Properties

Label 738.2.ba.a.233.1
Level $738$
Weight $2$
Character 738.233
Analytic conductor $5.893$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,-4,0,4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(3\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 233.1
Character \(\chi\) \(=\) 738.233
Dual form 738.2.ba.a.719.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.453990 + 0.891007i) q^{2} +(-0.587785 - 0.809017i) q^{4} +(-0.524441 + 3.31119i) q^{5} +(2.69206 - 3.15200i) q^{7} +(0.987688 - 0.156434i) q^{8} +(-2.71220 - 1.97053i) q^{10} +(-2.99794 - 4.89220i) q^{11} +(0.336584 - 4.27671i) q^{13} +(1.58628 + 3.82962i) q^{14} +(-0.309017 + 0.951057i) q^{16} +(1.09484 - 4.56035i) q^{17} +(-0.0711129 - 0.903575i) q^{19} +(2.98707 - 1.52199i) q^{20} +(5.72002 - 0.450175i) q^{22} +(2.00966 + 6.18509i) q^{23} +(-5.93364 - 1.92796i) q^{25} +(3.65777 + 2.24148i) q^{26} +(-4.13237 - 0.325225i) q^{28} +(-2.14178 - 8.92115i) q^{29} +(-2.40301 + 3.30746i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(3.56625 + 3.04587i) q^{34} +(9.02502 + 10.5669i) q^{35} +(0.547981 - 0.398132i) q^{37} +(0.837376 + 0.346852i) q^{38} +3.35246i q^{40} +(6.00083 - 2.23385i) q^{41} +(5.17218 + 2.63536i) q^{43} +(-2.19572 + 5.30095i) q^{44} +(-6.42332 - 1.01735i) q^{46} +(-6.05205 + 5.16894i) q^{47} +(-1.59286 - 10.0569i) q^{49} +(4.41164 - 4.41164i) q^{50} +(-3.65777 + 2.24148i) q^{52} +(6.95935 - 1.67079i) q^{53} +(17.7712 - 7.36108i) q^{55} +(2.16583 - 3.53432i) q^{56} +(8.92115 + 2.14178i) q^{58} +(4.86267 - 1.57998i) q^{59} +(-3.21439 - 6.30859i) q^{61} +(-1.85603 - 3.64265i) q^{62} +(0.951057 - 0.309017i) q^{64} +(13.9845 + 3.35737i) q^{65} +(1.56772 - 2.55829i) q^{67} +(-4.33293 + 1.79476i) q^{68} +(-13.5125 + 3.24406i) q^{70} +(-0.0803081 + 0.0492129i) q^{71} +(4.33705 - 4.33705i) q^{73} +(0.105960 + 0.669003i) q^{74} +(-0.689209 + 0.588640i) q^{76} +(-23.4908 - 3.72058i) q^{77} +(-3.21784 + 7.76856i) q^{79} +(-2.98707 - 1.52199i) q^{80} +(-0.733948 + 6.36092i) q^{82} +8.41626i q^{83} +(14.5260 + 6.01687i) q^{85} +(-4.69624 + 3.41202i) q^{86} +(-3.72634 - 4.36298i) q^{88} +(-7.81737 - 6.67667i) q^{89} +(-12.5741 - 12.5741i) q^{91} +(3.82259 - 5.26135i) q^{92} +(-1.85799 - 7.73907i) q^{94} +(3.02920 + 0.238403i) q^{95} +(11.0760 + 6.78737i) q^{97} +(9.68390 + 3.14649i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{5} + 4 q^{7} - 8 q^{11} - 4 q^{13} + 4 q^{14} + 12 q^{16} - 16 q^{17} - 4 q^{19} + 16 q^{20} + 20 q^{22} - 40 q^{25} - 20 q^{26} - 4 q^{28} + 32 q^{29} - 40 q^{31} - 4 q^{34} - 52 q^{35} - 24 q^{37}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.453990 + 0.891007i −0.321020 + 0.630037i
\(3\) 0 0
\(4\) −0.587785 0.809017i −0.293893 0.404508i
\(5\) −0.524441 + 3.31119i −0.234537 + 1.48081i 0.536436 + 0.843941i \(0.319770\pi\)
−0.770973 + 0.636867i \(0.780230\pi\)
\(6\) 0 0
\(7\) 2.69206 3.15200i 1.01750 1.19134i 0.0361064 0.999348i \(-0.488504\pi\)
0.981396 0.191994i \(-0.0614955\pi\)
\(8\) 0.987688 0.156434i 0.349201 0.0553079i
\(9\) 0 0
\(10\) −2.71220 1.97053i −0.857672 0.623136i
\(11\) −2.99794 4.89220i −0.903913 1.47505i −0.879800 0.475343i \(-0.842324\pi\)
−0.0241131 0.999709i \(-0.507676\pi\)
\(12\) 0 0
\(13\) 0.336584 4.27671i 0.0933517 1.18615i −0.754641 0.656138i \(-0.772189\pi\)
0.847993 0.530008i \(-0.177811\pi\)
\(14\) 1.58628 + 3.82962i 0.423951 + 1.02351i
\(15\) 0 0
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) 1.09484 4.56035i 0.265539 1.10605i −0.667023 0.745037i \(-0.732432\pi\)
0.932562 0.361011i \(-0.117568\pi\)
\(18\) 0 0
\(19\) −0.0711129 0.903575i −0.0163144 0.207294i −0.999672 0.0256133i \(-0.991846\pi\)
0.983358 0.181681i \(-0.0581539\pi\)
\(20\) 2.98707 1.52199i 0.667928 0.340326i
\(21\) 0 0
\(22\) 5.72002 0.450175i 1.21951 0.0959776i
\(23\) 2.00966 + 6.18509i 0.419042 + 1.28968i 0.908585 + 0.417700i \(0.137164\pi\)
−0.489543 + 0.871979i \(0.662836\pi\)
\(24\) 0 0
\(25\) −5.93364 1.92796i −1.18673 0.385591i
\(26\) 3.65777 + 2.24148i 0.717348 + 0.439591i
\(27\) 0 0
\(28\) −4.13237 0.325225i −0.780945 0.0614617i
\(29\) −2.14178 8.92115i −0.397719 1.65662i −0.708181 0.706031i \(-0.750484\pi\)
0.310462 0.950586i \(-0.399516\pi\)
\(30\) 0 0
\(31\) −2.40301 + 3.30746i −0.431594 + 0.594038i −0.968318 0.249720i \(-0.919661\pi\)
0.536725 + 0.843758i \(0.319661\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 3.56625 + 3.04587i 0.611608 + 0.522362i
\(35\) 9.02502 + 10.5669i 1.52551 + 1.78614i
\(36\) 0 0
\(37\) 0.547981 0.398132i 0.0900875 0.0654524i −0.541830 0.840488i \(-0.682268\pi\)
0.631917 + 0.775036i \(0.282268\pi\)
\(38\) 0.837376 + 0.346852i 0.135840 + 0.0562669i
\(39\) 0 0
\(40\) 3.35246i 0.530071i
\(41\) 6.00083 2.23385i 0.937172 0.348868i
\(42\) 0 0
\(43\) 5.17218 + 2.63536i 0.788749 + 0.401888i 0.801473 0.598031i \(-0.204050\pi\)
−0.0127235 + 0.999919i \(0.504050\pi\)
\(44\) −2.19572 + 5.30095i −0.331018 + 0.799148i
\(45\) 0 0
\(46\) −6.42332 1.01735i −0.947066 0.150001i
\(47\) −6.05205 + 5.16894i −0.882783 + 0.753968i −0.970226 0.242202i \(-0.922130\pi\)
0.0874430 + 0.996170i \(0.472130\pi\)
\(48\) 0 0
\(49\) −1.59286 10.0569i −0.227551 1.43670i
\(50\) 4.41164 4.41164i 0.623900 0.623900i
\(51\) 0 0
\(52\) −3.65777 + 2.24148i −0.507241 + 0.310838i
\(53\) 6.95935 1.67079i 0.955940 0.229501i 0.274675 0.961537i \(-0.411430\pi\)
0.681266 + 0.732036i \(0.261430\pi\)
\(54\) 0 0
\(55\) 17.7712 7.36108i 2.39627 0.992568i
\(56\) 2.16583 3.53432i 0.289422 0.472293i
\(57\) 0 0
\(58\) 8.92115 + 2.14178i 1.17141 + 0.281229i
\(59\) 4.86267 1.57998i 0.633066 0.205696i 0.0251330 0.999684i \(-0.491999\pi\)
0.607933 + 0.793989i \(0.291999\pi\)
\(60\) 0 0
\(61\) −3.21439 6.30859i −0.411560 0.807733i 0.588439 0.808541i \(-0.299743\pi\)
−1.00000 0.000808802i \(0.999743\pi\)
\(62\) −1.85603 3.64265i −0.235715 0.462618i
\(63\) 0 0
\(64\) 0.951057 0.309017i 0.118882 0.0386271i
\(65\) 13.9845 + 3.35737i 1.73456 + 0.416431i
\(66\) 0 0
\(67\) 1.56772 2.55829i 0.191528 0.312545i −0.742433 0.669920i \(-0.766328\pi\)
0.933961 + 0.357375i \(0.116328\pi\)
\(68\) −4.33293 + 1.79476i −0.525445 + 0.217647i
\(69\) 0 0
\(70\) −13.5125 + 3.24406i −1.61505 + 0.387740i
\(71\) −0.0803081 + 0.0492129i −0.00953082 + 0.00584049i −0.527256 0.849707i \(-0.676779\pi\)
0.517725 + 0.855547i \(0.326779\pi\)
\(72\) 0 0
\(73\) 4.33705 4.33705i 0.507613 0.507613i −0.406180 0.913793i \(-0.633139\pi\)
0.913793 + 0.406180i \(0.133139\pi\)
\(74\) 0.105960 + 0.669003i 0.0123176 + 0.0777700i
\(75\) 0 0
\(76\) −0.689209 + 0.588640i −0.0790576 + 0.0675216i
\(77\) −23.4908 3.72058i −2.67703 0.423999i
\(78\) 0 0
\(79\) −3.21784 + 7.76856i −0.362035 + 0.874031i 0.632967 + 0.774179i \(0.281837\pi\)
−0.995002 + 0.0998520i \(0.968163\pi\)
\(80\) −2.98707 1.52199i −0.333964 0.170163i
\(81\) 0 0
\(82\) −0.733948 + 6.36092i −0.0810510 + 0.702446i
\(83\) 8.41626i 0.923804i 0.886931 + 0.461902i \(0.152833\pi\)
−0.886931 + 0.461902i \(0.847167\pi\)
\(84\) 0 0
\(85\) 14.5260 + 6.01687i 1.57557 + 0.652621i
\(86\) −4.69624 + 3.41202i −0.506408 + 0.367927i
\(87\) 0 0
\(88\) −3.72634 4.36298i −0.397229 0.465096i
\(89\) −7.81737 6.67667i −0.828640 0.707725i 0.130257 0.991480i \(-0.458420\pi\)
−0.958897 + 0.283755i \(0.908420\pi\)
\(90\) 0 0
\(91\) −12.5741 12.5741i −1.31812 1.31812i
\(92\) 3.82259 5.26135i 0.398533 0.548534i
\(93\) 0 0
\(94\) −1.85799 7.73907i −0.191637 0.798224i
\(95\) 3.02920 + 0.238403i 0.310789 + 0.0244597i
\(96\) 0 0
\(97\) 11.0760 + 6.78737i 1.12460 + 0.689153i 0.955072 0.296373i \(-0.0957772\pi\)
0.169523 + 0.985526i \(0.445777\pi\)
\(98\) 9.68390 + 3.14649i 0.978221 + 0.317843i
\(99\) 0 0
\(100\) 1.92796 + 5.93364i 0.192796 + 0.593364i
\(101\) −12.0827 + 0.950930i −1.20227 + 0.0946210i −0.663727 0.747975i \(-0.731026\pi\)
−0.538547 + 0.842596i \(0.681026\pi\)
\(102\) 0 0
\(103\) −6.06981 + 3.09272i −0.598076 + 0.304735i −0.726696 0.686959i \(-0.758945\pi\)
0.128620 + 0.991694i \(0.458945\pi\)
\(104\) −0.336584 4.27671i −0.0330048 0.419366i
\(105\) 0 0
\(106\) −1.67079 + 6.95935i −0.162282 + 0.675952i
\(107\) 4.00645 12.3306i 0.387318 1.19204i −0.547466 0.836828i \(-0.684408\pi\)
0.934785 0.355215i \(-0.115592\pi\)
\(108\) 0 0
\(109\) 5.08994 + 12.2882i 0.487528 + 1.17700i 0.955960 + 0.293497i \(0.0948192\pi\)
−0.468432 + 0.883500i \(0.655181\pi\)
\(110\) −1.50919 + 19.1761i −0.143896 + 1.82837i
\(111\) 0 0
\(112\) 2.16583 + 3.53432i 0.204652 + 0.333962i
\(113\) −2.76727 2.01054i −0.260323 0.189136i 0.449966 0.893045i \(-0.351436\pi\)
−0.710289 + 0.703910i \(0.751436\pi\)
\(114\) 0 0
\(115\) −21.5339 + 3.41064i −2.00805 + 0.318044i
\(116\) −5.95846 + 6.97646i −0.553229 + 0.647748i
\(117\) 0 0
\(118\) −0.799836 + 5.04997i −0.0736309 + 0.464887i
\(119\) −11.4268 15.7277i −1.04750 1.44175i
\(120\) 0 0
\(121\) −9.95203 + 19.5320i −0.904730 + 1.77563i
\(122\) 7.08030 0.641020
\(123\) 0 0
\(124\) 4.08825 0.367135
\(125\) 1.88574 3.70097i 0.168666 0.331025i
\(126\) 0 0
\(127\) 3.94529 + 5.43022i 0.350088 + 0.481854i 0.947354 0.320189i \(-0.103746\pi\)
−0.597266 + 0.802043i \(0.703746\pi\)
\(128\) −0.156434 + 0.987688i −0.0138270 + 0.0873001i
\(129\) 0 0
\(130\) −9.34026 + 10.9360i −0.819195 + 0.959154i
\(131\) 16.5821 2.62635i 1.44879 0.229466i 0.618055 0.786135i \(-0.287921\pi\)
0.830734 + 0.556670i \(0.187921\pi\)
\(132\) 0 0
\(133\) −3.03950 2.20833i −0.263558 0.191486i
\(134\) 1.56772 + 2.55829i 0.135431 + 0.221003i
\(135\) 0 0
\(136\) 0.367968 4.67548i 0.0315530 0.400919i
\(137\) 1.00674 + 2.43049i 0.0860118 + 0.207651i 0.961033 0.276434i \(-0.0891527\pi\)
−0.875021 + 0.484085i \(0.839153\pi\)
\(138\) 0 0
\(139\) −1.48170 + 4.56021i −0.125676 + 0.386792i −0.994024 0.109164i \(-0.965183\pi\)
0.868347 + 0.495957i \(0.165183\pi\)
\(140\) 3.24406 13.5125i 0.274173 1.14201i
\(141\) 0 0
\(142\) −0.00738987 0.0938972i −0.000620144 0.00787968i
\(143\) −21.9316 + 11.1747i −1.83401 + 0.934475i
\(144\) 0 0
\(145\) 30.6629 2.41322i 2.54641 0.200407i
\(146\) 1.89536 + 5.83332i 0.156861 + 0.482769i
\(147\) 0 0
\(148\) −0.644190 0.209310i −0.0529521 0.0172052i
\(149\) −17.0518 10.4493i −1.39694 0.856044i −0.398799 0.917038i \(-0.630573\pi\)
−0.998138 + 0.0609945i \(0.980573\pi\)
\(150\) 0 0
\(151\) 17.4501 + 1.37335i 1.42007 + 0.111762i 0.765109 0.643901i \(-0.222685\pi\)
0.654961 + 0.755663i \(0.272685\pi\)
\(152\) −0.211588 0.881326i −0.0171620 0.0714850i
\(153\) 0 0
\(154\) 13.9797 19.2414i 1.12651 1.55051i
\(155\) −9.69139 9.69139i −0.778431 0.778431i
\(156\) 0 0
\(157\) −11.6067 9.91302i −0.926312 0.791145i 0.0519215 0.998651i \(-0.483465\pi\)
−0.978234 + 0.207506i \(0.933465\pi\)
\(158\) −5.46097 6.39397i −0.434451 0.508677i
\(159\) 0 0
\(160\) 2.71220 1.97053i 0.214418 0.155784i
\(161\) 24.9055 + 10.3162i 1.96283 + 0.813029i
\(162\) 0 0
\(163\) 23.0982i 1.80919i −0.426275 0.904594i \(-0.640174\pi\)
0.426275 0.904594i \(-0.359826\pi\)
\(164\) −5.33442 3.54175i −0.416548 0.276564i
\(165\) 0 0
\(166\) −7.49894 3.82090i −0.582031 0.296559i
\(167\) −4.25881 + 10.2817i −0.329557 + 0.795621i 0.669068 + 0.743201i \(0.266693\pi\)
−0.998625 + 0.0524198i \(0.983307\pi\)
\(168\) 0 0
\(169\) −5.33701 0.845299i −0.410539 0.0650230i
\(170\) −11.9557 + 10.2112i −0.916963 + 0.783160i
\(171\) 0 0
\(172\) −0.908081 5.73340i −0.0692406 0.437168i
\(173\) −0.621089 + 0.621089i −0.0472205 + 0.0472205i −0.730323 0.683102i \(-0.760630\pi\)
0.683102 + 0.730323i \(0.260630\pi\)
\(174\) 0 0
\(175\) −22.0506 + 13.5126i −1.66687 + 1.02146i
\(176\) 5.57917 1.33944i 0.420546 0.100964i
\(177\) 0 0
\(178\) 9.49797 3.93419i 0.711903 0.294880i
\(179\) −8.60405 + 14.0405i −0.643097 + 1.04944i 0.350511 + 0.936558i \(0.386008\pi\)
−0.993609 + 0.112881i \(0.963992\pi\)
\(180\) 0 0
\(181\) 18.4127 + 4.42049i 1.36860 + 0.328572i 0.850153 0.526536i \(-0.176509\pi\)
0.518450 + 0.855108i \(0.326509\pi\)
\(182\) 16.9121 5.49507i 1.25361 0.407322i
\(183\) 0 0
\(184\) 2.95247 + 5.79456i 0.217659 + 0.427180i
\(185\) 1.03090 + 2.02326i 0.0757936 + 0.148753i
\(186\) 0 0
\(187\) −25.5924 + 8.31548i −1.87150 + 0.608088i
\(188\) 7.73907 + 1.85799i 0.564430 + 0.135508i
\(189\) 0 0
\(190\) −1.58765 + 2.59081i −0.115180 + 0.187957i
\(191\) 12.8401 5.31856i 0.929079 0.384837i 0.133750 0.991015i \(-0.457298\pi\)
0.795329 + 0.606178i \(0.207298\pi\)
\(192\) 0 0
\(193\) −9.33692 + 2.24160i −0.672086 + 0.161354i −0.555105 0.831780i \(-0.687322\pi\)
−0.116981 + 0.993134i \(0.537322\pi\)
\(194\) −11.0760 + 6.78737i −0.795209 + 0.487305i
\(195\) 0 0
\(196\) −7.19994 + 7.19994i −0.514281 + 0.514281i
\(197\) −0.269225 1.69982i −0.0191815 0.121107i 0.976240 0.216694i \(-0.0695273\pi\)
−0.995421 + 0.0955867i \(0.969527\pi\)
\(198\) 0 0
\(199\) −13.3316 + 11.3862i −0.945049 + 0.807148i −0.981357 0.192193i \(-0.938440\pi\)
0.0363086 + 0.999341i \(0.488440\pi\)
\(200\) −6.16219 0.975995i −0.435732 0.0690132i
\(201\) 0 0
\(202\) 4.63815 11.1975i 0.326339 0.787852i
\(203\) −33.8852 17.2654i −2.37828 1.21179i
\(204\) 0 0
\(205\) 4.24960 + 21.0414i 0.296805 + 1.46959i
\(206\) 6.81231i 0.474636i
\(207\) 0 0
\(208\) 3.96338 + 1.64169i 0.274811 + 0.113830i
\(209\) −4.20727 + 3.05676i −0.291023 + 0.211441i
\(210\) 0 0
\(211\) −15.2678 17.8763i −1.05108 1.23065i −0.972294 0.233762i \(-0.924896\pi\)
−0.0787839 0.996892i \(-0.525104\pi\)
\(212\) −5.44230 4.64817i −0.373779 0.319237i
\(213\) 0 0
\(214\) 9.16774 + 9.16774i 0.626694 + 0.626694i
\(215\) −11.4387 + 15.7440i −0.780110 + 1.07373i
\(216\) 0 0
\(217\) 3.95606 + 16.4782i 0.268555 + 1.11861i
\(218\) −13.2597 1.04356i −0.898058 0.0706787i
\(219\) 0 0
\(220\) −16.4009 10.0505i −1.10575 0.677604i
\(221\) −19.1348 6.21727i −1.28715 0.418219i
\(222\) 0 0
\(223\) −4.27822 13.1670i −0.286491 0.881727i −0.985948 0.167053i \(-0.946575\pi\)
0.699457 0.714674i \(-0.253425\pi\)
\(224\) −4.13237 + 0.325225i −0.276106 + 0.0217300i
\(225\) 0 0
\(226\) 3.04772 1.55289i 0.202731 0.103297i
\(227\) 0.921030 + 11.7028i 0.0611309 + 0.776742i 0.948722 + 0.316110i \(0.102377\pi\)
−0.887591 + 0.460632i \(0.847623\pi\)
\(228\) 0 0
\(229\) 5.50621 22.9350i 0.363860 1.51559i −0.427374 0.904075i \(-0.640561\pi\)
0.791235 0.611513i \(-0.209439\pi\)
\(230\) 6.73730 20.7353i 0.444244 1.36724i
\(231\) 0 0
\(232\) −3.51099 8.47627i −0.230508 0.556495i
\(233\) 1.24845 15.8631i 0.0817890 1.03923i −0.809897 0.586572i \(-0.800477\pi\)
0.891686 0.452655i \(-0.149523\pi\)
\(234\) 0 0
\(235\) −13.9414 22.7503i −0.909436 1.48407i
\(236\) −4.13643 3.00530i −0.269259 0.195628i
\(237\) 0 0
\(238\) 19.2011 3.04116i 1.24462 0.197129i
\(239\) −0.784194 + 0.918173i −0.0507253 + 0.0593917i −0.785189 0.619257i \(-0.787434\pi\)
0.734463 + 0.678648i \(0.237434\pi\)
\(240\) 0 0
\(241\) −1.09112 + 6.88906i −0.0702852 + 0.443764i 0.927300 + 0.374318i \(0.122123\pi\)
−0.997586 + 0.0694457i \(0.977877\pi\)
\(242\) −12.8850 17.7347i −0.828278 1.14003i
\(243\) 0 0
\(244\) −3.21439 + 6.30859i −0.205780 + 0.403866i
\(245\) 34.1356 2.18084
\(246\) 0 0
\(247\) −3.88826 −0.247404
\(248\) −1.85603 + 3.64265i −0.117858 + 0.231309i
\(249\) 0 0
\(250\) 2.44148 + 3.36041i 0.154413 + 0.212531i
\(251\) −0.571112 + 3.60586i −0.0360483 + 0.227600i −0.999135 0.0415927i \(-0.986757\pi\)
0.963086 + 0.269193i \(0.0867568\pi\)
\(252\) 0 0
\(253\) 24.2338 28.3742i 1.52357 1.78387i
\(254\) −6.62949 + 1.05001i −0.415971 + 0.0658833i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −2.87261 4.68767i −0.179188 0.292409i 0.750417 0.660964i \(-0.229853\pi\)
−0.929606 + 0.368555i \(0.879853\pi\)
\(258\) 0 0
\(259\) 0.220288 2.79903i 0.0136880 0.173923i
\(260\) −5.50369 13.2871i −0.341325 0.824030i
\(261\) 0 0
\(262\) −5.18804 + 15.9671i −0.320518 + 0.986453i
\(263\) −1.84495 + 7.68477i −0.113765 + 0.473863i 0.886180 + 0.463341i \(0.153349\pi\)
−0.999945 + 0.0105224i \(0.996651\pi\)
\(264\) 0 0
\(265\) 1.88254 + 23.9199i 0.115644 + 1.46939i
\(266\) 3.34754 1.70566i 0.205251 0.104581i
\(267\) 0 0
\(268\) −2.99118 + 0.235411i −0.182716 + 0.0143800i
\(269\) 8.14938 + 25.0812i 0.496876 + 1.52923i 0.814012 + 0.580848i \(0.197279\pi\)
−0.317136 + 0.948380i \(0.602721\pi\)
\(270\) 0 0
\(271\) 23.2537 + 7.55557i 1.41256 + 0.458968i 0.913230 0.407444i \(-0.133580\pi\)
0.499329 + 0.866412i \(0.333580\pi\)
\(272\) 3.99883 + 2.45048i 0.242464 + 0.148582i
\(273\) 0 0
\(274\) −2.62263 0.206406i −0.158439 0.0124694i
\(275\) 8.35677 + 34.8084i 0.503932 + 2.09903i
\(276\) 0 0
\(277\) 2.63074 3.62090i 0.158066 0.217559i −0.722637 0.691227i \(-0.757070\pi\)
0.880703 + 0.473668i \(0.157070\pi\)
\(278\) −3.39050 3.39050i −0.203349 0.203349i
\(279\) 0 0
\(280\) 10.5669 + 9.02502i 0.631496 + 0.539348i
\(281\) −4.58824 5.37213i −0.273711 0.320475i 0.606476 0.795102i \(-0.292583\pi\)
−0.880187 + 0.474627i \(0.842583\pi\)
\(282\) 0 0
\(283\) 6.26927 4.55489i 0.372669 0.270760i −0.385648 0.922646i \(-0.626022\pi\)
0.758317 + 0.651886i \(0.226022\pi\)
\(284\) 0.0870179 + 0.0360440i 0.00516357 + 0.00213882i
\(285\) 0 0
\(286\) 24.6144i 1.45548i
\(287\) 9.11351 24.9282i 0.537953 1.47147i
\(288\) 0 0
\(289\) −4.45101 2.26790i −0.261824 0.133406i
\(290\) −11.7704 + 28.4164i −0.691185 + 1.66867i
\(291\) 0 0
\(292\) −6.05800 0.959493i −0.354518 0.0561501i
\(293\) 15.2807 13.0509i 0.892706 0.762443i −0.0794346 0.996840i \(-0.525311\pi\)
0.972141 + 0.234397i \(0.0753115\pi\)
\(294\) 0 0
\(295\) 2.68142 + 16.9298i 0.156118 + 0.985692i
\(296\) 0.478953 0.478953i 0.0278386 0.0278386i
\(297\) 0 0
\(298\) 17.0518 10.4493i 0.987784 0.605315i
\(299\) 27.1282 6.51291i 1.56887 0.376652i
\(300\) 0 0
\(301\) 22.2304 9.20814i 1.28134 0.530749i
\(302\) −9.14585 + 14.9247i −0.526284 + 0.858818i
\(303\) 0 0
\(304\) 0.881326 + 0.211588i 0.0505475 + 0.0121354i
\(305\) 22.5747 7.33496i 1.29262 0.419999i
\(306\) 0 0
\(307\) 1.38311 + 2.71451i 0.0789384 + 0.154925i 0.927102 0.374809i \(-0.122292\pi\)
−0.848164 + 0.529734i \(0.822292\pi\)
\(308\) 10.7975 + 21.1914i 0.615247 + 1.20749i
\(309\) 0 0
\(310\) 13.0349 4.23529i 0.740332 0.240548i
\(311\) 15.7832 + 3.78920i 0.894981 + 0.214866i 0.654746 0.755849i \(-0.272776\pi\)
0.240235 + 0.970715i \(0.422776\pi\)
\(312\) 0 0
\(313\) −15.2839 + 24.9410i −0.863896 + 1.40975i 0.0477884 + 0.998857i \(0.484783\pi\)
−0.911684 + 0.410892i \(0.865217\pi\)
\(314\) 14.1019 5.84119i 0.795815 0.329637i
\(315\) 0 0
\(316\) 8.17629 1.96295i 0.459952 0.110425i
\(317\) 4.58710 2.81098i 0.257637 0.157880i −0.387682 0.921793i \(-0.626724\pi\)
0.645320 + 0.763913i \(0.276724\pi\)
\(318\) 0 0
\(319\) −37.2231 + 37.2231i −2.08409 + 2.08409i
\(320\) 0.524441 + 3.31119i 0.0293171 + 0.185101i
\(321\) 0 0
\(322\) −20.4986 + 17.5075i −1.14234 + 0.975654i
\(323\) −4.19848 0.664974i −0.233610 0.0370001i
\(324\) 0 0
\(325\) −10.2425 + 24.7275i −0.568151 + 1.37164i
\(326\) 20.5806 + 10.4863i 1.13985 + 0.580785i
\(327\) 0 0
\(328\) 5.57750 3.14508i 0.307966 0.173658i
\(329\) 32.9911i 1.81886i
\(330\) 0 0
\(331\) 14.9483 + 6.19178i 0.821631 + 0.340331i 0.753584 0.657351i \(-0.228323\pi\)
0.0680470 + 0.997682i \(0.478323\pi\)
\(332\) 6.80890 4.94695i 0.373687 0.271499i
\(333\) 0 0
\(334\) −7.22759 8.46242i −0.395476 0.463043i
\(335\) 7.64880 + 6.53269i 0.417899 + 0.356919i
\(336\) 0 0
\(337\) 0.0679988 + 0.0679988i 0.00370413 + 0.00370413i 0.708956 0.705252i \(-0.249166\pi\)
−0.705252 + 0.708956i \(0.749166\pi\)
\(338\) 3.17612 4.37155i 0.172758 0.237781i
\(339\) 0 0
\(340\) −3.67042 15.2884i −0.199057 0.829130i
\(341\) 23.3848 + 1.84043i 1.26636 + 0.0996647i
\(342\) 0 0
\(343\) −11.2471 6.89223i −0.607286 0.372146i
\(344\) 5.52076 + 1.79380i 0.297659 + 0.0967154i
\(345\) 0 0
\(346\) −0.271426 0.835362i −0.0145919 0.0449094i
\(347\) 12.2404 0.963338i 0.657098 0.0517147i 0.254473 0.967080i \(-0.418098\pi\)
0.402625 + 0.915365i \(0.368098\pi\)
\(348\) 0 0
\(349\) −8.48565 + 4.32366i −0.454227 + 0.231440i −0.666108 0.745855i \(-0.732041\pi\)
0.211881 + 0.977295i \(0.432041\pi\)
\(350\) −2.02908 25.7819i −0.108459 1.37810i
\(351\) 0 0
\(352\) −1.33944 + 5.57917i −0.0713924 + 0.297371i
\(353\) 1.94763 5.99420i 0.103662 0.319039i −0.885752 0.464159i \(-0.846357\pi\)
0.989414 + 0.145120i \(0.0463567\pi\)
\(354\) 0 0
\(355\) −0.120836 0.291724i −0.00641332 0.0154831i
\(356\) −0.806601 + 10.2488i −0.0427498 + 0.543187i
\(357\) 0 0
\(358\) −8.60405 14.0405i −0.454738 0.742066i
\(359\) 15.7536 + 11.4456i 0.831441 + 0.604077i 0.919967 0.391997i \(-0.128216\pi\)
−0.0885260 + 0.996074i \(0.528216\pi\)
\(360\) 0 0
\(361\) 17.9547 2.84374i 0.944984 0.149671i
\(362\) −12.2979 + 14.3989i −0.646361 + 0.756792i
\(363\) 0 0
\(364\) −2.78178 + 17.5635i −0.145805 + 0.920577i
\(365\) 12.0863 + 16.6353i 0.632624 + 0.870732i
\(366\) 0 0
\(367\) 4.69761 9.21958i 0.245213 0.481258i −0.735292 0.677750i \(-0.762955\pi\)
0.980505 + 0.196492i \(0.0629550\pi\)
\(368\) −6.50338 −0.339012
\(369\) 0 0
\(370\) −2.27076 −0.118051
\(371\) 13.4686 26.4337i 0.699257 1.37237i
\(372\) 0 0
\(373\) −7.24526 9.97224i −0.375145 0.516343i 0.579145 0.815225i \(-0.303387\pi\)
−0.954290 + 0.298881i \(0.903387\pi\)
\(374\) 4.20957 26.5782i 0.217671 1.37432i
\(375\) 0 0
\(376\) −5.16894 + 6.05205i −0.266568 + 0.312111i
\(377\) −38.8741 + 6.15705i −2.00212 + 0.317104i
\(378\) 0 0
\(379\) 12.4910 + 9.07524i 0.641619 + 0.466164i 0.860406 0.509609i \(-0.170210\pi\)
−0.218787 + 0.975773i \(0.570210\pi\)
\(380\) −1.58765 2.59081i −0.0814446 0.132905i
\(381\) 0 0
\(382\) −1.09043 + 13.8552i −0.0557912 + 0.708895i
\(383\) 6.60571 + 15.9476i 0.337536 + 0.814884i 0.997951 + 0.0639831i \(0.0203804\pi\)
−0.660415 + 0.750901i \(0.729620\pi\)
\(384\) 0 0
\(385\) 24.6391 75.8313i 1.25572 3.86472i
\(386\) 2.24160 9.33692i 0.114094 0.475237i
\(387\) 0 0
\(388\) −1.01920 12.9502i −0.0517421 0.657445i
\(389\) 25.4872 12.9864i 1.29225 0.658435i 0.333519 0.942744i \(-0.391764\pi\)
0.958733 + 0.284309i \(0.0917640\pi\)
\(390\) 0 0
\(391\) 30.4064 2.39304i 1.53772 0.121021i
\(392\) −3.14649 9.68390i −0.158922 0.489111i
\(393\) 0 0
\(394\) 1.63677 + 0.531820i 0.0824595 + 0.0267927i
\(395\) −24.0356 14.7290i −1.20936 0.741098i
\(396\) 0 0
\(397\) −22.0600 1.73616i −1.10716 0.0871352i −0.488328 0.872660i \(-0.662393\pi\)
−0.618830 + 0.785525i \(0.712393\pi\)
\(398\) −4.09280 17.0477i −0.205153 0.854526i
\(399\) 0 0
\(400\) 3.66719 5.04746i 0.183360 0.252373i
\(401\) −11.1658 11.1658i −0.557592 0.557592i 0.371029 0.928621i \(-0.379005\pi\)
−0.928621 + 0.371029i \(0.879005\pi\)
\(402\) 0 0
\(403\) 13.3362 + 11.3902i 0.664325 + 0.567387i
\(404\) 7.87135 + 9.21617i 0.391614 + 0.458522i
\(405\) 0 0
\(406\) 30.7671 22.3536i 1.52695 1.10939i
\(407\) −3.59055 1.48726i −0.177977 0.0737205i
\(408\) 0 0
\(409\) 25.9397i 1.28263i 0.767276 + 0.641317i \(0.221612\pi\)
−0.767276 + 0.641317i \(0.778388\pi\)
\(410\) −20.6773 5.76616i −1.02118 0.284771i
\(411\) 0 0
\(412\) 6.06981 + 3.09272i 0.299038 + 0.152367i
\(413\) 8.11051 19.5805i 0.399092 0.963494i
\(414\) 0 0
\(415\) −27.8678 4.41383i −1.36798 0.216666i
\(416\) −3.26209 + 2.78609i −0.159937 + 0.136599i
\(417\) 0 0
\(418\) −0.813534 5.13645i −0.0397912 0.251232i
\(419\) −13.9094 + 13.9094i −0.679519 + 0.679519i −0.959891 0.280372i \(-0.909542\pi\)
0.280372 + 0.959891i \(0.409542\pi\)
\(420\) 0 0
\(421\) −18.8840 + 11.5721i −0.920350 + 0.563991i −0.900042 0.435803i \(-0.856465\pi\)
−0.0203078 + 0.999794i \(0.506465\pi\)
\(422\) 22.8593 5.48804i 1.11277 0.267153i
\(423\) 0 0
\(424\) 6.61230 2.73890i 0.321122 0.133013i
\(425\) −15.2886 + 24.9487i −0.741605 + 1.21019i
\(426\) 0 0
\(427\) −28.5380 6.85136i −1.38105 0.331561i
\(428\) −12.3306 + 4.00645i −0.596021 + 0.193659i
\(429\) 0 0
\(430\) −8.83493 17.3395i −0.426058 0.836186i
\(431\) 10.0457 + 19.7158i 0.483884 + 0.949676i 0.995879 + 0.0906880i \(0.0289066\pi\)
−0.511995 + 0.858988i \(0.671093\pi\)
\(432\) 0 0
\(433\) 2.18970 0.711476i 0.105230 0.0341914i −0.255929 0.966696i \(-0.582381\pi\)
0.361159 + 0.932504i \(0.382381\pi\)
\(434\) −16.4782 3.95606i −0.790977 0.189897i
\(435\) 0 0
\(436\) 6.94958 11.3407i 0.332824 0.543120i
\(437\) 5.44578 2.25571i 0.260507 0.107905i
\(438\) 0 0
\(439\) −0.503069 + 0.120776i −0.0240102 + 0.00576433i −0.245433 0.969414i \(-0.578930\pi\)
0.221422 + 0.975178i \(0.428930\pi\)
\(440\) 16.4009 10.0505i 0.781882 0.479138i
\(441\) 0 0
\(442\) 14.2266 14.2266i 0.676692 0.676692i
\(443\) 2.63663 + 16.6470i 0.125270 + 0.790924i 0.967697 + 0.252114i \(0.0811259\pi\)
−0.842427 + 0.538810i \(0.818874\pi\)
\(444\) 0 0
\(445\) 26.2074 22.3833i 1.24235 1.06107i
\(446\) 13.6741 + 2.16577i 0.647490 + 0.102552i
\(447\) 0 0
\(448\) 1.58628 3.82962i 0.0749447 0.180932i
\(449\) −15.7089 8.00407i −0.741348 0.377735i 0.0421656 0.999111i \(-0.486574\pi\)
−0.783513 + 0.621375i \(0.786574\pi\)
\(450\) 0 0
\(451\) −28.9185 22.6603i −1.36172 1.06703i
\(452\) 3.42054i 0.160888i
\(453\) 0 0
\(454\) −10.8454 4.49232i −0.509000 0.210835i
\(455\) 48.2294 35.0407i 2.26103 1.64274i
\(456\) 0 0
\(457\) −14.6151 17.1121i −0.683666 0.800470i 0.304719 0.952442i \(-0.401438\pi\)
−0.988385 + 0.151972i \(0.951438\pi\)
\(458\) 17.9355 + 15.3183i 0.838069 + 0.715779i
\(459\) 0 0
\(460\) 15.4166 + 15.4166i 0.718802 + 0.718802i
\(461\) −8.06635 + 11.1024i −0.375687 + 0.517089i −0.954436 0.298417i \(-0.903541\pi\)
0.578748 + 0.815506i \(0.303541\pi\)
\(462\) 0 0
\(463\) 3.01437 + 12.5558i 0.140090 + 0.583516i 0.997612 + 0.0690689i \(0.0220028\pi\)
−0.857522 + 0.514447i \(0.827997\pi\)
\(464\) 9.14637 + 0.719835i 0.424610 + 0.0334175i
\(465\) 0 0
\(466\) 13.5674 + 8.31409i 0.628496 + 0.385143i
\(467\) −9.85235 3.20122i −0.455912 0.148135i 0.0720531 0.997401i \(-0.477045\pi\)
−0.527965 + 0.849266i \(0.677045\pi\)
\(468\) 0 0
\(469\) −3.84332 11.8285i −0.177468 0.546190i
\(470\) 26.5999 2.09346i 1.22696 0.0965641i
\(471\) 0 0
\(472\) 4.55564 2.32121i 0.209690 0.106843i
\(473\) −2.61321 33.2039i −0.120155 1.52672i
\(474\) 0 0
\(475\) −1.32010 + 5.49859i −0.0605701 + 0.252293i
\(476\) −6.00744 + 18.4890i −0.275350 + 0.847441i
\(477\) 0 0
\(478\) −0.462081 1.11556i −0.0211351 0.0510247i
\(479\) 0.588599 7.47886i 0.0268938 0.341718i −0.968720 0.248157i \(-0.920175\pi\)
0.995614 0.0935608i \(-0.0298249\pi\)
\(480\) 0 0
\(481\) −1.51825 2.47756i −0.0692263 0.112967i
\(482\) −5.64284 4.09976i −0.257024 0.186739i
\(483\) 0 0
\(484\) 21.6514 3.42924i 0.984152 0.155874i
\(485\) −28.2829 + 33.1151i −1.28426 + 1.50368i
\(486\) 0 0
\(487\) −5.14611 + 32.4912i −0.233192 + 1.47232i 0.541885 + 0.840453i \(0.317711\pi\)
−0.775078 + 0.631866i \(0.782289\pi\)
\(488\) −4.16170 5.72808i −0.188391 0.259298i
\(489\) 0 0
\(490\) −15.4972 + 30.4151i −0.700094 + 1.37401i
\(491\) 17.3214 0.781706 0.390853 0.920453i \(-0.372180\pi\)
0.390853 + 0.920453i \(0.372180\pi\)
\(492\) 0 0
\(493\) −43.0285 −1.93791
\(494\) 1.76524 3.46447i 0.0794217 0.155874i
\(495\) 0 0
\(496\) −2.40301 3.30746i −0.107898 0.148509i
\(497\) −0.0610754 + 0.385615i −0.00273960 + 0.0172972i
\(498\) 0 0
\(499\) 0.967637 1.13296i 0.0433174 0.0507181i −0.738324 0.674446i \(-0.764383\pi\)
0.781642 + 0.623728i \(0.214383\pi\)
\(500\) −4.10256 + 0.649782i −0.183472 + 0.0290591i
\(501\) 0 0
\(502\) −2.95357 2.14589i −0.131824 0.0957758i
\(503\) 12.6648 + 20.6671i 0.564697 + 0.921502i 0.999777 + 0.0211104i \(0.00672014\pi\)
−0.435080 + 0.900392i \(0.643280\pi\)
\(504\) 0 0
\(505\) 3.18795 40.5068i 0.141862 1.80253i
\(506\) 14.2796 + 34.4741i 0.634807 + 1.53256i
\(507\) 0 0
\(508\) 2.07416 6.38361i 0.0920260 0.283227i
\(509\) −3.27680 + 13.6489i −0.145242 + 0.604975i 0.851503 + 0.524350i \(0.175692\pi\)
−0.996745 + 0.0806249i \(0.974308\pi\)
\(510\) 0 0
\(511\) −1.99477 25.3460i −0.0882434 1.12124i
\(512\) 0.891007 0.453990i 0.0393773 0.0200637i
\(513\) 0 0
\(514\) 5.48089 0.431355i 0.241751 0.0190263i
\(515\) −7.05733 21.7202i −0.310983 0.957107i
\(516\) 0 0
\(517\) 43.4312 + 14.1116i 1.91010 + 0.620630i
\(518\) 2.39394 + 1.46701i 0.105184 + 0.0644567i
\(519\) 0 0
\(520\) 14.3375 + 1.12839i 0.628741 + 0.0494830i
\(521\) 0.907412 + 3.77964i 0.0397544 + 0.165589i 0.988716 0.149803i \(-0.0478640\pi\)
−0.948961 + 0.315392i \(0.897864\pi\)
\(522\) 0 0
\(523\) −9.08962 + 12.5108i −0.397461 + 0.547059i −0.960105 0.279641i \(-0.909784\pi\)
0.562643 + 0.826700i \(0.309784\pi\)
\(524\) −11.8715 11.8715i −0.518609 0.518609i
\(525\) 0 0
\(526\) −6.00959 5.13268i −0.262031 0.223795i
\(527\) 12.4523 + 14.5797i 0.542429 + 0.635103i
\(528\) 0 0
\(529\) −15.6092 + 11.3407i −0.678660 + 0.493075i
\(530\) −22.1675 9.18207i −0.962894 0.398844i
\(531\) 0 0
\(532\) 3.75703i 0.162888i
\(533\) −7.53372 26.4157i −0.326322 1.14419i
\(534\) 0 0
\(535\) 38.7277 + 19.7328i 1.67435 + 0.853122i
\(536\) 1.14822 2.77204i 0.0495954 0.119734i
\(537\) 0 0
\(538\) −26.0473 4.12548i −1.12298 0.177862i
\(539\) −44.4250 + 37.9425i −1.91352 + 1.63430i
\(540\) 0 0
\(541\) 4.80054 + 30.3094i 0.206392 + 1.30310i 0.845495 + 0.533984i \(0.179306\pi\)
−0.639103 + 0.769121i \(0.720694\pi\)
\(542\) −17.2890 + 17.2890i −0.742626 + 0.742626i
\(543\) 0 0
\(544\) −3.99883 + 2.45048i −0.171448 + 0.105064i
\(545\) −43.3579 + 10.4093i −1.85725 + 0.445886i
\(546\) 0 0
\(547\) −19.6988 + 8.15951i −0.842260 + 0.348875i −0.761744 0.647878i \(-0.775657\pi\)
−0.0805155 + 0.996753i \(0.525657\pi\)
\(548\) 1.37456 2.24308i 0.0587183 0.0958195i
\(549\) 0 0
\(550\) −34.8084 8.35677i −1.48424 0.356334i
\(551\) −7.90863 + 2.56967i −0.336919 + 0.109472i
\(552\) 0 0
\(553\) 15.8238 + 31.0560i 0.672898 + 1.32064i
\(554\) 2.03192 + 3.98786i 0.0863279 + 0.169428i
\(555\) 0 0
\(556\) 4.56021 1.48170i 0.193396 0.0628382i
\(557\) −2.50107 0.600453i −0.105974 0.0254420i 0.180112 0.983646i \(-0.442354\pi\)
−0.286085 + 0.958204i \(0.592354\pi\)
\(558\) 0 0
\(559\) 13.0115 21.2329i 0.550329 0.898055i
\(560\) −12.8386 + 5.31794i −0.542532 + 0.224724i
\(561\) 0 0
\(562\) 6.86962 1.64925i 0.289778 0.0695694i
\(563\) 8.63660 5.29251i 0.363989 0.223053i −0.328463 0.944517i \(-0.606531\pi\)
0.692452 + 0.721464i \(0.256531\pi\)
\(564\) 0 0
\(565\) 8.10855 8.10855i 0.341129 0.341129i
\(566\) 1.21225 + 7.65384i 0.0509546 + 0.321715i
\(567\) 0 0
\(568\) −0.0716208 + 0.0611699i −0.00300514 + 0.00256663i
\(569\) −14.4664 2.29125i −0.606462 0.0960541i −0.154351 0.988016i \(-0.549329\pi\)
−0.452111 + 0.891962i \(0.649329\pi\)
\(570\) 0 0
\(571\) 9.76049 23.5639i 0.408464 0.986119i −0.577078 0.816689i \(-0.695807\pi\)
0.985542 0.169430i \(-0.0541927\pi\)
\(572\) 21.9316 + 11.1747i 0.917005 + 0.467237i
\(573\) 0 0
\(574\) 18.0738 + 19.4374i 0.754384 + 0.811300i
\(575\) 40.5746i 1.69208i
\(576\) 0 0
\(577\) 29.8021 + 12.3444i 1.24068 + 0.513906i 0.903926 0.427688i \(-0.140672\pi\)
0.336751 + 0.941594i \(0.390672\pi\)
\(578\) 4.04143 2.93627i 0.168101 0.122133i
\(579\) 0 0
\(580\) −19.9755 23.3883i −0.829438 0.971147i
\(581\) 26.5280 + 22.6571i 1.10057 + 0.939973i
\(582\) 0 0
\(583\) −29.0376 29.0376i −1.20261 1.20261i
\(584\) 3.60519 4.96212i 0.149184 0.205334i
\(585\) 0 0
\(586\) 4.69118 + 19.5402i 0.193791 + 0.807197i
\(587\) −3.97684 0.312984i −0.164142 0.0129182i −0.00387806 0.999992i \(-0.501234\pi\)
−0.160264 + 0.987074i \(0.551234\pi\)
\(588\) 0 0
\(589\) 3.15942 + 1.93610i 0.130182 + 0.0797755i
\(590\) −16.3019 5.29681i −0.671139 0.218066i
\(591\) 0 0
\(592\) 0.209310 + 0.644190i 0.00860259 + 0.0264761i
\(593\) 41.0938 3.23415i 1.68752 0.132811i 0.801973 0.597361i \(-0.203784\pi\)
0.885547 + 0.464550i \(0.153784\pi\)
\(594\) 0 0
\(595\) 58.0700 29.5881i 2.38064 1.21299i
\(596\) 1.56909 + 19.9372i 0.0642724 + 0.816658i
\(597\) 0 0
\(598\) −6.51291 + 27.1282i −0.266333 + 1.10936i
\(599\) 2.52358 7.76677i 0.103111 0.317342i −0.886172 0.463357i \(-0.846645\pi\)
0.989282 + 0.146015i \(0.0466448\pi\)
\(600\) 0 0
\(601\) 9.21654 + 22.2507i 0.375951 + 0.907625i 0.992716 + 0.120478i \(0.0384428\pi\)
−0.616765 + 0.787147i \(0.711557\pi\)
\(602\) −1.88789 + 23.9879i −0.0769445 + 0.977672i
\(603\) 0 0
\(604\) −9.14585 14.9247i −0.372139 0.607276i
\(605\) −59.4547 43.1964i −2.41718 1.75618i
\(606\) 0 0
\(607\) −8.36936 + 1.32558i −0.339702 + 0.0538035i −0.323955 0.946073i \(-0.605013\pi\)
−0.0157469 + 0.999876i \(0.505013\pi\)
\(608\) −0.588640 + 0.689209i −0.0238725 + 0.0279511i
\(609\) 0 0
\(610\) −3.71320 + 23.4442i −0.150343 + 0.949228i
\(611\) 20.0690 + 27.6227i 0.811907 + 1.11749i
\(612\) 0 0
\(613\) −2.45977 + 4.82758i −0.0993493 + 0.194984i −0.935331 0.353773i \(-0.884899\pi\)
0.835982 + 0.548757i \(0.184899\pi\)
\(614\) −3.04657 −0.122949
\(615\) 0 0
\(616\) −23.7836 −0.958270
\(617\) 20.2744 39.7908i 0.816219 1.60192i 0.0177807 0.999842i \(-0.494340\pi\)
0.798438 0.602077i \(-0.205660\pi\)
\(618\) 0 0
\(619\) 7.53064 + 10.3650i 0.302682 + 0.416606i 0.933082 0.359665i \(-0.117109\pi\)
−0.630399 + 0.776271i \(0.717109\pi\)
\(620\) −2.14404 + 13.5370i −0.0861068 + 0.543657i
\(621\) 0 0
\(622\) −10.5416 + 12.3426i −0.422680 + 0.494895i
\(623\) −42.0897 + 6.66635i −1.68629 + 0.267082i
\(624\) 0 0
\(625\) −13.9716 10.1510i −0.558865 0.406039i
\(626\) −15.2839 24.9410i −0.610866 0.996843i
\(627\) 0 0
\(628\) −1.19758 + 15.2167i −0.0477887 + 0.607213i
\(629\) −1.21567 2.93488i −0.0484718 0.117021i
\(630\) 0 0
\(631\) −6.81991 + 20.9895i −0.271496 + 0.835580i 0.718629 + 0.695394i \(0.244770\pi\)
−0.990125 + 0.140186i \(0.955230\pi\)
\(632\) −1.96295 + 8.17629i −0.0780821 + 0.325236i
\(633\) 0 0
\(634\) 0.422100 + 5.36329i 0.0167637 + 0.213004i
\(635\) −20.0496 + 10.2158i −0.795642 + 0.405400i
\(636\) 0 0
\(637\) −43.5465 + 3.42719i −1.72538 + 0.135790i
\(638\) −16.2671 50.0650i −0.644020 1.98209i
\(639\) 0 0
\(640\) −3.18838 1.03597i −0.126032 0.0409502i
\(641\) 36.2211 + 22.1963i 1.43065 + 0.876701i 0.999671 0.0256625i \(-0.00816953\pi\)
0.430976 + 0.902364i \(0.358170\pi\)
\(642\) 0 0
\(643\) −23.6112 1.85824i −0.931136 0.0732820i −0.396190 0.918168i \(-0.629668\pi\)
−0.534946 + 0.844886i \(0.679668\pi\)
\(644\) −6.29310 26.2127i −0.247983 1.03292i
\(645\) 0 0
\(646\) 2.49856 3.43898i 0.0983047 0.135305i
\(647\) −18.9808 18.9808i −0.746213 0.746213i 0.227553 0.973766i \(-0.426927\pi\)
−0.973766 + 0.227553i \(0.926927\pi\)
\(648\) 0 0
\(649\) −22.3076 19.0525i −0.875648 0.747874i
\(650\) −17.3824 20.3522i −0.681794 0.798279i
\(651\) 0 0
\(652\) −18.6868 + 13.5768i −0.731832 + 0.531707i
\(653\) 32.6642 + 13.5300i 1.27825 + 0.529469i 0.915463 0.402403i \(-0.131825\pi\)
0.362788 + 0.931872i \(0.381825\pi\)
\(654\) 0 0
\(655\) 56.2840i 2.19920i
\(656\) 0.270156 + 6.39742i 0.0105478 + 0.249777i
\(657\) 0 0
\(658\) −29.3953 14.9777i −1.14595 0.583890i
\(659\) 16.4756 39.7755i 0.641797 1.54943i −0.182457 0.983214i \(-0.558405\pi\)
0.824254 0.566221i \(-0.191595\pi\)
\(660\) 0 0
\(661\) 17.2819 + 2.73718i 0.672187 + 0.106464i 0.483192 0.875514i \(-0.339477\pi\)
0.188994 + 0.981978i \(0.439477\pi\)
\(662\) −12.3033 + 10.5080i −0.478181 + 0.408405i
\(663\) 0 0
\(664\) 1.31659 + 8.31264i 0.0510937 + 0.322593i
\(665\) 8.90623 8.90623i 0.345369 0.345369i
\(666\) 0 0
\(667\) 50.8739 31.1755i 1.96984 1.20712i
\(668\) 10.8213 2.59797i 0.418690 0.100519i
\(669\) 0 0
\(670\) −9.29316 + 3.84935i −0.359026 + 0.148713i
\(671\) −21.2263 + 34.6382i −0.819433 + 1.33719i
\(672\) 0 0
\(673\) −8.54684 2.05191i −0.329456 0.0790955i 0.0653429 0.997863i \(-0.479186\pi\)
−0.394799 + 0.918767i \(0.629186\pi\)
\(674\) −0.0914582 + 0.0297166i −0.00352284 + 0.00114464i
\(675\) 0 0
\(676\) 2.45315 + 4.81459i 0.0943521 + 0.185176i
\(677\) −16.3913 32.1697i −0.629969 1.23638i −0.956648 0.291248i \(-0.905930\pi\)
0.326679 0.945135i \(-0.394070\pi\)
\(678\) 0 0
\(679\) 51.2110 16.6394i 1.96530 0.638563i
\(680\) 15.2884 + 3.67042i 0.586284 + 0.140754i
\(681\) 0 0
\(682\) −12.2563 + 20.0005i −0.469319 + 0.765859i
\(683\) −30.8564 + 12.7811i −1.18069 + 0.489056i −0.884711 0.466139i \(-0.845645\pi\)
−0.295975 + 0.955196i \(0.595645\pi\)
\(684\) 0 0
\(685\) −8.57579 + 2.05886i −0.327664 + 0.0786651i
\(686\) 11.2471 6.89223i 0.429416 0.263147i
\(687\) 0 0
\(688\) −4.10466 + 4.10466i −0.156489 + 0.156489i
\(689\) −4.80309 30.3255i −0.182983 1.15531i
\(690\) 0 0
\(691\) −18.9440 + 16.1797i −0.720665 + 0.615506i −0.932234 0.361857i \(-0.882143\pi\)
0.211568 + 0.977363i \(0.432143\pi\)
\(692\) 0.867538 + 0.137405i 0.0329788 + 0.00522334i
\(693\) 0 0
\(694\) −4.69867 + 11.3436i −0.178359 + 0.430597i
\(695\) −14.3227 7.29776i −0.543289 0.276820i
\(696\) 0 0
\(697\) −3.61715 29.8116i −0.137009 1.12919i
\(698\) 9.52367i 0.360476i
\(699\) 0 0
\(700\) 23.8930 + 9.89680i 0.903070 + 0.374064i
\(701\) 19.9347 14.4834i 0.752923 0.547031i −0.143808 0.989606i \(-0.545935\pi\)
0.896732 + 0.442575i \(0.145935\pi\)
\(702\) 0 0
\(703\) −0.398710 0.466830i −0.0150376 0.0176068i
\(704\) −4.36298 3.72634i −0.164436 0.140442i
\(705\) 0 0
\(706\) 4.45667 + 4.45667i 0.167729 + 0.167729i
\(707\) −29.5300 + 40.6446i −1.11059 + 1.52860i
\(708\) 0 0
\(709\) −2.20827 9.19810i −0.0829333 0.345442i 0.915440 0.402454i \(-0.131843\pi\)
−0.998373 + 0.0570120i \(0.981843\pi\)
\(710\) 0.314787 + 0.0247743i 0.0118137 + 0.000929761i
\(711\) 0 0
\(712\) −8.76559 5.37156i −0.328504 0.201308i
\(713\) −25.2862 8.21597i −0.946974 0.307691i
\(714\) 0 0
\(715\) −25.4997 78.4800i −0.953634 2.93498i
\(716\) 16.4164 1.29200i 0.613509 0.0482842i
\(717\) 0 0
\(718\) −17.3501 + 8.84031i −0.647500 + 0.329917i
\(719\) −1.60607 20.4071i −0.0598963 0.761055i −0.951383 0.308009i \(-0.900337\pi\)
0.891487 0.453046i \(-0.149663\pi\)
\(720\) 0 0
\(721\) −6.59203 + 27.4578i −0.245500 + 1.02258i
\(722\) −5.61746 + 17.2888i −0.209060 + 0.643422i
\(723\) 0 0
\(724\) −7.24644 17.4945i −0.269312 0.650176i
\(725\) −4.49105 + 57.0642i −0.166793 + 2.11931i
\(726\) 0 0
\(727\) 18.6558 + 30.4436i 0.691907 + 1.12909i 0.984925 + 0.172982i \(0.0553404\pi\)
−0.293018 + 0.956107i \(0.594660\pi\)
\(728\) −14.3863 10.4522i −0.533191 0.387386i
\(729\) 0 0
\(730\) −20.3092 + 3.21667i −0.751678 + 0.119054i
\(731\) 17.6809 20.7016i 0.653951 0.765678i
\(732\) 0 0
\(733\) −4.62459 + 29.1985i −0.170813 + 1.07847i 0.742092 + 0.670298i \(0.233834\pi\)
−0.912905 + 0.408173i \(0.866166\pi\)
\(734\) 6.08204 + 8.37121i 0.224492 + 0.308987i
\(735\) 0 0
\(736\) 2.95247 5.79456i 0.108830 0.213590i
\(737\) −17.2156 −0.634145
\(738\) 0 0
\(739\) −36.7156 −1.35061 −0.675303 0.737541i \(-0.735987\pi\)
−0.675303 + 0.737541i \(0.735987\pi\)
\(740\) 1.03090 2.02326i 0.0378968 0.0743767i
\(741\) 0 0
\(742\) 17.4380 + 24.0013i 0.640168 + 0.881116i
\(743\) −0.825200 + 5.21011i −0.0302736 + 0.191140i −0.998191 0.0601303i \(-0.980848\pi\)
0.967917 + 0.251271i \(0.0808484\pi\)
\(744\) 0 0
\(745\) 43.5424 50.9816i 1.59527 1.86782i
\(746\) 12.1746 1.92827i 0.445744 0.0705990i
\(747\) 0 0
\(748\) 21.7702 + 15.8170i 0.795998 + 0.578326i
\(749\) −28.0804 45.8230i −1.02603 1.67434i
\(750\) 0 0
\(751\) 3.04607 38.7039i 0.111153 1.41233i −0.648112 0.761545i \(-0.724441\pi\)
0.759265 0.650782i \(-0.225559\pi\)
\(752\) −3.04577 7.35314i −0.111068 0.268141i
\(753\) 0 0
\(754\) 12.1625 37.4323i 0.442932 1.36320i
\(755\) −13.6990 + 57.0603i −0.498557 + 2.07664i
\(756\) 0 0
\(757\) 0.943382 + 11.9868i 0.0342878 + 0.435668i 0.989971 + 0.141271i \(0.0451188\pi\)
−0.955683 + 0.294397i \(0.904881\pi\)
\(758\) −13.7569 + 7.00949i −0.499673 + 0.254596i
\(759\) 0 0
\(760\) 3.02920 0.238403i 0.109881 0.00864780i
\(761\) 1.63942 + 5.04561i 0.0594289 + 0.182903i 0.976364 0.216133i \(-0.0693446\pi\)
−0.916935 + 0.399037i \(0.869345\pi\)
\(762\) 0 0
\(763\) 52.4348 + 17.0371i 1.89827 + 0.616785i
\(764\) −11.8500 7.26172i −0.428720 0.262720i
\(765\) 0 0
\(766\) −17.2083 1.35433i −0.621762 0.0489338i
\(767\) −5.12041 21.3280i −0.184887 0.770110i
\(768\) 0 0
\(769\) −5.13211 + 7.06375i −0.185069 + 0.254725i −0.891463 0.453093i \(-0.850321\pi\)
0.706394 + 0.707818i \(0.250321\pi\)
\(770\) 56.3802 + 56.3802i 2.03180 + 2.03180i
\(771\) 0 0
\(772\) 7.30159 + 6.23615i 0.262790 + 0.224444i
\(773\) −2.91939 3.41816i −0.105003 0.122943i 0.705416 0.708794i \(-0.250760\pi\)
−0.810419 + 0.585851i \(0.800760\pi\)
\(774\) 0 0
\(775\) 20.6352 14.9924i 0.741240 0.538542i
\(776\) 12.0014 + 4.97114i 0.430825 + 0.178454i
\(777\) 0 0
\(778\) 28.6049i 1.02554i
\(779\) −2.44518 5.26334i −0.0876078 0.188579i
\(780\) 0 0
\(781\) 0.481518 + 0.245346i 0.0172301 + 0.00877916i
\(782\) −11.6720 + 28.1787i −0.417390 + 1.00767i
\(783\) 0 0
\(784\) 10.0569 + 1.59286i 0.359175 + 0.0568877i
\(785\) 38.9109 33.2330i 1.38879 1.18614i
\(786\) 0 0
\(787\) 2.03917 + 12.8748i 0.0726886 + 0.458938i 0.997007 + 0.0773150i \(0.0246347\pi\)
−0.924318 + 0.381623i \(0.875365\pi\)
\(788\) −1.21694 + 1.21694i −0.0433515 + 0.0433515i
\(789\) 0 0
\(790\) 24.0356 14.7290i 0.855148 0.524035i
\(791\) −13.7869 + 3.30994i −0.490205 + 0.117688i
\(792\) 0 0
\(793\) −28.0619 + 11.6236i −0.996508 + 0.412767i
\(794\) 11.5619 18.8674i 0.410318 0.669578i
\(795\) 0 0
\(796\) 17.0477 + 4.09280i 0.604241 + 0.145065i
\(797\) −10.2746 + 3.33841i −0.363944 + 0.118253i −0.485280 0.874359i \(-0.661282\pi\)
0.121336 + 0.992612i \(0.461282\pi\)
\(798\) 0 0
\(799\) 16.9461 + 33.2587i 0.599511 + 1.17661i
\(800\) 2.83245 + 5.55899i 0.100142 + 0.196540i
\(801\) 0 0
\(802\) 15.0179 4.87962i 0.530301 0.172305i
\(803\) −34.2199 8.21548i −1.20760 0.289918i
\(804\) 0 0
\(805\) −47.2203 + 77.0565i −1.66430 + 2.71588i
\(806\) −16.2033 + 6.71162i −0.570736 + 0.236407i
\(807\) 0 0
\(808\) −11.7852 + 2.82937i −0.414601 + 0.0995370i
\(809\) −23.1693 + 14.1981i −0.814588 + 0.499180i −0.866325 0.499481i \(-0.833524\pi\)
0.0517374 + 0.998661i \(0.483524\pi\)
\(810\) 0 0
\(811\) 24.5700 24.5700i 0.862769 0.862769i −0.128890 0.991659i \(-0.541141\pi\)
0.991659 + 0.128890i \(0.0411414\pi\)
\(812\) 5.94925 + 37.5621i 0.208778 + 1.31817i
\(813\) 0 0
\(814\) 2.95523 2.52401i 0.103581 0.0884664i
\(815\) 76.4823 + 12.1136i 2.67906 + 0.424321i
\(816\) 0 0
\(817\) 2.01343 4.86086i 0.0704411 0.170060i
\(818\) −23.1124 11.7764i −0.808106 0.411751i
\(819\) 0 0
\(820\) 14.5250 15.8058i 0.507234 0.551963i
\(821\) 37.0336i 1.29248i 0.763134 + 0.646240i \(0.223659\pi\)
−0.763134 + 0.646240i \(0.776341\pi\)
\(822\) 0 0
\(823\) 3.38901 + 1.40377i 0.118133 + 0.0489324i 0.440967 0.897523i \(-0.354636\pi\)
−0.322834 + 0.946456i \(0.604636\pi\)
\(824\) −5.51127 + 4.00417i −0.191994 + 0.139492i
\(825\) 0 0
\(826\) 13.7643 + 16.1159i 0.478920 + 0.560743i
\(827\) −27.8306 23.7696i −0.967766 0.826550i 0.0171025 0.999854i \(-0.494556\pi\)
−0.984868 + 0.173303i \(0.944556\pi\)
\(828\) 0 0
\(829\) −0.877505 0.877505i −0.0304770 0.0304770i 0.691704 0.722181i \(-0.256860\pi\)
−0.722181 + 0.691704i \(0.756860\pi\)
\(830\) 16.5845 22.8266i 0.575655 0.792322i
\(831\) 0 0
\(832\) −1.00147 4.17140i −0.0347196 0.144617i
\(833\) −47.6069 3.74674i −1.64948 0.129817i
\(834\) 0 0
\(835\) −31.8111 19.4939i −1.10087 0.674613i
\(836\) 4.94595 + 1.60704i 0.171059 + 0.0555805i
\(837\) 0 0
\(838\) −6.07863 18.7081i −0.209983 0.646261i
\(839\) 23.9120 1.88192i 0.825535 0.0649710i 0.341350 0.939936i \(-0.389116\pi\)
0.484185 + 0.874965i \(0.339116\pi\)
\(840\) 0 0
\(841\) −49.1606 + 25.0486i −1.69519 + 0.863744i
\(842\) −1.73769 22.0794i −0.0598847 0.760907i
\(843\) 0 0
\(844\) −5.48804 + 22.8593i −0.188906 + 0.786850i
\(845\) 5.59789 17.2285i 0.192573 0.592680i
\(846\) 0 0
\(847\) 34.7732 + 83.9500i 1.19482 + 2.88455i
\(848\) −0.561540 + 7.13504i −0.0192834 + 0.245018i
\(849\) 0 0
\(850\) −15.2886 24.9487i −0.524394 0.855733i
\(851\) 3.56373 + 2.58920i 0.122163 + 0.0887567i
\(852\) 0 0
\(853\) 44.8319 7.10067i 1.53501 0.243122i 0.669046 0.743221i \(-0.266703\pi\)
0.865968 + 0.500099i \(0.166703\pi\)
\(854\) 19.0606 22.3171i 0.652240 0.763674i
\(855\) 0 0
\(856\) 2.02820 12.8055i 0.0693223 0.437684i
\(857\) −14.1039 19.4124i −0.481780 0.663114i 0.497066 0.867713i \(-0.334411\pi\)
−0.978846 + 0.204599i \(0.934411\pi\)
\(858\) 0 0
\(859\) −3.83546 + 7.52751i −0.130864 + 0.256835i −0.947136 0.320833i \(-0.896037\pi\)
0.816272 + 0.577668i \(0.196037\pi\)
\(860\) 19.4606 0.663601
\(861\) 0 0
\(862\) −22.1276 −0.753667
\(863\) 0.0611847 0.120082i 0.00208275 0.00408763i −0.889963 0.456033i \(-0.849270\pi\)
0.892046 + 0.451945i \(0.149270\pi\)
\(864\) 0 0
\(865\) −1.73082 2.38226i −0.0588495 0.0809994i
\(866\) −0.360172 + 2.27404i −0.0122392 + 0.0772750i
\(867\) 0 0
\(868\) 11.0058 12.8861i 0.373561 0.437384i
\(869\) 47.6522 7.54737i 1.61649 0.256027i
\(870\) 0 0
\(871\) −10.4134 7.56577i −0.352844 0.256356i
\(872\) 6.94958 + 11.3407i 0.235342 + 0.384044i
\(873\) 0 0
\(874\) −0.462475 + 5.87630i −0.0156434 + 0.198769i
\(875\) −6.58893 15.9071i −0.222746 0.537757i
\(876\) 0 0
\(877\) −1.28573 + 3.95708i −0.0434161 + 0.133621i −0.970415 0.241443i \(-0.922379\pi\)
0.926999 + 0.375064i \(0.122379\pi\)
\(878\) 0.120776 0.503069i 0.00407600 0.0169778i
\(879\) 0 0
\(880\) 1.50919 + 19.1761i 0.0508749 + 0.646427i
\(881\) 21.7708 11.0928i 0.733475 0.373724i −0.0470133 0.998894i \(-0.514970\pi\)
0.780489 + 0.625170i \(0.214970\pi\)
\(882\) 0 0
\(883\) −42.9638 + 3.38133i −1.44585 + 0.113791i −0.776949 0.629563i \(-0.783234\pi\)
−0.668898 + 0.743354i \(0.733234\pi\)
\(884\) 6.21727 + 19.1348i 0.209109 + 0.643573i
\(885\) 0 0
\(886\) −16.0296 5.20834i −0.538526 0.174978i
\(887\) −27.6449 16.9408i −0.928225 0.568817i −0.0258012 0.999667i \(-0.508214\pi\)
−0.902423 + 0.430850i \(0.858214\pi\)
\(888\) 0 0
\(889\) 27.7370 + 2.18295i 0.930268 + 0.0732137i
\(890\) 8.04571 + 33.5128i 0.269693 + 1.12335i
\(891\) 0 0
\(892\) −8.13765 + 11.2005i −0.272469 + 0.375021i
\(893\) 5.10091 + 5.10091i 0.170695 + 0.170695i
\(894\) 0 0
\(895\) −41.9785 35.8531i −1.40319 1.19844i
\(896\) 2.69206 + 3.15200i 0.0899354 + 0.105301i
\(897\) 0 0
\(898\) 14.2634 10.3629i 0.475974 0.345816i
\(899\) 34.6531 + 14.3538i 1.15575 + 0.478725i
\(900\) 0 0
\(901\) 33.5663i 1.11826i
\(902\) 33.3192 15.4791i 1.10941 0.515396i
\(903\) 0 0
\(904\) −3.04772 1.55289i −0.101366 0.0516484i
\(905\) −24.2934 + 58.6495i −0.807541 + 1.94958i
\(906\) 0 0
\(907\) −24.1273 3.82138i −0.801132 0.126887i −0.257574 0.966258i \(-0.582923\pi\)
−0.543558 + 0.839372i \(0.682923\pi\)
\(908\) 8.92639 7.62386i 0.296233 0.253007i
\(909\) 0 0
\(910\) 9.32582 + 58.8809i 0.309148 + 1.95188i
\(911\) −26.7892 + 26.7892i −0.887567 + 0.887567i −0.994289 0.106722i \(-0.965965\pi\)
0.106722 + 0.994289i \(0.465965\pi\)
\(912\) 0 0
\(913\) 41.1740 25.2315i 1.36266 0.835039i
\(914\) 21.8821 5.25343i 0.723796 0.173768i
\(915\) 0 0
\(916\) −21.7913 + 9.02624i −0.720004 + 0.298235i
\(917\) 36.3618 59.3371i 1.20077 1.95949i
\(918\) 0 0
\(919\) −18.4365 4.42622i −0.608165 0.146008i −0.0823458 0.996604i \(-0.526241\pi\)
−0.525819 + 0.850596i \(0.676241\pi\)
\(920\) −20.7353 + 6.73730i −0.683621 + 0.222122i
\(921\) 0 0
\(922\) −6.23024 12.2275i −0.205182 0.402693i
\(923\) 0.183439 + 0.360019i 0.00603796 + 0.0118502i
\(924\) 0 0
\(925\) −4.01910 + 1.30589i −0.132147 + 0.0429373i
\(926\) −12.5558 3.01437i −0.412608 0.0990585i
\(927\) 0 0
\(928\) −4.79374 + 7.82268i −0.157362 + 0.256792i
\(929\) −11.4718 + 4.75177i −0.376377 + 0.155900i −0.562849 0.826560i \(-0.690295\pi\)
0.186472 + 0.982460i \(0.440295\pi\)
\(930\) 0 0
\(931\) −8.97389 + 2.15444i −0.294107 + 0.0706089i
\(932\) −13.5674 + 8.31409i −0.444413 + 0.272337i
\(933\) 0 0
\(934\) 7.32518 7.32518i 0.239687 0.239687i
\(935\) −14.1124 89.1022i −0.461525 2.91395i
\(936\) 0 0
\(937\) 17.4091 14.8688i 0.568730 0.485741i −0.317961 0.948104i \(-0.602998\pi\)
0.886691 + 0.462363i \(0.152998\pi\)
\(938\) 12.2841 + 1.94561i 0.401091 + 0.0635265i
\(939\) 0 0
\(940\) −10.2108 + 24.6511i −0.333040 + 0.804031i
\(941\) 51.9730 + 26.4816i 1.69427 + 0.863274i 0.987836 + 0.155497i \(0.0496978\pi\)
0.706435 + 0.707778i \(0.250302\pi\)
\(942\) 0 0
\(943\) 25.8761 + 32.6264i 0.842643 + 1.06246i
\(944\) 5.11291i 0.166411i
\(945\) 0 0
\(946\) 30.7713 + 12.7459i 1.00046 + 0.414405i
\(947\) −17.7558 + 12.9003i −0.576986 + 0.419205i −0.837636 0.546229i \(-0.816063\pi\)
0.260651 + 0.965433i \(0.416063\pi\)
\(948\) 0 0
\(949\) −17.0885 20.0081i −0.554717 0.649490i
\(950\) −4.29997 3.67252i −0.139510 0.119152i
\(951\) 0 0
\(952\) −13.7465 13.7465i −0.445526 0.445526i
\(953\) 34.1697 47.0306i 1.10687 1.52347i 0.280913 0.959733i \(-0.409363\pi\)
0.825954 0.563738i \(-0.190637\pi\)
\(954\) 0 0
\(955\) 10.8769 + 45.3054i 0.351967 + 1.46605i
\(956\) 1.20375 + 0.0947375i 0.0389322 + 0.00306403i
\(957\) 0 0
\(958\) 6.39650 + 3.91978i 0.206661 + 0.126642i
\(959\) 10.3711 + 3.36978i 0.334900 + 0.108816i
\(960\) 0 0
\(961\) 4.41469 + 13.5870i 0.142409 + 0.438291i
\(962\) 2.89679 0.227983i 0.0933964 0.00735046i
\(963\) 0 0
\(964\) 6.21471 3.16655i 0.200162 0.101988i
\(965\) −2.52569 32.0919i −0.0813047 1.03307i
\(966\) 0 0
\(967\) 4.56648 19.0208i 0.146848 0.611667i −0.849598 0.527431i \(-0.823155\pi\)
0.996446 0.0842355i \(-0.0268448\pi\)
\(968\) −6.77404 + 20.8483i −0.217726 + 0.670091i
\(969\) 0 0
\(970\) −16.6656 40.2342i −0.535099 1.29184i
\(971\) −2.22399 + 28.2585i −0.0713712 + 0.906857i 0.852147 + 0.523303i \(0.175300\pi\)
−0.923518 + 0.383555i \(0.874700\pi\)
\(972\) 0 0
\(973\) 10.3849 + 16.9467i 0.332926 + 0.543286i
\(974\) −26.6136 19.3359i −0.852756 0.619563i
\(975\) 0 0
\(976\) 6.99313 1.10760i 0.223845 0.0354535i
\(977\) −19.6889 + 23.0527i −0.629902 + 0.737521i −0.979957 0.199208i \(-0.936163\pi\)
0.350055 + 0.936729i \(0.386163\pi\)
\(978\) 0 0
\(979\) −9.22754 + 58.2604i −0.294913 + 1.86201i
\(980\) −20.0644 27.6163i −0.640934 0.882170i
\(981\) 0 0
\(982\) −7.86377 + 15.4335i −0.250943 + 0.492503i
\(983\) 51.5993 1.64576 0.822880 0.568215i \(-0.192366\pi\)
0.822880 + 0.568215i \(0.192366\pi\)
\(984\) 0 0
\(985\) 5.76961 0.183835
\(986\) 19.5345 38.3387i 0.622106 1.22095i
\(987\) 0 0
\(988\) 2.28546 + 3.14567i 0.0727103 + 0.100077i
\(989\) −5.90560 + 37.2865i −0.187787 + 1.18564i
\(990\) 0 0
\(991\) −15.0516 + 17.6232i −0.478131 + 0.559819i −0.946079 0.323937i \(-0.894993\pi\)
0.467948 + 0.883756i \(0.344993\pi\)
\(992\) 4.03791 0.639543i 0.128204 0.0203055i
\(993\) 0 0
\(994\) −0.315857 0.229484i −0.0100184 0.00727879i
\(995\) −30.7103 50.1147i −0.973582 1.58874i
\(996\) 0 0
\(997\) −2.67156 + 33.9454i −0.0846093 + 1.07506i 0.797281 + 0.603608i \(0.206271\pi\)
−0.881890 + 0.471455i \(0.843729\pi\)
\(998\) 0.570174 + 1.37652i 0.0180486 + 0.0435731i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.a.233.1 48
3.2 odd 2 738.2.ba.b.233.3 yes 48
41.22 odd 40 738.2.ba.b.719.3 yes 48
123.104 even 40 inner 738.2.ba.a.719.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.a.233.1 48 1.1 even 1 trivial
738.2.ba.a.719.1 yes 48 123.104 even 40 inner
738.2.ba.b.233.3 yes 48 3.2 odd 2
738.2.ba.b.719.3 yes 48 41.22 odd 40