i 0.00976955 0.0134466i
\(612\) 0 0
\(613\) −39.5322 + 20.1427i −1.59669 + 0.813555i −0.596754 + 0.802424i \(0.703543\pi\)
−0.999938 + 0.0111307i \(0.996457\pi\)
\(614\) 30.3640 1.22539
\(615\) 0 0
\(616\) 3.95908 0.159516
\(617\) −41.0480 + 20.9150i −1.65253 + 0.842006i −0.656371 + 0.754438i \(0.727909\pi\)
−0.996159 + 0.0875674i \(0.972091\pi\)
\(618\) 0 0
\(619\) 18.8961 26.0082i 0.759498 1.04536i −0.237758 0.971325i \(-0.576412\pi\)
0.997256 0.0740348i \(-0.0235876\pi\)
\(620\) −6.31299 + 0.999880i −0.253536 + 0.0401561i
\(621\) 0 0
\(622\) 8.73699 + 0.687616i 0.350321 + 0.0275709i
\(623\) 1.27506 8.05039i 0.0510841 0.322532i
\(624\) 0 0
\(625\) −24.6384 + 17.9009i −0.985537 + 0.716034i
\(626\) 6.39853 + 26.6518i 0.255737 + 1.06522i
\(627\) 0 0
\(628\) −11.2622 9.61882i −0.449410 0.383833i
\(629\) 41.8935 17.3529i 1.67040 0.691904i
\(630\) 0 0
\(631\) 10.1193 + 31.1441i 0.402844 + 1.23983i 0.922682 + 0.385562i \(0.125992\pi\)
−0.519838 + 0.854265i \(0.674008\pi\)
\(632\) −0.357479 + 0.583352i −0.0142197 + 0.0232045i
\(633\) 0 0
\(634\) 17.8771 15.2685i 0.709989 0.606388i
\(635\) 15.5398 30.4986i 0.616678 1.21030i
\(636\) 0 0
\(637\) 2.94897 + 3.45280i 0.116842 + 0.136805i
\(638\) 2.75595 8.48196i 0.109109 0.335804i
\(639\) 0 0
\(640\) −2.44483 + 0.794374i −0.0966405 + 0.0314004i
\(641\) 18.4721 + 4.43476i 0.729605 + 0.175163i 0.581196 0.813763i \(-0.302585\pi\)
0.148409 + 0.988926i \(0.452585\pi\)
\(642\) 0 0
\(643\) −25.7785 + 30.1828i −1.01661 + 1.19029i −0.0349971 + 0.999387i \(0.511142\pi\)
−0.981609 + 0.190905i \(0.938858\pi\)
\(644\) −3.41830 5.57816i −0.134700 0.219810i
\(645\) 0 0
\(646\) 9.90480 + 13.6328i 0.389699 + 0.536375i
\(647\) −1.85156 1.85156i −0.0727923 0.0727923i 0.669773 0.742566i \(-0.266391\pi\)
−0.742566 + 0.669773i \(0.766391\pi\)
\(648\) 0 0
\(649\) −0.570250 + 7.24571i −0.0223843 + 0.284419i
\(650\) 2.19471 0.172727i 0.0860835 0.00677492i
\(651\) 0 0
\(652\) 10.3236 + 7.50051i 0.404302 + 0.293743i
\(653\) −3.56423 + 8.60482i −0.139479 + 0.336733i −0.978148 0.207909i \(-0.933334\pi\)
0.838669 + 0.544642i \(0.183334\pi\)
\(654\) 0 0
\(655\) 13.3411i 0.521281i
\(656\) 3.63149 + 5.27374i 0.141786 + 0.205905i
\(657\) 0 0
\(658\) −0.261487 0.513198i −0.0101938 0.0200065i
\(659\) 13.7702 + 5.70379i 0.536410 + 0.222188i 0.634408 0.772998i \(-0.281244\pi\)
−0.0979983 + 0.995187i \(0.531244\pi\)
\(660\) 0 0
\(661\) −0.820561 5.18082i −0.0319161 0.201510i 0.966578 0.256374i \(-0.0825277\pi\)
−0.998494 + 0.0548632i \(0.982528\pi\)
\(662\) 0.988840 + 12.5644i 0.0384324 + 0.488329i
\(663\) 0 0
\(664\) 12.4823 + 1.97700i 0.484406 + 0.0767224i
\(665\) 12.8106 12.8106i 0.496773 0.496773i
\(666\) 0 0
\(667\) −14.3302 + 3.44038i −0.554867 + 0.133212i
\(668\) 16.7219 10.2472i 0.646991 0.396476i
\(669\) 0 0
\(670\) −3.01956 7.28986i −0.116656 0.281632i
\(671\) 0.594716 2.47717i 0.0229588 0.0956301i
\(672\) 0 0
\(673\) 2.44361 + 1.49745i 0.0941942 + 0.0577223i 0.568798 0.822477i \(-0.307409\pi\)
−0.474604 + 0.880200i \(0.657409\pi\)
\(674\) 27.5710 + 8.95836i 1.06200 + 0.345063i
\(675\) 0 0
\(676\) −9.91347 5.05116i −0.381287 0.194275i
\(677\) 28.6167 + 14.5809i 1.09983 + 0.560391i 0.907123 0.420866i \(-0.138274\pi\)
0.192706 + 0.981257i \(0.438274\pi\)
\(678\) 0 0
\(679\) −6.25609 2.03273i −0.240087 0.0780089i
\(680\) 10.0575 + 6.16324i 0.385687 + 0.236350i
\(681\) 0 0
\(682\) −1.19745 + 4.98773i −0.0458526 + 0.190990i
\(683\) 9.25948 + 22.3544i 0.354304 + 0.855365i 0.996079 + 0.0884722i \(0.0281984\pi\)
−0.641775 + 0.766893i \(0.721802\pi\)
\(684\) 0 0
\(685\) −0.400789 + 0.245604i −0.0153134 + 0.00938404i
\(686\) 19.2524 4.62209i 0.735059 0.176472i
\(687\) 0 0
\(688\) −6.84584 + 6.84584i −0.260995 + 0.260995i
\(689\) −0.532694 0.0843704i −0.0202940 0.00321426i
\(690\) 0 0
\(691\) 3.00192 + 38.1430i 0.114198 + 1.45103i 0.740820 + 0.671704i \(0.234437\pi\)
−0.626621 + 0.779324i \(0.715563\pi\)
\(692\) 1.58436 + 10.0033i 0.0602284 + 0.380267i
\(693\) 0 0
\(694\) 23.5981 + 9.77465i 0.895771 + 0.371041i
\(695\) −13.1935 25.8938i −0.500459 0.982207i
\(696\) 0 0
\(697\) 7.57909 28.3871i 0.287078 1.07524i
\(698\) 27.0756i 1.02483i
\(699\) 0 0
\(700\) 1.18109 2.85141i 0.0446412 0.107773i
\(701\) −6.51759 4.73531i −0.246166 0.178850i 0.457860 0.889024i \(-0.348616\pi\)
−0.704026 + 0.710174i \(0.748616\pi\)
\(702\) 0 0
\(703\) 36.1789 2.84734i 1.36451 0.107389i
\(704\) −0.161861 + 2.05664i −0.00610036 + 0.0775124i
\(705\) 0 0
\(706\) −8.02350 8.02350i −0.301968 0.301968i
\(707\) 14.9322 + 20.5524i 0.561584 + 0.772954i
\(708\) 0 0
\(709\) 1.00203 + 1.63517i 0.0376321 + 0.0614100i 0.870903 0.491455i \(-0.163535\pi\)
−0.833271 + 0.552865i \(0.813535\pi\)
\(710\) −17.4789 + 20.4652i −0.655971 + 0.768044i
\(711\) 0 0
\(712\) 4.12984 + 0.991487i 0.154772 + 0.0371575i
\(713\) 8.06136 2.61930i 0.301900 0.0980934i
\(714\) 0 0
\(715\) 2.24332 6.90424i 0.0838955 0.258204i
\(716\) 1.21049 + 1.41731i 0.0452383 + 0.0529672i
\(717\) 0 0
\(718\) 10.0825 19.7881i 0.376277 0.738485i
\(719\) −14.3964 + 12.2957i −0.536896 + 0.458553i −0.876079 0.482168i \(-0.839850\pi\)
0.339183 + 0.940721i \(0.389850\pi\)
\(720\) 0 0
\(721\) −7.60584 + 12.4116i −0.283256 + 0.462232i
\(722\) −1.70385 5.24390i −0.0634106 0.195158i
\(723\) 0 0
\(724\) 2.13305 0.883540i 0.0792743 0.0328365i
\(725\) −5.28672 4.51528i −0.196344 0.167693i
\(726\) 0 0
\(727\) −8.98890 37.4414i −0.333380 1.38863i −0.847449 0.530877i \(-0.821862\pi\)
0.514069 0.857749i \(-0.328138\pi\)
\(728\) 2.12531 1.54413i 0.0787691 0.0572291i
\(729\) 0 0
\(730\) −4.10036 + 25.8887i −0.151761 + 0.958183i
\(731\) 44.2876 + 3.48551i 1.63804 + 0.128916i
\(732\) 0 0
\(733\) 0.0567772 0.00899262i 0.00209711 0.000332150i −0.155386 0.987854i \(-0.549662\pi\)
0.157483 + 0.987522i \(0.449662\pi\)
\(734\) −10.1161 + 13.9236i −0.373391 + 0.513928i
\(735\) 0 0
\(736\) 3.03746 1.54766i 0.111962 0.0570476i
\(737\) −6.33227 −0.233252
\(738\) 0 0
\(739\) −35.0489 −1.28929 −0.644647 0.764480i \(-0.722996\pi\)
−0.644647 + 0.764480i \(0.722996\pi\)
\(740\) 22.6347 11.5329i 0.832066 0.423959i
\(741\) 0 0
\(742\) −0.444430 + 0.611706i −0.0163155 + 0.0224564i
\(743\) −31.1010 + 4.92591i −1.14098 + 0.180714i −0.698192 0.715911i \(-0.746012\pi\)
−0.442792 + 0.896625i \(0.646012\pi\)
\(744\) 0 0
\(745\) −53.0390 4.17426i −1.94320 0.152933i
\(746\) 2.35800 14.8878i 0.0863325 0.545082i
\(747\) 0 0
\(748\) 7.65839 5.56415i 0.280019 0.203445i
\(749\) −0.167902 0.699363i −0.00613502 0.0255542i
\(750\) 0 0
\(751\) 21.3264 + 18.2145i 0.778212 + 0.664656i 0.947085 0.320982i \(-0.104013\pi\)
−0.168873 + 0.985638i \(0.554013\pi\)
\(752\) 0.277283 0.114854i 0.0101115 0.00418831i
\(753\) 0 0
\(754\) −1.82870 5.62815i −0.0665972 0.204965i
\(755\) 17.8973 29.2057i 0.651349 1.06291i
\(756\) 0 0
\(757\) 18.9999 16.2274i 0.690562 0.589796i −0.233353 0.972392i \(-0.574970\pi\)
0.923916 + 0.382596i \(0.124970\pi\)
\(758\) 4.25393 8.34880i 0.154510 0.303242i
\(759\) 0 0
\(760\) 6.13102 + 7.17850i 0.222395 + 0.260392i
\(761\) 4.39303 13.5203i 0.159247 0.490112i −0.839319 0.543639i \(-0.817046\pi\)
0.998566 + 0.0535265i \(0.0170462\pi\)
\(762\) 0 0
\(763\) −13.9097 + 4.51953i −0.503565 + 0.163618i
\(764\) 1.93926 + 0.465574i 0.0701598 + 0.0168439i
\(765\) 0 0
\(766\) −7.70292 + 9.01896i −0.278318 + 0.325868i
\(767\) 2.51986 + 4.11204i 0.0909870 + 0.148477i
\(768\) 0 0
\(769\) 24.8770 + 34.2402i 0.897087 + 1.23473i 0.971388 + 0.237498i \(0.0763274\pi\)
−0.0743012 + 0.997236i \(0.523673\pi\)
\(770\) −7.19651 7.19651i −0.259344 0.259344i
\(771\) 0 0
\(772\) 1.34995 17.1528i 0.0485858 0.617341i
\(773\) −36.3392 + 2.85995i −1.30703 + 0.102865i −0.712764 0.701404i \(-0.752557\pi\)
−0.594265 + 0.804269i \(0.702557\pi\)
\(774\) 0 0
\(775\) 3.23504 + 2.35039i 0.116206 + 0.0844286i
\(776\) 1.31172 3.16677i 0.0470879 0.113680i
\(777\) 0 0
\(778\) 6.49655i 0.232912i
\(779\) 12.7893 19.7324i 0.458225 0.706988i
\(780\) 0 0
\(781\) 9.80556 + 19.2445i 0.350870 + 0.688622i
\(782\) −14.4519 5.98619i −0.516800 0.214066i
\(783\) 0 0
\(784\) 0.518907 + 3.27625i 0.0185324 + 0.117009i
\(785\) 2.98719 + 37.9559i 0.106617 + 1.35470i
\(786\) 0 0
\(787\) −6.04660 0.957688i −0.215538 0.0341379i 0.0477314 0.998860i \(-0.484801\pi\)
−0.263270 + 0.964722i \(0.584801\pi\)
\(788\) −6.60604 + 6.60604i −0.235330 + 0.235330i
\(789\) 0 0
\(790\) 1.71017 0.410575i 0.0608451 0.0146076i
\(791\) 18.7397 11.4837i 0.666306 0.408313i
\(792\) 0 0
\(793\) −0.646895 1.56174i −0.0229719 0.0554591i
\(794\) −5.28142 + 21.9987i −0.187430 + 0.780704i
\(795\) 0 0
\(796\) 19.0359 + 11.6652i 0.674711 + 0.413464i
\(797\) −15.3688 4.99361i −0.544389 0.176883i 0.0238960 0.999714i \(-0.492393\pi\)
−0.568285 + 0.822832i \(0.692393\pi\)
\(798\) 0 0
\(799\) −1.22707 0.625225i −0.0434107 0.0221189i
\(800\) 1.43295 + 0.730123i 0.0506623 + 0.0258137i
\(801\) 0 0
\(802\) −10.5008 3.41192i −0.370797 0.120479i
\(803\) 17.9354 + 10.9908i 0.632927 + 0.387858i
\(804\) 0 0
\(805\) −3.92602 + 16.3531i −0.138374 + 0.576370i
\(806\) 1.30251 + 3.14453i 0.0458789 + 0.110762i
\(807\) 0 0
\(808\) −11.2869 + 6.91664i −0.397073 + 0.243327i
\(809\) −13.9338 + 3.34520i −0.489885 + 0.117611i −0.470860 0.882208i \(-0.656056\pi\)
−0.0190254 + 0.999819i \(0.506056\pi\)
\(810\) 0 0
\(811\) −21.9664 + 21.9664i −0.771344 + 0.771344i −0.978341 0.206998i \(-0.933631\pi\)
0.206998 + 0.978341i \(0.433631\pi\)
\(812\) −8.19420 1.29783i −0.287560 0.0455450i
\(813\) 0 0
\(814\) −1.59953 20.3239i −0.0560635 0.712354i
\(815\) −5.13153 32.3992i −0.179750 1.13490i
\(816\) 0 0
\(817\) 32.8475 + 13.6059i 1.14919 + 0.476010i
\(818\) 3.75246 + 7.36463i 0.131202 + 0.257498i
\(819\) 0 0
\(820\) 2.98515 16.1872i 0.104246 0.565283i
\(821\) 50.3598i 1.75757i −0.477220 0.878784i \(-0.658356\pi\)
0.477220 0.878784i \(-0.341644\pi\)
\(822\) 0 0
\(823\) 16.4943 39.8208i 0.574955 1.38806i −0.322336 0.946625i \(-0.604468\pi\)
0.897291 0.441439i \(-0.145532\pi\)
\(824\) −6.13655 4.45847i −0.213777 0.155318i
\(825\) 0 0
\(826\) 6.74028 0.530472i 0.234524 0.0184575i
\(827\) −1.67663 + 21.3037i −0.0583023 + 0.740801i 0.896402 + 0.443243i \(0.146172\pi\)
−0.954704 + 0.297558i \(0.903828\pi\)
\(828\) 0 0
\(829\) −30.0283 30.0283i −1.04292 1.04292i −0.999036 0.0438883i \(-0.986025\pi\)
−0.0438883 0.999036i \(-0.513975\pi\)
\(830\) −19.0957 26.2829i −0.662820 0.912294i
\(831\) 0 0
\(832\) 0.715243 + 1.16717i 0.0247966 + 0.0404643i
\(833\) 9.88515 11.5740i 0.342500 0.401016i
\(834\) 0 0
\(835\) −49.0224 11.7692i −1.69649 0.407291i
\(836\) 7.20527 2.34113i 0.249200 0.0809698i
\(837\) 0 0
\(838\) 1.77560 5.46473i 0.0613370 0.188776i
\(839\) 12.2766 + 14.3741i 0.423836 + 0.496248i 0.930703 0.365776i \(-0.119196\pi\)
−0.506867 + 0.862024i \(0.669196\pi\)
\(840\) 0 0
\(841\) 4.68117 9.18731i 0.161420 0.316804i
\(842\) 2.97945 2.54469i 0.102679 0.0876959i
\(843\) 0 0
\(844\) 7.66523 12.5085i 0.263848 0.430561i
\(845\) 8.83832 + 27.2015i 0.304047 + 0.935762i
\(846\) 0 0
\(847\) 11.9572 4.95285i 0.410856 0.170182i
\(848\) −0.299595 0.255878i −0.0102881 0.00878690i
\(849\) 0 0
\(850\) −1.72273 7.17567i −0.0590890 0.246123i
\(851\) −27.2544 + 19.8015i −0.934270 + 0.678787i
\(852\) 0 0
\(853\) −7.58809 + 47.9093i −0.259811 + 1.64038i 0.420379 + 0.907349i \(0.361897\pi\)
−0.680190 + 0.733036i \(0.738103\pi\)
\(854\) −2.36255 0.185936i −0.0808447 0.00636261i
\(855\) 0 0
\(856\) 0.370165 0.0586284i 0.0126520 0.00200388i
\(857\) 27.3166 37.5981i 0.933117 1.28433i −0.0255145 0.999674i \(-0.508122\pi\)
0.958631 0.284651i \(-0.0918776\pi\)
\(858\) 0 0
\(859\) −44.1205 + 22.4805i −1.50537 + 0.767025i −0.995637 0.0933076i \(-0.970256\pi\)
−0.509733 + 0.860332i \(0.670256\pi\)
\(860\) 24.8877 0.848663
\(861\) 0 0
\(862\) −33.6531 −1.14623
\(863\) 6.61004 3.36798i 0.225008 0.114647i −0.337853 0.941199i \(-0.609701\pi\)
0.562861 + 0.826552i \(0.309701\pi\)
\(864\) 0 0
\(865\) 15.3032 21.0631i 0.520325 0.716166i
\(866\) 16.6063 2.63018i 0.564306 0.0893773i
\(867\) 0 0
\(868\) 4.75694 + 0.374379i 0.161461 + 0.0127073i
\(869\) 0.220798 1.39407i 0.00749007 0.0472904i
\(870\) 0 0
\(871\) −3.39928 + 2.46972i −0.115180 + 0.0836833i
\(872\) −1.77910 7.41050i −0.0602480 0.250951i
\(873\) 0 0
\(874\) −9.51964 8.13054i −0.322007 0.275020i
\(875\) 15.4589 6.40330i 0.522607 0.216471i
\(876\) 0 0
\(877\) −4.64883 14.3076i −0.156980 0.483134i 0.841376 0.540450i \(-0.181746\pi\)
−0.998356 + 0.0573158i \(0.981746\pi\)
\(878\) −9.95896 + 16.2516i −0.336099 + 0.548463i
\(879\) 0 0
\(880\) 4.03262 3.44418i 0.135939 0.116103i
\(881\) 22.8919 44.9279i 0.771248 1.51366i −0.0845900 0.996416i \(-0.526958\pi\)
0.855838 0.517244i \(-0.173042\pi\)
\(882\) 0 0
\(883\) −28.4318 33.2893i −0.956805 1.12028i −0.992662 0.120918i \(-0.961416\pi\)
0.0358572 0.999357i \(-0.488584\pi\)
\(884\) 1.94103 5.97387i 0.0652839 0.200923i
\(885\) 0 0
\(886\) −2.98858 + 0.971049i −0.100403 + 0.0326230i
\(887\) 13.8847 + 3.33341i 0.466201 + 0.111925i 0.459739 0.888054i \(-0.347943\pi\)
0.00646224 + 0.999979i \(0.497943\pi\)
\(888\) 0 0
\(889\) −16.5957 + 19.4311i −0.556602 + 0.651697i
\(890\) −5.70466 9.30915i −0.191221 0.312044i
\(891\) 0 0
\(892\) −3.36958 4.63783i −0.112822 0.155286i
\(893\) −0.779361 0.779361i −0.0260803 0.0260803i
\(894\) 0 0
\(895\) 0.375928 4.77661i 0.0125659 0.159665i
\(896\) 1.91317 0.150570i 0.0639147 0.00503019i
\(897\) 0 0
\(898\) 22.1609 + 16.1008i 0.739519 + 0.537292i
\(899\) 4.11343 9.93069i 0.137190 0.331207i
\(900\) 0 0
\(901\) 1.80788i 0.0602294i
\(902\) −11.0850 7.18456i −0.369089 0.239220i
\(903\) 0 0
\(904\) 5.19933 + 10.2043i 0.172927 + 0.339389i
\(905\) −5.48333 2.27127i −0.182272 0.0754996i
\(906\) 0 0
\(907\) −5.60391 35.3817i −0.186075 1.17483i −0.887060 0.461654i \(-0.847256\pi\)
0.700985 0.713176i \(-0.252744\pi\)
\(908\) 1.60662 + 20.4141i 0.0533176 + 0.677465i
\(909\) 0 0
\(910\) −6.67001 1.05643i −0.221109 0.0350202i
\(911\) −3.39834 + 3.39834i −0.112592 + 0.112592i −0.761158 0.648566i \(-0.775369\pi\)
0.648566 + 0.761158i \(0.275369\pi\)
\(912\) 0 0
\(913\) −25.3515 + 6.08636i −0.839012 + 0.201429i
\(914\) −17.6635 + 10.8242i −0.584255 + 0.358032i
\(915\) 0 0
\(916\) 1.19089 + 2.87507i 0.0393482 + 0.0949950i
\(917\) 2.32504 9.68448i 0.0767796 0.319810i
\(918\) 0 0
\(919\) 44.7086 + 27.3975i 1.47480 + 0.903759i 0.999716 + 0.0238192i \(0.00758259\pi\)
0.475085 + 0.879940i \(0.342417\pi\)
\(920\) −8.33448 2.70804i −0.274780 0.0892813i
\(921\) 0 0
\(922\) −20.1997 10.2923i −0.665243 0.338958i
\(923\) 12.7696 + 6.50642i 0.420315 + 0.214161i
\(924\) 0 0
\(925\) −15.1149 4.91113i −0.496975 0.161477i
\(926\) 7.08296 + 4.34044i 0.232760 + 0.142636i
\(927\) 0 0
\(928\) 1.00920 4.20361i 0.0331286 0.137990i
\(929\) −3.15654 7.62056i −0.103563 0.250023i 0.863601 0.504175i \(-0.168203\pi\)
−0.967164 + 0.254153i \(0.918203\pi\)
\(930\) 0 0
\(931\) 10.3865 6.36485i 0.340403 0.208599i
\(932\) −15.8165 + 3.79721i −0.518088 + 0.124382i
\(933\) 0 0
\(934\) −9.53419 + 9.53419i −0.311968 + 0.311968i
\(935\) −24.0349 3.80676i −0.786026 0.124494i
\(936\) 0 0
\(937\) 0.729381 + 9.26766i 0.0238278 + 0.302761i 0.997271 + 0.0738314i \(0.0235227\pi\)
−0.973443 + 0.228930i \(0.926477\pi\)
\(938\) 0.921486 + 5.81804i 0.0300876 + 0.189966i
\(939\) 0 0
\(940\) −0.712798 0.295251i −0.0232489 0.00963001i
\(941\) 16.5117 + 32.4061i 0.538268 + 1.05641i 0.986694 + 0.162590i \(0.0519847\pi\)
−0.448426 + 0.893820i \(0.648015\pi\)
\(942\) 0 0
\(943\) −0.551878 + 21.8214i −0.0179716 + 0.710602i
\(944\) 3.52309i 0.114667i
\(945\) 0 0
\(946\) 7.64328 18.4525i 0.248505 0.599943i
\(947\) −14.8525 10.7910i −0.482642 0.350660i 0.319706 0.947517i \(-0.396416\pi\)
−0.802348 + 0.596857i \(0.796416\pi\)
\(948\) 0 0
\(949\) 13.9147 1.09511i 0.451691 0.0355489i
\(950\) 0.463381 5.88781i 0.0150341 0.191026i
\(951\) 0 0
\(952\) −6.22676 6.22676i −0.201810 0.201810i
\(953\) −23.6593 32.5643i −0.766400 1.05486i −0.996655 0.0817292i \(-0.973956\pi\)
0.230254 0.973131i \(-0.426044\pi\)
\(954\) 0 0
\(955\) −2.67874 4.37131i −0.0866821 0.141452i
\(956\) −17.9125 + 20.9729i −0.579332 + 0.678311i
\(957\) 0 0
\(958\) 28.6930 + 6.88857i 0.927028 + 0.222560i
\(959\) 0.333741 0.108439i 0.0107770 0.00350168i
\(960\) 0 0
\(961\) 7.66911 23.6031i 0.247391 0.761390i
\(962\) −8.78543 10.2864i −0.283254 0.331647i
\(963\) 0 0
\(964\) 10.6383 20.8788i 0.342635 0.672460i
\(965\) −33.6328 + 28.7251i −1.08268 + 0.924694i
\(966\) 0 0
\(967\) −4.15671 + 6.78314i −0.133671 + 0.218131i −0.912471 0.409141i \(-0.865828\pi\)
0.778800 + 0.627272i \(0.215828\pi\)
\(968\) 2.08402 + 6.41397i 0.0669831 + 0.206153i
\(969\) 0 0
\(970\) −8.14065 + 3.37197i −0.261380 + 0.108267i
\(971\) 13.9486 + 11.9132i 0.447631 + 0.382313i 0.844494 0.535565i \(-0.179901\pi\)
−0.396863 + 0.917878i \(0.629901\pi\)
\(972\) 0 0
\(973\) 5.06469 + 21.0959i 0.162366 + 0.676305i
\(974\) −31.6643 + 23.0055i −1.01459 + 0.737142i
\(975\) 0 0
\(976\) 0.193178 1.21968i 0.00618348 0.0390410i
\(977\) 18.1586 + 1.42912i 0.580946 + 0.0457215i 0.365528 0.930800i \(-0.380888\pi\)
0.215418 + 0.976522i \(0.430888\pi\)
\(978\) 0 0
\(979\) −8.65407 + 1.37067i −0.276585 + 0.0438068i
\(980\) 5.01209 6.89855i 0.160105 0.220366i
\(981\) 0 0
\(982\) 10.8341 5.52023i 0.345729 0.176158i
\(983\) −40.1665 −1.28111 −0.640556 0.767912i \(-0.721296\pi\)
−0.640556 + 0.767912i \(0.721296\pi\)
\(984\) 0 0
\(985\) 24.0159 0.765210
\(986\) −17.6748 + 9.00574i −0.562879 + 0.286801i
\(987\) 0 0
\(988\) 2.95483 4.06697i 0.0940057 0.129388i
\(989\) −32.5980 + 5.16302i −1.03656 + 0.164174i
\(990\) 0 0
\(991\) 23.6864 + 1.86416i 0.752423 + 0.0592170i 0.448870 0.893597i \(-0.351827\pi\)
0.303554 + 0.952814i \(0.401827\pi\)
\(992\) −0.388960 + 2.45580i −0.0123495 + 0.0779717i
\(993\) 0 0
\(994\) 16.2547 11.8098i 0.515569 0.374583i
\(995\) −13.3979 55.8063i −0.424742 1.76918i
\(996\) 0 0
\(997\) −6.90844 5.90037i −0.218793 0.186867i 0.533296 0.845929i \(-0.320953\pi\)
−0.752088 + 0.659062i \(0.770953\pi\)
\(998\) 23.1764 9.59999i 0.733637 0.303882i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.a.89.1 48
3.2 odd 2 738.2.ba.b.89.3 yes 48
41.6 odd 40 738.2.ba.b.539.3 yes 48
123.47 even 40 inner 738.2.ba.a.539.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.a.89.1 48 1.1 even 1 trivial
738.2.ba.a.539.1 yes 48 123.47 even 40 inner
738.2.ba.b.89.3 yes 48 3.2 odd 2
738.2.ba.b.539.3 yes 48 41.6 odd 40