Properties

Label 738.2.ba.a.179.1
Level $738$
Weight $2$
Character 738.179
Analytic conductor $5.893$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,-4,0,4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(3\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 179.1
Character \(\chi\) \(=\) 738.179
Dual form 738.2.ba.a.503.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.156434 + 0.987688i) q^{2} +(-0.951057 - 0.309017i) q^{4} +(-2.39103 + 1.21829i) q^{5} +(2.33211 + 0.559890i) q^{7} +(0.453990 - 0.891007i) q^{8} +(-0.829251 - 2.55217i) q^{10} +(2.62751 + 3.07642i) q^{11} +(0.335427 - 0.547368i) q^{13} +(-0.917819 + 2.21581i) q^{14} +(0.809017 + 0.587785i) q^{16} +(-2.16833 - 0.170651i) q^{17} +(0.753114 + 1.22897i) q^{19} +(2.65047 - 0.419794i) q^{20} +(-3.44958 + 2.11390i) q^{22} +(-5.97763 + 4.34300i) q^{23} +(1.29386 - 1.78084i) q^{25} +(0.488156 + 0.416925i) q^{26} +(-2.04495 - 1.25315i) q^{28} +(-1.59275 + 0.125352i) q^{29} +(-4.31485 + 1.40198i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(0.507751 - 2.11493i) q^{34} +(-6.25825 + 1.50247i) q^{35} +(-1.00905 + 3.10554i) q^{37} +(-1.33165 + 0.551589i) q^{38} +2.68351i q^{40} +(-5.31184 - 3.57552i) q^{41} +(-3.14238 - 0.497704i) q^{43} +(-1.54825 - 3.73779i) q^{44} +(-3.35443 - 6.58343i) q^{46} +(2.13306 + 8.88484i) q^{47} +(-1.11179 - 0.566484i) q^{49} +(1.55651 + 1.55651i) q^{50} +(-0.488156 + 0.416925i) q^{52} +(0.138343 + 1.75782i) q^{53} +(-10.0304 - 4.15474i) q^{55} +(1.55762 - 1.82374i) q^{56} +(0.125352 - 1.59275i) q^{58} +(7.35405 + 10.1220i) q^{59} +(-0.621115 - 3.92156i) q^{61} +(-0.709728 - 4.48105i) q^{62} +(-0.587785 - 0.809017i) q^{64} +(-0.135164 + 1.71742i) q^{65} +(0.129962 - 0.152166i) q^{67} +(2.00947 + 0.832348i) q^{68} +(-0.504969 - 6.41624i) q^{70} +(2.36149 - 2.01690i) q^{71} +(4.85557 + 4.85557i) q^{73} +(-2.90945 - 1.48244i) q^{74} +(-0.336481 - 1.40155i) q^{76} +(4.40519 + 8.64566i) q^{77} +(1.85049 + 4.46749i) q^{79} +(-2.65047 - 0.419794i) q^{80} +(4.36246 - 4.68711i) q^{82} -12.9508i q^{83} +(5.39243 - 2.23362i) q^{85} +(0.983152 - 3.02583i) q^{86} +(3.93398 - 0.944464i) q^{88} +(-0.348691 + 1.45240i) q^{89} +(1.08872 - 1.08872i) q^{91} +(7.02713 - 2.28325i) q^{92} +(-9.10914 + 0.716904i) q^{94} +(-3.29796 - 2.02099i) q^{95} +(13.8416 + 11.8218i) q^{97} +(0.733432 - 1.00948i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{5} + 4 q^{7} - 8 q^{11} - 4 q^{13} + 4 q^{14} + 12 q^{16} - 16 q^{17} - 4 q^{19} + 16 q^{20} + 20 q^{22} - 40 q^{25} - 20 q^{26} - 4 q^{28} + 32 q^{29} - 40 q^{31} - 4 q^{34} - 52 q^{35} - 24 q^{37}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{37}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.156434 + 0.987688i −0.110616 + 0.698401i
\(3\) 0 0
\(4\) −0.951057 0.309017i −0.475528 0.154508i
\(5\) −2.39103 + 1.21829i −1.06930 + 0.544836i −0.897825 0.440353i \(-0.854853\pi\)
−0.171475 + 0.985188i \(0.554853\pi\)
\(6\) 0 0
\(7\) 2.33211 + 0.559890i 0.881455 + 0.211619i 0.648817 0.760945i \(-0.275264\pi\)
0.232638 + 0.972563i \(0.425264\pi\)
\(8\) 0.453990 0.891007i 0.160510 0.315018i
\(9\) 0 0
\(10\) −0.829251 2.55217i −0.262232 0.807068i
\(11\) 2.62751 + 3.07642i 0.792224 + 0.927575i 0.998705 0.0508752i \(-0.0162011\pi\)
−0.206481 + 0.978451i \(0.566201\pi\)
\(12\) 0 0
\(13\) 0.335427 0.547368i 0.0930308 0.151812i −0.802739 0.596330i \(-0.796625\pi\)
0.895770 + 0.444518i \(0.146625\pi\)
\(14\) −0.917819 + 2.21581i −0.245297 + 0.592200i
\(15\) 0 0
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) −2.16833 0.170651i −0.525896 0.0413889i −0.187267 0.982309i \(-0.559963\pi\)
−0.338629 + 0.940920i \(0.609963\pi\)
\(18\) 0 0
\(19\) 0.753114 + 1.22897i 0.172776 + 0.281945i 0.927294 0.374335i \(-0.122129\pi\)
−0.754517 + 0.656280i \(0.772129\pi\)
\(20\) 2.65047 0.419794i 0.592664 0.0938688i
\(21\) 0 0
\(22\) −3.44958 + 2.11390i −0.735452 + 0.450686i
\(23\) −5.97763 + 4.34300i −1.24642 + 0.905579i −0.998009 0.0630749i \(-0.979909\pi\)
−0.248414 + 0.968654i \(0.579909\pi\)
\(24\) 0 0
\(25\) 1.29386 1.78084i 0.258772 0.356169i
\(26\) 0.488156 + 0.416925i 0.0957353 + 0.0817657i
\(27\) 0 0
\(28\) −2.04495 1.25315i −0.386460 0.236823i
\(29\) −1.59275 + 0.125352i −0.295766 + 0.0232773i −0.225474 0.974249i \(-0.572393\pi\)
−0.0702917 + 0.997526i \(0.522393\pi\)
\(30\) 0 0
\(31\) −4.31485 + 1.40198i −0.774970 + 0.251803i −0.669691 0.742640i \(-0.733574\pi\)
−0.105279 + 0.994443i \(0.533574\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 0.507751 2.11493i 0.0870785 0.362708i
\(35\) −6.25825 + 1.50247i −1.05784 + 0.253964i
\(36\) 0 0
\(37\) −1.00905 + 3.10554i −0.165887 + 0.510547i −0.999101 0.0424041i \(-0.986498\pi\)
0.833214 + 0.552951i \(0.186498\pi\)
\(38\) −1.33165 + 0.551589i −0.216023 + 0.0894795i
\(39\) 0 0
\(40\) 2.68351i 0.424301i
\(41\) −5.31184 3.57552i −0.829570 0.558403i
\(42\) 0 0
\(43\) −3.14238 0.497704i −0.479208 0.0758991i −0.0878424 0.996134i \(-0.527997\pi\)
−0.391366 + 0.920235i \(0.627997\pi\)
\(44\) −1.54825 3.73779i −0.233407 0.563494i
\(45\) 0 0
\(46\) −3.35443 6.58343i −0.494583 0.970674i
\(47\) 2.13306 + 8.88484i 0.311139 + 1.29599i 0.880558 + 0.473939i \(0.157168\pi\)
−0.569419 + 0.822048i \(0.692832\pi\)
\(48\) 0 0
\(49\) −1.11179 0.566484i −0.158827 0.0809263i
\(50\) 1.55651 + 1.55651i 0.220124 + 0.220124i
\(51\) 0 0
\(52\) −0.488156 + 0.416925i −0.0676951 + 0.0578171i
\(53\) 0.138343 + 1.75782i 0.0190029 + 0.241455i 0.999082 + 0.0428459i \(0.0136425\pi\)
−0.980079 + 0.198609i \(0.936358\pi\)
\(54\) 0 0
\(55\) −10.0304 4.15474i −1.35250 0.560225i
\(56\) 1.55762 1.82374i 0.208146 0.243708i
\(57\) 0 0
\(58\) 0.125352 1.59275i 0.0164595 0.209138i
\(59\) 7.35405 + 10.1220i 0.957415 + 1.31777i 0.948154 + 0.317812i \(0.102948\pi\)
0.00926141 + 0.999957i \(0.497052\pi\)
\(60\) 0 0
\(61\) −0.621115 3.92156i −0.0795256 0.502105i −0.995012 0.0997558i \(-0.968194\pi\)
0.915486 0.402349i \(-0.131806\pi\)
\(62\) −0.709728 4.48105i −0.0901356 0.569094i
\(63\) 0 0
\(64\) −0.587785 0.809017i −0.0734732 0.101127i
\(65\) −0.135164 + 1.71742i −0.0167650 + 0.213020i
\(66\) 0 0
\(67\) 0.129962 0.152166i 0.0158774 0.0185901i −0.752410 0.658695i \(-0.771109\pi\)
0.768288 + 0.640104i \(0.221109\pi\)
\(68\) 2.00947 + 0.832348i 0.243684 + 0.100937i
\(69\) 0 0
\(70\) −0.504969 6.41624i −0.0603553 0.766887i
\(71\) 2.36149 2.01690i 0.280257 0.239362i −0.498197 0.867064i \(-0.666004\pi\)
0.778454 + 0.627702i \(0.216004\pi\)
\(72\) 0 0
\(73\) 4.85557 + 4.85557i 0.568302 + 0.568302i 0.931652 0.363351i \(-0.118367\pi\)
−0.363351 + 0.931652i \(0.618367\pi\)
\(74\) −2.90945 1.48244i −0.338217 0.172330i
\(75\) 0 0
\(76\) −0.336481 1.40155i −0.0385970 0.160768i
\(77\) 4.40519 + 8.64566i 0.502018 + 0.985265i
\(78\) 0 0
\(79\) 1.85049 + 4.46749i 0.208197 + 0.502632i 0.993139 0.116937i \(-0.0373075\pi\)
−0.784942 + 0.619569i \(0.787308\pi\)
\(80\) −2.65047 0.419794i −0.296332 0.0469344i
\(81\) 0 0
\(82\) 4.36246 4.68711i 0.481753 0.517604i
\(83\) 12.9508i 1.42154i −0.703426 0.710768i \(-0.748347\pi\)
0.703426 0.710768i \(-0.251653\pi\)
\(84\) 0 0
\(85\) 5.39243 2.23362i 0.584891 0.242270i
\(86\) 0.983152 3.02583i 0.106016 0.326284i
\(87\) 0 0
\(88\) 3.93398 0.944464i 0.419363 0.100680i
\(89\) −0.348691 + 1.45240i −0.0369612 + 0.153954i −0.987799 0.155736i \(-0.950225\pi\)
0.950838 + 0.309690i \(0.100225\pi\)
\(90\) 0 0
\(91\) 1.08872 1.08872i 0.114129 0.114129i
\(92\) 7.02713 2.28325i 0.732629 0.238046i
\(93\) 0 0
\(94\) −9.10914 + 0.716904i −0.939536 + 0.0739431i
\(95\) −3.29796 2.02099i −0.338363 0.207349i
\(96\) 0 0
\(97\) 13.8416 + 11.8218i 1.40540 + 1.20033i 0.950868 + 0.309598i \(0.100194\pi\)
0.454534 + 0.890729i \(0.349806\pi\)
\(98\) 0.733432 1.00948i 0.0740878 0.101973i
\(99\) 0 0
\(100\) −1.78084 + 1.29386i −0.178084 + 0.129386i
\(101\) 5.41258 3.31683i 0.538572 0.330037i −0.226470 0.974018i \(-0.572718\pi\)
0.765041 + 0.643981i \(0.222718\pi\)
\(102\) 0 0
\(103\) 11.3049 1.79052i 1.11390 0.176425i 0.427761 0.903892i \(-0.359303\pi\)
0.686143 + 0.727467i \(0.259303\pi\)
\(104\) −0.335427 0.547368i −0.0328914 0.0536738i
\(105\) 0 0
\(106\) −1.75782 0.138343i −0.170735 0.0134371i
\(107\) −3.18783 2.31609i −0.308179 0.223905i 0.422936 0.906160i \(-0.361000\pi\)
−0.731115 + 0.682255i \(0.761000\pi\)
\(108\) 0 0
\(109\) −7.80848 + 18.8513i −0.747917 + 1.80563i −0.177800 + 0.984067i \(0.556898\pi\)
−0.570117 + 0.821564i \(0.693102\pi\)
\(110\) 5.67269 9.25699i 0.540870 0.882619i
\(111\) 0 0
\(112\) 1.55762 + 1.82374i 0.147181 + 0.172327i
\(113\) −5.20333 16.0142i −0.489488 1.50649i −0.825373 0.564587i \(-0.809035\pi\)
0.335885 0.941903i \(-0.390965\pi\)
\(114\) 0 0
\(115\) 9.00165 17.6667i 0.839408 1.64743i
\(116\) 1.55353 + 0.372969i 0.144241 + 0.0346293i
\(117\) 0 0
\(118\) −11.1478 + 5.68008i −1.02624 + 0.522894i
\(119\) −4.96123 1.61200i −0.454795 0.147772i
\(120\) 0 0
\(121\) −0.839767 + 5.30208i −0.0763425 + 0.482007i
\(122\) 3.97045 0.359467
\(123\) 0 0
\(124\) 4.53690 0.407426
\(125\) 1.17490 7.41803i 0.105086 0.663489i
\(126\) 0 0
\(127\) −13.5980 4.41826i −1.20663 0.392058i −0.364433 0.931229i \(-0.618737\pi\)
−0.842196 + 0.539172i \(0.818737\pi\)
\(128\) 0.891007 0.453990i 0.0787546 0.0401275i
\(129\) 0 0
\(130\) −1.67513 0.402163i −0.146919 0.0352721i
\(131\) 8.05987 15.8184i 0.704194 1.38206i −0.210372 0.977621i \(-0.567468\pi\)
0.914566 0.404437i \(-0.132532\pi\)
\(132\) 0 0
\(133\) 1.06826 + 3.28775i 0.0926296 + 0.285084i
\(134\) 0.129962 + 0.152166i 0.0112270 + 0.0131452i
\(135\) 0 0
\(136\) −1.13645 + 1.85452i −0.0974498 + 0.159024i
\(137\) −5.61717 + 13.5611i −0.479908 + 1.15860i 0.479744 + 0.877408i \(0.340729\pi\)
−0.959652 + 0.281191i \(0.909271\pi\)
\(138\) 0 0
\(139\) −4.05689 2.94750i −0.344101 0.250004i 0.402289 0.915513i \(-0.368215\pi\)
−0.746390 + 0.665509i \(0.768215\pi\)
\(140\) 6.41624 + 0.504969i 0.542271 + 0.0426776i
\(141\) 0 0
\(142\) 1.62265 + 2.64793i 0.136170 + 0.222209i
\(143\) 2.56527 0.406299i 0.214519 0.0339764i
\(144\) 0 0
\(145\) 3.65559 2.24015i 0.303580 0.186034i
\(146\) −5.55537 + 4.03621i −0.459766 + 0.334039i
\(147\) 0 0
\(148\) 1.91933 2.64173i 0.157768 0.217149i
\(149\) 8.58164 + 7.32941i 0.703035 + 0.600449i 0.927407 0.374055i \(-0.122033\pi\)
−0.224371 + 0.974504i \(0.572033\pi\)
\(150\) 0 0
\(151\) 5.51617 + 3.38031i 0.448899 + 0.275086i 0.728520 0.685025i \(-0.240209\pi\)
−0.279620 + 0.960111i \(0.590209\pi\)
\(152\) 1.43693 0.113089i 0.116550 0.00917270i
\(153\) 0 0
\(154\) −9.22835 + 2.99847i −0.743641 + 0.241624i
\(155\) 8.60891 8.60891i 0.691485 0.691485i
\(156\) 0 0
\(157\) 2.63827 10.9892i 0.210557 0.877033i −0.762596 0.646875i \(-0.776076\pi\)
0.973153 0.230158i \(-0.0739243\pi\)
\(158\) −4.70197 + 1.12884i −0.374068 + 0.0898059i
\(159\) 0 0
\(160\) 0.829251 2.55217i 0.0655581 0.201767i
\(161\) −16.3721 + 6.78155i −1.29030 + 0.534461i
\(162\) 0 0
\(163\) 16.8538i 1.32009i 0.751225 + 0.660047i \(0.229464\pi\)
−0.751225 + 0.660047i \(0.770536\pi\)
\(164\) 3.94696 + 5.04197i 0.308206 + 0.393712i
\(165\) 0 0
\(166\) 12.7914 + 2.02595i 0.992803 + 0.157245i
\(167\) 2.65318 + 6.40534i 0.205309 + 0.495660i 0.992673 0.120828i \(-0.0385550\pi\)
−0.787364 + 0.616488i \(0.788555\pi\)
\(168\) 0 0
\(169\) 5.71478 + 11.2159i 0.439598 + 0.862760i
\(170\) 1.36256 + 5.67545i 0.104503 + 0.435287i
\(171\) 0 0
\(172\) 2.83478 + 1.44439i 0.216150 + 0.110134i
\(173\) −4.63314 4.63314i −0.352251 0.352251i 0.508695 0.860947i \(-0.330128\pi\)
−0.860947 + 0.508695i \(0.830128\pi\)
\(174\) 0 0
\(175\) 4.01450 3.42870i 0.303467 0.259186i
\(176\) 0.317427 + 4.03329i 0.0239269 + 0.304021i
\(177\) 0 0
\(178\) −1.37997 0.571604i −0.103433 0.0428435i
\(179\) 13.5747 15.8940i 1.01462 1.18797i 0.0325500 0.999470i \(-0.489637\pi\)
0.982073 0.188501i \(-0.0603628\pi\)
\(180\) 0 0
\(181\) −0.981979 + 12.4772i −0.0729899 + 0.927425i 0.846010 + 0.533167i \(0.178998\pi\)
−0.919000 + 0.394258i \(0.871002\pi\)
\(182\) 0.905002 + 1.24563i 0.0670832 + 0.0923321i
\(183\) 0 0
\(184\) 1.15586 + 7.29779i 0.0852109 + 0.538000i
\(185\) −1.37078 8.65474i −0.100781 0.636309i
\(186\) 0 0
\(187\) −5.17231 7.11907i −0.378236 0.520598i
\(188\) 0.716904 9.10914i 0.0522856 0.664352i
\(189\) 0 0
\(190\) 2.51202 2.94120i 0.182241 0.213377i
\(191\) 4.39403 + 1.82007i 0.317941 + 0.131696i 0.535946 0.844252i \(-0.319955\pi\)
−0.218005 + 0.975948i \(0.569955\pi\)
\(192\) 0 0
\(193\) 0.685447 + 8.70943i 0.0493396 + 0.626919i 0.971025 + 0.238980i \(0.0768129\pi\)
−0.921685 + 0.387939i \(0.873187\pi\)
\(194\) −13.8416 + 11.8218i −0.993769 + 0.848759i
\(195\) 0 0
\(196\) 0.882320 + 0.882320i 0.0630228 + 0.0630228i
\(197\) 6.49234 + 3.30801i 0.462560 + 0.235686i 0.669710 0.742623i \(-0.266419\pi\)
−0.207149 + 0.978309i \(0.566419\pi\)
\(198\) 0 0
\(199\) −2.01747 8.40336i −0.143015 0.595698i −0.997136 0.0756253i \(-0.975905\pi\)
0.854122 0.520073i \(-0.174095\pi\)
\(200\) −0.999344 1.96132i −0.0706643 0.138686i
\(201\) 0 0
\(202\) 2.42928 + 5.86481i 0.170924 + 0.412646i
\(203\) −3.78464 0.599428i −0.265630 0.0420716i
\(204\) 0 0
\(205\) 17.0568 + 2.07782i 1.19130 + 0.145121i
\(206\) 11.4458i 0.797467i
\(207\) 0 0
\(208\) 0.593101 0.245671i 0.0411242 0.0170342i
\(209\) −1.80201 + 5.54603i −0.124648 + 0.383627i
\(210\) 0 0
\(211\) 20.1662 4.84149i 1.38830 0.333302i 0.530675 0.847575i \(-0.321938\pi\)
0.857626 + 0.514273i \(0.171938\pi\)
\(212\) 0.411624 1.71454i 0.0282704 0.117755i
\(213\) 0 0
\(214\) 2.78626 2.78626i 0.190465 0.190465i
\(215\) 8.11986 2.63830i 0.553770 0.179931i
\(216\) 0 0
\(217\) −10.8477 + 0.853730i −0.736387 + 0.0579549i
\(218\) −17.3977 10.6613i −1.17832 0.722077i
\(219\) 0 0
\(220\) 8.25561 + 7.05096i 0.556593 + 0.475376i
\(221\) −0.820725 + 1.12963i −0.0552079 + 0.0759872i
\(222\) 0 0
\(223\) 1.76713 1.28390i 0.118336 0.0859761i −0.527043 0.849838i \(-0.676699\pi\)
0.645379 + 0.763862i \(0.276699\pi\)
\(224\) −2.04495 + 1.25315i −0.136634 + 0.0837295i
\(225\) 0 0
\(226\) 16.6310 2.63410i 1.10628 0.175218i
\(227\) −0.953494 1.55596i −0.0632856 0.103273i 0.819432 0.573176i \(-0.194289\pi\)
−0.882718 + 0.469903i \(0.844289\pi\)
\(228\) 0 0
\(229\) 27.3585 + 2.15316i 1.80790 + 0.142285i 0.937035 0.349235i \(-0.113558\pi\)
0.870867 + 0.491520i \(0.163558\pi\)
\(230\) 16.0411 + 11.6545i 1.05772 + 0.768476i
\(231\) 0 0
\(232\) −0.611402 + 1.47606i −0.0401405 + 0.0969078i
\(233\) 3.23450 5.27823i 0.211899 0.345788i −0.728977 0.684538i \(-0.760004\pi\)
0.940876 + 0.338750i \(0.110004\pi\)
\(234\) 0 0
\(235\) −15.9245 18.6452i −1.03880 1.21628i
\(236\) −3.86625 11.8991i −0.251671 0.774565i
\(237\) 0 0
\(238\) 2.36826 4.64797i 0.153512 0.301283i
\(239\) 7.78832 + 1.86981i 0.503785 + 0.120948i 0.477369 0.878703i \(-0.341591\pi\)
0.0264158 + 0.999651i \(0.491591\pi\)
\(240\) 0 0
\(241\) 14.6771 7.47834i 0.945433 0.481722i 0.0878874 0.996130i \(-0.471988\pi\)
0.857545 + 0.514408i \(0.171988\pi\)
\(242\) −5.10544 1.65886i −0.328190 0.106635i
\(243\) 0 0
\(244\) −0.621115 + 3.92156i −0.0397628 + 0.251052i
\(245\) 3.34846 0.213925
\(246\) 0 0
\(247\) 0.925314 0.0588763
\(248\) −0.709728 + 4.48105i −0.0450678 + 0.284547i
\(249\) 0 0
\(250\) 7.14291 + 2.32087i 0.451757 + 0.146785i
\(251\) 23.6070 12.0284i 1.49006 0.759223i 0.496027 0.868307i \(-0.334792\pi\)
0.994033 + 0.109084i \(0.0347918\pi\)
\(252\) 0 0
\(253\) −29.0672 6.97842i −1.82744 0.438729i
\(254\) 6.49107 12.7394i 0.407286 0.799343i
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 14.1052 + 16.5151i 0.879859 + 1.03018i 0.999303 + 0.0373414i \(0.0118889\pi\)
−0.119444 + 0.992841i \(0.538111\pi\)
\(258\) 0 0
\(259\) −4.09197 + 6.67749i −0.254263 + 0.414919i
\(260\) 0.659260 1.59159i 0.0408856 0.0987065i
\(261\) 0 0
\(262\) 14.3628 + 10.4352i 0.887336 + 0.644687i
\(263\) −7.30680 0.575058i −0.450557 0.0354596i −0.148849 0.988860i \(-0.547557\pi\)
−0.301708 + 0.953400i \(0.597557\pi\)
\(264\) 0 0
\(265\) −2.47232 4.03445i −0.151873 0.247835i
\(266\) −3.41439 + 0.540786i −0.209350 + 0.0331577i
\(267\) 0 0
\(268\) −0.170624 + 0.104558i −0.0104225 + 0.00638691i
\(269\) −13.7566 + 9.99472i −0.838752 + 0.609389i −0.922022 0.387138i \(-0.873464\pi\)
0.0832699 + 0.996527i \(0.473464\pi\)
\(270\) 0 0
\(271\) −13.0240 + 17.9260i −0.791151 + 1.08893i 0.202812 + 0.979218i \(0.434992\pi\)
−0.993964 + 0.109709i \(0.965008\pi\)
\(272\) −1.65391 1.41257i −0.100283 0.0856496i
\(273\) 0 0
\(274\) −12.5154 7.66943i −0.756082 0.463327i
\(275\) 8.87825 0.698733i 0.535379 0.0421352i
\(276\) 0 0
\(277\) −11.8409 + 3.84733i −0.711448 + 0.231164i −0.642312 0.766444i \(-0.722025\pi\)
−0.0691368 + 0.997607i \(0.522025\pi\)
\(278\) 3.54585 3.54585i 0.212666 0.212666i
\(279\) 0 0
\(280\) −1.50247 + 6.25825i −0.0897899 + 0.374002i
\(281\) −31.0222 + 7.44777i −1.85063 + 0.444297i −0.997056 0.0766781i \(-0.975569\pi\)
−0.853572 + 0.520975i \(0.825569\pi\)
\(282\) 0 0
\(283\) 6.39636 19.6860i 0.380224 1.17021i −0.559662 0.828721i \(-0.689069\pi\)
0.939886 0.341488i \(-0.110931\pi\)
\(284\) −2.86917 + 1.18845i −0.170254 + 0.0705215i
\(285\) 0 0
\(286\) 2.59725i 0.153579i
\(287\) −10.3859 11.3126i −0.613060 0.667759i
\(288\) 0 0
\(289\) −12.1182 1.91933i −0.712835 0.112902i
\(290\) 1.64071 + 3.96102i 0.0963456 + 0.232599i
\(291\) 0 0
\(292\) −3.11747 6.11838i −0.182436 0.358051i
\(293\) −4.57360 19.0504i −0.267193 1.11294i −0.930996 0.365030i \(-0.881059\pi\)
0.663803 0.747907i \(-0.268941\pi\)
\(294\) 0 0
\(295\) −29.9152 15.2426i −1.74173 0.887457i
\(296\) 2.30895 + 2.30895i 0.134205 + 0.134205i
\(297\) 0 0
\(298\) −8.58164 + 7.32941i −0.497121 + 0.424582i
\(299\) 0.372159 + 4.72873i 0.0215225 + 0.273469i
\(300\) 0 0
\(301\) −7.04971 2.92008i −0.406338 0.168311i
\(302\) −4.20161 + 4.91946i −0.241776 + 0.283083i
\(303\) 0 0
\(304\) −0.113089 + 1.43693i −0.00648608 + 0.0824134i
\(305\) 6.26270 + 8.61987i 0.358601 + 0.493572i
\(306\) 0 0
\(307\) −1.57217 9.92632i −0.0897288 0.566525i −0.991062 0.133399i \(-0.957411\pi\)
0.901334 0.433126i \(-0.142589\pi\)
\(308\) −1.51792 9.58379i −0.0864917 0.546087i
\(309\) 0 0
\(310\) 7.15619 + 9.84966i 0.406445 + 0.559423i
\(311\) −0.556511 + 7.07115i −0.0315569 + 0.400968i 0.960772 + 0.277340i \(0.0894529\pi\)
−0.992329 + 0.123628i \(0.960547\pi\)
\(312\) 0 0
\(313\) −11.2409 + 13.1614i −0.635371 + 0.743924i −0.980906 0.194482i \(-0.937697\pi\)
0.345535 + 0.938406i \(0.387697\pi\)
\(314\) 10.4412 + 4.32488i 0.589230 + 0.244067i
\(315\) 0 0
\(316\) −0.379395 4.82067i −0.0213426 0.271184i
\(317\) −5.13167 + 4.38286i −0.288223 + 0.246166i −0.781790 0.623542i \(-0.785693\pi\)
0.493566 + 0.869708i \(0.335693\pi\)
\(318\) 0 0
\(319\) −4.57059 4.57059i −0.255904 0.255904i
\(320\) 2.39103 + 1.21829i 0.133663 + 0.0681045i
\(321\) 0 0
\(322\) −4.13689 17.2314i −0.230540 0.960268i
\(323\) −1.42327 2.79333i −0.0791929 0.155425i
\(324\) 0 0
\(325\) −0.540781 1.30556i −0.0299971 0.0724194i
\(326\) −16.6463 2.63652i −0.921955 0.146023i
\(327\) 0 0
\(328\) −5.59734 + 3.10963i −0.309061 + 0.171701i
\(329\) 21.9147i 1.20820i
\(330\) 0 0
\(331\) 6.47343 2.68138i 0.355812 0.147382i −0.197615 0.980280i \(-0.563320\pi\)
0.553427 + 0.832898i \(0.313320\pi\)
\(332\) −4.00202 + 12.3170i −0.219640 + 0.675981i
\(333\) 0 0
\(334\) −6.74152 + 1.61850i −0.368880 + 0.0885602i
\(335\) −0.125361 + 0.522166i −0.00684920 + 0.0285290i
\(336\) 0 0
\(337\) −20.2903 + 20.2903i −1.10528 + 1.10528i −0.111520 + 0.993762i \(0.535572\pi\)
−0.993762 + 0.111520i \(0.964428\pi\)
\(338\) −11.9718 + 3.88987i −0.651179 + 0.211581i
\(339\) 0 0
\(340\) −5.81873 + 0.457944i −0.315565 + 0.0248355i
\(341\) −15.6504 9.59058i −0.847517 0.519359i
\(342\) 0 0
\(343\) −15.0418 12.8469i −0.812182 0.693669i
\(344\) −1.87007 + 2.57393i −0.100827 + 0.138777i
\(345\) 0 0
\(346\) 5.30088 3.85132i 0.284977 0.207048i
\(347\) 20.1613 12.3549i 1.08232 0.663243i 0.137386 0.990518i \(-0.456130\pi\)
0.944929 + 0.327274i \(0.106130\pi\)
\(348\) 0 0
\(349\) 14.6675 2.32311i 0.785134 0.124353i 0.249020 0.968498i \(-0.419892\pi\)
0.536114 + 0.844145i \(0.319892\pi\)
\(350\) 2.75848 + 4.50144i 0.147447 + 0.240612i
\(351\) 0 0
\(352\) −4.03329 0.317427i −0.214975 0.0169189i
\(353\) 10.0897 + 7.33058i 0.537019 + 0.390167i 0.822977 0.568075i \(-0.192312\pi\)
−0.285958 + 0.958242i \(0.592312\pi\)
\(354\) 0 0
\(355\) −3.18922 + 7.69945i −0.169266 + 0.408645i
\(356\) 0.780442 1.27356i 0.0413633 0.0674988i
\(357\) 0 0
\(358\) 13.5747 + 15.8940i 0.717447 + 0.840022i
\(359\) −2.51900 7.75268i −0.132948 0.409171i 0.862317 0.506368i \(-0.169012\pi\)
−0.995265 + 0.0971972i \(0.969012\pi\)
\(360\) 0 0
\(361\) 7.68263 15.0780i 0.404349 0.793580i
\(362\) −12.1700 2.92176i −0.639641 0.153564i
\(363\) 0 0
\(364\) −1.37187 + 0.699001i −0.0719053 + 0.0366376i
\(365\) −17.5253 5.69432i −0.917316 0.298054i
\(366\) 0 0
\(367\) −2.70932 + 17.1060i −0.141426 + 0.892926i 0.810309 + 0.586003i \(0.199299\pi\)
−0.951734 + 0.306923i \(0.900701\pi\)
\(368\) −7.38876 −0.385166
\(369\) 0 0
\(370\) 8.76262 0.455547
\(371\) −0.661554 + 4.17689i −0.0343462 + 0.216853i
\(372\) 0 0
\(373\) −19.0287 6.18281i −0.985271 0.320134i −0.228306 0.973589i \(-0.573319\pi\)
−0.756965 + 0.653455i \(0.773319\pi\)
\(374\) 7.84055 3.99496i 0.405425 0.206574i
\(375\) 0 0
\(376\) 8.88484 + 2.13306i 0.458201 + 0.110004i
\(377\) −0.465637 + 0.913864i −0.0239815 + 0.0470664i
\(378\) 0 0
\(379\) −10.7150 32.9773i −0.550391 1.69393i −0.707815 0.706398i \(-0.750319\pi\)
0.157424 0.987531i \(-0.449681\pi\)
\(380\) 2.51202 + 2.94120i 0.128864 + 0.150880i
\(381\) 0 0
\(382\) −2.48504 + 4.05521i −0.127146 + 0.207483i
\(383\) −9.24400 + 22.3170i −0.472346 + 1.14034i 0.490777 + 0.871285i \(0.336713\pi\)
−0.963123 + 0.269060i \(0.913287\pi\)
\(384\) 0 0
\(385\) −21.0658 15.3052i −1.07361 0.780027i
\(386\) −8.70943 0.685447i −0.443299 0.0348884i
\(387\) 0 0
\(388\) −9.51100 15.5205i −0.482848 0.787936i
\(389\) 9.18313 1.45446i 0.465603 0.0737443i 0.0807746 0.996732i \(-0.474261\pi\)
0.384828 + 0.922988i \(0.374261\pi\)
\(390\) 0 0
\(391\) 13.7026 8.39696i 0.692970 0.424653i
\(392\) −1.00948 + 0.733432i −0.0509866 + 0.0370439i
\(393\) 0 0
\(394\) −4.28291 + 5.89493i −0.215770 + 0.296982i
\(395\) −9.86728 8.42745i −0.496477 0.424031i
\(396\) 0 0
\(397\) −23.1422 14.1815i −1.16147 0.711751i −0.198169 0.980168i \(-0.563500\pi\)
−0.963303 + 0.268417i \(0.913500\pi\)
\(398\) 8.61550 0.678055i 0.431856 0.0339878i
\(399\) 0 0
\(400\) 2.09351 0.680222i 0.104675 0.0340111i
\(401\) 11.6877 11.6877i 0.583657 0.583657i −0.352250 0.935906i \(-0.614583\pi\)
0.935906 + 0.352250i \(0.114583\pi\)
\(402\) 0 0
\(403\) −0.679921 + 2.83207i −0.0338693 + 0.141076i
\(404\) −6.17263 + 1.48192i −0.307100 + 0.0737281i
\(405\) 0 0
\(406\) 1.18410 3.64428i 0.0587657 0.180862i
\(407\) −12.2052 + 5.05557i −0.604990 + 0.250595i
\(408\) 0 0
\(409\) 2.09539i 0.103611i −0.998657 0.0518053i \(-0.983502\pi\)
0.998657 0.0518053i \(-0.0164975\pi\)
\(410\) −4.72051 + 16.5217i −0.233129 + 0.815950i
\(411\) 0 0
\(412\) −11.3049 1.79052i −0.556952 0.0882125i
\(413\) 11.4832 + 27.7230i 0.565054 + 1.36416i
\(414\) 0 0
\(415\) 15.7778 + 30.9658i 0.774504 + 1.52005i
\(416\) 0.149864 + 0.624230i 0.00734771 + 0.0306054i
\(417\) 0 0
\(418\) −5.19585 2.64742i −0.254137 0.129489i
\(419\) 0.166341 + 0.166341i 0.00812629 + 0.00812629i 0.711158 0.703032i \(-0.248171\pi\)
−0.703032 + 0.711158i \(0.748171\pi\)
\(420\) 0 0
\(421\) 24.0076 20.5044i 1.17006 0.999324i 0.170154 0.985417i \(-0.445573\pi\)
0.999903 0.0139063i \(-0.00442666\pi\)
\(422\) 1.62718 + 20.6753i 0.0792101 + 1.00646i
\(423\) 0 0
\(424\) 1.62904 + 0.674769i 0.0791130 + 0.0327697i
\(425\) −3.10941 + 3.64065i −0.150828 + 0.176597i
\(426\) 0 0
\(427\) 0.747137 9.49327i 0.0361565 0.459412i
\(428\) 2.31609 + 3.18783i 0.111953 + 0.154089i
\(429\) 0 0
\(430\) 1.33559 + 8.43261i 0.0644081 + 0.406657i
\(431\) −3.32985 21.0238i −0.160393 1.01268i −0.928222 0.372027i \(-0.878663\pi\)
0.767829 0.640655i \(-0.221337\pi\)
\(432\) 0 0
\(433\) 12.3234 + 16.9617i 0.592225 + 0.815128i 0.994969 0.100185i \(-0.0319433\pi\)
−0.402744 + 0.915313i \(0.631943\pi\)
\(434\) 0.853730 10.8477i 0.0409803 0.520705i
\(435\) 0 0
\(436\) 13.2517 15.5157i 0.634641 0.743069i
\(437\) −9.83926 4.07556i −0.470676 0.194960i
\(438\) 0 0
\(439\) −0.704291 8.94886i −0.0336140 0.427106i −0.990583 0.136915i \(-0.956281\pi\)
0.956969 0.290191i \(-0.0937187\pi\)
\(440\) −8.25561 + 7.05096i −0.393571 + 0.336141i
\(441\) 0 0
\(442\) −0.987333 0.987333i −0.0469627 0.0469627i
\(443\) 31.7493 + 16.1771i 1.50846 + 0.768597i 0.995935 0.0900779i \(-0.0287116\pi\)
0.512521 + 0.858675i \(0.328712\pi\)
\(444\) 0 0
\(445\) −0.935717 3.89754i −0.0443572 0.184761i
\(446\) 0.991650 + 1.94622i 0.0469560 + 0.0921563i
\(447\) 0 0
\(448\) −0.917819 2.21581i −0.0433629 0.104687i
\(449\) 22.2616 + 3.52589i 1.05059 + 0.166397i 0.657771 0.753218i \(-0.271500\pi\)
0.392820 + 0.919615i \(0.371500\pi\)
\(450\) 0 0
\(451\) −2.95710 25.7362i −0.139244 1.21187i
\(452\) 16.8383i 0.792009i
\(453\) 0 0
\(454\) 1.68596 0.698349i 0.0791262 0.0327751i
\(455\) −1.27678 + 3.92953i −0.0598565 + 0.184219i
\(456\) 0 0
\(457\) 11.5524 2.77348i 0.540398 0.129738i 0.0459472 0.998944i \(-0.485369\pi\)
0.494450 + 0.869206i \(0.335369\pi\)
\(458\) −6.40647 + 26.6849i −0.299355 + 1.24690i
\(459\) 0 0
\(460\) −14.0204 + 14.0204i −0.653704 + 0.653704i
\(461\) 17.7549 5.76890i 0.826926 0.268685i 0.135176 0.990822i \(-0.456840\pi\)
0.691750 + 0.722137i \(0.256840\pi\)
\(462\) 0 0
\(463\) −12.6408 + 0.994856i −0.587470 + 0.0462349i −0.368711 0.929544i \(-0.620201\pi\)
−0.218759 + 0.975779i \(0.570201\pi\)
\(464\) −1.36224 0.834781i −0.0632403 0.0387537i
\(465\) 0 0
\(466\) 4.70726 + 4.02038i 0.218059 + 0.186240i
\(467\) 12.3675 17.0224i 0.572298 0.787701i −0.420527 0.907280i \(-0.638155\pi\)
0.992825 + 0.119579i \(0.0381546\pi\)
\(468\) 0 0
\(469\) 0.388283 0.282104i 0.0179292 0.0130264i
\(470\) 20.9068 12.8117i 0.964359 0.590960i
\(471\) 0 0
\(472\) 12.3574 1.95722i 0.568796 0.0900884i
\(473\) −6.72548 10.9750i −0.309238 0.504631i
\(474\) 0 0
\(475\) 3.16303 + 0.248936i 0.145130 + 0.0114219i
\(476\) 4.22027 + 3.06621i 0.193436 + 0.140539i
\(477\) 0 0
\(478\) −3.06515 + 7.39993i −0.140197 + 0.338465i
\(479\) −20.2124 + 32.9836i −0.923526 + 1.50706i −0.0627773 + 0.998028i \(0.519996\pi\)
−0.860749 + 0.509030i \(0.830004\pi\)
\(480\) 0 0
\(481\) 1.36141 + 1.59400i 0.0620748 + 0.0726803i
\(482\) 5.09027 + 15.6662i 0.231855 + 0.713577i
\(483\) 0 0
\(484\) 2.43710 4.78308i 0.110777 0.217413i
\(485\) −47.4981 11.4033i −2.15678 0.517796i
\(486\) 0 0
\(487\) −6.77515 + 3.45211i −0.307012 + 0.156430i −0.600708 0.799469i \(-0.705115\pi\)
0.293696 + 0.955899i \(0.405115\pi\)
\(488\) −3.77612 1.22694i −0.170937 0.0555408i
\(489\) 0 0
\(490\) −0.523814 + 3.30723i −0.0236635 + 0.149406i
\(491\) −36.0652 −1.62760 −0.813799 0.581146i \(-0.802604\pi\)
−0.813799 + 0.581146i \(0.802604\pi\)
\(492\) 0 0
\(493\) 3.47498 0.156505
\(494\) −0.144751 + 0.913922i −0.00651265 + 0.0411193i
\(495\) 0 0
\(496\) −4.31485 1.40198i −0.193743 0.0629508i
\(497\) 6.63650 3.38147i 0.297688 0.151679i
\(498\) 0 0
\(499\) −7.16050 1.71908i −0.320548 0.0769567i 0.0699784 0.997549i \(-0.477707\pi\)
−0.390526 + 0.920592i \(0.627707\pi\)
\(500\) −3.40970 + 6.69191i −0.152486 + 0.299271i
\(501\) 0 0
\(502\) 8.18732 + 25.1980i 0.365418 + 1.12464i
\(503\) 1.94640 + 2.27894i 0.0867858 + 0.101613i 0.802100 0.597190i \(-0.203716\pi\)
−0.715314 + 0.698803i \(0.753716\pi\)
\(504\) 0 0
\(505\) −8.90076 + 14.5247i −0.396079 + 0.646342i
\(506\) 11.4396 27.6177i 0.508553 1.22776i
\(507\) 0 0
\(508\) 11.5672 + 8.40404i 0.513210 + 0.372869i
\(509\) 11.5306 + 0.907481i 0.511087 + 0.0402234i 0.331381 0.943497i \(-0.392485\pi\)
0.179706 + 0.983720i \(0.442485\pi\)
\(510\) 0 0
\(511\) 8.60514 + 14.0423i 0.380669 + 0.621196i
\(512\) −0.987688 + 0.156434i −0.0436501 + 0.00691349i
\(513\) 0 0
\(514\) −18.5183 + 11.3480i −0.816807 + 0.500540i
\(515\) −24.8489 + 18.0538i −1.09497 + 0.795546i
\(516\) 0 0
\(517\) −21.7289 + 29.9072i −0.955634 + 1.31532i
\(518\) −5.95516 5.08618i −0.261655 0.223474i
\(519\) 0 0
\(520\) 1.46887 + 0.900124i 0.0644141 + 0.0394730i
\(521\) 3.16521 0.249108i 0.138671 0.0109136i −0.00893383 0.999960i \(-0.502844\pi\)
0.147604 + 0.989046i \(0.452844\pi\)
\(522\) 0 0
\(523\) 8.79408 2.85737i 0.384538 0.124944i −0.110367 0.993891i \(-0.535203\pi\)
0.494905 + 0.868947i \(0.335203\pi\)
\(524\) −12.5535 + 12.5535i −0.548404 + 0.548404i
\(525\) 0 0
\(526\) 1.71101 7.12689i 0.0746037 0.310747i
\(527\) 9.59526 2.30362i 0.417976 0.100347i
\(528\) 0 0
\(529\) 9.76302 30.0475i 0.424479 1.30641i
\(530\) 4.37154 1.81075i 0.189888 0.0786540i
\(531\) 0 0
\(532\) 3.45695i 0.149878i
\(533\) −3.73886 + 1.70820i −0.161948 + 0.0739904i
\(534\) 0 0
\(535\) 10.4439 + 1.65414i 0.451527 + 0.0715149i
\(536\) −0.0765796 0.184879i −0.00330773 0.00798558i
\(537\) 0 0
\(538\) −7.71967 15.1507i −0.332819 0.653193i
\(539\) −1.17849 4.90877i −0.0507612 0.211436i
\(540\) 0 0
\(541\) 32.8239 + 16.7246i 1.41121 + 0.719046i 0.982823 0.184550i \(-0.0590828\pi\)
0.428385 + 0.903596i \(0.359083\pi\)
\(542\) −15.6679 15.6679i −0.672994 0.672994i
\(543\) 0 0
\(544\) 1.65391 1.41257i 0.0709106 0.0605634i
\(545\) −4.29609 54.5871i −0.184024 2.33825i
\(546\) 0 0
\(547\) −16.3989 6.79263i −0.701164 0.290432i 0.00347853 0.999994i \(-0.498893\pi\)
−0.704643 + 0.709562i \(0.748893\pi\)
\(548\) 9.53285 11.1615i 0.407223 0.476797i
\(549\) 0 0
\(550\) −0.698733 + 8.87825i −0.0297941 + 0.378570i
\(551\) −1.35357 1.86303i −0.0576642 0.0793679i
\(552\) 0 0
\(553\) 1.81425 + 11.4547i 0.0771499 + 0.487105i
\(554\) −1.94764 12.2969i −0.0827474 0.522447i
\(555\) 0 0
\(556\) 2.94750 + 4.05689i 0.125002 + 0.172050i
\(557\) −3.53529 + 44.9201i −0.149795 + 1.90332i 0.222059 + 0.975033i \(0.428722\pi\)
−0.371854 + 0.928291i \(0.621278\pi\)
\(558\) 0 0
\(559\) −1.32647 + 1.55309i −0.0561035 + 0.0656888i
\(560\) −5.94616 2.46298i −0.251271 0.104080i
\(561\) 0 0
\(562\) −2.50313 31.8053i −0.105588 1.34163i
\(563\) −11.3275 + 9.67457i −0.477396 + 0.407734i −0.855318 0.518103i \(-0.826638\pi\)
0.377923 + 0.925837i \(0.376638\pi\)
\(564\) 0 0
\(565\) 31.9513 + 31.9513i 1.34420 + 1.34420i
\(566\) 18.4430 + 9.39717i 0.775216 + 0.394993i
\(567\) 0 0
\(568\) −0.724980 3.01976i −0.0304195 0.126706i
\(569\) 16.7277 + 32.8299i 0.701261 + 1.37630i 0.916617 + 0.399766i \(0.130909\pi\)
−0.215357 + 0.976535i \(0.569091\pi\)
\(570\) 0 0
\(571\) 5.95598 + 14.3790i 0.249250 + 0.601743i 0.998141 0.0609505i \(-0.0194132\pi\)
−0.748891 + 0.662694i \(0.769413\pi\)
\(572\) −2.56527 0.406299i −0.107259 0.0169882i
\(573\) 0 0
\(574\) 12.7980 8.48835i 0.534178 0.354297i
\(575\) 16.2645i 0.678275i
\(576\) 0 0
\(577\) 15.5676 6.44829i 0.648086 0.268446i −0.0343297 0.999411i \(-0.510930\pi\)
0.682415 + 0.730965i \(0.260930\pi\)
\(578\) 3.79140 11.6687i 0.157702 0.485356i
\(579\) 0 0
\(580\) −4.16891 + 1.00087i −0.173105 + 0.0415587i
\(581\) 7.25103 30.2027i 0.300824 1.25302i
\(582\) 0 0
\(583\) −5.04429 + 5.04429i −0.208913 + 0.208913i
\(584\) 6.53073 2.12196i 0.270244 0.0878075i
\(585\) 0 0
\(586\) 19.5313 1.53715i 0.806832 0.0634991i
\(587\) 26.2550 + 16.0891i 1.08366 + 0.664068i 0.945263 0.326309i \(-0.105805\pi\)
0.138397 + 0.990377i \(0.455805\pi\)
\(588\) 0 0
\(589\) −4.97257 4.24697i −0.204891 0.174994i
\(590\) 19.7347 27.1625i 0.812464 1.11826i
\(591\) 0 0
\(592\) −2.64173 + 1.91933i −0.108574 + 0.0788838i
\(593\) 21.2999 13.0526i 0.874682 0.536006i −0.0111892 0.999937i \(-0.503562\pi\)
0.885871 + 0.463932i \(0.153562\pi\)
\(594\) 0 0
\(595\) 13.8263 2.18987i 0.566824 0.0897761i
\(596\) −5.89671 9.62256i −0.241539 0.394155i
\(597\) 0 0
\(598\) −4.72873 0.372159i −0.193372 0.0152187i
\(599\) −26.8508 19.5083i −1.09709 0.797086i −0.116511 0.993189i \(-0.537171\pi\)
−0.980583 + 0.196104i \(0.937171\pi\)
\(600\) 0 0
\(601\) 17.9947 43.4432i 0.734021 1.77208i 0.105316 0.994439i \(-0.466414\pi\)
0.628704 0.777644i \(-0.283586\pi\)
\(602\) 3.98695 6.50611i 0.162496 0.265169i
\(603\) 0 0
\(604\) −4.20161 4.91946i −0.170961 0.200170i
\(605\) −4.45156 13.7005i −0.180982 0.557005i
\(606\) 0 0
\(607\) −1.84422 + 3.61948i −0.0748544 + 0.146910i −0.925401 0.378990i \(-0.876271\pi\)
0.850546 + 0.525900i \(0.176271\pi\)
\(608\) −1.40155 0.336481i −0.0568402 0.0136461i
\(609\) 0 0
\(610\) −9.49345 + 4.83715i −0.384379 + 0.195851i
\(611\) 5.57876 + 1.81265i 0.225692 + 0.0733319i
\(612\) 0 0
\(613\) −4.72778 + 29.8500i −0.190953 + 1.20563i 0.686919 + 0.726734i \(0.258963\pi\)
−0.877872 + 0.478896i \(0.841037\pi\)
\(614\) 10.0501 0.405587
\(615\) 0 0
\(616\) 9.70326 0.390955
\(617\) 3.33985 21.0870i 0.134457 0.848931i −0.824599 0.565717i \(-0.808599\pi\)
0.959057 0.283214i \(-0.0914006\pi\)
\(618\) 0 0
\(619\) −10.5946 3.44239i −0.425832 0.138361i 0.0882577 0.996098i \(-0.471870\pi\)
−0.514090 + 0.857737i \(0.671870\pi\)
\(620\) −10.8479 + 5.52726i −0.435661 + 0.221980i
\(621\) 0 0
\(622\) −6.89703 1.65583i −0.276546 0.0663928i
\(623\) −1.62637 + 3.19193i −0.0651592 + 0.127882i
\(624\) 0 0
\(625\) 9.62920 + 29.6356i 0.385168 + 1.18543i
\(626\) −11.2409 13.1614i −0.449275 0.526034i
\(627\) 0 0
\(628\) −5.90499 + 9.63607i −0.235635 + 0.384521i
\(629\) 2.71791 6.56162i 0.108370 0.261629i
\(630\) 0 0
\(631\) 5.50490 + 3.99955i 0.219147 + 0.159219i 0.691943 0.721953i \(-0.256755\pi\)
−0.472796 + 0.881172i \(0.656755\pi\)
\(632\) 4.82067 + 0.379395i 0.191756 + 0.0150915i
\(633\) 0 0
\(634\) −3.52613 5.75412i −0.140041 0.228525i
\(635\) 37.8960 6.00213i 1.50386 0.238187i
\(636\) 0 0
\(637\) −0.682999 + 0.418542i −0.0270614 + 0.0165833i
\(638\) 5.22932 3.79932i 0.207031 0.150417i
\(639\) 0 0
\(640\) −1.57733 + 2.17101i −0.0623494 + 0.0858166i
\(641\) −19.0349 16.2573i −0.751832 0.642126i 0.188620 0.982050i \(-0.439598\pi\)
−0.940453 + 0.339924i \(0.889598\pi\)
\(642\) 0 0
\(643\) −15.4866 9.49019i −0.610731 0.374257i 0.182474 0.983211i \(-0.441589\pi\)
−0.793205 + 0.608954i \(0.791589\pi\)
\(644\) 17.6664 1.39038i 0.696154 0.0547885i
\(645\) 0 0
\(646\) 2.98159 0.968776i 0.117309 0.0381160i
\(647\) 0.0218838 0.0218838i 0.000860341 0.000860341i −0.706676 0.707537i \(-0.749806\pi\)
0.707537 + 0.706676i \(0.249806\pi\)
\(648\) 0 0
\(649\) −11.8166 + 49.2197i −0.463843 + 1.93204i
\(650\) 1.37408 0.329888i 0.0538960 0.0129393i
\(651\) 0 0
\(652\) 5.20812 16.0289i 0.203966 0.627742i
\(653\) −10.7278 + 4.44362i −0.419813 + 0.173892i −0.582582 0.812772i \(-0.697957\pi\)
0.162769 + 0.986664i \(0.447957\pi\)
\(654\) 0 0
\(655\) 47.6414i 1.86150i
\(656\) −2.19573 6.01488i −0.0857287 0.234842i
\(657\) 0 0
\(658\) −21.6449 3.42821i −0.843806 0.133646i
\(659\) 9.55878 + 23.0769i 0.372357 + 0.898949i 0.993350 + 0.115133i \(0.0367295\pi\)
−0.620993 + 0.783816i \(0.713270\pi\)
\(660\) 0 0
\(661\) 10.2255 + 20.0687i 0.397726 + 0.780581i 0.999841 0.0178285i \(-0.00567529\pi\)
−0.602115 + 0.798409i \(0.705675\pi\)
\(662\) 1.63570 + 6.81319i 0.0635734 + 0.264802i
\(663\) 0 0
\(664\) −11.5393 5.87955i −0.447810 0.228171i
\(665\) −6.55967 6.55967i −0.254373 0.254373i
\(666\) 0 0
\(667\) 8.97645 7.66661i 0.347570 0.296852i
\(668\) −0.543964 6.91171i −0.0210466 0.267422i
\(669\) 0 0
\(670\) −0.496127 0.205502i −0.0191670 0.00793925i
\(671\) 10.4324 12.2148i 0.402738 0.471546i
\(672\) 0 0
\(673\) 1.84802 23.4814i 0.0712361 0.905141i −0.852652 0.522479i \(-0.825007\pi\)
0.923888 0.382662i \(-0.124993\pi\)
\(674\) −16.8664 23.2146i −0.649669 0.894192i
\(675\) 0 0
\(676\) −1.96918 12.4329i −0.0757376 0.478188i
\(677\) 3.15427 + 19.9153i 0.121229 + 0.765407i 0.971145 + 0.238489i \(0.0766522\pi\)
−0.849917 + 0.526917i \(0.823348\pi\)
\(678\) 0 0
\(679\) 25.6612 + 35.3196i 0.984787 + 1.35544i
\(680\) 0.457944 5.81873i 0.0175614 0.223138i
\(681\) 0 0
\(682\) 11.9208 13.9574i 0.456470 0.534457i
\(683\) 7.80506 + 3.23296i 0.298652 + 0.123706i 0.526978 0.849879i \(-0.323325\pi\)
−0.228326 + 0.973585i \(0.573325\pi\)
\(684\) 0 0
\(685\) −3.09048 39.2682i −0.118081 1.50036i
\(686\) 15.0418 12.8469i 0.574299 0.490498i
\(687\) 0 0
\(688\) −2.24969 2.24969i −0.0857688 0.0857688i
\(689\) 1.00858 + 0.513896i 0.0384238 + 0.0195779i
\(690\) 0 0
\(691\) −5.18167 21.5832i −0.197120 0.821064i −0.980017 0.198913i \(-0.936259\pi\)
0.782897 0.622151i \(-0.213741\pi\)
\(692\) 2.97466 + 5.83810i 0.113080 + 0.221931i
\(693\) 0 0
\(694\) 9.04883 + 21.8458i 0.343489 + 0.829255i
\(695\) 13.2910 + 2.10510i 0.504158 + 0.0798508i
\(696\) 0 0
\(697\) 10.9076 + 8.65937i 0.413156 + 0.327997i
\(698\) 14.8503i 0.562094i
\(699\) 0 0
\(700\) −4.87754 + 2.02034i −0.184354 + 0.0763618i
\(701\) −8.83838 + 27.2017i −0.333821 + 1.02740i 0.633479 + 0.773760i \(0.281626\pi\)
−0.967300 + 0.253635i \(0.918374\pi\)
\(702\) 0 0
\(703\) −4.57654 + 1.09873i −0.172607 + 0.0414394i
\(704\) 0.944464 3.93398i 0.0355958 0.148267i
\(705\) 0 0
\(706\) −8.81870 + 8.81870i −0.331896 + 0.331896i
\(707\) 14.4798 4.70477i 0.544568 0.176941i
\(708\) 0 0
\(709\) 35.4088 2.78673i 1.32981 0.104658i 0.606444 0.795127i \(-0.292596\pi\)
0.723362 + 0.690469i \(0.242596\pi\)
\(710\) −7.10576 4.35441i −0.266674 0.163418i
\(711\) 0 0
\(712\) 1.13580 + 0.970062i 0.0425658 + 0.0363546i
\(713\) 19.7038 27.1200i 0.737913 1.01565i
\(714\) 0 0
\(715\) −5.63865 + 4.09672i −0.210873 + 0.153209i
\(716\) −17.8218 + 10.9212i −0.666034 + 0.408146i
\(717\) 0 0
\(718\) 8.05129 1.27520i 0.300471 0.0475900i
\(719\) 2.23174 + 3.64186i 0.0832297 + 0.135819i 0.891546 0.452929i \(-0.149621\pi\)
−0.808317 + 0.588748i \(0.799621\pi\)
\(720\) 0 0
\(721\) 27.3667 + 2.15381i 1.01919 + 0.0802120i
\(722\) 13.6906 + 9.94677i 0.509510 + 0.370180i
\(723\) 0 0
\(724\) 4.78959 11.5631i 0.178004 0.429739i
\(725\) −1.83756 + 2.99862i −0.0682451 + 0.111366i
\(726\) 0 0
\(727\) 29.0710 + 34.0378i 1.07819 + 1.26239i 0.963131 + 0.269034i \(0.0867044\pi\)
0.115055 + 0.993359i \(0.463296\pi\)
\(728\) −0.475788 1.46432i −0.0176339 0.0542715i
\(729\) 0 0
\(730\) 8.36577 16.4188i 0.309631 0.607685i
\(731\) 6.72876 + 1.61543i 0.248872 + 0.0597490i
\(732\) 0 0
\(733\) −1.88820 + 0.962085i −0.0697422 + 0.0355354i −0.488514 0.872556i \(-0.662461\pi\)
0.418772 + 0.908092i \(0.362461\pi\)
\(734\) −16.4716 5.35194i −0.607977 0.197544i
\(735\) 0 0
\(736\) 1.15586 7.29779i 0.0426055 0.269000i
\(737\) 0.809605 0.0298222
\(738\) 0 0
\(739\) 32.3300 1.18928 0.594640 0.803992i \(-0.297295\pi\)
0.594640 + 0.803992i \(0.297295\pi\)
\(740\) −1.37078 + 8.65474i −0.0503907 + 0.318154i
\(741\) 0 0
\(742\) −4.02197 1.30682i −0.147651 0.0479748i
\(743\) −18.3539 + 9.35177i −0.673339 + 0.343083i −0.757004 0.653411i \(-0.773337\pi\)
0.0836648 + 0.996494i \(0.473337\pi\)
\(744\) 0 0
\(745\) −29.4483 7.06991i −1.07890 0.259021i
\(746\) 9.08344 17.8273i 0.332569 0.652702i
\(747\) 0 0
\(748\) 2.71924 + 8.36897i 0.0994253 + 0.306000i
\(749\) −6.13761 7.18621i −0.224263 0.262579i
\(750\) 0 0
\(751\) 23.0098 37.5486i 0.839639 1.37017i −0.0877792 0.996140i \(-0.527977\pi\)
0.927418 0.374026i \(-0.122023\pi\)
\(752\) −3.49669 + 8.44177i −0.127511 + 0.307840i
\(753\) 0 0
\(754\) −0.829771 0.602864i −0.0302185 0.0219550i
\(755\) −17.3075 1.36213i −0.629885 0.0495730i
\(756\) 0 0
\(757\) −14.0860 22.9862i −0.511963 0.835448i 0.487323 0.873222i \(-0.337973\pi\)
−0.999286 + 0.0377740i \(0.987973\pi\)
\(758\) 34.2475 5.42427i 1.24392 0.197018i
\(759\) 0 0
\(760\) −3.29796 + 2.02099i −0.119630 + 0.0733091i
\(761\) −5.08791 + 3.69658i −0.184436 + 0.134001i −0.676172 0.736743i \(-0.736363\pi\)
0.491736 + 0.870744i \(0.336363\pi\)
\(762\) 0 0
\(763\) −28.7649 + 39.5915i −1.04136 + 1.43331i
\(764\) −3.61654 3.08882i −0.130842 0.111750i
\(765\) 0 0
\(766\) −20.5962 12.6213i −0.744169 0.456027i
\(767\) 8.00719 0.630180i 0.289123 0.0227545i
\(768\) 0 0
\(769\) −15.9465 + 5.18135i −0.575047 + 0.186844i −0.582081 0.813131i \(-0.697761\pi\)
0.00703341 + 0.999975i \(0.497761\pi\)
\(770\) 18.4122 18.4122i 0.663530 0.663530i
\(771\) 0 0
\(772\) 2.03946 8.49498i 0.0734019 0.305741i
\(773\) 30.0859 7.22299i 1.08211 0.259793i 0.347089 0.937832i \(-0.387170\pi\)
0.735026 + 0.678039i \(0.237170\pi\)
\(774\) 0 0
\(775\) −3.08610 + 9.49804i −0.110856 + 0.341180i
\(776\) 16.8173 6.96595i 0.603706 0.250063i
\(777\) 0 0
\(778\) 9.29760i 0.333335i
\(779\) 0.393793 9.22087i 0.0141091 0.330372i
\(780\) 0 0
\(781\) 12.4097 + 1.96550i 0.444054 + 0.0703312i
\(782\) 6.15002 + 14.8475i 0.219924 + 0.530944i
\(783\) 0 0
\(784\) −0.566484 1.11179i −0.0202316 0.0397067i
\(785\) 7.07984 + 29.4896i 0.252690 + 1.05253i
\(786\) 0 0
\(787\) −37.8371 19.2789i −1.34875 0.687220i −0.377658 0.925945i \(-0.623271\pi\)
−0.971087 + 0.238725i \(0.923271\pi\)
\(788\) −5.15235 5.15235i −0.183545 0.183545i
\(789\) 0 0
\(790\) 9.86728 8.42745i 0.351062 0.299835i
\(791\) −3.16855 40.2602i −0.112661 1.43149i
\(792\) 0 0
\(793\) −2.35488 0.975422i −0.0836241 0.0346382i
\(794\) 17.6272 20.6388i 0.625565 0.732442i
\(795\) 0 0
\(796\) −0.678055 + 8.61550i −0.0240330 + 0.305368i
\(797\) −7.76681 10.6901i −0.275114 0.378662i 0.648994 0.760794i \(-0.275190\pi\)
−0.924108 + 0.382131i \(0.875190\pi\)
\(798\) 0 0
\(799\) −3.10896 19.6292i −0.109987 0.694432i
\(800\) 0.344350 + 2.17414i 0.0121746 + 0.0768675i
\(801\) 0 0
\(802\) 9.71546 + 13.3722i 0.343065 + 0.472188i
\(803\) −2.17971 + 27.6959i −0.0769203 + 0.977366i
\(804\) 0 0
\(805\) 30.8843 36.1608i 1.08853 1.27450i
\(806\) −2.69084 1.11458i −0.0947809 0.0392595i
\(807\) 0 0
\(808\) −0.498060 6.32845i −0.0175217 0.222634i
\(809\) −30.8888 + 26.3815i −1.08599 + 0.927524i −0.997647 0.0685655i \(-0.978158\pi\)
−0.0883450 + 0.996090i \(0.528158\pi\)
\(810\) 0 0
\(811\) −9.64302 9.64302i −0.338612 0.338612i 0.517233 0.855845i \(-0.326962\pi\)
−0.855845 + 0.517233i \(0.826962\pi\)
\(812\) 3.41417 + 1.73961i 0.119814 + 0.0610483i
\(813\) 0 0
\(814\) −3.08401 12.8458i −0.108094 0.450246i
\(815\) −20.5328 40.2980i −0.719234 1.41158i
\(816\) 0 0
\(817\) −1.75491 4.23672i −0.0613964 0.148224i
\(818\) 2.06960 + 0.327792i 0.0723618 + 0.0114610i
\(819\) 0 0
\(820\) −15.5799 7.24696i −0.544073 0.253075i
\(821\) 16.7984i 0.586267i −0.956072 0.293133i \(-0.905302\pi\)
0.956072 0.293133i \(-0.0946980\pi\)
\(822\) 0 0
\(823\) 38.5837 15.9819i 1.34494 0.557094i 0.410063 0.912057i \(-0.365507\pi\)
0.934880 + 0.354964i \(0.115507\pi\)
\(824\) 3.53695 10.8856i 0.123215 0.379218i
\(825\) 0 0
\(826\) −29.1781 + 7.00504i −1.01523 + 0.243736i
\(827\) −4.13080 + 17.2060i −0.143642 + 0.598312i 0.853387 + 0.521279i \(0.174545\pi\)
−0.997029 + 0.0770332i \(0.975455\pi\)
\(828\) 0 0
\(829\) −23.4482 + 23.4482i −0.814391 + 0.814391i −0.985289 0.170898i \(-0.945333\pi\)
0.170898 + 0.985289i \(0.445333\pi\)
\(830\) −33.0527 + 10.7395i −1.14728 + 0.372773i
\(831\) 0 0
\(832\) −0.639989 + 0.0503682i −0.0221876 + 0.00174620i
\(833\) 2.31405 + 1.41805i 0.0801770 + 0.0491325i
\(834\) 0 0
\(835\) −14.1474 12.0830i −0.489590 0.418149i
\(836\) 3.42763 4.71773i 0.118547 0.163166i
\(837\) 0 0
\(838\) −0.190315 + 0.138272i −0.00657431 + 0.00477651i
\(839\) 33.4212 20.4805i 1.15383 0.707066i 0.192181 0.981359i \(-0.438444\pi\)
0.961646 + 0.274293i \(0.0884438\pi\)
\(840\) 0 0
\(841\) −26.1218 + 4.13729i −0.900753 + 0.142665i
\(842\) 16.4964 + 26.9196i 0.568502 + 0.927711i
\(843\) 0 0
\(844\) −20.6753 1.62718i −0.711675 0.0560100i
\(845\) −27.3284 19.8552i −0.940125 0.683041i
\(846\) 0 0
\(847\) −4.92701 + 11.8949i −0.169294 + 0.408712i
\(848\) −0.921299 + 1.50342i −0.0316375 + 0.0516277i
\(849\) 0 0
\(850\) −3.10941 3.64065i −0.106652 0.124873i
\(851\) −7.45563 22.9461i −0.255576 0.786581i
\(852\) 0 0
\(853\) −13.1643 + 25.8364i −0.450736 + 0.884620i 0.548101 + 0.836412i \(0.315351\pi\)
−0.998837 + 0.0482078i \(0.984649\pi\)
\(854\) 9.25952 + 2.22301i 0.316854 + 0.0760699i
\(855\) 0 0
\(856\) −3.51090 + 1.78889i −0.120000 + 0.0611431i
\(857\) 24.0974 + 7.82971i 0.823151 + 0.267458i 0.690158 0.723659i \(-0.257541\pi\)
0.132993 + 0.991117i \(0.457541\pi\)
\(858\) 0 0
\(859\) −1.86434 + 11.7710i −0.0636105 + 0.401621i 0.935254 + 0.353978i \(0.115171\pi\)
−0.998864 + 0.0476433i \(0.984829\pi\)
\(860\) −8.53772 −0.291134
\(861\) 0 0
\(862\) 21.2859 0.725000
\(863\) −1.93190 + 12.1975i −0.0657625 + 0.415208i 0.932742 + 0.360544i \(0.117409\pi\)
−0.998505 + 0.0546642i \(0.982591\pi\)
\(864\) 0 0
\(865\) 16.7225 + 5.43346i 0.568581 + 0.184743i
\(866\) −18.6807 + 9.51829i −0.634796 + 0.323445i
\(867\) 0 0
\(868\) 10.5806 + 2.54017i 0.359128 + 0.0862189i
\(869\) −8.88168 + 17.4313i −0.301290 + 0.591315i
\(870\) 0 0
\(871\) −0.0396980 0.122178i −0.00134512 0.00413984i
\(872\) 13.2517 + 15.5157i 0.448759 + 0.525429i
\(873\) 0 0
\(874\) 5.56458 9.08057i 0.188225 0.307155i
\(875\) 6.89328 16.6419i 0.233035 0.562597i
\(876\) 0 0
\(877\) −5.42894 3.94435i −0.183322 0.133191i 0.492339 0.870403i \(-0.336142\pi\)
−0.675662 + 0.737212i \(0.736142\pi\)
\(878\) 8.94886 + 0.704291i 0.302009 + 0.0237687i
\(879\) 0 0
\(880\) −5.67269 9.25699i −0.191226 0.312053i
\(881\) 37.3995 5.92350i 1.26002 0.199568i 0.509533 0.860451i \(-0.329818\pi\)
0.750488 + 0.660884i \(0.229818\pi\)
\(882\) 0 0
\(883\) 30.1820 18.4955i 1.01570 0.622424i 0.0881478 0.996107i \(-0.471905\pi\)
0.927556 + 0.373683i \(0.121905\pi\)
\(884\) 1.12963 0.820725i 0.0379936 0.0276040i
\(885\) 0 0
\(886\) −20.9446 + 28.8278i −0.703648 + 0.968488i
\(887\) −35.4592 30.2850i −1.19060 1.01687i −0.999376 0.0353251i \(-0.988753\pi\)
−0.191227 0.981546i \(-0.561247\pi\)
\(888\) 0 0
\(889\) −29.2383 17.9173i −0.980622 0.600926i
\(890\) 3.99593 0.314487i 0.133944 0.0105416i
\(891\) 0 0
\(892\) −2.07739 + 0.674985i −0.0695561 + 0.0226002i
\(893\) −9.31276 + 9.31276i −0.311640 + 0.311640i
\(894\) 0 0
\(895\) −13.0941 + 54.5409i −0.437688 + 1.82310i
\(896\) 2.33211 0.559890i 0.0779103 0.0187046i
\(897\) 0 0
\(898\) −6.96497 + 21.4360i −0.232424 + 0.715327i
\(899\) 6.69673 2.77387i 0.223348 0.0925139i
\(900\) 0 0
\(901\) 3.83514i 0.127767i
\(902\) 25.8819 + 1.10533i 0.861773 + 0.0368035i
\(903\) 0 0
\(904\) −16.6310 2.63410i −0.553140 0.0876088i
\(905\) −12.8529 31.0297i −0.427246 1.03146i
\(906\) 0 0
\(907\) 13.2797 + 26.0629i 0.440946 + 0.865406i 0.999357 + 0.0358414i \(0.0114111\pi\)
−0.558411 + 0.829564i \(0.688589\pi\)
\(908\) 0.426008 + 1.77445i 0.0141376 + 0.0588873i
\(909\) 0 0
\(910\) −3.68142 1.87578i −0.122038 0.0621814i
\(911\) −16.5129 16.5129i −0.547097 0.547097i 0.378503 0.925600i \(-0.376439\pi\)
−0.925600 + 0.378503i \(0.876439\pi\)
\(912\) 0 0
\(913\) 39.8422 34.0284i 1.31858 1.12618i
\(914\) 0.932145 + 11.8440i 0.0308326 + 0.391765i
\(915\) 0 0
\(916\) −25.3541 10.5020i −0.837724 0.346997i
\(917\) 27.6530 32.3776i 0.913184 1.06920i
\(918\) 0 0
\(919\) −3.36291 + 42.7298i −0.110932 + 1.40953i 0.649625 + 0.760255i \(0.274926\pi\)
−0.760557 + 0.649271i \(0.775074\pi\)
\(920\) −11.6545 16.0411i −0.384238 0.528858i
\(921\) 0 0
\(922\) 2.92041 + 18.4387i 0.0961785 + 0.607247i
\(923\) −0.311879 1.96913i −0.0102656 0.0648147i
\(924\) 0 0
\(925\) 4.22490 + 5.81508i 0.138914 + 0.191199i
\(926\) 0.994856 12.6408i 0.0326930 0.415404i
\(927\) 0 0
\(928\) 1.03760 1.21488i 0.0340610 0.0398804i
\(929\) 7.25279 + 3.00420i 0.237956 + 0.0985647i 0.498475 0.866904i \(-0.333894\pi\)
−0.260519 + 0.965469i \(0.583894\pi\)
\(930\) 0 0
\(931\) −0.141111 1.79298i −0.00462472 0.0587626i
\(932\) −4.70726 + 4.02038i −0.154191 + 0.131692i
\(933\) 0 0
\(934\) 14.8781 + 14.8781i 0.486826 + 0.486826i
\(935\) 21.0402 + 10.7205i 0.688088 + 0.350599i
\(936\) 0 0
\(937\) 0.102860 + 0.428443i 0.00336029 + 0.0139966i 0.974025 0.226441i \(-0.0727091\pi\)
−0.970665 + 0.240438i \(0.922709\pi\)
\(938\) 0.217890 + 0.427633i 0.00711436 + 0.0139627i
\(939\) 0 0
\(940\) 9.38343 + 22.6536i 0.306054 + 0.738879i
\(941\) 0.499973 + 0.0791879i 0.0162987 + 0.00258145i 0.164578 0.986364i \(-0.447374\pi\)
−0.148280 + 0.988945i \(0.547374\pi\)
\(942\) 0 0
\(943\) 47.2807 1.69617i 1.53967 0.0552348i
\(944\) 12.5114i 0.407213i
\(945\) 0 0
\(946\) 11.8920 4.92582i 0.386641 0.160152i
\(947\) −11.3618 + 34.9681i −0.369210 + 1.13631i 0.578092 + 0.815971i \(0.303797\pi\)
−0.947302 + 0.320341i \(0.896203\pi\)
\(948\) 0 0
\(949\) 4.28648 1.02909i 0.139145 0.0334057i
\(950\) −0.740677 + 3.08514i −0.0240307 + 0.100095i
\(951\) 0 0
\(952\) −3.68865 + 3.68865i −0.119550 + 0.119550i
\(953\) −56.0825 + 18.2223i −1.81669 + 0.590278i −0.816779 + 0.576950i \(0.804243\pi\)
−0.999911 + 0.0133281i \(0.995757\pi\)
\(954\) 0 0
\(955\) −12.7236 + 1.00137i −0.411727 + 0.0324036i
\(956\) −6.82933 4.18502i −0.220876 0.135353i
\(957\) 0 0
\(958\) −29.4156 25.1233i −0.950374 0.811696i
\(959\) −20.6926 + 28.4809i −0.668198 + 0.919695i
\(960\) 0 0
\(961\) −8.42712 + 6.12266i −0.271843 + 0.197505i
\(962\) −1.78735 + 1.09529i −0.0576264 + 0.0353135i
\(963\) 0 0
\(964\) −16.2697 + 2.57686i −0.524010 + 0.0829951i
\(965\) −12.2495 19.9894i −0.394327 0.643482i
\(966\) 0 0
\(967\) −25.9232 2.04020i −0.833633 0.0656083i −0.345544 0.938402i \(-0.612306\pi\)
−0.488089 + 0.872794i \(0.662306\pi\)
\(968\) 4.34294 + 3.15533i 0.139587 + 0.101416i
\(969\) 0 0
\(970\) 18.6932 45.1295i 0.600203 1.44902i
\(971\) −1.02865 + 1.67861i −0.0330110 + 0.0538691i −0.868720 0.495303i \(-0.835057\pi\)
0.835709 + 0.549172i \(0.185057\pi\)
\(972\) 0 0
\(973\) −7.81083 9.14531i −0.250404 0.293185i
\(974\) −2.34974 7.23177i −0.0752907 0.231721i
\(975\) 0 0
\(976\) 1.80255 3.53769i 0.0576981 0.113239i
\(977\) −17.2603 4.14382i −0.552205 0.132573i −0.0522656 0.998633i \(-0.516644\pi\)
−0.499939 + 0.866061i \(0.666644\pi\)
\(978\) 0 0
\(979\) −5.38439 + 2.74348i −0.172086 + 0.0876821i
\(980\) −3.18457 1.03473i −0.101727 0.0330532i
\(981\) 0 0
\(982\) 5.64183 35.6211i 0.180038 1.13672i
\(983\) −34.5126 −1.10078 −0.550390 0.834907i \(-0.685521\pi\)
−0.550390 + 0.834907i \(0.685521\pi\)
\(984\) 0 0
\(985\) −19.5535 −0.623026
\(986\) −0.543607 + 3.43220i −0.0173120 + 0.109304i
\(987\) 0 0
\(988\) −0.880026 0.285938i −0.0279973 0.00909689i
\(989\) 20.9455 10.6723i 0.666028 0.339358i
\(990\) 0 0
\(991\) 23.2340 + 5.57800i 0.738054 + 0.177191i 0.585007 0.811028i \(-0.301092\pi\)
0.153046 + 0.988219i \(0.451092\pi\)
\(992\) 2.05971 4.04241i 0.0653959 0.128347i
\(993\) 0 0
\(994\) 2.30166 + 7.08377i 0.0730041 + 0.224684i
\(995\) 15.0615 + 17.6348i 0.477483 + 0.559061i
\(996\) 0 0
\(997\) −25.5769 + 41.7378i −0.810030 + 1.32185i 0.133663 + 0.991027i \(0.457326\pi\)
−0.943693 + 0.330822i \(0.892674\pi\)
\(998\) 2.81807 6.80342i 0.0892044 0.215358i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.a.179.1 48
3.2 odd 2 738.2.ba.b.179.3 yes 48
41.11 odd 40 738.2.ba.b.503.3 yes 48
123.11 even 40 inner 738.2.ba.a.503.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.a.179.1 48 1.1 even 1 trivial
738.2.ba.a.503.1 yes 48 123.11 even 40 inner
738.2.ba.b.179.3 yes 48 3.2 odd 2
738.2.ba.b.503.3 yes 48 41.11 odd 40