Properties

Label 738.2.ba.a.521.1
Level $738$
Weight $2$
Character 738.521
Analytic conductor $5.893$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,-4,0,4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(3\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 521.1
Character \(\chi\) \(=\) 738.521
Dual form 738.2.ba.a.17.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.987688 + 0.156434i) q^{2} +(0.951057 + 0.309017i) q^{4} +(-1.48149 - 2.90758i) q^{5} +(2.16613 - 1.32741i) q^{7} +(0.891007 + 0.453990i) q^{8} +(-1.00840 - 3.10354i) q^{10} +(-3.34354 - 0.263142i) q^{11} +(-0.135310 - 0.563607i) q^{13} +(2.34711 - 0.972206i) q^{14} +(0.809017 + 0.587785i) q^{16} +(-1.23831 - 1.44987i) q^{17} +(1.37431 - 5.72443i) q^{19} +(-0.510485 - 3.22308i) q^{20} +(-3.26121 - 0.782948i) q^{22} +(-1.86113 + 1.35219i) q^{23} +(-3.32029 + 4.56999i) q^{25} +(-0.0454767 - 0.577836i) q^{26} +(2.47030 - 0.593067i) q^{28} +(4.84731 - 5.67547i) q^{29} +(0.557461 - 0.181130i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-0.996252 - 1.62574i) q^{34} +(-7.06863 - 4.33166i) q^{35} +(-0.294720 + 0.907054i) q^{37} +(2.25289 - 5.43896i) q^{38} -3.26325i q^{40} +(0.432093 + 6.38853i) q^{41} +(-0.642114 + 4.05415i) q^{43} +(-3.09858 - 1.28347i) q^{44} +(-2.04975 + 1.04440i) q^{46} +(4.74787 - 7.74782i) q^{47} +(-0.247820 + 0.486374i) q^{49} +(-3.99431 + 3.99431i) q^{50} +(0.0454767 - 0.577836i) q^{52} +(1.55539 + 1.32843i) q^{53} +(4.18830 + 10.1115i) q^{55} +(2.53267 - 0.199325i) q^{56} +(5.67547 - 4.84731i) q^{58} +(-5.35369 - 7.36872i) q^{59} +(14.3601 - 2.27442i) q^{61} +(0.578933 - 0.0916939i) q^{62} +(0.587785 + 0.809017i) q^{64} +(-1.43827 + 1.22840i) q^{65} +(4.21374 - 0.331628i) q^{67} +(-0.729665 - 1.76157i) q^{68} +(-6.30398 - 5.38411i) q^{70} +(-0.665395 + 8.45464i) q^{71} +(3.72370 - 3.72370i) q^{73} +(-0.432986 + 0.849782i) q^{74} +(3.07600 - 5.01957i) q^{76} +(-7.59184 + 3.86824i) q^{77} +(2.04711 + 0.847940i) q^{79} +(0.510485 - 3.22308i) q^{80} +(-0.572613 + 6.37747i) q^{82} +6.19990i q^{83} +(-2.38108 + 5.74844i) q^{85} +(-1.26842 + 3.90379i) q^{86} +(-2.85965 - 1.75240i) q^{88} +(4.49202 + 7.33031i) q^{89} +(-1.04124 - 1.04124i) q^{91} +(-2.18789 + 0.710889i) q^{92} +(5.90144 - 6.90970i) q^{94} +(-18.6803 + 4.48473i) q^{95} +(0.784784 + 9.97163i) q^{97} +(-0.320855 + 0.441619i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{5} + 4 q^{7} - 8 q^{11} - 4 q^{13} + 4 q^{14} + 12 q^{16} - 16 q^{17} - 4 q^{19} + 16 q^{20} + 20 q^{22} - 40 q^{25} - 20 q^{26} - 4 q^{28} + 32 q^{29} - 40 q^{31} - 4 q^{34} - 52 q^{35} - 24 q^{37}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.987688 + 0.156434i 0.698401 + 0.110616i
\(3\) 0 0
\(4\) 0.951057 + 0.309017i 0.475528 + 0.154508i
\(5\) −1.48149 2.90758i −0.662540 1.30031i −0.940525 0.339723i \(-0.889667\pi\)
0.277985 0.960585i \(-0.410333\pi\)
\(6\) 0 0
\(7\) 2.16613 1.32741i 0.818720 0.501712i −0.0489802 0.998800i \(-0.515597\pi\)
0.867701 + 0.497087i \(0.165597\pi\)
\(8\) 0.891007 + 0.453990i 0.315018 + 0.160510i
\(9\) 0 0
\(10\) −1.00840 3.10354i −0.318884 0.981425i
\(11\) −3.34354 0.263142i −1.00812 0.0793404i −0.436367 0.899769i \(-0.643735\pi\)
−0.571749 + 0.820429i \(0.693735\pi\)
\(12\) 0 0
\(13\) −0.135310 0.563607i −0.0375283 0.156317i 0.950460 0.310848i \(-0.100613\pi\)
−0.987988 + 0.154532i \(0.950613\pi\)
\(14\) 2.34711 0.972206i 0.627293 0.259833i
\(15\) 0 0
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) −1.23831 1.44987i −0.300334 0.351645i 0.589633 0.807671i \(-0.299272\pi\)
−0.889967 + 0.456026i \(0.849272\pi\)
\(18\) 0 0
\(19\) 1.37431 5.72443i 0.315289 1.31327i −0.559524 0.828814i \(-0.689016\pi\)
0.874813 0.484460i \(-0.160984\pi\)
\(20\) −0.510485 3.22308i −0.114148 0.720702i
\(21\) 0 0
\(22\) −3.26121 0.782948i −0.695293 0.166925i
\(23\) −1.86113 + 1.35219i −0.388073 + 0.281951i −0.764665 0.644428i \(-0.777096\pi\)
0.376593 + 0.926379i \(0.377096\pi\)
\(24\) 0 0
\(25\) −3.32029 + 4.56999i −0.664058 + 0.913997i
\(26\) −0.0454767 0.577836i −0.00891871 0.113323i
\(27\) 0 0
\(28\) 2.47030 0.593067i 0.466844 0.112079i
\(29\) 4.84731 5.67547i 0.900123 1.05391i −0.0981502 0.995172i \(-0.531293\pi\)
0.998273 0.0587373i \(-0.0187074\pi\)
\(30\) 0 0
\(31\) 0.557461 0.181130i 0.100123 0.0325319i −0.258527 0.966004i \(-0.583237\pi\)
0.358650 + 0.933472i \(0.383237\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −0.996252 1.62574i −0.170856 0.278811i
\(35\) −7.06863 4.33166i −1.19482 0.732184i
\(36\) 0 0
\(37\) −0.294720 + 0.907054i −0.0484516 + 0.149119i −0.972355 0.233507i \(-0.924980\pi\)
0.923904 + 0.382625i \(0.124980\pi\)
\(38\) 2.25289 5.43896i 0.365467 0.882317i
\(39\) 0 0
\(40\) 3.26325i 0.515965i
\(41\) 0.432093 + 6.38853i 0.0674816 + 0.997721i
\(42\) 0 0
\(43\) −0.642114 + 4.05415i −0.0979215 + 0.618252i 0.889106 + 0.457701i \(0.151327\pi\)
−0.987028 + 0.160551i \(0.948673\pi\)
\(44\) −3.09858 1.28347i −0.467129 0.193491i
\(45\) 0 0
\(46\) −2.04975 + 1.04440i −0.302219 + 0.153988i
\(47\) 4.74787 7.74782i 0.692548 1.13014i −0.292235 0.956347i \(-0.594399\pi\)
0.984783 0.173789i \(-0.0556011\pi\)
\(48\) 0 0
\(49\) −0.247820 + 0.486374i −0.0354029 + 0.0694820i
\(50\) −3.99431 + 3.99431i −0.564881 + 0.564881i
\(51\) 0 0
\(52\) 0.0454767 0.577836i 0.00630648 0.0801314i
\(53\) 1.55539 + 1.32843i 0.213649 + 0.182474i 0.749832 0.661628i \(-0.230134\pi\)
−0.536183 + 0.844102i \(0.680134\pi\)
\(54\) 0 0
\(55\) 4.18830 + 10.1115i 0.564750 + 1.36343i
\(56\) 2.53267 0.199325i 0.338442 0.0266359i
\(57\) 0 0
\(58\) 5.67547 4.84731i 0.745226 0.636483i
\(59\) −5.35369 7.36872i −0.696991 0.959326i −0.999980 0.00633188i \(-0.997984\pi\)
0.302989 0.952994i \(-0.402016\pi\)
\(60\) 0 0
\(61\) 14.3601 2.27442i 1.83862 0.291210i 0.862120 0.506704i \(-0.169136\pi\)
0.976505 + 0.215495i \(0.0691365\pi\)
\(62\) 0.578933 0.0916939i 0.0735245 0.0116451i
\(63\) 0 0
\(64\) 0.587785 + 0.809017i 0.0734732 + 0.101127i
\(65\) −1.43827 + 1.22840i −0.178396 + 0.152364i
\(66\) 0 0
\(67\) 4.21374 0.331628i 0.514790 0.0405149i 0.181596 0.983373i \(-0.441874\pi\)
0.333194 + 0.942858i \(0.391874\pi\)
\(68\) −0.729665 1.76157i −0.0884849 0.213621i
\(69\) 0 0
\(70\) −6.30398 5.38411i −0.753470 0.643524i
\(71\) −0.665395 + 8.45464i −0.0789678 + 1.00338i 0.821998 + 0.569491i \(0.192860\pi\)
−0.900966 + 0.433891i \(0.857140\pi\)
\(72\) 0 0
\(73\) 3.72370 3.72370i 0.435826 0.435826i −0.454779 0.890604i \(-0.650282\pi\)
0.890604 + 0.454779i \(0.150282\pi\)
\(74\) −0.432986 + 0.849782i −0.0503336 + 0.0987852i
\(75\) 0 0
\(76\) 3.07600 5.01957i 0.352841 0.575784i
\(77\) −7.59184 + 3.86824i −0.865171 + 0.440827i
\(78\) 0 0
\(79\) 2.04711 + 0.847940i 0.230318 + 0.0954007i 0.494858 0.868974i \(-0.335220\pi\)
−0.264540 + 0.964375i \(0.585220\pi\)
\(80\) 0.510485 3.22308i 0.0570740 0.360351i
\(81\) 0 0
\(82\) −0.572613 + 6.37747i −0.0632345 + 0.704274i
\(83\) 6.19990i 0.680527i 0.940330 + 0.340264i \(0.110516\pi\)
−0.940330 + 0.340264i \(0.889484\pi\)
\(84\) 0 0
\(85\) −2.38108 + 5.74844i −0.258265 + 0.623506i
\(86\) −1.26842 + 3.90379i −0.136777 + 0.420956i
\(87\) 0 0
\(88\) −2.85965 1.75240i −0.304840 0.186806i
\(89\) 4.49202 + 7.33031i 0.476153 + 0.777012i 0.997062 0.0766008i \(-0.0244067\pi\)
−0.520908 + 0.853613i \(0.674407\pi\)
\(90\) 0 0
\(91\) −1.04124 1.04124i −0.109151 0.109151i
\(92\) −2.18789 + 0.710889i −0.228103 + 0.0741153i
\(93\) 0 0
\(94\) 5.90144 6.90970i 0.608687 0.712681i
\(95\) −18.6803 + 4.48473i −1.91655 + 0.460124i
\(96\) 0 0
\(97\) 0.784784 + 9.97163i 0.0796828 + 1.01247i 0.898662 + 0.438642i \(0.144540\pi\)
−0.818979 + 0.573823i \(0.805460\pi\)
\(98\) −0.320855 + 0.441619i −0.0324112 + 0.0446102i
\(99\) 0 0
\(100\) −4.56999 + 3.32029i −0.456999 + 0.332029i
\(101\) 12.4242 + 2.98278i 1.23625 + 0.296798i 0.798333 0.602216i \(-0.205716\pi\)
0.437919 + 0.899014i \(0.355716\pi\)
\(102\) 0 0
\(103\) 3.00842 + 18.9944i 0.296429 + 1.87158i 0.464169 + 0.885747i \(0.346353\pi\)
−0.167740 + 0.985831i \(0.553647\pi\)
\(104\) 0.135310 0.563607i 0.0132683 0.0552663i
\(105\) 0 0
\(106\) 1.32843 + 1.55539i 0.129029 + 0.151073i
\(107\) 8.44283 + 6.13408i 0.816199 + 0.593004i 0.915621 0.402042i \(-0.131699\pi\)
−0.0994219 + 0.995045i \(0.531699\pi\)
\(108\) 0 0
\(109\) −12.2565 + 5.07681i −1.17396 + 0.486271i −0.882500 0.470312i \(-0.844141\pi\)
−0.291461 + 0.956583i \(0.594141\pi\)
\(110\) 2.55496 + 10.6422i 0.243605 + 1.01469i
\(111\) 0 0
\(112\) 2.53267 + 0.199325i 0.239314 + 0.0188345i
\(113\) −3.39247 10.4410i −0.319137 0.982203i −0.974018 0.226471i \(-0.927281\pi\)
0.654881 0.755732i \(-0.272719\pi\)
\(114\) 0 0
\(115\) 6.68884 + 3.40813i 0.623738 + 0.317810i
\(116\) 6.36389 3.89979i 0.590872 0.362087i
\(117\) 0 0
\(118\) −4.13506 8.11550i −0.380663 0.747093i
\(119\) −4.60690 1.49687i −0.422314 0.137218i
\(120\) 0 0
\(121\) 0.245454 + 0.0388761i 0.0223140 + 0.00353419i
\(122\) 14.5391 1.31631
\(123\) 0 0
\(124\) 0.586149 0.0526378
\(125\) 2.09118 + 0.331210i 0.187040 + 0.0296243i
\(126\) 0 0
\(127\) −16.1708 5.25423i −1.43493 0.466237i −0.514617 0.857420i \(-0.672066\pi\)
−0.920313 + 0.391183i \(0.872066\pi\)
\(128\) 0.453990 + 0.891007i 0.0401275 + 0.0787546i
\(129\) 0 0
\(130\) −1.61273 + 0.988282i −0.141446 + 0.0866781i
\(131\) −14.3020 7.28721i −1.24957 0.636687i −0.301110 0.953589i \(-0.597357\pi\)
−0.948458 + 0.316903i \(0.897357\pi\)
\(132\) 0 0
\(133\) −4.62170 14.2241i −0.400753 1.23339i
\(134\) 4.21374 + 0.331628i 0.364012 + 0.0286483i
\(135\) 0 0
\(136\) −0.445112 1.85402i −0.0381680 0.158981i
\(137\) 9.29980 3.85210i 0.794536 0.329108i 0.0517702 0.998659i \(-0.483514\pi\)
0.742766 + 0.669551i \(0.233514\pi\)
\(138\) 0 0
\(139\) 0.211469 + 0.153641i 0.0179366 + 0.0130317i 0.596717 0.802451i \(-0.296471\pi\)
−0.578781 + 0.815483i \(0.696471\pi\)
\(140\) −5.38411 6.30398i −0.455040 0.532784i
\(141\) 0 0
\(142\) −1.97980 + 8.24646i −0.166141 + 0.692028i
\(143\) 0.304106 + 1.92005i 0.0254306 + 0.160563i
\(144\) 0 0
\(145\) −23.6831 5.68581i −1.96678 0.472181i
\(146\) 4.26037 3.09534i 0.352590 0.256172i
\(147\) 0 0
\(148\) −0.560590 + 0.771586i −0.0460802 + 0.0634240i
\(149\) 1.65160 + 20.9856i 0.135305 + 1.71921i 0.572553 + 0.819868i \(0.305953\pi\)
−0.437248 + 0.899341i \(0.644047\pi\)
\(150\) 0 0
\(151\) −12.8173 + 3.07715i −1.04305 + 0.250415i −0.718555 0.695470i \(-0.755196\pi\)
−0.324500 + 0.945886i \(0.605196\pi\)
\(152\) 3.82336 4.47658i 0.310116 0.363099i
\(153\) 0 0
\(154\) −8.10350 + 2.63299i −0.652999 + 0.212172i
\(155\) −1.35252 1.35252i −0.108637 0.108637i
\(156\) 0 0
\(157\) −6.48585 10.5839i −0.517627 0.844690i 0.481875 0.876240i \(-0.339956\pi\)
−0.999502 + 0.0315494i \(0.989956\pi\)
\(158\) 1.88926 + 1.15774i 0.150301 + 0.0921047i
\(159\) 0 0
\(160\) 1.00840 3.10354i 0.0797210 0.245356i
\(161\) −2.23655 + 5.39950i −0.176265 + 0.425540i
\(162\) 0 0
\(163\) 7.01368i 0.549354i −0.961537 0.274677i \(-0.911429\pi\)
0.961537 0.274677i \(-0.0885709\pi\)
\(164\) −1.56322 + 6.20938i −0.122067 + 0.484871i
\(165\) 0 0
\(166\) −0.969878 + 6.12357i −0.0752771 + 0.475281i
\(167\) 6.30278 + 2.61070i 0.487724 + 0.202022i 0.612974 0.790103i \(-0.289973\pi\)
−0.125250 + 0.992125i \(0.539973\pi\)
\(168\) 0 0
\(169\) 11.2837 5.74935i 0.867980 0.442258i
\(170\) −3.25102 + 5.30518i −0.249342 + 0.406889i
\(171\) 0 0
\(172\) −1.86349 + 3.65730i −0.142090 + 0.278867i
\(173\) 12.2109 12.2109i 0.928376 0.928376i −0.0692247 0.997601i \(-0.522053\pi\)
0.997601 + 0.0692247i \(0.0220525\pi\)
\(174\) 0 0
\(175\) −1.12595 + 14.3066i −0.0851139 + 1.08147i
\(176\) −2.55031 2.17817i −0.192237 0.164186i
\(177\) 0 0
\(178\) 3.29000 + 7.94277i 0.246596 + 0.595336i
\(179\) 12.1702 0.957816i 0.909644 0.0715906i 0.385004 0.922915i \(-0.374200\pi\)
0.524640 + 0.851324i \(0.324200\pi\)
\(180\) 0 0
\(181\) 11.7991 10.0774i 0.877022 0.749047i −0.0920690 0.995753i \(-0.529348\pi\)
0.969090 + 0.246706i \(0.0793480\pi\)
\(182\) −0.865531 1.19130i −0.0641574 0.0883051i
\(183\) 0 0
\(184\) −2.27216 + 0.359875i −0.167506 + 0.0265303i
\(185\) 3.07395 0.486866i 0.226002 0.0357951i
\(186\) 0 0
\(187\) 3.75881 + 5.17356i 0.274871 + 0.378328i
\(188\) 6.90970 5.90144i 0.503942 0.430407i
\(189\) 0 0
\(190\) −19.1518 + 1.50728i −1.38942 + 0.109350i
\(191\) 7.85329 + 18.9595i 0.568244 + 1.37186i 0.903033 + 0.429570i \(0.141335\pi\)
−0.334789 + 0.942293i \(0.608665\pi\)
\(192\) 0 0
\(193\) −12.5846 10.7482i −0.905856 0.773674i 0.0687420 0.997634i \(-0.478101\pi\)
−0.974598 + 0.223960i \(0.928101\pi\)
\(194\) −0.784784 + 9.97163i −0.0563442 + 0.715921i
\(195\) 0 0
\(196\) −0.385989 + 0.385989i −0.0275706 + 0.0275706i
\(197\) −0.448195 + 0.879632i −0.0319326 + 0.0626712i −0.906422 0.422374i \(-0.861197\pi\)
0.874489 + 0.485045i \(0.161197\pi\)
\(198\) 0 0
\(199\) −2.51572 + 4.10529i −0.178335 + 0.291016i −0.929300 0.369326i \(-0.879589\pi\)
0.750965 + 0.660342i \(0.229589\pi\)
\(200\) −5.03313 + 2.56451i −0.355896 + 0.181338i
\(201\) 0 0
\(202\) 11.8046 + 4.88963i 0.830569 + 0.344033i
\(203\) 2.96625 18.7282i 0.208190 1.31446i
\(204\) 0 0
\(205\) 17.9350 10.7209i 1.25264 0.748777i
\(206\) 19.2312i 1.33990i
\(207\) 0 0
\(208\) 0.221812 0.535501i 0.0153799 0.0371303i
\(209\) −6.10142 + 18.7782i −0.422044 + 1.29892i
\(210\) 0 0
\(211\) 24.0178 + 14.7181i 1.65345 + 1.01324i 0.954565 + 0.298004i \(0.0963209\pi\)
0.698887 + 0.715232i \(0.253679\pi\)
\(212\) 1.06876 + 1.74405i 0.0734026 + 0.119782i
\(213\) 0 0
\(214\) 7.37931 + 7.37931i 0.504439 + 0.504439i
\(215\) 12.7390 4.13917i 0.868795 0.282289i
\(216\) 0 0
\(217\) 0.967100 1.13233i 0.0656510 0.0768675i
\(218\) −12.8998 + 3.09697i −0.873685 + 0.209753i
\(219\) 0 0
\(220\) 0.858700 + 10.9108i 0.0578935 + 0.735607i
\(221\) −0.649603 + 0.894102i −0.0436970 + 0.0601438i
\(222\) 0 0
\(223\) −16.2426 + 11.8009i −1.08769 + 0.790250i −0.979007 0.203827i \(-0.934662\pi\)
−0.108679 + 0.994077i \(0.534662\pi\)
\(224\) 2.47030 + 0.593067i 0.165054 + 0.0396260i
\(225\) 0 0
\(226\) −1.71738 10.8431i −0.114238 0.721273i
\(227\) −6.89751 + 28.7302i −0.457804 + 1.90689i −0.0379957 + 0.999278i \(0.512097\pi\)
−0.419808 + 0.907613i \(0.637903\pi\)
\(228\) 0 0
\(229\) −5.34031 6.25270i −0.352898 0.413190i 0.555354 0.831614i \(-0.312583\pi\)
−0.908252 + 0.418424i \(0.862583\pi\)
\(230\) 6.07334 + 4.41254i 0.400464 + 0.290954i
\(231\) 0 0
\(232\) 6.89560 2.85625i 0.452718 0.187522i
\(233\) −1.62315 6.76091i −0.106336 0.442922i 0.893647 0.448771i \(-0.148138\pi\)
−0.999983 + 0.00584928i \(0.998138\pi\)
\(234\) 0 0
\(235\) −29.5613 2.32652i −1.92837 0.151766i
\(236\) −2.81460 8.66245i −0.183215 0.563878i
\(237\) 0 0
\(238\) −4.31602 2.19912i −0.279766 0.142548i
\(239\) −6.61003 + 4.05063i −0.427568 + 0.262014i −0.719592 0.694397i \(-0.755671\pi\)
0.292024 + 0.956411i \(0.405671\pi\)
\(240\) 0 0
\(241\) −8.89620 17.4598i −0.573055 1.12468i −0.977660 0.210192i \(-0.932591\pi\)
0.404605 0.914491i \(-0.367409\pi\)
\(242\) 0.236350 + 0.0767949i 0.0151932 + 0.00493656i
\(243\) 0 0
\(244\) 14.3601 + 2.27442i 0.919312 + 0.145605i
\(245\) 1.78131 0.113804
\(246\) 0 0
\(247\) −3.41229 −0.217119
\(248\) 0.578933 + 0.0916939i 0.0367623 + 0.00582257i
\(249\) 0 0
\(250\) 2.01362 + 0.654264i 0.127352 + 0.0413793i
\(251\) −2.76793 5.43236i −0.174710 0.342888i 0.787002 0.616951i \(-0.211632\pi\)
−0.961712 + 0.274063i \(0.911632\pi\)
\(252\) 0 0
\(253\) 6.57859 4.03136i 0.413592 0.253450i
\(254\) −15.1498 7.71922i −0.950584 0.484347i
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 27.6547 + 2.17647i 1.72505 + 0.135764i 0.901868 0.432011i \(-0.142196\pi\)
0.823183 + 0.567776i \(0.192196\pi\)
\(258\) 0 0
\(259\) 0.565628 + 2.35601i 0.0351464 + 0.146395i
\(260\) −1.74748 + 0.723828i −0.108374 + 0.0448899i
\(261\) 0 0
\(262\) −12.9859 9.43481i −0.802272 0.582885i
\(263\) −4.56727 5.34759i −0.281630 0.329747i 0.601502 0.798872i \(-0.294569\pi\)
−0.883132 + 0.469125i \(0.844569\pi\)
\(264\) 0 0
\(265\) 1.55822 6.49047i 0.0957210 0.398707i
\(266\) −2.33966 14.7720i −0.143454 0.905730i
\(267\) 0 0
\(268\) 4.10998 + 0.986719i 0.251057 + 0.0602735i
\(269\) 19.3774 14.0785i 1.18146 0.858380i 0.189123 0.981953i \(-0.439435\pi\)
0.992335 + 0.123573i \(0.0394354\pi\)
\(270\) 0 0
\(271\) 0.403294 0.555087i 0.0244984 0.0337191i −0.796592 0.604517i \(-0.793366\pi\)
0.821090 + 0.570798i \(0.193366\pi\)
\(272\) −0.149599 1.90083i −0.00907074 0.115255i
\(273\) 0 0
\(274\) 9.78791 2.34987i 0.591309 0.141961i
\(275\) 12.3041 14.4062i 0.741964 0.868728i
\(276\) 0 0
\(277\) 30.4552 9.89551i 1.82988 0.594564i 0.830588 0.556887i \(-0.188004\pi\)
0.999290 0.0376768i \(-0.0119957\pi\)
\(278\) 0.184831 + 0.184831i 0.0110854 + 0.0110854i
\(279\) 0 0
\(280\) −4.33166 7.06863i −0.258866 0.422431i
\(281\) −14.9986 9.19114i −0.894740 0.548297i −0.00256978 0.999997i \(-0.500818\pi\)
−0.892170 + 0.451699i \(0.850818\pi\)
\(282\) 0 0
\(283\) 5.60368 17.2464i 0.333104 1.02519i −0.634544 0.772887i \(-0.718812\pi\)
0.967648 0.252303i \(-0.0811880\pi\)
\(284\) −3.24546 + 7.83523i −0.192582 + 0.464935i
\(285\) 0 0
\(286\) 1.94398i 0.114950i
\(287\) 9.41614 + 13.2648i 0.555817 + 0.782998i
\(288\) 0 0
\(289\) 2.09066 13.1999i 0.122980 0.776466i
\(290\) −22.5021 9.32066i −1.32137 0.547328i
\(291\) 0 0
\(292\) 4.69213 2.39076i 0.274586 0.139909i
\(293\) −2.58743 + 4.22229i −0.151159 + 0.246669i −0.919252 0.393669i \(-0.871206\pi\)
0.768093 + 0.640338i \(0.221206\pi\)
\(294\) 0 0
\(295\) −13.4937 + 26.4829i −0.785635 + 1.54190i
\(296\) −0.674391 + 0.674391i −0.0391982 + 0.0391982i
\(297\) 0 0
\(298\) −1.65160 + 20.9856i −0.0956748 + 1.21566i
\(299\) 1.01393 + 0.865982i 0.0586374 + 0.0500810i
\(300\) 0 0
\(301\) 3.99060 + 9.63416i 0.230014 + 0.555304i
\(302\) −13.1408 + 1.03421i −0.756171 + 0.0595119i
\(303\) 0 0
\(304\) 4.47658 3.82336i 0.256749 0.219285i
\(305\) −27.8874 38.3837i −1.59683 2.19784i
\(306\) 0 0
\(307\) −5.96729 + 0.945126i −0.340571 + 0.0539412i −0.324378 0.945928i \(-0.605155\pi\)
−0.0161937 + 0.999869i \(0.505155\pi\)
\(308\) −8.41562 + 1.33290i −0.479525 + 0.0759492i
\(309\) 0 0
\(310\) −1.12429 1.54745i −0.0638553 0.0878892i
\(311\) −4.26840 + 3.64556i −0.242039 + 0.206721i −0.762190 0.647354i \(-0.775876\pi\)
0.520151 + 0.854074i \(0.325876\pi\)
\(312\) 0 0
\(313\) 2.85116 0.224391i 0.161157 0.0126834i 0.00237627 0.999997i \(-0.499244\pi\)
0.158781 + 0.987314i \(0.449244\pi\)
\(314\) −4.75030 11.4682i −0.268075 0.647191i
\(315\) 0 0
\(316\) 1.68489 + 1.43903i 0.0947823 + 0.0809517i
\(317\) 0.719997 9.14843i 0.0404391 0.513827i −0.943025 0.332723i \(-0.892033\pi\)
0.983464 0.181105i \(-0.0579673\pi\)
\(318\) 0 0
\(319\) −17.7006 + 17.7006i −0.991046 + 0.991046i
\(320\) 1.48149 2.90758i 0.0828176 0.162539i
\(321\) 0 0
\(322\) −3.05368 + 4.98315i −0.170175 + 0.277700i
\(323\) −10.0015 + 5.09603i −0.556499 + 0.283550i
\(324\) 0 0
\(325\) 3.02495 + 1.25297i 0.167794 + 0.0695025i
\(326\) 1.09718 6.92733i 0.0607672 0.383669i
\(327\) 0 0
\(328\) −2.51533 + 5.88839i −0.138886 + 0.325132i
\(329\) 23.0851i 1.27273i
\(330\) 0 0
\(331\) 6.62283 15.9889i 0.364024 0.878831i −0.630680 0.776043i \(-0.717224\pi\)
0.994703 0.102788i \(-0.0327763\pi\)
\(332\) −1.91587 + 5.89645i −0.105147 + 0.323610i
\(333\) 0 0
\(334\) 5.81678 + 3.56453i 0.318280 + 0.195042i
\(335\) −7.20683 11.7605i −0.393751 0.642543i
\(336\) 0 0
\(337\) 7.07791 + 7.07791i 0.385558 + 0.385558i 0.873100 0.487541i \(-0.162106\pi\)
−0.487541 + 0.873100i \(0.662106\pi\)
\(338\) 12.0442 3.91340i 0.655119 0.212861i
\(339\) 0 0
\(340\) −4.04091 + 4.73130i −0.219149 + 0.256591i
\(341\) −1.91156 + 0.458924i −0.103517 + 0.0248521i
\(342\) 0 0
\(343\) 1.50408 + 19.1112i 0.0812128 + 1.03191i
\(344\) −2.41267 + 3.32076i −0.130083 + 0.179043i
\(345\) 0 0
\(346\) 13.9708 10.1503i 0.751072 0.545686i
\(347\) −18.6463 4.47658i −1.00099 0.240315i −0.300346 0.953830i \(-0.597102\pi\)
−0.700640 + 0.713515i \(0.747102\pi\)
\(348\) 0 0
\(349\) −0.0307410 0.194091i −0.00164553 0.0103895i 0.986852 0.161627i \(-0.0516742\pi\)
−0.988497 + 0.151238i \(0.951674\pi\)
\(350\) −3.35013 + 13.9543i −0.179072 + 0.745888i
\(351\) 0 0
\(352\) −2.17817 2.55031i −0.116097 0.135932i
\(353\) 26.7133 + 19.4083i 1.42180 + 1.03300i 0.991471 + 0.130331i \(0.0416039\pi\)
0.430333 + 0.902670i \(0.358396\pi\)
\(354\) 0 0
\(355\) 25.5683 10.5907i 1.35703 0.562098i
\(356\) 2.00698 + 8.35965i 0.106369 + 0.443061i
\(357\) 0 0
\(358\) 12.1702 + 0.957816i 0.643216 + 0.0506222i
\(359\) −2.35548 7.24943i −0.124318 0.382610i 0.869459 0.494006i \(-0.164468\pi\)
−0.993776 + 0.111396i \(0.964468\pi\)
\(360\) 0 0
\(361\) −13.9513 7.10852i −0.734277 0.374133i
\(362\) 13.2303 8.10754i 0.695369 0.426123i
\(363\) 0 0
\(364\) −0.668514 1.31203i −0.0350397 0.0687692i
\(365\) −16.3435 5.31034i −0.855460 0.277956i
\(366\) 0 0
\(367\) 25.6990 + 4.07033i 1.34148 + 0.212469i 0.785569 0.618774i \(-0.212370\pi\)
0.555909 + 0.831243i \(0.312370\pi\)
\(368\) −2.30048 −0.119921
\(369\) 0 0
\(370\) 3.11227 0.161799
\(371\) 5.13255 + 0.812916i 0.266469 + 0.0422045i
\(372\) 0 0
\(373\) −25.2148 8.19278i −1.30557 0.424206i −0.428055 0.903753i \(-0.640801\pi\)
−0.877516 + 0.479547i \(0.840801\pi\)
\(374\) 2.90321 + 5.69787i 0.150121 + 0.294630i
\(375\) 0 0
\(376\) 7.74782 4.74787i 0.399563 0.244853i
\(377\) −3.85463 1.96403i −0.198524 0.101153i
\(378\) 0 0
\(379\) −5.44659 16.7629i −0.279772 0.861051i −0.987917 0.154983i \(-0.950468\pi\)
0.708145 0.706067i \(-0.249532\pi\)
\(380\) −19.1518 1.50728i −0.982469 0.0773220i
\(381\) 0 0
\(382\) 4.79068 + 19.9546i 0.245113 + 1.02097i
\(383\) 26.5180 10.9841i 1.35501 0.561262i 0.417324 0.908758i \(-0.362968\pi\)
0.937682 + 0.347496i \(0.112968\pi\)
\(384\) 0 0
\(385\) 22.4944 + 16.3431i 1.14642 + 0.832924i
\(386\) −10.7482 12.5846i −0.547070 0.640537i
\(387\) 0 0
\(388\) −2.33503 + 9.72609i −0.118543 + 0.493768i
\(389\) 4.57097 + 28.8600i 0.231758 + 1.46326i 0.779389 + 0.626540i \(0.215529\pi\)
−0.547632 + 0.836719i \(0.684471\pi\)
\(390\) 0 0
\(391\) 4.26516 + 1.02397i 0.215698 + 0.0517846i
\(392\) −0.441619 + 0.320855i −0.0223051 + 0.0162056i
\(393\) 0 0
\(394\) −0.580282 + 0.798689i −0.0292342 + 0.0402374i
\(395\) −0.567308 7.20834i −0.0285444 0.362691i
\(396\) 0 0
\(397\) −20.3696 + 4.89032i −1.02232 + 0.245438i −0.709748 0.704455i \(-0.751191\pi\)
−0.312574 + 0.949893i \(0.601191\pi\)
\(398\) −3.12696 + 3.66120i −0.156740 + 0.183519i
\(399\) 0 0
\(400\) −5.37234 + 1.74558i −0.268617 + 0.0872790i
\(401\) −9.84930 9.84930i −0.491850 0.491850i 0.417038 0.908889i \(-0.363068\pi\)
−0.908889 + 0.417038i \(0.863068\pi\)
\(402\) 0 0
\(403\) −0.177516 0.289680i −0.00884272 0.0144300i
\(404\) 10.8944 + 6.67608i 0.542015 + 0.332147i
\(405\) 0 0
\(406\) 5.85946 18.0336i 0.290800 0.894991i
\(407\) 1.22409 2.95522i 0.0606760 0.146485i
\(408\) 0 0
\(409\) 5.67865i 0.280791i −0.990095 0.140396i \(-0.955163\pi\)
0.990095 0.140396i \(-0.0448375\pi\)
\(410\) 19.3913 7.78321i 0.957669 0.384385i
\(411\) 0 0
\(412\) −3.00842 + 18.9944i −0.148214 + 0.935789i
\(413\) −21.3781 8.85509i −1.05195 0.435731i
\(414\) 0 0
\(415\) 18.0267 9.18506i 0.884895 0.450877i
\(416\) 0.302852 0.494209i 0.0148485 0.0242306i
\(417\) 0 0
\(418\) −8.96386 + 17.5926i −0.438437 + 0.860481i
\(419\) 6.83414 6.83414i 0.333870 0.333870i −0.520184 0.854054i \(-0.674137\pi\)
0.854054 + 0.520184i \(0.174137\pi\)
\(420\) 0 0
\(421\) 1.46647 18.6332i 0.0714713 0.908129i −0.851772 0.523913i \(-0.824472\pi\)
0.923243 0.384216i \(-0.125528\pi\)
\(422\) 21.4197 + 18.2941i 1.04269 + 0.890543i
\(423\) 0 0
\(424\) 0.782770 + 1.88977i 0.0380146 + 0.0917755i
\(425\) 10.7374 0.845054i 0.520842 0.0409911i
\(426\) 0 0
\(427\) 28.0868 23.9884i 1.35922 1.16088i
\(428\) 6.13408 + 8.44283i 0.296502 + 0.408100i
\(429\) 0 0
\(430\) 13.2297 2.09538i 0.637993 0.101048i
\(431\) −36.7830 + 5.82585i −1.77177 + 0.280621i −0.955058 0.296420i \(-0.904207\pi\)
−0.816715 + 0.577041i \(0.804207\pi\)
\(432\) 0 0
\(433\) −9.31339 12.8188i −0.447573 0.616031i 0.524301 0.851533i \(-0.324327\pi\)
−0.971874 + 0.235502i \(0.924327\pi\)
\(434\) 1.13233 0.967100i 0.0543535 0.0464223i
\(435\) 0 0
\(436\) −13.2255 + 1.04087i −0.633385 + 0.0498485i
\(437\) 5.18275 + 12.5123i 0.247924 + 0.598542i
\(438\) 0 0
\(439\) −12.1791 10.4019i −0.581276 0.496456i 0.309500 0.950899i \(-0.399838\pi\)
−0.890776 + 0.454443i \(0.849838\pi\)
\(440\) −0.858700 + 10.9108i −0.0409369 + 0.520153i
\(441\) 0 0
\(442\) −0.781473 + 0.781473i −0.0371709 + 0.0371709i
\(443\) −2.56115 + 5.02655i −0.121684 + 0.238818i −0.943811 0.330486i \(-0.892787\pi\)
0.822127 + 0.569304i \(0.192787\pi\)
\(444\) 0 0
\(445\) 14.6586 23.9207i 0.694884 1.13395i
\(446\) −17.8887 + 9.11475i −0.847055 + 0.431596i
\(447\) 0 0
\(448\) 2.34711 + 0.972206i 0.110891 + 0.0459324i
\(449\) 1.19456 7.54218i 0.0563750 0.355938i −0.943335 0.331843i \(-0.892330\pi\)
0.999710 0.0240948i \(-0.00767035\pi\)
\(450\) 0 0
\(451\) 0.236371 21.4740i 0.0111303 1.01117i
\(452\) 10.9783i 0.516375i
\(453\) 0 0
\(454\) −11.3070 + 27.2975i −0.530663 + 1.28113i
\(455\) −1.48490 + 4.57005i −0.0696132 + 0.214247i
\(456\) 0 0
\(457\) 18.4417 + 11.3011i 0.862665 + 0.528642i 0.882042 0.471171i \(-0.156168\pi\)
−0.0193773 + 0.999812i \(0.506168\pi\)
\(458\) −4.29643 7.01113i −0.200759 0.327609i
\(459\) 0 0
\(460\) 5.30829 + 5.30829i 0.247500 + 0.247500i
\(461\) −15.6678 + 5.09078i −0.729722 + 0.237101i −0.650233 0.759735i \(-0.725329\pi\)
−0.0794889 + 0.996836i \(0.525329\pi\)
\(462\) 0 0
\(463\) −4.66070 + 5.45697i −0.216601 + 0.253607i −0.858059 0.513551i \(-0.828330\pi\)
0.641458 + 0.767158i \(0.278330\pi\)
\(464\) 7.25752 1.74238i 0.336922 0.0808878i
\(465\) 0 0
\(466\) −0.545528 6.93158i −0.0252711 0.321099i
\(467\) −7.30995 + 10.0613i −0.338264 + 0.465581i −0.943933 0.330136i \(-0.892905\pi\)
0.605669 + 0.795717i \(0.292905\pi\)
\(468\) 0 0
\(469\) 8.68730 6.31169i 0.401142 0.291447i
\(470\) −28.8334 6.92229i −1.32999 0.319301i
\(471\) 0 0
\(472\) −1.42484 8.99610i −0.0655837 0.414079i
\(473\) 3.21375 13.3862i 0.147769 0.615500i
\(474\) 0 0
\(475\) 21.5975 + 25.2874i 0.990959 + 1.16026i
\(476\) −3.91887 2.84722i −0.179621 0.130502i
\(477\) 0 0
\(478\) −7.16231 + 2.96673i −0.327597 + 0.135695i
\(479\) 3.41575 + 14.2276i 0.156070 + 0.650077i 0.994470 + 0.105022i \(0.0334912\pi\)
−0.838400 + 0.545055i \(0.816509\pi\)
\(480\) 0 0
\(481\) 0.551101 + 0.0433726i 0.0251280 + 0.00197762i
\(482\) −6.05536 18.6365i −0.275814 0.848869i
\(483\) 0 0
\(484\) 0.221427 + 0.112823i 0.0100649 + 0.00512831i
\(485\) 27.8307 17.0546i 1.26372 0.774412i
\(486\) 0 0
\(487\) 13.3145 + 26.1312i 0.603338 + 1.18412i 0.967521 + 0.252790i \(0.0813482\pi\)
−0.364183 + 0.931327i \(0.618652\pi\)
\(488\) 13.8275 + 4.49284i 0.625943 + 0.203381i
\(489\) 0 0
\(490\) 1.75938 + 0.278659i 0.0794808 + 0.0125885i
\(491\) −27.2140 −1.22815 −0.614076 0.789247i \(-0.710471\pi\)
−0.614076 + 0.789247i \(0.710471\pi\)
\(492\) 0 0
\(493\) −14.2312 −0.640940
\(494\) −3.37028 0.533800i −0.151636 0.0240168i
\(495\) 0 0
\(496\) 0.557461 + 0.181130i 0.0250307 + 0.00813298i
\(497\) 9.78142 + 19.1971i 0.438756 + 0.861108i
\(498\) 0 0
\(499\) 11.8188 7.24256i 0.529081 0.324221i −0.232174 0.972674i \(-0.574584\pi\)
0.761255 + 0.648453i \(0.224584\pi\)
\(500\) 1.88648 + 0.961208i 0.0843658 + 0.0429865i
\(501\) 0 0
\(502\) −1.88404 5.79848i −0.0840888 0.258799i
\(503\) −6.36304 0.500782i −0.283714 0.0223288i −0.0641962 0.997937i \(-0.520448\pi\)
−0.219518 + 0.975609i \(0.570448\pi\)
\(504\) 0 0
\(505\) −9.73357 40.5432i −0.433138 1.80415i
\(506\) 7.12824 2.95261i 0.316889 0.131260i
\(507\) 0 0
\(508\) −13.7557 9.99413i −0.610312 0.443418i
\(509\) −16.3116 19.0985i −0.723000 0.846524i 0.270217 0.962799i \(-0.412904\pi\)
−0.993217 + 0.116275i \(0.962904\pi\)
\(510\) 0 0
\(511\) 3.12315 13.0089i 0.138160 0.575479i
\(512\) 0.156434 + 0.987688i 0.00691349 + 0.0436501i
\(513\) 0 0
\(514\) 26.9737 + 6.47582i 1.18976 + 0.285636i
\(515\) 50.7709 36.8872i 2.23723 1.62545i
\(516\) 0 0
\(517\) −17.9135 + 24.6558i −0.787834 + 1.08436i
\(518\) 0.190103 + 2.41549i 0.00835264 + 0.106130i
\(519\) 0 0
\(520\) −1.83919 + 0.441551i −0.0806540 + 0.0193633i
\(521\) −4.35390 + 5.09777i −0.190748 + 0.223337i −0.847536 0.530738i \(-0.821915\pi\)
0.656788 + 0.754075i \(0.271915\pi\)
\(522\) 0 0
\(523\) −38.6066 + 12.5440i −1.68815 + 0.548512i −0.986464 0.163977i \(-0.947568\pi\)
−0.701683 + 0.712489i \(0.747568\pi\)
\(524\) −11.3501 11.3501i −0.495831 0.495831i
\(525\) 0 0
\(526\) −3.67450 5.99623i −0.160216 0.261448i
\(527\) −0.952923 0.583952i −0.0415100 0.0254374i
\(528\) 0 0
\(529\) −5.47200 + 16.8411i −0.237913 + 0.732221i
\(530\) 2.55437 6.16680i 0.110955 0.267869i
\(531\) 0 0
\(532\) 14.9561i 0.648431i
\(533\) 3.54216 1.10796i 0.153428 0.0479912i
\(534\) 0 0
\(535\) 5.32738 33.6357i 0.230323 1.45420i
\(536\) 3.90502 + 1.61751i 0.168671 + 0.0698660i
\(537\) 0 0
\(538\) 21.3412 10.8739i 0.920083 0.468806i
\(539\) 0.956582 1.56100i 0.0412029 0.0672371i
\(540\) 0 0
\(541\) −12.2986 + 24.1374i −0.528759 + 1.03775i 0.459956 + 0.887942i \(0.347865\pi\)
−0.988715 + 0.149807i \(0.952135\pi\)
\(542\) 0.485164 0.485164i 0.0208396 0.0208396i
\(543\) 0 0
\(544\) 0.149599 1.90083i 0.00641398 0.0814974i
\(545\) 32.9191 + 28.1156i 1.41010 + 1.20434i
\(546\) 0 0
\(547\) −3.60012 8.69147i −0.153930 0.371620i 0.828037 0.560674i \(-0.189458\pi\)
−0.981967 + 0.189054i \(0.939458\pi\)
\(548\) 10.0350 0.789772i 0.428674 0.0337374i
\(549\) 0 0
\(550\) 14.4062 12.3041i 0.614284 0.524648i
\(551\) −25.8271 35.5480i −1.10027 1.51440i
\(552\) 0 0
\(553\) 5.55986 0.880596i 0.236429 0.0374467i
\(554\) 31.6283 5.00943i 1.34376 0.212830i
\(555\) 0 0
\(556\) 0.153641 + 0.211469i 0.00651584 + 0.00896828i
\(557\) −9.07096 + 7.74733i −0.384349 + 0.328265i −0.820540 0.571589i \(-0.806327\pi\)
0.436191 + 0.899854i \(0.356327\pi\)
\(558\) 0 0
\(559\) 2.37183 0.186667i 0.100318 0.00789519i
\(560\) −3.17255 7.65922i −0.134065 0.323661i
\(561\) 0 0
\(562\) −13.3761 11.4243i −0.564237 0.481904i
\(563\) −0.365726 + 4.64698i −0.0154135 + 0.195847i 0.984390 + 0.176003i \(0.0563169\pi\)
−0.999803 + 0.0198438i \(0.993683\pi\)
\(564\) 0 0
\(565\) −25.3320 + 25.3320i −1.06573 + 1.06573i
\(566\) 8.23262 16.1574i 0.346043 0.679147i
\(567\) 0 0
\(568\) −4.43120 + 7.23106i −0.185929 + 0.303409i
\(569\) 11.7505 5.98716i 0.492605 0.250995i −0.189997 0.981785i \(-0.560848\pi\)
0.682603 + 0.730790i \(0.260848\pi\)
\(570\) 0 0
\(571\) −20.3063 8.41113i −0.849791 0.351995i −0.0850844 0.996374i \(-0.527116\pi\)
−0.764706 + 0.644379i \(0.777116\pi\)
\(572\) −0.304106 + 1.92005i −0.0127153 + 0.0802814i
\(573\) 0 0
\(574\) 7.22514 + 14.5745i 0.301572 + 0.608329i
\(575\) 12.9950i 0.541929i
\(576\) 0 0
\(577\) −13.9974 + 33.7927i −0.582718 + 1.40681i 0.307621 + 0.951509i \(0.400467\pi\)
−0.890339 + 0.455298i \(0.849533\pi\)
\(578\) 4.12985 12.7104i 0.171779 0.528681i
\(579\) 0 0
\(580\) −20.7670 12.7260i −0.862301 0.528419i
\(581\) 8.22978 + 13.4298i 0.341429 + 0.557161i
\(582\) 0 0
\(583\) −4.85095 4.85095i −0.200906 0.200906i
\(584\) 5.00836 1.62732i 0.207247 0.0673388i
\(585\) 0 0
\(586\) −3.21608 + 3.76555i −0.132855 + 0.155553i
\(587\) 2.39227 0.574334i 0.0987397 0.0237053i −0.183774 0.982968i \(-0.558832\pi\)
0.282514 + 0.959263i \(0.408832\pi\)
\(588\) 0 0
\(589\) −0.270740 3.44008i −0.0111556 0.141746i
\(590\) −17.4704 + 24.0460i −0.719247 + 0.989958i
\(591\) 0 0
\(592\) −0.771586 + 0.560590i −0.0317120 + 0.0230401i
\(593\) 32.2034 + 7.73136i 1.32244 + 0.317489i 0.832381 0.554203i \(-0.186977\pi\)
0.490054 + 0.871692i \(0.336977\pi\)
\(594\) 0 0
\(595\) 2.47278 + 15.6125i 0.101374 + 0.640051i
\(596\) −4.91414 + 20.4689i −0.201291 + 0.838438i
\(597\) 0 0
\(598\) 0.865982 + 1.01393i 0.0354126 + 0.0414629i
\(599\) −32.2376 23.4220i −1.31719 0.956997i −0.999963 0.00864803i \(-0.997247\pi\)
−0.317230 0.948349i \(-0.602753\pi\)
\(600\) 0 0
\(601\) 29.9657 12.4122i 1.22233 0.506304i 0.324177 0.945996i \(-0.394913\pi\)
0.898148 + 0.439693i \(0.144913\pi\)
\(602\) 2.43435 + 10.1398i 0.0992169 + 0.413268i
\(603\) 0 0
\(604\) −13.1408 1.03421i −0.534693 0.0420813i
\(605\) −0.250601 0.771271i −0.0101884 0.0313566i
\(606\) 0 0
\(607\) −4.11486 2.09662i −0.167017 0.0850994i 0.368484 0.929634i \(-0.379877\pi\)
−0.535501 + 0.844535i \(0.679877\pi\)
\(608\) 5.01957 3.07600i 0.203571 0.124748i
\(609\) 0 0
\(610\) −21.5395 42.2736i −0.872109 1.71161i
\(611\) −5.00916 1.62758i −0.202649 0.0658447i
\(612\) 0 0
\(613\) −42.3104 6.70132i −1.70890 0.270664i −0.775984 0.630752i \(-0.782747\pi\)
−0.932918 + 0.360088i \(0.882747\pi\)
\(614\) −6.04167 −0.243822
\(615\) 0 0
\(616\) −8.52053 −0.343302
\(617\) 8.90585 + 1.41055i 0.358536 + 0.0567865i 0.333104 0.942890i \(-0.391904\pi\)
0.0254318 + 0.999677i \(0.491904\pi\)
\(618\) 0 0
\(619\) −39.8959 12.9630i −1.60355 0.521026i −0.635571 0.772043i \(-0.719235\pi\)
−0.967983 + 0.251017i \(0.919235\pi\)
\(620\) −0.868372 1.70428i −0.0348746 0.0684453i
\(621\) 0 0
\(622\) −4.78614 + 2.93295i −0.191907 + 0.117601i
\(623\) 19.4606 + 9.91568i 0.779673 + 0.397263i
\(624\) 0 0
\(625\) 6.59287 + 20.2908i 0.263715 + 0.811631i
\(626\) 2.85116 + 0.224391i 0.113955 + 0.00896849i
\(627\) 0 0
\(628\) −2.89779 12.0702i −0.115634 0.481652i
\(629\) 1.68006 0.695906i 0.0669886 0.0277476i
\(630\) 0 0
\(631\) −4.18762 3.04248i −0.166707 0.121119i 0.501304 0.865271i \(-0.332854\pi\)
−0.668010 + 0.744152i \(0.732854\pi\)
\(632\) 1.43903 + 1.68489i 0.0572415 + 0.0670212i
\(633\) 0 0
\(634\) 2.14226 8.92317i 0.0850801 0.354384i
\(635\) 8.67980 + 54.8021i 0.344447 + 2.17475i
\(636\) 0 0
\(637\) 0.307657 + 0.0738618i 0.0121898 + 0.00292651i
\(638\) −20.2517 + 14.7137i −0.801773 + 0.582522i
\(639\) 0 0
\(640\) 1.91809 2.64003i 0.0758192 0.104356i
\(641\) 0.460021 + 5.84512i 0.0181697 + 0.230868i 0.999297 + 0.0375028i \(0.0119403\pi\)
−0.981127 + 0.193365i \(0.938060\pi\)
\(642\) 0 0
\(643\) 10.1002 2.42485i 0.398314 0.0956266i −0.0293396 0.999570i \(-0.509340\pi\)
0.427653 + 0.903943i \(0.359340\pi\)
\(644\) −3.79562 + 4.44410i −0.149568 + 0.175122i
\(645\) 0 0
\(646\) −10.6756 + 3.46870i −0.420025 + 0.136474i
\(647\) 5.26266 + 5.26266i 0.206897 + 0.206897i 0.802947 0.596050i \(-0.203264\pi\)
−0.596050 + 0.802947i \(0.703264\pi\)
\(648\) 0 0
\(649\) 15.9613 + 26.0464i 0.626534 + 1.02241i
\(650\) 2.79170 + 1.71075i 0.109499 + 0.0671013i
\(651\) 0 0
\(652\) 2.16735 6.67040i 0.0848798 0.261233i
\(653\) −9.10338 + 21.9775i −0.356243 + 0.860046i 0.639579 + 0.768725i \(0.279109\pi\)
−0.995822 + 0.0913204i \(0.970891\pi\)
\(654\) 0 0
\(655\) 52.3800i 2.04665i
\(656\) −3.40551 + 5.42241i −0.132963 + 0.211709i
\(657\) 0 0
\(658\) 3.61131 22.8009i 0.140784 0.888873i
\(659\) −14.4923 6.00291i −0.564541 0.233840i 0.0821145 0.996623i \(-0.473833\pi\)
−0.646655 + 0.762783i \(0.723833\pi\)
\(660\) 0 0
\(661\) 0.0943254 0.0480612i 0.00366883 0.00186936i −0.452155 0.891939i \(-0.649345\pi\)
0.455824 + 0.890070i \(0.349345\pi\)
\(662\) 9.04251 14.7560i 0.351447 0.573510i
\(663\) 0 0
\(664\) −2.81469 + 5.52415i −0.109231 + 0.214379i
\(665\) −34.5108 + 34.5108i −1.33827 + 1.33827i
\(666\) 0 0
\(667\) −1.34716 + 17.1173i −0.0521622 + 0.662784i
\(668\) 5.18755 + 4.43059i 0.200712 + 0.171425i
\(669\) 0 0
\(670\) −5.27836 12.7431i −0.203921 0.492308i
\(671\) −48.6121 + 3.82586i −1.87665 + 0.147696i
\(672\) 0 0
\(673\) 4.50587 3.84838i 0.173689 0.148344i −0.558354 0.829603i \(-0.688567\pi\)
0.732043 + 0.681259i \(0.238567\pi\)
\(674\) 5.88354 + 8.09800i 0.226626 + 0.311923i
\(675\) 0 0
\(676\) 12.5081 1.98109i 0.481082 0.0761958i
\(677\) 45.3855 7.18836i 1.74431 0.276271i 0.798734 0.601684i \(-0.205503\pi\)
0.945572 + 0.325413i \(0.105503\pi\)
\(678\) 0 0
\(679\) 14.9364 + 20.5581i 0.573205 + 0.788948i
\(680\) −4.73130 + 4.04091i −0.181437 + 0.154962i
\(681\) 0 0
\(682\) −1.95981 + 0.154241i −0.0750452 + 0.00590618i
\(683\) 13.9754 + 33.7395i 0.534753 + 1.29101i 0.928344 + 0.371722i \(0.121233\pi\)
−0.393591 + 0.919286i \(0.628767\pi\)
\(684\) 0 0
\(685\) −24.9778 21.3331i −0.954354 0.815095i
\(686\) −1.50408 + 19.1112i −0.0574261 + 0.729668i
\(687\) 0 0
\(688\) −2.90245 + 2.90245i −0.110655 + 0.110655i
\(689\) 0.538253 1.05638i 0.0205058 0.0402449i
\(690\) 0 0
\(691\) 9.29818 15.1733i 0.353720 0.577218i −0.625449 0.780265i \(-0.715084\pi\)
0.979169 + 0.203047i \(0.0650844\pi\)
\(692\) 15.3866 7.83987i 0.584911 0.298027i
\(693\) 0 0
\(694\) −17.7164 7.33839i −0.672507 0.278562i
\(695\) 0.133436 0.842480i 0.00506150 0.0319571i
\(696\) 0 0
\(697\) 8.72748 8.53744i 0.330577 0.323379i
\(698\) 0.196511i 0.00743804i
\(699\) 0 0
\(700\) −5.49181 + 13.2584i −0.207571 + 0.501121i
\(701\) −1.10963 + 3.41508i −0.0419101 + 0.128986i −0.969822 0.243813i \(-0.921602\pi\)
0.927912 + 0.372799i \(0.121602\pi\)
\(702\) 0 0
\(703\) 4.78733 + 2.93368i 0.180558 + 0.110646i
\(704\) −1.75240 2.85965i −0.0660460 0.107777i
\(705\) 0 0
\(706\) 23.3482 + 23.3482i 0.878723 + 0.878723i
\(707\) 30.8718 10.0308i 1.16105 0.377249i
\(708\) 0 0
\(709\) −23.7936 + 27.8587i −0.893588 + 1.04626i 0.105070 + 0.994465i \(0.466493\pi\)
−0.998658 + 0.0517921i \(0.983507\pi\)
\(710\) 26.9103 6.46059i 1.00992 0.242462i
\(711\) 0 0
\(712\) 0.674528 + 8.57069i 0.0252790 + 0.321200i
\(713\) −0.792586 + 1.09090i −0.0296826 + 0.0408546i
\(714\) 0 0
\(715\) 5.13217 3.72874i 0.191932 0.139447i
\(716\) 11.8705 + 2.84986i 0.443623 + 0.106504i
\(717\) 0 0
\(718\) −1.19242 7.52865i −0.0445008 0.280967i
\(719\) −7.66278 + 31.9178i −0.285773 + 1.19033i 0.626061 + 0.779774i \(0.284666\pi\)
−0.911834 + 0.410558i \(0.865334\pi\)
\(720\) 0 0
\(721\) 31.7300 + 37.1510i 1.18169 + 1.38358i
\(722\) −12.6675 9.20346i −0.471435 0.342517i
\(723\) 0 0
\(724\) 14.3357 5.93805i 0.532783 0.220686i
\(725\) 9.84236 + 40.9964i 0.365536 + 1.52257i
\(726\) 0 0
\(727\) −18.6181 1.46527i −0.690506 0.0543440i −0.271649 0.962396i \(-0.587569\pi\)
−0.418857 + 0.908052i \(0.637569\pi\)
\(728\) −0.455037 1.40046i −0.0168648 0.0519045i
\(729\) 0 0
\(730\) −15.3116 7.80165i −0.566708 0.288752i
\(731\) 6.67313 4.08930i 0.246815 0.151248i
\(732\) 0 0
\(733\) 23.2139 + 45.5598i 0.857424 + 1.68279i 0.721880 + 0.692019i \(0.243278\pi\)
0.135545 + 0.990771i \(0.456722\pi\)
\(734\) 24.7459 + 8.04043i 0.913387 + 0.296778i
\(735\) 0 0
\(736\) −2.27216 0.359875i −0.0837530 0.0132652i
\(737\) −14.1761 −0.522182
\(738\) 0 0
\(739\) 13.0022 0.478293 0.239146 0.970984i \(-0.423132\pi\)
0.239146 + 0.970984i \(0.423132\pi\)
\(740\) 3.07395 + 0.486866i 0.113001 + 0.0178976i
\(741\) 0 0
\(742\) 4.94219 + 1.60581i 0.181433 + 0.0589513i
\(743\) −11.1280 21.8399i −0.408245 0.801227i 0.591743 0.806127i \(-0.298440\pi\)
−0.999988 + 0.00490029i \(0.998440\pi\)
\(744\) 0 0
\(745\) 58.5705 35.8921i 2.14586 1.31498i
\(746\) −23.6227 12.0364i −0.864889 0.440683i
\(747\) 0 0
\(748\) 1.97612 + 6.08188i 0.0722542 + 0.222376i
\(749\) 26.4307 + 2.08014i 0.965756 + 0.0760067i
\(750\) 0 0
\(751\) 2.65200 + 11.0464i 0.0967729 + 0.403088i 0.999640 0.0268316i \(-0.00854179\pi\)
−0.902867 + 0.429920i \(0.858542\pi\)
\(752\) 8.39516 3.47739i 0.306140 0.126807i
\(753\) 0 0
\(754\) −3.49993 2.54285i −0.127460 0.0926051i
\(755\) 27.9357 + 32.7085i 1.01668 + 1.19038i
\(756\) 0 0
\(757\) −5.78512 + 24.0968i −0.210264 + 0.875812i 0.763051 + 0.646338i \(0.223701\pi\)
−0.973315 + 0.229474i \(0.926299\pi\)
\(758\) −2.75724 17.4085i −0.100147 0.632306i
\(759\) 0 0
\(760\) −18.6803 4.48473i −0.677604 0.162678i
\(761\) −15.9802 + 11.6103i −0.579283 + 0.420874i −0.838465 0.544955i \(-0.816547\pi\)
0.259183 + 0.965828i \(0.416547\pi\)
\(762\) 0 0
\(763\) −19.8102 + 27.2664i −0.717178 + 0.987111i
\(764\) 1.61011 + 20.4584i 0.0582517 + 0.740158i
\(765\) 0 0
\(766\) 27.9098 6.70055i 1.00842 0.242101i
\(767\) −3.42866 + 4.01444i −0.123802 + 0.144953i
\(768\) 0 0
\(769\) −33.9657 + 11.0361i −1.22483 + 0.397973i −0.848840 0.528650i \(-0.822699\pi\)
−0.375994 + 0.926622i \(0.622699\pi\)
\(770\) 19.6608 + 19.6608i 0.708527 + 0.708527i
\(771\) 0 0
\(772\) −8.64724 14.1110i −0.311221 0.507867i
\(773\) −34.6331 21.2232i −1.24567 0.763345i −0.265998 0.963974i \(-0.585702\pi\)
−0.979667 + 0.200629i \(0.935702\pi\)
\(774\) 0 0
\(775\) −1.02317 + 3.14899i −0.0367534 + 0.113115i
\(776\) −3.82778 + 9.24107i −0.137409 + 0.331735i
\(777\) 0 0
\(778\) 29.2197i 1.04758i
\(779\) 37.1645 + 6.30636i 1.33156 + 0.225949i
\(780\) 0 0
\(781\) 4.44955 28.0934i 0.159217 1.00526i
\(782\) 4.05246 + 1.67858i 0.144916 + 0.0600260i
\(783\) 0 0
\(784\) −0.486374 + 0.247820i −0.0173705 + 0.00885072i
\(785\) −21.1650 + 34.5381i −0.755410 + 1.23272i
\(786\) 0 0
\(787\) −3.01531 + 5.91788i −0.107484 + 0.210950i −0.938484 0.345323i \(-0.887769\pi\)
0.830999 + 0.556273i \(0.187769\pi\)
\(788\) −0.698080 + 0.698080i −0.0248681 + 0.0248681i
\(789\) 0 0
\(790\) 0.567308 7.20834i 0.0201839 0.256461i
\(791\) −21.2079 18.1133i −0.754068 0.644035i
\(792\) 0 0
\(793\) −3.22495 7.78572i −0.114521 0.276479i
\(794\) −20.8839 + 1.64360i −0.741141 + 0.0583290i
\(795\) 0 0
\(796\) −3.66120 + 3.12696i −0.129768 + 0.110832i
\(797\) 21.2633 + 29.2665i 0.753186 + 1.03667i 0.997750 + 0.0670389i \(0.0213552\pi\)
−0.244564 + 0.969633i \(0.578645\pi\)
\(798\) 0 0
\(799\) −17.1127 + 2.71038i −0.605403 + 0.0958863i
\(800\) −5.57927 + 0.883669i −0.197257 + 0.0312424i
\(801\) 0 0
\(802\) −8.18727 11.2688i −0.289102 0.397915i
\(803\) −13.4302 + 11.4705i −0.473941 + 0.404784i
\(804\) 0 0
\(805\) 19.0129 1.49635i 0.670116 0.0527393i
\(806\) −0.130015 0.313884i −0.00457958 0.0110561i
\(807\) 0 0
\(808\) 9.71587 + 8.29814i 0.341803 + 0.291928i
\(809\) 3.32982 42.3094i 0.117070 1.48752i −0.605292 0.796004i \(-0.706944\pi\)
0.722362 0.691515i \(-0.243056\pi\)
\(810\) 0 0
\(811\) 14.7676 14.7676i 0.518562 0.518562i −0.398574 0.917136i \(-0.630495\pi\)
0.917136 + 0.398574i \(0.130495\pi\)
\(812\) 8.60839 16.8949i 0.302095 0.592896i
\(813\) 0 0
\(814\) 1.67132 2.72734i 0.0585797 0.0955934i
\(815\) −20.3928 + 10.3907i −0.714329 + 0.363969i
\(816\) 0 0
\(817\) 22.3252 + 9.24742i 0.781061 + 0.323526i
\(818\) 0.888337 5.60874i 0.0310600 0.196105i
\(819\) 0 0
\(820\) 20.3701 4.65392i 0.711356 0.162522i
\(821\) 35.0147i 1.22202i −0.791622 0.611011i \(-0.790763\pi\)
0.791622 0.611011i \(-0.209237\pi\)
\(822\) 0 0
\(823\) −9.86453 + 23.8151i −0.343856 + 0.830141i 0.653463 + 0.756959i \(0.273316\pi\)
−0.997319 + 0.0731827i \(0.976684\pi\)
\(824\) −5.94277 + 18.2900i −0.207026 + 0.637161i
\(825\) 0 0
\(826\) −19.7296 12.0903i −0.686482 0.420677i
\(827\) 13.5483 + 22.1088i 0.471119 + 0.768797i 0.996633 0.0819882i \(-0.0261270\pi\)
−0.525514 + 0.850785i \(0.676127\pi\)
\(828\) 0 0
\(829\) 29.0170 + 29.0170i 1.00780 + 1.00780i 0.999969 + 0.00783276i \(0.00249327\pi\)
0.00783276 + 0.999969i \(0.497507\pi\)
\(830\) 19.2416 6.25198i 0.667886 0.217009i
\(831\) 0 0
\(832\) 0.376435 0.440748i 0.0130505 0.0152802i
\(833\) 1.01206 0.242974i 0.0350657 0.00841853i
\(834\) 0 0
\(835\) −1.74667 22.1935i −0.0604460 0.768039i
\(836\) −11.6056 + 15.9737i −0.401388 + 0.552463i
\(837\) 0 0
\(838\) 7.81910 5.68091i 0.270106 0.196244i
\(839\) 10.4628 + 2.51189i 0.361215 + 0.0867201i 0.409991 0.912090i \(-0.365532\pi\)
−0.0487756 + 0.998810i \(0.515532\pi\)
\(840\) 0 0
\(841\) −4.17796 26.3786i −0.144068 0.909607i
\(842\) 4.36329 18.1744i 0.150369 0.626332i
\(843\) 0 0
\(844\) 18.2941 + 21.4197i 0.629709 + 0.737295i
\(845\) −33.4334 24.2908i −1.15014 0.835628i
\(846\) 0 0
\(847\) 0.583289 0.241606i 0.0200421 0.00830169i
\(848\) 0.477507 + 1.98896i 0.0163976 + 0.0683011i
\(849\) 0 0
\(850\) 10.7374 + 0.845054i 0.368291 + 0.0289851i
\(851\) −0.677998 2.08666i −0.0232415 0.0715299i
\(852\) 0 0
\(853\) −0.743627 0.378897i −0.0254613 0.0129732i 0.441213 0.897402i \(-0.354548\pi\)
−0.466675 + 0.884429i \(0.654548\pi\)
\(854\) 31.4936 19.2993i 1.07769 0.660409i
\(855\) 0 0
\(856\) 4.73781 + 9.29847i 0.161935 + 0.317815i
\(857\) 13.9120 + 4.52029i 0.475226 + 0.154410i 0.536830 0.843690i \(-0.319622\pi\)
−0.0616042 + 0.998101i \(0.519622\pi\)
\(858\) 0 0
\(859\) −5.49436 0.870221i −0.187465 0.0296916i 0.0619958 0.998076i \(-0.480253\pi\)
−0.249461 + 0.968385i \(0.580253\pi\)
\(860\) 13.3946 0.456753
\(861\) 0 0
\(862\) −37.2415 −1.26845
\(863\) −33.9906 5.38358i −1.15705 0.183259i −0.451736 0.892152i \(-0.649195\pi\)
−0.705317 + 0.708892i \(0.749195\pi\)
\(864\) 0 0
\(865\) −53.5944 17.4139i −1.82226 0.592089i
\(866\) −7.19343 14.1179i −0.244443 0.479746i
\(867\) 0 0
\(868\) 1.26968 0.778058i 0.0430956 0.0264090i
\(869\) −6.62146 3.37380i −0.224618 0.114448i
\(870\) 0 0
\(871\) −0.757070 2.33002i −0.0256523 0.0789498i
\(872\) −13.2255 1.04087i −0.447871 0.0352482i
\(873\) 0 0
\(874\) 3.16159 + 13.1690i 0.106942 + 0.445447i
\(875\) 4.96941 2.05840i 0.167997 0.0695865i
\(876\) 0 0
\(877\) 38.8208 + 28.2049i 1.31088 + 0.952413i 0.999998 + 0.00196578i \(0.000625727\pi\)
0.310886 + 0.950447i \(0.399374\pi\)
\(878\) −10.4019 12.1791i −0.351048 0.411024i
\(879\) 0 0
\(880\) −2.55496 + 10.6422i −0.0861276 + 0.358747i
\(881\) 2.78081 + 17.5573i 0.0936878 + 0.591522i 0.989210 + 0.146505i \(0.0468023\pi\)
−0.895522 + 0.445017i \(0.853198\pi\)
\(882\) 0 0
\(883\) 16.4042 + 3.93830i 0.552045 + 0.132534i 0.499865 0.866103i \(-0.333383\pi\)
0.0521801 + 0.998638i \(0.483383\pi\)
\(884\) −0.894102 + 0.649603i −0.0300719 + 0.0218485i
\(885\) 0 0
\(886\) −3.31595 + 4.56401i −0.111401 + 0.153331i
\(887\) −0.423446 5.38039i −0.0142179 0.180656i −0.999926 0.0121915i \(-0.996119\pi\)
0.985708 0.168464i \(-0.0538808\pi\)
\(888\) 0 0
\(889\) −42.0027 + 10.0839i −1.40872 + 0.338205i
\(890\) 18.2201 21.3330i 0.610741 0.715085i
\(891\) 0 0
\(892\) −19.0943 + 6.20412i −0.639326 + 0.207729i
\(893\) −37.8268 37.8268i −1.26583 1.26583i
\(894\) 0 0
\(895\) −20.8149 33.9669i −0.695766 1.13539i
\(896\) 2.16613 + 1.32741i 0.0723653 + 0.0443455i
\(897\) 0 0
\(898\) 2.35971 7.26245i 0.0787447 0.242351i
\(899\) 1.67419 4.04185i 0.0558373 0.134803i
\(900\) 0 0
\(901\) 3.90012i 0.129932i
\(902\) 3.59274 21.1727i 0.119625 0.704972i
\(903\) 0 0
\(904\) 1.71738 10.8431i 0.0571192 0.360637i
\(905\) −46.7811 19.3773i −1.55505 0.644125i
\(906\) 0 0
\(907\) 6.07646 3.09611i 0.201766 0.102805i −0.350188 0.936679i \(-0.613882\pi\)
0.551954 + 0.833875i \(0.313882\pi\)
\(908\) −15.4380 + 25.1926i −0.512330 + 0.836046i
\(909\) 0 0
\(910\) −2.18153 + 4.28150i −0.0723171 + 0.141930i
\(911\) −25.4117 + 25.4117i −0.841927 + 0.841927i −0.989109 0.147183i \(-0.952980\pi\)
0.147183 + 0.989109i \(0.452980\pi\)
\(912\) 0 0
\(913\) 1.63146 20.7296i 0.0539933 0.686050i
\(914\) 16.4467 + 14.0468i 0.544010 + 0.464628i
\(915\) 0 0
\(916\) −3.14675 7.59692i −0.103971 0.251009i
\(917\) −40.6530 + 3.19946i −1.34248 + 0.105655i
\(918\) 0 0
\(919\) −17.7416 + 15.1527i −0.585240 + 0.499842i −0.892055 0.451927i \(-0.850737\pi\)
0.306815 + 0.951769i \(0.400737\pi\)
\(920\) 4.41254 + 6.07334i 0.145477 + 0.200232i
\(921\) 0 0
\(922\) −16.2713 + 2.57712i −0.535866 + 0.0848728i
\(923\) 4.85513 0.768978i 0.159809 0.0253112i
\(924\) 0 0
\(925\) −3.16667 4.35855i −0.104119 0.143308i
\(926\) −5.45697 + 4.66070i −0.179327 + 0.153160i
\(927\) 0 0
\(928\) 7.44073 0.585598i 0.244254 0.0192232i
\(929\) 3.40980 + 8.23198i 0.111872 + 0.270082i 0.969893 0.243532i \(-0.0783061\pi\)
−0.858021 + 0.513615i \(0.828306\pi\)
\(930\) 0 0
\(931\) 2.44363 + 2.08706i 0.0800869 + 0.0684006i
\(932\) 0.545528 6.93158i 0.0178693 0.227052i
\(933\) 0 0
\(934\) −8.79389 + 8.79389i −0.287745 + 0.287745i
\(935\) 9.47390 18.5936i 0.309830 0.608075i
\(936\) 0 0
\(937\) −3.49615 + 5.70520i −0.114214 + 0.186381i −0.904639 0.426178i \(-0.859860\pi\)
0.790425 + 0.612559i \(0.209860\pi\)
\(938\) 9.56771 4.87499i 0.312397 0.159174i
\(939\) 0 0
\(940\) −27.3955 11.3476i −0.893544 0.370118i
\(941\) 3.73569 23.5862i 0.121780 0.768888i −0.848907 0.528542i \(-0.822739\pi\)
0.970687 0.240346i \(-0.0772609\pi\)
\(942\) 0 0
\(943\) −9.44269 11.3056i −0.307496 0.368162i
\(944\) 9.10824i 0.296448i
\(945\) 0 0
\(946\) 5.26826 12.7187i 0.171286 0.413521i
\(947\) 2.85821 8.79667i 0.0928794 0.285853i −0.893816 0.448434i \(-0.851982\pi\)
0.986695 + 0.162581i \(0.0519818\pi\)
\(948\) 0 0
\(949\) −2.60256 1.59485i −0.0844826 0.0517710i
\(950\) 17.3757 + 28.3546i 0.563743 + 0.919946i
\(951\) 0 0
\(952\) −3.42522 3.42522i −0.111012 0.111012i
\(953\) 14.6929 4.77402i 0.475950 0.154646i −0.0612115 0.998125i \(-0.519496\pi\)
0.537162 + 0.843479i \(0.319496\pi\)
\(954\) 0 0
\(955\) 43.4918 50.9223i 1.40736 1.64781i
\(956\) −7.53823 + 1.80977i −0.243804 + 0.0585321i
\(957\) 0 0
\(958\) 1.14801 + 14.5868i 0.0370904 + 0.471278i
\(959\) 15.0313 20.6888i 0.485385 0.668076i
\(960\) 0 0
\(961\) −24.8016 + 18.0194i −0.800051 + 0.581271i
\(962\) 0.537531 + 0.129050i 0.0173307 + 0.00416073i
\(963\) 0 0
\(964\) −3.06542 19.3543i −0.0987306 0.623361i
\(965\) −12.6075 + 52.5139i −0.405849 + 1.69048i
\(966\) 0 0
\(967\) 29.7598 + 34.8442i 0.957010 + 1.12051i 0.992634 + 0.121149i \(0.0386579\pi\)
−0.0356247 + 0.999365i \(0.511342\pi\)
\(968\) 0.201052 + 0.146073i 0.00646204 + 0.00469495i
\(969\) 0 0
\(970\) 30.1559 12.4910i 0.968249 0.401062i
\(971\) −3.45780 14.4028i −0.110966 0.462207i −0.999991 0.00434705i \(-0.998616\pi\)
0.889025 0.457859i \(-0.151384\pi\)
\(972\) 0 0
\(973\) 0.662014 + 0.0521016i 0.0212232 + 0.00167030i
\(974\) 9.06277 + 27.8923i 0.290390 + 0.893728i
\(975\) 0 0
\(976\) 12.9545 + 6.60062i 0.414662 + 0.211281i
\(977\) 2.75675 1.68934i 0.0881964 0.0540468i −0.477701 0.878522i \(-0.658530\pi\)
0.565897 + 0.824476i \(0.308530\pi\)
\(978\) 0 0
\(979\) −13.0903 25.6912i −0.418369 0.821096i
\(980\) 1.69413 + 0.550456i 0.0541170 + 0.0175837i
\(981\) 0 0
\(982\) −26.8790 4.25721i −0.857743 0.135853i
\(983\) −52.5031 −1.67459 −0.837295 0.546751i \(-0.815864\pi\)
−0.837295 + 0.546751i \(0.815864\pi\)
\(984\) 0 0
\(985\) 3.22159 0.102648
\(986\) −14.0560 2.22625i −0.447633 0.0708981i
\(987\) 0 0
\(988\) −3.24528 1.05446i −0.103246 0.0335467i
\(989\) −4.28693 8.41356i −0.136316 0.267536i
\(990\) 0 0
\(991\) 40.4883 24.8113i 1.28615 0.788155i 0.299991 0.953942i \(-0.403016\pi\)
0.986162 + 0.165786i \(0.0530163\pi\)
\(992\) 0.522263 + 0.266106i 0.0165819 + 0.00844888i
\(993\) 0 0
\(994\) 6.65790 + 20.4909i 0.211176 + 0.649932i
\(995\) 15.6635 + 1.23274i 0.496565 + 0.0390805i
\(996\) 0 0
\(997\) 6.23221 + 25.9590i 0.197376 + 0.822131i 0.979897 + 0.199506i \(0.0639338\pi\)
−0.782520 + 0.622625i \(0.786066\pi\)
\(998\) 12.8063 5.30452i 0.405375 0.167912i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.a.521.1 yes 48
3.2 odd 2 738.2.ba.b.521.3 yes 48
41.17 odd 40 738.2.ba.b.17.3 yes 48
123.17 even 40 inner 738.2.ba.a.17.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.a.17.1 48 123.17 even 40 inner
738.2.ba.a.521.1 yes 48 1.1 even 1 trivial
738.2.ba.b.17.3 yes 48 41.17 odd 40
738.2.ba.b.521.3 yes 48 3.2 odd 2