Properties

Label 738.2.ba.a.71.3
Level $738$
Weight $2$
Character 738.71
Analytic conductor $5.893$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,-4,0,4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(3\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 71.3
Character \(\chi\) \(=\) 738.71
Dual form 738.2.ba.a.395.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.156434 + 0.987688i) q^{2} +(-0.951057 + 0.309017i) q^{4} +(1.67738 + 0.854668i) q^{5} +(0.674403 + 2.80909i) q^{7} +(-0.453990 - 0.891007i) q^{8} +(-0.581745 + 1.79043i) q^{10} +(1.59129 + 1.35909i) q^{11} +(5.08494 - 3.11606i) q^{13} +(-2.66901 + 1.10554i) q^{14} +(0.809017 - 0.587785i) q^{16} +(0.285386 + 3.62618i) q^{17} +(-5.16527 - 3.16528i) q^{19} +(-1.85939 - 0.294498i) q^{20} +(-1.09342 + 1.78430i) q^{22} +(1.05753 + 0.768342i) q^{23} +(-0.855780 - 1.17788i) q^{25} +(3.87315 + 4.53488i) q^{26} +(-1.50945 - 2.46320i) q^{28} +(-0.591330 + 7.51356i) q^{29} +(-4.80088 - 1.55990i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-3.53689 + 0.849132i) q^{34} +(-1.26961 + 5.28831i) q^{35} +(2.34600 + 7.22026i) q^{37} +(2.31828 - 5.59683i) q^{38} -1.88257i q^{40} +(6.19363 + 1.62449i) q^{41} +(-1.47841 + 0.234157i) q^{43} +(-1.93338 - 0.800833i) q^{44} +(-0.593448 + 1.16471i) q^{46} +(4.08701 + 0.981203i) q^{47} +(-1.19914 + 0.610990i) q^{49} +(1.02950 - 1.02950i) q^{50} +(-3.87315 + 4.53488i) q^{52} +(-8.29549 - 0.652869i) q^{53} +(1.50762 + 3.63972i) q^{55} +(2.19675 - 1.87620i) q^{56} +(-7.51356 + 0.591330i) q^{58} +(2.18312 - 3.00481i) q^{59} +(-0.525895 + 3.32037i) q^{61} +(0.789672 - 4.98579i) q^{62} +(-0.587785 + 0.809017i) q^{64} +(11.1926 - 0.880875i) q^{65} +(8.89050 - 7.59320i) q^{67} +(-1.39197 - 3.36051i) q^{68} +(-5.42181 - 0.426706i) q^{70} +(-7.87266 + 9.21770i) q^{71} +(7.26357 - 7.26357i) q^{73} +(-6.76437 + 3.44662i) q^{74} +(5.89059 + 1.41420i) q^{76} +(-2.74463 + 5.38664i) q^{77} +(-15.7432 - 6.52104i) q^{79} +(1.85939 - 0.294498i) q^{80} +(-0.635595 + 6.37150i) q^{82} +5.06215i q^{83} +(-2.62048 + 6.32639i) q^{85} +(-0.462548 - 1.42358i) q^{86} +(0.488526 - 2.03486i) q^{88} +(-7.06697 + 1.69663i) q^{89} +(12.1826 + 12.1826i) q^{91} +(-1.24320 - 0.403941i) q^{92} +(-0.329774 + 4.19018i) q^{94} +(-5.95885 - 9.72397i) q^{95} +(-6.99036 - 8.18466i) q^{97} +(-0.791054 - 1.08879i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{5} + 4 q^{7} - 8 q^{11} - 4 q^{13} + 4 q^{14} + 12 q^{16} - 16 q^{17} - 4 q^{19} + 16 q^{20} + 20 q^{22} - 40 q^{25} - 20 q^{26} - 4 q^{28} + 32 q^{29} - 40 q^{31} - 4 q^{34} - 52 q^{35} - 24 q^{37}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{23}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.156434 + 0.987688i 0.110616 + 0.698401i
\(3\) 0 0
\(4\) −0.951057 + 0.309017i −0.475528 + 0.154508i
\(5\) 1.67738 + 0.854668i 0.750147 + 0.382219i 0.786880 0.617106i \(-0.211695\pi\)
−0.0367329 + 0.999325i \(0.511695\pi\)
\(6\) 0 0
\(7\) 0.674403 + 2.80909i 0.254901 + 1.06174i 0.942117 + 0.335284i \(0.108832\pi\)
−0.687216 + 0.726453i \(0.741168\pi\)
\(8\) −0.453990 0.891007i −0.160510 0.315018i
\(9\) 0 0
\(10\) −0.581745 + 1.79043i −0.183964 + 0.566183i
\(11\) 1.59129 + 1.35909i 0.479791 + 0.409780i 0.856177 0.516683i \(-0.172833\pi\)
−0.376386 + 0.926463i \(0.622833\pi\)
\(12\) 0 0
\(13\) 5.08494 3.11606i 1.41031 0.864239i 0.411424 0.911444i \(-0.365031\pi\)
0.998885 + 0.0472050i \(0.0150314\pi\)
\(14\) −2.66901 + 1.10554i −0.713322 + 0.295468i
\(15\) 0 0
\(16\) 0.809017 0.587785i 0.202254 0.146946i
\(17\) 0.285386 + 3.62618i 0.0692164 + 0.879477i 0.929300 + 0.369325i \(0.120411\pi\)
−0.860084 + 0.510152i \(0.829589\pi\)
\(18\) 0 0
\(19\) −5.16527 3.16528i −1.18499 0.726165i −0.216763 0.976224i \(-0.569550\pi\)
−0.968231 + 0.250059i \(0.919550\pi\)
\(20\) −1.85939 0.294498i −0.415772 0.0658519i
\(21\) 0 0
\(22\) −1.09342 + 1.78430i −0.233118 + 0.380414i
\(23\) 1.05753 + 0.768342i 0.220511 + 0.160210i 0.692557 0.721364i \(-0.256484\pi\)
−0.472046 + 0.881574i \(0.656484\pi\)
\(24\) 0 0
\(25\) −0.855780 1.17788i −0.171156 0.235576i
\(26\) 3.87315 + 4.53488i 0.759588 + 0.889363i
\(27\) 0 0
\(28\) −1.50945 2.46320i −0.285260 0.465502i
\(29\) −0.591330 + 7.51356i −0.109807 + 1.39523i 0.657259 + 0.753665i \(0.271716\pi\)
−0.767066 + 0.641568i \(0.778284\pi\)
\(30\) 0 0
\(31\) −4.80088 1.55990i −0.862263 0.280166i −0.155689 0.987806i \(-0.549760\pi\)
−0.706573 + 0.707640i \(0.749760\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −3.53689 + 0.849132i −0.606571 + 0.145625i
\(35\) −1.26961 + 5.28831i −0.214603 + 0.893887i
\(36\) 0 0
\(37\) 2.34600 + 7.22026i 0.385681 + 1.18700i 0.935985 + 0.352039i \(0.114512\pi\)
−0.550305 + 0.834964i \(0.685488\pi\)
\(38\) 2.31828 5.59683i 0.376075 0.907926i
\(39\) 0 0
\(40\) 1.88257i 0.297660i
\(41\) 6.19363 + 1.62449i 0.967282 + 0.253703i
\(42\) 0 0
\(43\) −1.47841 + 0.234157i −0.225455 + 0.0357086i −0.268140 0.963380i \(-0.586409\pi\)
0.0426846 + 0.999089i \(0.486409\pi\)
\(44\) −1.93338 0.800833i −0.291468 0.120730i
\(45\) 0 0
\(46\) −0.593448 + 1.16471i −0.0874991 + 0.171727i
\(47\) 4.08701 + 0.981203i 0.596151 + 0.143123i 0.520282 0.853995i \(-0.325827\pi\)
0.0758692 + 0.997118i \(0.475827\pi\)
\(48\) 0 0
\(49\) −1.19914 + 0.610990i −0.171305 + 0.0872843i
\(50\) 1.02950 1.02950i 0.145594 0.145594i
\(51\) 0 0
\(52\) −3.87315 + 4.53488i −0.537110 + 0.628875i
\(53\) −8.29549 0.652869i −1.13947 0.0896785i −0.505353 0.862913i \(-0.668638\pi\)
−0.634120 + 0.773234i \(0.718638\pi\)
\(54\) 0 0
\(55\) 1.50762 + 3.63972i 0.203288 + 0.490780i
\(56\) 2.19675 1.87620i 0.293553 0.250718i
\(57\) 0 0
\(58\) −7.51356 + 0.591330i −0.986579 + 0.0776454i
\(59\) 2.18312 3.00481i 0.284218 0.391192i −0.642907 0.765944i \(-0.722272\pi\)
0.927125 + 0.374751i \(0.122272\pi\)
\(60\) 0 0
\(61\) −0.525895 + 3.32037i −0.0673340 + 0.425130i 0.930877 + 0.365334i \(0.119045\pi\)
−0.998211 + 0.0597964i \(0.980955\pi\)
\(62\) 0.789672 4.98579i 0.100288 0.633196i
\(63\) 0 0
\(64\) −0.587785 + 0.809017i −0.0734732 + 0.101127i
\(65\) 11.1926 0.880875i 1.38827 0.109259i
\(66\) 0 0
\(67\) 8.89050 7.59320i 1.08615 0.927657i 0.0884905 0.996077i \(-0.471796\pi\)
0.997657 + 0.0684197i \(0.0217957\pi\)
\(68\) −1.39197 3.36051i −0.168801 0.407522i
\(69\) 0 0
\(70\) −5.42181 0.426706i −0.648030 0.0510011i
\(71\) −7.87266 + 9.21770i −0.934313 + 1.09394i 0.0610866 + 0.998132i \(0.480543\pi\)
−0.995400 + 0.0958078i \(0.969457\pi\)
\(72\) 0 0
\(73\) 7.26357 7.26357i 0.850137 0.850137i −0.140013 0.990150i \(-0.544714\pi\)
0.990150 + 0.140013i \(0.0447144\pi\)
\(74\) −6.76437 + 3.44662i −0.786342 + 0.400661i
\(75\) 0 0
\(76\) 5.89059 + 1.41420i 0.675697 + 0.162220i
\(77\) −2.74463 + 5.38664i −0.312780 + 0.613865i
\(78\) 0 0
\(79\) −15.7432 6.52104i −1.77125 0.733675i −0.994605 0.103733i \(-0.966921\pi\)
−0.776643 0.629942i \(-0.783079\pi\)
\(80\) 1.85939 0.294498i 0.207886 0.0329259i
\(81\) 0 0
\(82\) −0.635595 + 6.37150i −0.0701897 + 0.703615i
\(83\) 5.06215i 0.555643i 0.960633 + 0.277821i \(0.0896124\pi\)
−0.960633 + 0.277821i \(0.910388\pi\)
\(84\) 0 0
\(85\) −2.62048 + 6.32639i −0.284230 + 0.686193i
\(86\) −0.462548 1.42358i −0.0498778 0.153508i
\(87\) 0 0
\(88\) 0.488526 2.03486i 0.0520771 0.216917i
\(89\) −7.06697 + 1.69663i −0.749098 + 0.179842i −0.589981 0.807417i \(-0.700865\pi\)
−0.159117 + 0.987260i \(0.550865\pi\)
\(90\) 0 0
\(91\) 12.1826 + 12.1826i 1.27708 + 1.27708i
\(92\) −1.24320 0.403941i −0.129613 0.0421138i
\(93\) 0 0
\(94\) −0.329774 + 4.19018i −0.0340136 + 0.432184i
\(95\) −5.95885 9.72397i −0.611366 0.997658i
\(96\) 0 0
\(97\) −6.99036 8.18466i −0.709764 0.831026i 0.281959 0.959427i \(-0.409016\pi\)
−0.991722 + 0.128400i \(0.959016\pi\)
\(98\) −0.791054 1.08879i −0.0799085 0.109985i
\(99\) 0 0
\(100\) 1.17788 + 0.855780i 0.117788 + 0.0855780i
\(101\) 8.52284 13.9080i 0.848055 1.38390i −0.0741704 0.997246i \(-0.523631\pi\)
0.922225 0.386654i \(-0.126369\pi\)
\(102\) 0 0
\(103\) −5.84924 0.926429i −0.576343 0.0912838i −0.138544 0.990356i \(-0.544242\pi\)
−0.437800 + 0.899073i \(0.644242\pi\)
\(104\) −5.08494 3.11606i −0.498620 0.305555i
\(105\) 0 0
\(106\) −0.652869 8.29549i −0.0634123 0.805729i
\(107\) 6.18045 4.49036i 0.597487 0.434100i −0.247499 0.968888i \(-0.579609\pi\)
0.844986 + 0.534788i \(0.179609\pi\)
\(108\) 0 0
\(109\) 16.3177 6.75901i 1.56295 0.647396i 0.577353 0.816494i \(-0.304086\pi\)
0.985599 + 0.169098i \(0.0540855\pi\)
\(110\) −3.35907 + 2.05844i −0.320275 + 0.196265i
\(111\) 0 0
\(112\) 2.19675 + 1.87620i 0.207573 + 0.177284i
\(113\) 3.61579 11.1283i 0.340145 1.04686i −0.623986 0.781435i \(-0.714488\pi\)
0.964132 0.265424i \(-0.0855121\pi\)
\(114\) 0 0
\(115\) 1.11721 + 2.19264i 0.104180 + 0.204465i
\(116\) −1.75943 7.32855i −0.163359 0.680439i
\(117\) 0 0
\(118\) 3.30933 + 1.68619i 0.304648 + 0.155226i
\(119\) −9.99380 + 3.24718i −0.916130 + 0.297669i
\(120\) 0 0
\(121\) −1.03571 6.53918i −0.0941550 0.594471i
\(122\) −3.36176 −0.304360
\(123\) 0 0
\(124\) 5.04794 0.453318
\(125\) −1.90126 12.0041i −0.170054 1.07368i
\(126\) 0 0
\(127\) 3.08839 1.00348i 0.274051 0.0890444i −0.168768 0.985656i \(-0.553979\pi\)
0.442818 + 0.896611i \(0.353979\pi\)
\(128\) −0.891007 0.453990i −0.0787546 0.0401275i
\(129\) 0 0
\(130\) 2.62093 + 10.9170i 0.229871 + 0.957482i
\(131\) −6.01360 11.8023i −0.525410 1.03118i −0.989384 0.145327i \(-0.953577\pi\)
0.463973 0.885849i \(-0.346423\pi\)
\(132\) 0 0
\(133\) 5.40809 16.6444i 0.468941 1.44325i
\(134\) 8.89050 + 7.59320i 0.768022 + 0.655953i
\(135\) 0 0
\(136\) 3.10139 1.90053i 0.265942 0.162969i
\(137\) 0.963044 0.398906i 0.0822784 0.0340808i −0.341165 0.940004i \(-0.610821\pi\)
0.423443 + 0.905923i \(0.360821\pi\)
\(138\) 0 0
\(139\) 0.405607 0.294691i 0.0344031 0.0249953i −0.570451 0.821332i \(-0.693231\pi\)
0.604854 + 0.796336i \(0.293231\pi\)
\(140\) −0.426706 5.42181i −0.0360632 0.458227i
\(141\) 0 0
\(142\) −10.3358 6.33377i −0.867359 0.531518i
\(143\) 12.3266 + 1.95234i 1.03080 + 0.163263i
\(144\) 0 0
\(145\) −7.41348 + 12.0977i −0.615656 + 1.00466i
\(146\) 8.31042 + 6.03787i 0.687775 + 0.499698i
\(147\) 0 0
\(148\) −4.46237 6.14192i −0.366804 0.504863i
\(149\) 10.0789 + 11.8009i 0.825694 + 0.966764i 0.999839 0.0179563i \(-0.00571596\pi\)
−0.174144 + 0.984720i \(0.555716\pi\)
\(150\) 0 0
\(151\) 3.01388 + 4.91821i 0.245266 + 0.400238i 0.951456 0.307784i \(-0.0995876\pi\)
−0.706190 + 0.708022i \(0.749588\pi\)
\(152\) −0.475303 + 6.03929i −0.0385521 + 0.489851i
\(153\) 0 0
\(154\) −5.74968 1.86818i −0.463322 0.150542i
\(155\) −6.71970 6.71970i −0.539739 0.539739i
\(156\) 0 0
\(157\) 6.79860 1.63220i 0.542587 0.130264i 0.0471183 0.998889i \(-0.484996\pi\)
0.495469 + 0.868626i \(0.334996\pi\)
\(158\) 3.97798 16.5695i 0.316471 1.31820i
\(159\) 0 0
\(160\) 0.581745 + 1.79043i 0.0459910 + 0.141546i
\(161\) −1.44514 + 3.48888i −0.113893 + 0.274962i
\(162\) 0 0
\(163\) 14.1254i 1.10639i 0.833053 + 0.553194i \(0.186591\pi\)
−0.833053 + 0.553194i \(0.813409\pi\)
\(164\) −6.39249 + 0.368953i −0.499169 + 0.0288104i
\(165\) 0 0
\(166\) −4.99982 + 0.791894i −0.388062 + 0.0614629i
\(167\) 0.549996 + 0.227816i 0.0425599 + 0.0176289i 0.403862 0.914820i \(-0.367668\pi\)
−0.361302 + 0.932449i \(0.617668\pi\)
\(168\) 0 0
\(169\) 10.2450 20.1069i 0.788074 1.54668i
\(170\) −6.65843 1.59855i −0.510678 0.122603i
\(171\) 0 0
\(172\) 1.33369 0.679550i 0.101693 0.0518152i
\(173\) 3.35951 3.35951i 0.255419 0.255419i −0.567769 0.823188i \(-0.692193\pi\)
0.823188 + 0.567769i \(0.192193\pi\)
\(174\) 0 0
\(175\) 2.73163 3.19833i 0.206492 0.241771i
\(176\) 2.08623 + 0.164190i 0.157255 + 0.0123763i
\(177\) 0 0
\(178\) −2.78126 6.71455i −0.208464 0.503277i
\(179\) 8.18798 6.99320i 0.611998 0.522696i −0.288543 0.957467i \(-0.593171\pi\)
0.900541 + 0.434771i \(0.143171\pi\)
\(180\) 0 0
\(181\) 8.14318 0.640882i 0.605278 0.0476364i 0.227882 0.973689i \(-0.426820\pi\)
0.377395 + 0.926052i \(0.376820\pi\)
\(182\) −10.1268 + 13.9384i −0.750651 + 1.03318i
\(183\) 0 0
\(184\) 0.204488 1.29109i 0.0150751 0.0951803i
\(185\) −2.23578 + 14.1162i −0.164378 + 1.03784i
\(186\) 0 0
\(187\) −4.47416 + 6.15815i −0.327183 + 0.450328i
\(188\) −4.19018 + 0.329774i −0.305600 + 0.0240513i
\(189\) 0 0
\(190\) 8.67208 7.40665i 0.629139 0.537335i
\(191\) −1.70395 4.11370i −0.123294 0.297657i 0.850167 0.526514i \(-0.176501\pi\)
−0.973460 + 0.228857i \(0.926501\pi\)
\(192\) 0 0
\(193\) 4.92622 + 0.387702i 0.354597 + 0.0279074i 0.254507 0.967071i \(-0.418087\pi\)
0.100090 + 0.994978i \(0.468087\pi\)
\(194\) 6.99036 8.18466i 0.501879 0.587624i
\(195\) 0 0
\(196\) 0.951639 0.951639i 0.0679742 0.0679742i
\(197\) −13.1332 + 6.69169i −0.935701 + 0.476763i −0.854220 0.519911i \(-0.825965\pi\)
−0.0814808 + 0.996675i \(0.525965\pi\)
\(198\) 0 0
\(199\) 18.6638 + 4.48077i 1.32304 + 0.317633i 0.832616 0.553851i \(-0.186842\pi\)
0.490423 + 0.871485i \(0.336842\pi\)
\(200\) −0.660983 + 1.29725i −0.0467385 + 0.0917295i
\(201\) 0 0
\(202\) 15.0701 + 6.24222i 1.06033 + 0.439201i
\(203\) −21.5051 + 3.40607i −1.50936 + 0.239059i
\(204\) 0 0
\(205\) 9.00067 + 8.01838i 0.628634 + 0.560028i
\(206\) 5.92216i 0.412616i
\(207\) 0 0
\(208\) 2.28223 5.50980i 0.158244 0.382036i
\(209\) −3.91753 12.0569i −0.270981 0.833994i
\(210\) 0 0
\(211\) −4.90461 + 20.4292i −0.337647 + 1.40640i 0.502750 + 0.864432i \(0.332321\pi\)
−0.840398 + 0.541970i \(0.817679\pi\)
\(212\) 8.09123 1.94253i 0.555708 0.133414i
\(213\) 0 0
\(214\) 5.40191 + 5.40191i 0.369267 + 0.369267i
\(215\) −2.67998 0.870778i −0.182773 0.0593866i
\(216\) 0 0
\(217\) 1.14417 14.5381i 0.0776716 0.986911i
\(218\) 9.22845 + 15.0595i 0.625030 + 1.01996i
\(219\) 0 0
\(220\) −2.55857 2.99570i −0.172499 0.201970i
\(221\) 12.7506 + 17.5496i 0.857695 + 1.18052i
\(222\) 0 0
\(223\) 7.71219 + 5.60323i 0.516446 + 0.375220i 0.815263 0.579090i \(-0.196592\pi\)
−0.298817 + 0.954310i \(0.596592\pi\)
\(224\) −1.50945 + 2.46320i −0.100855 + 0.164580i
\(225\) 0 0
\(226\) 11.5569 + 1.83043i 0.768753 + 0.121759i
\(227\) −22.3933 13.7226i −1.48629 0.910802i −0.999301 0.0373966i \(-0.988094\pi\)
−0.486994 0.873406i \(-0.661906\pi\)
\(228\) 0 0
\(229\) −0.409881 5.20803i −0.0270857 0.344156i −0.995497 0.0947966i \(-0.969780\pi\)
0.968411 0.249359i \(-0.0802201\pi\)
\(230\) −1.99088 + 1.44646i −0.131274 + 0.0953765i
\(231\) 0 0
\(232\) 6.96309 2.88421i 0.457149 0.189357i
\(233\) 14.0283 8.59654i 0.919023 0.563178i 0.0193841 0.999812i \(-0.493829\pi\)
0.899639 + 0.436634i \(0.143829\pi\)
\(234\) 0 0
\(235\) 6.01686 + 5.13888i 0.392497 + 0.335224i
\(236\) −1.14773 + 3.53236i −0.0747111 + 0.229937i
\(237\) 0 0
\(238\) −4.77058 9.36279i −0.309231 0.606900i
\(239\) −3.98951 16.6175i −0.258060 1.07490i −0.939371 0.342903i \(-0.888590\pi\)
0.681311 0.731994i \(-0.261410\pi\)
\(240\) 0 0
\(241\) 3.73242 + 1.90176i 0.240426 + 0.122503i 0.570053 0.821608i \(-0.306923\pi\)
−0.329626 + 0.944111i \(0.606923\pi\)
\(242\) 6.29666 2.04591i 0.404764 0.131516i
\(243\) 0 0
\(244\) −0.525895 3.32037i −0.0336670 0.212565i
\(245\) −2.53360 −0.161866
\(246\) 0 0
\(247\) −36.1283 −2.29879
\(248\) 0.789672 + 4.98579i 0.0501442 + 0.316598i
\(249\) 0 0
\(250\) 11.5589 3.75571i 0.731049 0.237532i
\(251\) −11.6555 5.93879i −0.735690 0.374853i 0.0456505 0.998957i \(-0.485464\pi\)
−0.781341 + 0.624105i \(0.785464\pi\)
\(252\) 0 0
\(253\) 0.638592 + 2.65993i 0.0401480 + 0.167228i
\(254\) 1.47426 + 2.89339i 0.0925031 + 0.181548i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 4.03707 + 3.44798i 0.251826 + 0.215079i 0.766395 0.642369i \(-0.222048\pi\)
−0.514570 + 0.857448i \(0.672048\pi\)
\(258\) 0 0
\(259\) −18.7002 + 11.4595i −1.16198 + 0.712059i
\(260\) −10.3726 + 4.29646i −0.643279 + 0.266455i
\(261\) 0 0
\(262\) 10.7163 7.78585i 0.662056 0.481012i
\(263\) −0.735198 9.34158i −0.0453343 0.576027i −0.977074 0.212900i \(-0.931709\pi\)
0.931740 0.363127i \(-0.118291\pi\)
\(264\) 0 0
\(265\) −13.3567 8.18500i −0.820496 0.502800i
\(266\) 17.2855 + 2.73775i 1.05984 + 0.167862i
\(267\) 0 0
\(268\) −6.10894 + 9.96888i −0.373163 + 0.608946i
\(269\) 8.23110 + 5.98024i 0.501859 + 0.364622i 0.809727 0.586807i \(-0.199615\pi\)
−0.307868 + 0.951429i \(0.599615\pi\)
\(270\) 0 0
\(271\) −5.25654 7.23501i −0.319312 0.439496i 0.618945 0.785435i \(-0.287560\pi\)
−0.938257 + 0.345939i \(0.887560\pi\)
\(272\) 2.36230 + 2.76589i 0.143235 + 0.167707i
\(273\) 0 0
\(274\) 0.544648 + 0.888785i 0.0329034 + 0.0536935i
\(275\) 0.239050 3.03742i 0.0144153 0.183163i
\(276\) 0 0
\(277\) −19.0093 6.17651i −1.14216 0.371110i −0.323975 0.946066i \(-0.605019\pi\)
−0.818185 + 0.574955i \(0.805019\pi\)
\(278\) 0.354513 + 0.354513i 0.0212623 + 0.0212623i
\(279\) 0 0
\(280\) 5.28831 1.26961i 0.316037 0.0758737i
\(281\) −0.708656 + 2.95177i −0.0422749 + 0.176088i −0.989513 0.144443i \(-0.953861\pi\)
0.947238 + 0.320530i \(0.103861\pi\)
\(282\) 0 0
\(283\) −7.89572 24.3005i −0.469352 1.44452i −0.853426 0.521214i \(-0.825480\pi\)
0.384075 0.923302i \(-0.374520\pi\)
\(284\) 4.63892 11.1993i 0.275269 0.664559i
\(285\) 0 0
\(286\) 12.4802i 0.737972i
\(287\) −0.386344 + 18.4940i −0.0228051 + 1.09167i
\(288\) 0 0
\(289\) 3.72298 0.589663i 0.218999 0.0346860i
\(290\) −13.1085 5.42971i −0.769757 0.318844i
\(291\) 0 0
\(292\) −4.66350 + 9.15264i −0.272911 + 0.535618i
\(293\) −3.70333 0.889091i −0.216351 0.0519413i 0.123821 0.992305i \(-0.460485\pi\)
−0.340172 + 0.940363i \(0.610485\pi\)
\(294\) 0 0
\(295\) 6.23003 3.17436i 0.362727 0.184818i
\(296\) 5.36823 5.36823i 0.312022 0.312022i
\(297\) 0 0
\(298\) −10.0789 + 11.8009i −0.583854 + 0.683605i
\(299\) 7.77169 + 0.611645i 0.449448 + 0.0353724i
\(300\) 0 0
\(301\) −1.65481 3.99507i −0.0953818 0.230272i
\(302\) −4.38618 + 3.74615i −0.252396 + 0.215567i
\(303\) 0 0
\(304\) −6.03929 + 0.475303i −0.346377 + 0.0272605i
\(305\) −3.71994 + 5.12006i −0.213003 + 0.293174i
\(306\) 0 0
\(307\) 0.267664 1.68996i 0.0152764 0.0964513i −0.978872 0.204474i \(-0.934452\pi\)
0.994148 + 0.108022i \(0.0344518\pi\)
\(308\) 0.945735 5.97114i 0.0538883 0.340237i
\(309\) 0 0
\(310\) 5.58577 7.68816i 0.317251 0.436658i
\(311\) 27.2162 2.14196i 1.54329 0.121459i 0.721968 0.691927i \(-0.243238\pi\)
0.821320 + 0.570467i \(0.193238\pi\)
\(312\) 0 0
\(313\) −18.9008 + 16.1428i −1.06833 + 0.912444i −0.996384 0.0849647i \(-0.972922\pi\)
−0.0719502 + 0.997408i \(0.522922\pi\)
\(314\) 2.67564 + 6.45956i 0.150995 + 0.364534i
\(315\) 0 0
\(316\) 16.9878 + 1.33697i 0.955637 + 0.0752103i
\(317\) −17.1317 + 20.0587i −0.962214 + 1.12661i 0.0296829 + 0.999559i \(0.490550\pi\)
−0.991897 + 0.127048i \(0.959450\pi\)
\(318\) 0 0
\(319\) −11.1526 + 11.1526i −0.624423 + 0.624423i
\(320\) −1.67738 + 0.854668i −0.0937684 + 0.0477774i
\(321\) 0 0
\(322\) −3.67199 0.881568i −0.204632 0.0491279i
\(323\) 10.0038 19.6335i 0.556625 1.09244i
\(324\) 0 0
\(325\) −8.02193 3.32279i −0.444977 0.184315i
\(326\) −13.9515 + 2.20970i −0.772702 + 0.122384i
\(327\) 0 0
\(328\) −1.36442 6.25607i −0.0753372 0.345433i
\(329\) 12.1425i 0.669438i
\(330\) 0 0
\(331\) −9.73822 + 23.5102i −0.535261 + 1.29223i 0.392737 + 0.919651i \(0.371528\pi\)
−0.927998 + 0.372584i \(0.878472\pi\)
\(332\) −1.56429 4.81439i −0.0858516 0.264224i
\(333\) 0 0
\(334\) −0.138973 + 0.578862i −0.00760424 + 0.0316739i
\(335\) 21.4024 5.13826i 1.16934 0.280733i
\(336\) 0 0
\(337\) 9.48589 + 9.48589i 0.516729 + 0.516729i 0.916580 0.399851i \(-0.130938\pi\)
−0.399851 + 0.916580i \(0.630938\pi\)
\(338\) 21.4620 + 6.97342i 1.16738 + 0.379304i
\(339\) 0 0
\(340\) 0.537259 6.82652i 0.0291370 0.370220i
\(341\) −5.51953 9.00705i −0.298899 0.487759i
\(342\) 0 0
\(343\) 10.6084 + 12.4208i 0.572798 + 0.670660i
\(344\) 0.879819 + 1.21097i 0.0474367 + 0.0652909i
\(345\) 0 0
\(346\) 3.84369 + 2.79260i 0.206638 + 0.150131i
\(347\) 7.10868 11.6003i 0.381614 0.622737i −0.602947 0.797781i \(-0.706007\pi\)
0.984561 + 0.175044i \(0.0560068\pi\)
\(348\) 0 0
\(349\) −21.2575 3.36686i −1.13789 0.180224i −0.441071 0.897472i \(-0.645401\pi\)
−0.696818 + 0.717248i \(0.745401\pi\)
\(350\) 3.58628 + 2.19767i 0.191694 + 0.117471i
\(351\) 0 0
\(352\) 0.164190 + 2.08623i 0.00875134 + 0.111196i
\(353\) −4.92112 + 3.57541i −0.261925 + 0.190300i −0.710995 0.703197i \(-0.751755\pi\)
0.449070 + 0.893496i \(0.351755\pi\)
\(354\) 0 0
\(355\) −21.0835 + 8.73308i −1.11900 + 0.463504i
\(356\) 6.19680 3.79741i 0.328430 0.201262i
\(357\) 0 0
\(358\) 8.18798 + 6.99320i 0.432748 + 0.369602i
\(359\) −9.51098 + 29.2718i −0.501970 + 1.54491i 0.303835 + 0.952725i \(0.401733\pi\)
−0.805805 + 0.592181i \(0.798267\pi\)
\(360\) 0 0
\(361\) 8.03517 + 15.7699i 0.422904 + 0.829996i
\(362\) 1.90687 + 7.94267i 0.100223 + 0.417457i
\(363\) 0 0
\(364\) −15.3510 7.82171i −0.804609 0.409969i
\(365\) 18.3917 5.97583i 0.962666 0.312789i
\(366\) 0 0
\(367\) −4.91804 31.0513i −0.256720 1.62086i −0.692920 0.721015i \(-0.743676\pi\)
0.436200 0.899850i \(-0.356324\pi\)
\(368\) 1.30718 0.0681416
\(369\) 0 0
\(370\) −14.2921 −0.743012
\(371\) −3.76054 23.7431i −0.195237 1.23268i
\(372\) 0 0
\(373\) 0.283136 0.0919965i 0.0146602 0.00476340i −0.301678 0.953410i \(-0.597547\pi\)
0.316338 + 0.948647i \(0.397547\pi\)
\(374\) −6.78224 3.45573i −0.350701 0.178691i
\(375\) 0 0
\(376\) −0.981203 4.08701i −0.0506017 0.210771i
\(377\) 20.4058 + 40.0487i 1.05095 + 2.06261i
\(378\) 0 0
\(379\) 1.57642 4.85173i 0.0809755 0.249217i −0.902370 0.430962i \(-0.858174\pi\)
0.983346 + 0.181745i \(0.0581744\pi\)
\(380\) 8.67208 + 7.40665i 0.444868 + 0.379953i
\(381\) 0 0
\(382\) 3.79650 2.32650i 0.194246 0.119034i
\(383\) −1.33710 + 0.553847i −0.0683229 + 0.0283003i −0.416583 0.909098i \(-0.636773\pi\)
0.348260 + 0.937398i \(0.386773\pi\)
\(384\) 0 0
\(385\) −9.20758 + 6.68969i −0.469261 + 0.340938i
\(386\) 0.387702 + 4.92622i 0.0197335 + 0.250738i
\(387\) 0 0
\(388\) 9.17743 + 5.62394i 0.465913 + 0.285512i
\(389\) −3.68106 0.583022i −0.186637 0.0295604i 0.0624162 0.998050i \(-0.480119\pi\)
−0.249053 + 0.968490i \(0.580119\pi\)
\(390\) 0 0
\(391\) −2.48434 + 4.05407i −0.125638 + 0.205023i
\(392\) 1.08879 + 0.791054i 0.0549923 + 0.0399543i
\(393\) 0 0
\(394\) −8.66379 11.9247i −0.436475 0.600757i
\(395\) −20.8340 24.3935i −1.04827 1.22737i
\(396\) 0 0
\(397\) −6.33172 10.3324i −0.317780 0.518570i 0.653370 0.757039i \(-0.273355\pi\)
−0.971150 + 0.238469i \(0.923355\pi\)
\(398\) −1.50595 + 19.1349i −0.0754865 + 0.959147i
\(399\) 0 0
\(400\) −1.38468 0.449910i −0.0692340 0.0224955i
\(401\) −27.7177 27.7177i −1.38415 1.38415i −0.837093 0.547061i \(-0.815747\pi\)
−0.547061 0.837093i \(-0.684253\pi\)
\(402\) 0 0
\(403\) −29.2729 + 7.02781i −1.45819 + 0.350080i
\(404\) −3.80789 + 15.8610i −0.189450 + 0.789115i
\(405\) 0 0
\(406\) −6.72827 20.7075i −0.333919 1.02770i
\(407\) −6.07979 + 14.6779i −0.301364 + 0.727557i
\(408\) 0 0
\(409\) 0.420045i 0.0207699i 0.999946 + 0.0103849i \(0.00330569\pi\)
−0.999946 + 0.0103849i \(0.996694\pi\)
\(410\) −6.51165 + 10.1442i −0.321587 + 0.500987i
\(411\) 0 0
\(412\) 5.84924 0.926429i 0.288172 0.0456419i
\(413\) 9.91308 + 4.10613i 0.487791 + 0.202050i
\(414\) 0 0
\(415\) −4.32645 + 8.49115i −0.212377 + 0.416814i
\(416\) 5.79898 + 1.39221i 0.284319 + 0.0682588i
\(417\) 0 0
\(418\) 11.2956 5.75541i 0.552487 0.281506i
\(419\) −23.5931 + 23.5931i −1.15260 + 1.15260i −0.166566 + 0.986030i \(0.553268\pi\)
−0.986030 + 0.166566i \(0.946732\pi\)
\(420\) 0 0
\(421\) 10.1738 11.9120i 0.495842 0.580557i −0.454899 0.890543i \(-0.650325\pi\)
0.950741 + 0.309987i \(0.100325\pi\)
\(422\) −20.9449 1.64840i −1.01958 0.0802428i
\(423\) 0 0
\(424\) 3.18436 + 7.68773i 0.154646 + 0.373349i
\(425\) 4.02697 3.43936i 0.195337 0.166833i
\(426\) 0 0
\(427\) −9.68190 + 0.761982i −0.468540 + 0.0368749i
\(428\) −4.49036 + 6.18045i −0.217050 + 0.298743i
\(429\) 0 0
\(430\) 0.440816 2.78320i 0.0212580 0.134218i
\(431\) −4.16195 + 26.2775i −0.200474 + 1.26574i 0.658052 + 0.752972i \(0.271381\pi\)
−0.858526 + 0.512770i \(0.828619\pi\)
\(432\) 0 0
\(433\) −22.9032 + 31.5236i −1.10066 + 1.51493i −0.266149 + 0.963932i \(0.585751\pi\)
−0.834509 + 0.550994i \(0.814249\pi\)
\(434\) 14.5381 1.14417i 0.697851 0.0549221i
\(435\) 0 0
\(436\) −13.4304 + 11.4707i −0.643200 + 0.549345i
\(437\) −3.03042 7.31608i −0.144965 0.349976i
\(438\) 0 0
\(439\) 14.0124 + 1.10280i 0.668777 + 0.0526339i 0.408302 0.912847i \(-0.366121\pi\)
0.260474 + 0.965481i \(0.416121\pi\)
\(440\) 2.55857 2.99570i 0.121975 0.142814i
\(441\) 0 0
\(442\) −15.3389 + 15.3389i −0.729599 + 0.729599i
\(443\) 0.410929 0.209379i 0.0195238 0.00994787i −0.444201 0.895927i \(-0.646513\pi\)
0.463725 + 0.885979i \(0.346513\pi\)
\(444\) 0 0
\(445\) −13.3041 3.19402i −0.630673 0.151411i
\(446\) −4.32779 + 8.49377i −0.204927 + 0.402192i
\(447\) 0 0
\(448\) −2.66901 1.10554i −0.126099 0.0522318i
\(449\) 9.63514 1.52606i 0.454710 0.0720191i 0.0751216 0.997174i \(-0.476065\pi\)
0.379589 + 0.925155i \(0.376065\pi\)
\(450\) 0 0
\(451\) 7.64800 + 11.0027i 0.360130 + 0.518097i
\(452\) 11.7010i 0.550367i
\(453\) 0 0
\(454\) 10.0506 24.2643i 0.471698 1.13878i
\(455\) 10.0228 + 30.8469i 0.469875 + 1.44613i
\(456\) 0 0
\(457\) 2.32467 9.68295i 0.108744 0.452949i −0.891256 0.453500i \(-0.850175\pi\)
1.00000 0.000550579i \(0.000175255\pi\)
\(458\) 5.07979 1.21955i 0.237363 0.0569858i
\(459\) 0 0
\(460\) −1.74009 1.74009i −0.0811321 0.0811321i
\(461\) 24.3349 + 7.90689i 1.13339 + 0.368261i 0.814863 0.579653i \(-0.196812\pi\)
0.318527 + 0.947914i \(0.396812\pi\)
\(462\) 0 0
\(463\) 2.89148 36.7397i 0.134378 1.70744i −0.447598 0.894235i \(-0.647720\pi\)
0.581977 0.813206i \(-0.302280\pi\)
\(464\) 3.93796 + 6.42617i 0.182815 + 0.298328i
\(465\) 0 0
\(466\) 10.6852 + 12.5108i 0.494983 + 0.579551i
\(467\) −1.13834 1.56679i −0.0526761 0.0725025i 0.781866 0.623446i \(-0.214268\pi\)
−0.834542 + 0.550944i \(0.814268\pi\)
\(468\) 0 0
\(469\) 27.3258 + 19.8533i 1.26179 + 0.916742i
\(470\) −4.13437 + 6.74668i −0.190704 + 0.311201i
\(471\) 0 0
\(472\) −3.66842 0.581020i −0.168853 0.0267436i
\(473\) −2.67081 1.63667i −0.122804 0.0752543i
\(474\) 0 0
\(475\) 0.692012 + 8.79285i 0.0317517 + 0.403444i
\(476\) 8.50124 6.17651i 0.389654 0.283100i
\(477\) 0 0
\(478\) 15.7888 6.53995i 0.722164 0.299130i
\(479\) 17.1209 10.4917i 0.782272 0.479377i −0.0731420 0.997322i \(-0.523303\pi\)
0.855414 + 0.517944i \(0.173303\pi\)
\(480\) 0 0
\(481\) 34.4280 + 29.4043i 1.56978 + 1.34072i
\(482\) −1.29447 + 3.98397i −0.0589615 + 0.181465i
\(483\) 0 0
\(484\) 3.00573 + 5.89908i 0.136624 + 0.268140i
\(485\) −4.73033 19.7032i −0.214793 0.894677i
\(486\) 0 0
\(487\) −12.0463 6.13790i −0.545870 0.278135i 0.159231 0.987241i \(-0.449098\pi\)
−0.705101 + 0.709107i \(0.749098\pi\)
\(488\) 3.19723 1.03884i 0.144732 0.0470261i
\(489\) 0 0
\(490\) −0.396342 2.50241i −0.0179049 0.113047i
\(491\) −26.5420 −1.19782 −0.598911 0.800816i \(-0.704400\pi\)
−0.598911 + 0.800816i \(0.704400\pi\)
\(492\) 0 0
\(493\) −27.4143 −1.23468
\(494\) −5.65171 35.6835i −0.254282 1.60548i
\(495\) 0 0
\(496\) −4.80088 + 1.55990i −0.215566 + 0.0700415i
\(497\) −31.2027 15.8986i −1.39963 0.713149i
\(498\) 0 0
\(499\) 8.22321 + 34.2521i 0.368121 + 1.53334i 0.782161 + 0.623077i \(0.214118\pi\)
−0.414039 + 0.910259i \(0.635882\pi\)
\(500\) 5.51768 + 10.8291i 0.246758 + 0.484290i
\(501\) 0 0
\(502\) 4.04235 12.4411i 0.180419 0.555272i
\(503\) 29.2953 + 25.0206i 1.30621 + 1.11561i 0.985725 + 0.168361i \(0.0538473\pi\)
0.320489 + 0.947252i \(0.396153\pi\)
\(504\) 0 0
\(505\) 26.1828 16.0448i 1.16512 0.713985i
\(506\) −2.52728 + 1.04683i −0.112351 + 0.0465375i
\(507\) 0 0
\(508\) −2.62714 + 1.90873i −0.116561 + 0.0846863i
\(509\) 3.25458 + 41.3534i 0.144257 + 1.83296i 0.464445 + 0.885602i \(0.346254\pi\)
−0.320188 + 0.947354i \(0.603746\pi\)
\(510\) 0 0
\(511\) 25.3026 + 15.5055i 1.11932 + 0.685922i
\(512\) 0.987688 + 0.156434i 0.0436501 + 0.00691349i
\(513\) 0 0
\(514\) −2.77400 + 4.52675i −0.122356 + 0.199666i
\(515\) −9.01962 6.55313i −0.397452 0.288766i
\(516\) 0 0
\(517\) 5.17005 + 7.11597i 0.227379 + 0.312960i
\(518\) −14.2438 16.6773i −0.625836 0.732760i
\(519\) 0 0
\(520\) −5.86619 9.57275i −0.257249 0.419793i
\(521\) 2.41917 30.7384i 0.105986 1.34668i −0.682167 0.731196i \(-0.738962\pi\)
0.788153 0.615479i \(-0.211038\pi\)
\(522\) 0 0
\(523\) −19.0536 6.19090i −0.833157 0.270709i −0.138783 0.990323i \(-0.544319\pi\)
−0.694375 + 0.719614i \(0.744319\pi\)
\(524\) 9.36640 + 9.36640i 0.409173 + 0.409173i
\(525\) 0 0
\(526\) 9.11156 2.18749i 0.397283 0.0953792i
\(527\) 4.28637 17.8540i 0.186717 0.777733i
\(528\) 0 0
\(529\) −6.57937 20.2492i −0.286059 0.880400i
\(530\) 5.99478 14.4727i 0.260397 0.628653i
\(531\) 0 0
\(532\) 17.5009i 0.758762i
\(533\) 36.5563 11.0393i 1.58343 0.478163i
\(534\) 0 0
\(535\) 14.2047 2.24981i 0.614124 0.0972677i
\(536\) −10.8018 4.47425i −0.466566 0.193258i
\(537\) 0 0
\(538\) −4.61899 + 9.06528i −0.199139 + 0.390832i
\(539\) −2.73855 0.657469i −0.117958 0.0283192i
\(540\) 0 0
\(541\) 19.3093 9.83858i 0.830172 0.422994i 0.0133690 0.999911i \(-0.495744\pi\)
0.816803 + 0.576917i \(0.195744\pi\)
\(542\) 6.32363 6.32363i 0.271623 0.271623i
\(543\) 0 0
\(544\) −2.36230 + 2.76589i −0.101283 + 0.118587i
\(545\) 33.1477 + 2.60878i 1.41989 + 0.111748i
\(546\) 0 0
\(547\) −2.29531 5.54136i −0.0981402 0.236931i 0.867183 0.497990i \(-0.165928\pi\)
−0.965323 + 0.261059i \(0.915928\pi\)
\(548\) −0.792641 + 0.676979i −0.0338599 + 0.0289191i
\(549\) 0 0
\(550\) 3.03742 0.239050i 0.129516 0.0101931i
\(551\) 26.8369 36.9378i 1.14329 1.57360i
\(552\) 0 0
\(553\) 7.70095 48.6219i 0.327478 2.06761i
\(554\) 3.12675 19.7415i 0.132843 0.838737i
\(555\) 0 0
\(556\) −0.294691 + 0.405607i −0.0124977 + 0.0172016i
\(557\) −24.2343 + 1.90728i −1.02684 + 0.0808139i −0.580673 0.814137i \(-0.697211\pi\)
−0.446165 + 0.894951i \(0.647211\pi\)
\(558\) 0 0
\(559\) −6.78798 + 5.79748i −0.287101 + 0.245207i
\(560\) 2.08125 + 5.02459i 0.0879490 + 0.212328i
\(561\) 0 0
\(562\) −3.02628 0.238174i −0.127656 0.0100467i
\(563\) −17.7676 + 20.8032i −0.748817 + 0.876752i −0.995733 0.0922852i \(-0.970583\pi\)
0.246916 + 0.969037i \(0.420583\pi\)
\(564\) 0 0
\(565\) 15.5760 15.5760i 0.655289 0.655289i
\(566\) 22.7662 11.5999i 0.956934 0.487582i
\(567\) 0 0
\(568\) 11.7871 + 2.82984i 0.494578 + 0.118738i
\(569\) −10.7377 + 21.0740i −0.450149 + 0.883467i 0.548724 + 0.836003i \(0.315114\pi\)
−0.998873 + 0.0474634i \(0.984886\pi\)
\(570\) 0 0
\(571\) 28.2666 + 11.7084i 1.18292 + 0.489981i 0.885443 0.464748i \(-0.153855\pi\)
0.297476 + 0.954729i \(0.403855\pi\)
\(572\) −12.3266 + 1.95234i −0.515400 + 0.0816314i
\(573\) 0 0
\(574\) −18.3268 + 2.51152i −0.764945 + 0.104829i
\(575\) 1.90318i 0.0793680i
\(576\) 0 0
\(577\) 7.49072 18.0842i 0.311843 0.752855i −0.687794 0.725906i \(-0.741421\pi\)
0.999637 0.0269492i \(-0.00857923\pi\)
\(578\) 1.16481 + 3.58490i 0.0484495 + 0.149112i
\(579\) 0 0
\(580\) 3.31225 13.7965i 0.137534 0.572868i
\(581\) −14.2200 + 3.41393i −0.589947 + 0.141634i
\(582\) 0 0
\(583\) −12.3132 12.3132i −0.509960 0.509960i
\(584\) −9.76948 3.17430i −0.404264 0.131353i
\(585\) 0 0
\(586\) 0.298816 3.79682i 0.0123440 0.156845i
\(587\) 19.4113 + 31.6764i 0.801191 + 1.30742i 0.948003 + 0.318260i \(0.103098\pi\)
−0.146813 + 0.989164i \(0.546902\pi\)
\(588\) 0 0
\(589\) 19.8603 + 23.2534i 0.818329 + 0.958140i
\(590\) 4.10987 + 5.65675i 0.169201 + 0.232885i
\(591\) 0 0
\(592\) 6.14192 + 4.46237i 0.252431 + 0.183402i
\(593\) −5.94434 + 9.70028i −0.244105 + 0.398343i −0.951104 0.308872i \(-0.900049\pi\)
0.706999 + 0.707215i \(0.250049\pi\)
\(594\) 0 0
\(595\) −19.5387 3.09462i −0.801007 0.126867i
\(596\) −13.2323 8.10874i −0.542014 0.332147i
\(597\) 0 0
\(598\) 0.611645 + 7.77169i 0.0250120 + 0.317808i
\(599\) −21.3344 + 15.5003i −0.871700 + 0.633327i −0.931043 0.364911i \(-0.881100\pi\)
0.0593427 + 0.998238i \(0.481100\pi\)
\(600\) 0 0
\(601\) 17.3931 7.20448i 0.709481 0.293877i 0.00139136 0.999999i \(-0.499557\pi\)
0.708090 + 0.706122i \(0.249557\pi\)
\(602\) 3.68701 2.25941i 0.150272 0.0920865i
\(603\) 0 0
\(604\) −4.38618 3.74615i −0.178471 0.152429i
\(605\) 3.85156 11.8539i 0.156588 0.481929i
\(606\) 0 0
\(607\) −10.9176 21.4270i −0.443131 0.869694i −0.999255 0.0385945i \(-0.987712\pi\)
0.556124 0.831100i \(-0.312288\pi\)
\(608\) −1.41420 5.89059i −0.0573536 0.238895i
\(609\) 0 0
\(610\) −5.63895 2.87319i −0.228314 0.116332i
\(611\) 23.8397 7.74598i 0.964450 0.313369i
\(612\) 0 0
\(613\) 4.22334 + 26.6651i 0.170579 + 1.07699i 0.913269 + 0.407357i \(0.133550\pi\)
−0.742690 + 0.669636i \(0.766450\pi\)
\(614\) 1.71103 0.0690515
\(615\) 0 0
\(616\) 6.04557 0.243583
\(617\) −0.910820 5.75069i −0.0366682 0.231514i 0.962547 0.271113i \(-0.0873919\pi\)
−0.999216 + 0.0395993i \(0.987392\pi\)
\(618\) 0 0
\(619\) −20.3098 + 6.59904i −0.816318 + 0.265238i −0.687271 0.726401i \(-0.741192\pi\)
−0.129047 + 0.991639i \(0.541192\pi\)
\(620\) 8.46731 + 4.31431i 0.340055 + 0.173267i
\(621\) 0 0
\(622\) 6.37314 + 26.5460i 0.255540 + 1.06440i
\(623\) −9.53198 18.7076i −0.381891 0.749503i
\(624\) 0 0
\(625\) 4.82083 14.8370i 0.192833 0.593480i
\(626\) −18.9008 16.1428i −0.755426 0.645195i
\(627\) 0 0
\(628\) −5.96147 + 3.65320i −0.237889 + 0.145778i
\(629\) −25.5124 + 10.5676i −1.01725 + 0.421357i
\(630\) 0 0
\(631\) 26.5259 19.2722i 1.05598 0.767214i 0.0826397 0.996579i \(-0.473665\pi\)
0.973340 + 0.229365i \(0.0736649\pi\)
\(632\) 1.33697 + 16.9878i 0.0531817 + 0.675738i
\(633\) 0 0
\(634\) −22.4917 13.7829i −0.893260 0.547390i
\(635\) 6.03805 + 0.956333i 0.239613 + 0.0379509i
\(636\) 0 0
\(637\) −4.19366 + 6.84343i −0.166159 + 0.271146i
\(638\) −12.7599 9.27060i −0.505169 0.367027i
\(639\) 0 0
\(640\) −1.10655 1.52303i −0.0437400 0.0602030i
\(641\) −8.81906 10.3258i −0.348332 0.407844i 0.558386 0.829581i \(-0.311421\pi\)
−0.906718 + 0.421737i \(0.861421\pi\)
\(642\) 0 0
\(643\) −15.2237 24.8428i −0.600363 0.979703i −0.998064 0.0621884i \(-0.980192\pi\)
0.397701 0.917515i \(-0.369808\pi\)
\(644\) 0.296288 3.76469i 0.0116754 0.148350i
\(645\) 0 0
\(646\) 20.9567 + 6.80925i 0.824531 + 0.267906i
\(647\) −6.77333 6.77333i −0.266287 0.266287i 0.561315 0.827602i \(-0.310296\pi\)
−0.827602 + 0.561315i \(0.810296\pi\)
\(648\) 0 0
\(649\) 7.55776 1.81446i 0.296668 0.0712237i
\(650\) 2.02698 8.44297i 0.0795046 0.331160i
\(651\) 0 0
\(652\) −4.36499 13.4341i −0.170946 0.526118i
\(653\) 5.45644 13.1730i 0.213527 0.515500i −0.780433 0.625239i \(-0.785001\pi\)
0.993960 + 0.109739i \(0.0350015\pi\)
\(654\) 0 0
\(655\) 24.9366i 0.974355i
\(656\) 5.96560 2.32628i 0.232918 0.0908260i
\(657\) 0 0
\(658\) −11.9930 + 1.89951i −0.467536 + 0.0740505i
\(659\) −35.4734 14.6936i −1.38185 0.572381i −0.436874 0.899523i \(-0.643914\pi\)
−0.944975 + 0.327142i \(0.893914\pi\)
\(660\) 0 0
\(661\) −10.0938 + 19.8101i −0.392602 + 0.770524i −0.999710 0.0240952i \(-0.992330\pi\)
0.607108 + 0.794619i \(0.292330\pi\)
\(662\) −24.7441 5.94053i −0.961707 0.230885i
\(663\) 0 0
\(664\) 4.51041 2.29817i 0.175038 0.0891862i
\(665\) 23.2968 23.2968i 0.903413 0.903413i
\(666\) 0 0
\(667\) −6.39834 + 7.49149i −0.247745 + 0.290072i
\(668\) −0.593476 0.0467076i −0.0229623 0.00180717i
\(669\) 0 0
\(670\) 8.42308 + 20.3351i 0.325412 + 0.785614i
\(671\) −5.34952 + 4.56892i −0.206516 + 0.176381i
\(672\) 0 0
\(673\) 20.8878 1.64391i 0.805167 0.0633680i 0.330807 0.943699i \(-0.392679\pi\)
0.474361 + 0.880331i \(0.342679\pi\)
\(674\) −7.88518 + 10.8530i −0.303726 + 0.418043i
\(675\) 0 0
\(676\) −3.53017 + 22.2886i −0.135776 + 0.857255i
\(677\) 5.48492 34.6304i 0.210802 1.33095i −0.624440 0.781073i \(-0.714673\pi\)
0.835243 0.549882i \(-0.185327\pi\)
\(678\) 0 0
\(679\) 18.2771 25.1563i 0.701413 0.965412i
\(680\) 6.82652 0.537259i 0.261785 0.0206029i
\(681\) 0 0
\(682\) 8.03271 6.86058i 0.307588 0.262705i
\(683\) 10.3695 + 25.0342i 0.396777 + 0.957905i 0.988425 + 0.151709i \(0.0484776\pi\)
−0.591648 + 0.806196i \(0.701522\pi\)
\(684\) 0 0
\(685\) 1.95632 + 0.153966i 0.0747473 + 0.00588274i
\(686\) −10.6084 + 12.4208i −0.405029 + 0.474228i
\(687\) 0 0
\(688\) −1.05842 + 1.05842i −0.0403520 + 0.0403520i
\(689\) −44.2165 + 22.5294i −1.68451 + 0.858303i
\(690\) 0 0
\(691\) 34.8611 + 8.36941i 1.32618 + 0.318387i 0.833835 0.552014i \(-0.186141\pi\)
0.492343 + 0.870401i \(0.336141\pi\)
\(692\) −2.15694 + 4.23323i −0.0819944 + 0.160923i
\(693\) 0 0
\(694\) 12.5695 + 5.20647i 0.477133 + 0.197635i
\(695\) 0.932219 0.147649i 0.0353611 0.00560065i
\(696\) 0 0
\(697\) −4.12312 + 22.9228i −0.156174 + 0.868263i
\(698\) 21.5225i 0.814638i
\(699\) 0 0
\(700\) −1.60960 + 3.88591i −0.0608371 + 0.146874i
\(701\) −14.0207 43.1512i −0.529553 1.62980i −0.755132 0.655573i \(-0.772427\pi\)
0.225579 0.974225i \(-0.427573\pi\)
\(702\) 0 0
\(703\) 10.7364 44.7203i 0.404931 1.68666i
\(704\) −2.03486 + 0.488526i −0.0766916 + 0.0184120i
\(705\) 0 0
\(706\) −4.30122 4.30122i −0.161879 0.161879i
\(707\) 44.8167 + 14.5618i 1.68551 + 0.547654i
\(708\) 0 0
\(709\) 3.46281 43.9991i 0.130048 1.65242i −0.492846 0.870117i \(-0.664043\pi\)
0.622894 0.782306i \(-0.285957\pi\)
\(710\) −11.9238 19.4578i −0.447490 0.730238i
\(711\) 0 0
\(712\) 4.72005 + 5.52646i 0.176891 + 0.207113i
\(713\) −3.87854 5.33836i −0.145253 0.199923i
\(714\) 0 0
\(715\) 19.0078 + 13.8100i 0.710850 + 0.516463i
\(716\) −5.62622 + 9.18115i −0.210262 + 0.343116i
\(717\) 0 0
\(718\) −30.3992 4.81477i −1.13449 0.179685i
\(719\) −23.7252 14.5388i −0.884799 0.542205i 0.00426385 0.999991i \(-0.498643\pi\)
−0.889063 + 0.457785i \(0.848643\pi\)
\(720\) 0 0
\(721\) −1.34233 17.0559i −0.0499908 0.635193i
\(722\) −14.3188 + 10.4032i −0.532890 + 0.387167i
\(723\) 0 0
\(724\) −7.54658 + 3.12590i −0.280466 + 0.116173i
\(725\) 9.35612 5.73344i 0.347478 0.212935i
\(726\) 0 0
\(727\) 28.1414 + 24.0350i 1.04371 + 0.891409i 0.994220 0.107366i \(-0.0342417\pi\)
0.0494858 + 0.998775i \(0.484242\pi\)
\(728\) 5.32399 16.3856i 0.197320 0.607289i
\(729\) 0 0
\(730\) 8.77936 + 17.2305i 0.324939 + 0.637728i
\(731\) −1.27101 5.29415i −0.0470101 0.195811i
\(732\) 0 0
\(733\) −5.49846 2.80161i −0.203090 0.103480i 0.349487 0.936941i \(-0.386356\pi\)
−0.552578 + 0.833461i \(0.686356\pi\)
\(734\) 29.8996 9.71498i 1.10362 0.358587i
\(735\) 0 0
\(736\) 0.204488 + 1.29109i 0.00753754 + 0.0475901i
\(737\) 24.4671 0.901258
\(738\) 0 0
\(739\) −33.9185 −1.24771 −0.623857 0.781539i \(-0.714435\pi\)
−0.623857 + 0.781539i \(0.714435\pi\)
\(740\) −2.23578 14.1162i −0.0821890 0.518921i
\(741\) 0 0
\(742\) 22.8625 7.42848i 0.839309 0.272708i
\(743\) −32.1371 16.3747i −1.17900 0.600729i −0.249074 0.968484i \(-0.580126\pi\)
−0.929922 + 0.367756i \(0.880126\pi\)
\(744\) 0 0
\(745\) 6.82031 + 28.4086i 0.249877 + 1.04081i
\(746\) 0.135156 + 0.265259i 0.00494842 + 0.00971181i
\(747\) 0 0
\(748\) 2.35220 7.23934i 0.0860051 0.264696i
\(749\) 16.7820 + 14.3331i 0.613200 + 0.523722i
\(750\) 0 0
\(751\) −22.7431 + 13.9370i −0.829906 + 0.508567i −0.871401 0.490572i \(-0.836788\pi\)
0.0414948 + 0.999139i \(0.486788\pi\)
\(752\) 3.88319 1.60847i 0.141606 0.0586549i
\(753\) 0 0
\(754\) −36.3634 + 26.4196i −1.32428 + 0.962144i
\(755\) 0.851991 + 10.8256i 0.0310071 + 0.393983i
\(756\) 0 0
\(757\) −15.6982 9.61985i −0.570560 0.349639i 0.207105 0.978319i \(-0.433596\pi\)
−0.777665 + 0.628679i \(0.783596\pi\)
\(758\) 5.03861 + 0.798037i 0.183011 + 0.0289860i
\(759\) 0 0
\(760\) −5.95885 + 9.72397i −0.216150 + 0.352725i
\(761\) 40.4597 + 29.3957i 1.46666 + 1.06559i 0.981564 + 0.191136i \(0.0612170\pi\)
0.485101 + 0.874458i \(0.338783\pi\)
\(762\) 0 0
\(763\) 29.9914 + 41.2796i 1.08576 + 1.49442i
\(764\) 2.89176 + 3.38581i 0.104620 + 0.122494i
\(765\) 0 0
\(766\) −0.756197 1.23400i −0.0273225 0.0445863i
\(767\) 1.73789 22.0820i 0.0627516 0.797335i
\(768\) 0 0
\(769\) 6.11380 + 1.98649i 0.220469 + 0.0716347i 0.417169 0.908829i \(-0.363022\pi\)
−0.196700 + 0.980464i \(0.563022\pi\)
\(770\) −8.04772 8.04772i −0.290020 0.290020i
\(771\) 0 0
\(772\) −4.80492 + 1.15356i −0.172933 + 0.0415175i
\(773\) −10.0122 + 41.7037i −0.360113 + 1.49998i 0.438829 + 0.898570i \(0.355393\pi\)
−0.798942 + 0.601408i \(0.794607\pi\)
\(774\) 0 0
\(775\) 2.27112 + 6.98978i 0.0815810 + 0.251080i
\(776\) −4.11903 + 9.94422i −0.147865 + 0.356977i
\(777\) 0 0
\(778\) 3.72694i 0.133617i
\(779\) −26.8498 27.9955i −0.961993 1.00304i
\(780\) 0 0
\(781\) −25.0553 + 3.96837i −0.896549 + 0.141999i
\(782\) −4.39280 1.81956i −0.157086 0.0650672i
\(783\) 0 0
\(784\) −0.610990 + 1.19914i −0.0218211 + 0.0428263i
\(785\) 12.7988 + 3.07273i 0.456810 + 0.109670i
\(786\) 0 0
\(787\) 19.2466 9.80663i 0.686067 0.349569i −0.0759625 0.997111i \(-0.524203\pi\)
0.762030 + 0.647542i \(0.224203\pi\)
\(788\) 10.4226 10.4226i 0.371288 0.371288i
\(789\) 0 0
\(790\) 20.8340 24.3935i 0.741240 0.867881i
\(791\) 33.6988 + 2.65216i 1.19819 + 0.0942998i
\(792\) 0 0
\(793\) 7.67232 + 18.5226i 0.272452 + 0.657758i
\(794\) 9.21472 7.87012i 0.327018 0.279300i
\(795\) 0 0
\(796\) −19.1349 + 1.50595i −0.678219 + 0.0533770i
\(797\) −32.1492 + 44.2496i −1.13878 + 1.56740i −0.368591 + 0.929592i \(0.620160\pi\)
−0.770193 + 0.637811i \(0.779840\pi\)
\(798\) 0 0
\(799\) −2.39164 + 15.1002i −0.0846102 + 0.534208i
\(800\) 0.227759 1.43801i 0.00805250 0.0508415i
\(801\) 0 0
\(802\) 23.0404 31.7124i 0.813585 1.11980i
\(803\) 21.4302 1.68660i 0.756257 0.0595187i
\(804\) 0 0
\(805\) −5.40588 + 4.61706i −0.190532 + 0.162730i
\(806\) −11.5206 27.8131i −0.405795 0.979676i
\(807\) 0 0
\(808\) −16.2614 1.27980i −0.572075 0.0450233i
\(809\) 14.7980 17.3262i 0.520270 0.609158i −0.436607 0.899653i \(-0.643820\pi\)
0.956877 + 0.290495i \(0.0938198\pi\)
\(810\) 0 0
\(811\) 7.57901 7.57901i 0.266135 0.266135i −0.561406 0.827541i \(-0.689739\pi\)
0.827541 + 0.561406i \(0.189739\pi\)
\(812\) 19.4000 9.88480i 0.680807 0.346889i
\(813\) 0 0
\(814\) −15.4483 3.70881i −0.541462 0.129994i
\(815\) −12.0725 + 23.6937i −0.422882 + 0.829953i
\(816\) 0 0
\(817\) 8.37755 + 3.47009i 0.293093 + 0.121403i
\(818\) −0.414874 + 0.0657095i −0.0145057 + 0.00229748i
\(819\) 0 0
\(820\) −11.0380 4.84458i −0.385462 0.169180i
\(821\) 11.3070i 0.394617i −0.980341 0.197308i \(-0.936780\pi\)
0.980341 0.197308i \(-0.0632200\pi\)
\(822\) 0 0
\(823\) −0.748891 + 1.80798i −0.0261047 + 0.0630223i −0.936394 0.350950i \(-0.885859\pi\)
0.910290 + 0.413972i \(0.135859\pi\)
\(824\) 1.83005 + 5.63231i 0.0637527 + 0.196211i
\(825\) 0 0
\(826\) −2.50483 + 10.4334i −0.0871543 + 0.363024i
\(827\) −55.1747 + 13.2463i −1.91861 + 0.460618i −0.921166 + 0.389169i \(0.872762\pi\)
−0.997444 + 0.0714485i \(0.977238\pi\)
\(828\) 0 0
\(829\) −0.640579 0.640579i −0.0222482 0.0222482i 0.695895 0.718143i \(-0.255008\pi\)
−0.718143 + 0.695895i \(0.755008\pi\)
\(830\) −9.06341 2.94488i −0.314596 0.102218i
\(831\) 0 0
\(832\) −0.467911 + 5.94538i −0.0162219 + 0.206119i
\(833\) −2.55778 4.17391i −0.0886217 0.144617i
\(834\) 0 0
\(835\) 0.727845 + 0.852197i 0.0251881 + 0.0294915i
\(836\) 7.45158 + 10.2562i 0.257718 + 0.354719i
\(837\) 0 0
\(838\) −26.9934 19.6118i −0.932470 0.677479i
\(839\) 12.7860 20.8648i 0.441421 0.720333i −0.552126 0.833761i \(-0.686183\pi\)
0.993546 + 0.113428i \(0.0361831\pi\)
\(840\) 0 0
\(841\) −27.4610 4.34939i −0.946930 0.149979i
\(842\) 13.3569 + 8.18512i 0.460309 + 0.282078i
\(843\) 0 0
\(844\) −1.64840 20.9449i −0.0567402 0.720953i
\(845\) 34.3694 24.9708i 1.18234 0.859022i
\(846\) 0 0
\(847\) 17.6707 7.31944i 0.607172 0.251499i
\(848\) −7.09494 + 4.34778i −0.243641 + 0.149304i
\(849\) 0 0
\(850\) 4.02697 + 3.43936i 0.138124 + 0.117969i
\(851\) −3.06665 + 9.43819i −0.105124 + 0.323537i
\(852\) 0 0
\(853\) −2.53385 4.97295i −0.0867572 0.170271i 0.843551 0.537049i \(-0.180461\pi\)
−0.930308 + 0.366778i \(0.880461\pi\)
\(854\) −2.26718 9.44350i −0.0775814 0.323150i
\(855\) 0 0
\(856\) −6.80681 3.46824i −0.232652 0.118542i
\(857\) −2.37551 + 0.771850i −0.0811459 + 0.0263659i −0.349309 0.937008i \(-0.613584\pi\)
0.268163 + 0.963374i \(0.413584\pi\)
\(858\) 0 0
\(859\) 4.41181 + 27.8551i 0.150529 + 0.950402i 0.941124 + 0.338062i \(0.109772\pi\)
−0.790595 + 0.612340i \(0.790228\pi\)
\(860\) 2.81790 0.0960895
\(861\) 0 0
\(862\) −26.6050 −0.906171
\(863\) 0.765136 + 4.83088i 0.0260455 + 0.164445i 0.997283 0.0736689i \(-0.0234708\pi\)
−0.971237 + 0.238114i \(0.923471\pi\)
\(864\) 0 0
\(865\) 8.50644 2.76391i 0.289227 0.0939757i
\(866\) −34.7183 17.6899i −1.17978 0.601126i
\(867\) 0 0
\(868\) 3.40435 + 14.1801i 0.115551 + 0.481305i
\(869\) −16.1893 31.7732i −0.549183 1.07783i
\(870\) 0 0
\(871\) 21.5468 66.3143i 0.730086 2.24697i
\(872\) −13.4304 11.4707i −0.454811 0.388445i
\(873\) 0 0
\(874\) 6.75194 4.13760i 0.228388 0.139956i
\(875\) 32.4384 13.4364i 1.09662 0.454235i
\(876\) 0 0
\(877\) −44.6276 + 32.4238i −1.50697 + 1.09487i −0.539465 + 0.842008i \(0.681373\pi\)
−0.967501 + 0.252867i \(0.918627\pi\)
\(878\) 1.10280 + 14.0124i 0.0372178 + 0.472896i
\(879\) 0 0
\(880\) 3.35907 + 2.05844i 0.113234 + 0.0693900i
\(881\) −48.4552 7.67455i −1.63250 0.258562i −0.728168 0.685399i \(-0.759628\pi\)
−0.904329 + 0.426837i \(0.859628\pi\)
\(882\) 0 0
\(883\) 5.85765 9.55881i 0.197125 0.321680i −0.738770 0.673958i \(-0.764593\pi\)
0.935895 + 0.352278i \(0.114593\pi\)
\(884\) −17.5496 12.7506i −0.590258 0.428847i
\(885\) 0 0
\(886\) 0.271084 + 0.373115i 0.00910725 + 0.0125351i
\(887\) −19.5055 22.8380i −0.654929 0.766824i 0.329203 0.944259i \(-0.393220\pi\)
−0.984132 + 0.177436i \(0.943220\pi\)
\(888\) 0 0
\(889\) 4.90169 + 7.99883i 0.164397 + 0.268272i
\(890\) 1.07348 13.6399i 0.0359833 0.457211i
\(891\) 0 0
\(892\) −9.06622 2.94579i −0.303559 0.0986324i
\(893\) −18.0047 18.0047i −0.602504 0.602504i
\(894\) 0 0
\(895\) 19.7112 4.73224i 0.658873 0.158181i
\(896\) 0.674403 2.80909i 0.0225302 0.0938452i
\(897\) 0 0
\(898\) 3.01454 + 9.27779i 0.100596 + 0.309604i
\(899\) 14.5593 35.1493i 0.485580 1.17229i
\(900\) 0 0
\(901\) 30.2672i 1.00835i
\(902\) −9.67083 + 9.27505i −0.322003 + 0.308825i
\(903\) 0 0
\(904\) −11.5569 + 1.83043i −0.384377 + 0.0608793i
\(905\) 14.2069 + 5.88471i 0.472255 + 0.195614i
\(906\) 0 0
\(907\) −4.91226 + 9.64085i −0.163109 + 0.320119i −0.958067 0.286546i \(-0.907493\pi\)
0.794958 + 0.606665i \(0.207493\pi\)
\(908\) 25.5378 + 6.13108i 0.847501 + 0.203467i
\(909\) 0 0
\(910\) −28.8992 + 14.7249i −0.958000 + 0.488126i
\(911\) 15.3684 15.3684i 0.509179 0.509179i −0.405096 0.914274i \(-0.632762\pi\)
0.914274 + 0.405096i \(0.132762\pi\)
\(912\) 0 0
\(913\) −6.87989 + 8.05532i −0.227691 + 0.266592i
\(914\) 9.92740 + 0.781303i 0.328369 + 0.0258432i
\(915\) 0 0
\(916\) 1.99919 + 4.82647i 0.0660550 + 0.159471i
\(917\) 29.0983 24.8523i 0.960910 0.820695i
\(918\) 0 0
\(919\) 53.1819 4.18550i 1.75431 0.138067i 0.839869 0.542790i \(-0.182632\pi\)
0.914439 + 0.404723i \(0.132632\pi\)
\(920\) 1.44646 1.99088i 0.0476882 0.0656372i
\(921\) 0 0
\(922\) −4.00273 + 25.2722i −0.131823 + 0.832296i
\(923\) −11.3092 + 71.4032i −0.372245 + 2.35026i
\(924\) 0 0
\(925\) 6.49693 8.94226i 0.213618 0.294020i
\(926\) 36.7397 2.89148i 1.20734 0.0950199i
\(927\) 0 0
\(928\) −5.73102 + 4.89476i −0.188130 + 0.160678i
\(929\) 15.5113 + 37.4477i 0.508910 + 1.22862i 0.944512 + 0.328478i \(0.106536\pi\)
−0.435601 + 0.900140i \(0.643464\pi\)
\(930\) 0 0
\(931\) 8.12781 + 0.639673i 0.266378 + 0.0209644i
\(932\) −10.6852 + 12.5108i −0.350006 + 0.409804i
\(933\) 0 0
\(934\) 1.36943 1.36943i 0.0448090 0.0448090i
\(935\) −12.7680 + 6.50564i −0.417559 + 0.212757i
\(936\) 0 0
\(937\) −28.0654 6.73790i −0.916856 0.220118i −0.252555 0.967583i \(-0.581271\pi\)
−0.664301 + 0.747465i \(0.731271\pi\)
\(938\) −15.3342 + 30.0951i −0.500680 + 0.982640i
\(939\) 0 0
\(940\) −7.31037 3.02806i −0.238438 0.0987643i
\(941\) 12.8563 2.03624i 0.419105 0.0663797i 0.0566792 0.998392i \(-0.481949\pi\)
0.362425 + 0.932013i \(0.381949\pi\)
\(942\) 0 0
\(943\) 5.30180 + 6.47678i 0.172650 + 0.210913i
\(944\) 3.71414i 0.120885i
\(945\) 0 0
\(946\) 1.19872 2.89396i 0.0389737 0.0940907i
\(947\) 5.79610 + 17.8386i 0.188348 + 0.579676i 0.999990 0.00447957i \(-0.00142590\pi\)
−0.811642 + 0.584155i \(0.801426\pi\)
\(948\) 0 0
\(949\) 14.3011 59.5686i 0.464235 1.93368i
\(950\) −8.57634 + 2.05900i −0.278253 + 0.0668027i
\(951\) 0 0
\(952\) 7.43035 + 7.43035i 0.240819 + 0.240819i
\(953\) −31.2324 10.1480i −1.01172 0.328727i −0.244179 0.969730i \(-0.578518\pi\)
−0.767538 + 0.641003i \(0.778518\pi\)
\(954\) 0 0
\(955\) 0.657675 8.35655i 0.0212819 0.270412i
\(956\) 8.92934 + 14.5714i 0.288796 + 0.471272i
\(957\) 0 0
\(958\) 13.0408 + 15.2688i 0.421329 + 0.493313i
\(959\) 1.77004 + 2.43626i 0.0571577 + 0.0786708i
\(960\) 0 0
\(961\) −4.46440 3.24358i −0.144013 0.104632i
\(962\) −23.6566 + 38.6040i −0.762719 + 1.24464i
\(963\) 0 0
\(964\) −4.13742 0.655303i −0.133257 0.0211059i
\(965\) 7.93178 + 4.86060i 0.255333 + 0.156468i
\(966\) 0 0
\(967\) −1.31096 16.6573i −0.0421576 0.535663i −0.981345 0.192257i \(-0.938419\pi\)
0.939187 0.343406i \(-0.111581\pi\)
\(968\) −5.35626 + 3.89155i −0.172157 + 0.125079i
\(969\) 0 0
\(970\) 18.7207 7.75435i 0.601084 0.248977i
\(971\) −10.0788 + 6.17631i −0.323445 + 0.198207i −0.674736 0.738059i \(-0.735743\pi\)
0.351291 + 0.936266i \(0.385743\pi\)
\(972\) 0 0
\(973\) 1.10136 + 0.940646i 0.0353078 + 0.0301557i
\(974\) 4.17787 12.8582i 0.133868 0.412002i
\(975\) 0 0
\(976\) 1.52621 + 2.99535i 0.0488527 + 0.0958789i
\(977\) −5.68128 23.6642i −0.181760 0.757086i −0.986541 0.163514i \(-0.947717\pi\)
0.804781 0.593572i \(-0.202283\pi\)
\(978\) 0 0
\(979\) −13.5514 6.90480i −0.433106 0.220678i
\(980\) 2.40960 0.782925i 0.0769717 0.0250096i
\(981\) 0 0
\(982\) −4.15208 26.2152i −0.132498 0.836560i
\(983\) 38.9601 1.24263 0.621317 0.783559i \(-0.286598\pi\)
0.621317 + 0.783559i \(0.286598\pi\)
\(984\) 0 0
\(985\) −27.7485 −0.884141
\(986\) −4.28854 27.0768i −0.136575 0.862299i
\(987\) 0 0
\(988\) 34.3600 11.1643i 1.09314 0.355182i
\(989\) −1.74338 0.888295i −0.0554362 0.0282461i
\(990\) 0 0
\(991\) 7.32970 + 30.5304i 0.232835 + 0.969830i 0.959247 + 0.282569i \(0.0911867\pi\)
−0.726411 + 0.687260i \(0.758813\pi\)
\(992\) −2.29172 4.49775i −0.0727621 0.142804i
\(993\) 0 0
\(994\) 10.8217 33.3057i 0.343242 1.05639i
\(995\) 27.4766 + 23.4673i 0.871068 + 0.743962i
\(996\) 0 0
\(997\) −13.5618 + 8.31066i −0.429505 + 0.263201i −0.720407 0.693552i \(-0.756045\pi\)
0.290901 + 0.956753i \(0.406045\pi\)
\(998\) −32.5440 + 13.4802i −1.03016 + 0.426708i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.a.71.3 48
3.2 odd 2 738.2.ba.b.71.1 yes 48
41.26 odd 40 738.2.ba.b.395.1 yes 48
123.26 even 40 inner 738.2.ba.a.395.3 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.a.71.3 48 1.1 even 1 trivial
738.2.ba.a.395.3 yes 48 123.26 even 40 inner
738.2.ba.b.71.1 yes 48 3.2 odd 2
738.2.ba.b.395.1 yes 48 41.26 odd 40