Properties

Label 736.5.e.d.689.1
Level $736$
Weight $5$
Character 736.689
Analytic conductor $76.080$
Analytic rank $0$
Dimension $6$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [736,5,Mod(689,736)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("736.689"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 736.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(76.0802928297\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.8869743.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{3} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 184)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 689.1
Root \(-0.261988 + 1.38973i\) of defining polynomial
Character \(\chi\) \(=\) 736.689
Dual form 736.5.e.d.689.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-17.9999i q^{3} -242.997 q^{9} +316.603i q^{13} +529.000 q^{23} -625.000 q^{25} +2915.93i q^{27} -939.360i q^{29} -770.227 q^{31} +5698.82 q^{39} +3284.79 q^{41} +2577.80 q^{47} +2401.00 q^{49} +2992.60i q^{59} -9521.95i q^{69} +2750.83 q^{71} -10333.3 q^{73} +11249.9i q^{75} +32803.7 q^{81} -16908.4 q^{87} +13864.0i q^{93} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 486 q^{9} + 3174 q^{23} - 3750 q^{25} + 17076 q^{39} + 14406 q^{49} + 39366 q^{81} - 50484 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/736\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(415\) \(645\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 17.9999i − 1.99999i −0.00320078 0.999995i \(-0.501019\pi\)
0.00320078 0.999995i \(-0.498981\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −242.997 −2.99996
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 316.603i 1.87339i 0.350148 + 0.936694i \(0.386131\pi\)
−0.350148 + 0.936694i \(0.613869\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 529.000 1.00000
\(24\) 0 0
\(25\) −625.000 −1.00000
\(26\) 0 0
\(27\) 2915.93i 3.99990i
\(28\) 0 0
\(29\) − 939.360i − 1.11696i −0.829519 0.558478i \(-0.811386\pi\)
0.829519 0.558478i \(-0.188614\pi\)
\(30\) 0 0
\(31\) −770.227 −0.801485 −0.400742 0.916191i \(-0.631248\pi\)
−0.400742 + 0.916191i \(0.631248\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 5698.82 3.74676
\(40\) 0 0
\(41\) 3284.79 1.95407 0.977035 0.213081i \(-0.0683499\pi\)
0.977035 + 0.213081i \(0.0683499\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2577.80 1.16695 0.583477 0.812130i \(-0.301692\pi\)
0.583477 + 0.812130i \(0.301692\pi\)
\(48\) 0 0
\(49\) 2401.00 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2992.60i 0.859695i 0.902901 + 0.429848i \(0.141433\pi\)
−0.902901 + 0.429848i \(0.858567\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) − 9521.95i − 1.99999i
\(70\) 0 0
\(71\) 2750.83 0.545691 0.272846 0.962058i \(-0.412035\pi\)
0.272846 + 0.962058i \(0.412035\pi\)
\(72\) 0 0
\(73\) −10333.3 −1.93907 −0.969535 0.244954i \(-0.921227\pi\)
−0.969535 + 0.244954i \(0.921227\pi\)
\(74\) 0 0
\(75\) 11249.9i 1.99999i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 32803.7 4.99980
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −16908.4 −2.23390
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 13864.0i 1.60296i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 19106.6i 1.87301i 0.350652 + 0.936506i \(0.385960\pi\)
−0.350652 + 0.936506i \(0.614040\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 76933.4i − 5.62009i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −14641.0 −1.00000
\(122\) 0 0
\(123\) − 59125.9i − 3.90812i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 28601.2 1.77328 0.886639 0.462462i \(-0.153034\pi\)
0.886639 + 0.462462i \(0.153034\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18060.0i 1.05238i 0.850366 + 0.526192i \(0.176381\pi\)
−0.850366 + 0.526192i \(0.823619\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) − 6463.20i − 0.334517i −0.985913 0.167258i \(-0.946509\pi\)
0.985913 0.167258i \(-0.0534914\pi\)
\(140\) 0 0
\(141\) − 46400.2i − 2.33390i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 43217.8i − 1.99999i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 43532.7 1.90925 0.954624 0.297815i \(-0.0962579\pi\)
0.954624 + 0.297815i \(0.0962579\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 25874.5i − 0.973859i −0.873441 0.486930i \(-0.838117\pi\)
0.873441 0.486930i \(-0.161883\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2786.00 −0.0998960 −0.0499480 0.998752i \(-0.515906\pi\)
−0.0499480 + 0.998752i \(0.515906\pi\)
\(168\) 0 0
\(169\) −71676.2 −2.50958
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7596.60i 0.253821i 0.991914 + 0.126910i \(0.0405060\pi\)
−0.991914 + 0.126910i \(0.959494\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 53866.5 1.71938
\(178\) 0 0
\(179\) − 46622.5i − 1.45509i −0.686060 0.727545i \(-0.740661\pi\)
0.686060 0.727545i \(-0.259339\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 24566.7 0.659528 0.329764 0.944063i \(-0.393031\pi\)
0.329764 + 0.944063i \(0.393031\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 61414.7i 1.58249i 0.611502 + 0.791243i \(0.290566\pi\)
−0.611502 + 0.791243i \(0.709434\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −128545. −2.99996
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 46730.6i 1.04963i 0.851216 + 0.524815i \(0.175866\pi\)
−0.851216 + 0.524815i \(0.824134\pi\)
\(212\) 0 0
\(213\) − 49514.7i − 1.09138i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 185998.i 3.87812i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 46466.0 0.934384 0.467192 0.884156i \(-0.345266\pi\)
0.467192 + 0.884156i \(0.345266\pi\)
\(224\) 0 0
\(225\) 151873. 2.99996
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 72635.2 1.33794 0.668968 0.743291i \(-0.266736\pi\)
0.668968 + 0.743291i \(0.266736\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 113646. 1.98956 0.994781 0.102030i \(-0.0325337\pi\)
0.994781 + 0.102030i \(0.0325337\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) − 354273.i − 5.99964i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −112877. −1.70899 −0.854497 0.519457i \(-0.826134\pi\)
−0.854497 + 0.519457i \(0.826134\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 228261.i 3.35082i
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 112955.i − 1.56100i −0.625158 0.780498i \(-0.714965\pi\)
0.625158 0.780498i \(-0.285035\pi\)
\(270\) 0 0
\(271\) 65086.0 0.886235 0.443118 0.896463i \(-0.353872\pi\)
0.443118 + 0.896463i \(0.353872\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 107882.i 1.40601i 0.711182 + 0.703007i \(0.248160\pi\)
−0.711182 + 0.703007i \(0.751840\pi\)
\(278\) 0 0
\(279\) 187163. 2.40442
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 83521.0 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 167483.i 1.87339i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 343917. 3.74600
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 123157.i 1.30672i 0.757048 + 0.653359i \(0.226641\pi\)
−0.757048 + 0.653359i \(0.773359\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −185012. −1.91284 −0.956420 0.291996i \(-0.905681\pi\)
−0.956420 + 0.291996i \(0.905681\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 153083.i 1.52338i 0.647942 + 0.761690i \(0.275630\pi\)
−0.647942 + 0.761690i \(0.724370\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 197877.i − 1.87339i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 189415.i 1.72886i 0.502756 + 0.864428i \(0.332319\pi\)
−0.502756 + 0.864428i \(0.667681\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 207871.i − 1.72637i −0.504888 0.863185i \(-0.668466\pi\)
0.504888 0.863185i \(-0.331534\pi\)
\(348\) 0 0
\(349\) 201294.i 1.65264i 0.563198 + 0.826322i \(0.309571\pi\)
−0.563198 + 0.826322i \(0.690429\pi\)
\(350\) 0 0
\(351\) −923190. −7.49336
\(352\) 0 0
\(353\) −43457.9 −0.348754 −0.174377 0.984679i \(-0.555791\pi\)
−0.174377 + 0.984679i \(0.555791\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −130321. −1.00000
\(362\) 0 0
\(363\) 263537.i 1.99999i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) −798193. −5.86213
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 297404. 2.09249
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) − 514819.i − 3.54654i
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 325078. 2.10476
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 187802.i 1.19157i 0.803145 + 0.595784i \(0.203158\pi\)
−0.803145 + 0.595784i \(0.796842\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) − 243856.i − 1.50149i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 306892. 1.83459 0.917296 0.398207i \(-0.130367\pi\)
0.917296 + 0.398207i \(0.130367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −116337. −0.669030
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) −626397. −3.50081
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 337501. 1.75124 0.875622 0.482998i \(-0.160452\pi\)
0.875622 + 0.482998i \(0.160452\pi\)
\(440\) 0 0
\(441\) −583435. −2.99996
\(442\) 0 0
\(443\) 235205.i 1.19850i 0.800561 + 0.599252i \(0.204535\pi\)
−0.800561 + 0.599252i \(0.795465\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 73726.0 0.365703 0.182851 0.983141i \(-0.441467\pi\)
0.182851 + 0.983141i \(0.441467\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 783585.i − 3.81847i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 89198.8i − 0.419718i −0.977732 0.209859i \(-0.932700\pi\)
0.977732 0.209859i \(-0.0673005\pi\)
\(462\) 0 0
\(463\) 419134. 1.95520 0.977599 0.210474i \(-0.0675009\pi\)
0.977599 + 0.210474i \(0.0675009\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −403641. −1.70191 −0.850956 0.525237i \(-0.823977\pi\)
−0.850956 + 0.525237i \(0.823977\pi\)
\(488\) 0 0
\(489\) −465738. −1.94771
\(490\) 0 0
\(491\) 479703.i 1.98980i 0.100861 + 0.994901i \(0.467840\pi\)
−0.100861 + 0.994901i \(0.532160\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 431788.i − 1.73408i −0.498238 0.867040i \(-0.666019\pi\)
0.498238 0.867040i \(-0.333981\pi\)
\(500\) 0 0
\(501\) 50147.7i 0.199791i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.29017e6i 5.01914i
\(508\) 0 0
\(509\) 281870.i 1.08796i 0.839098 + 0.543980i \(0.183083\pi\)
−0.839098 + 0.543980i \(0.816917\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 136738. 0.507639
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 279841. 1.00000
\(530\) 0 0
\(531\) − 727192.i − 2.57905i
\(532\) 0 0
\(533\) 1.03997e6i 3.66073i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −839201. −2.91016
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 520798.i 1.77940i 0.456541 + 0.889702i \(0.349088\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 158012.i − 0.528099i −0.964509 0.264050i \(-0.914942\pi\)
0.964509 0.264050i \(-0.0850583\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −330625. −1.00000
\(576\) 0 0
\(577\) −419399. −1.25973 −0.629863 0.776706i \(-0.716889\pi\)
−0.629863 + 0.776706i \(0.716889\pi\)
\(578\) 0 0
\(579\) − 442199.i − 1.31905i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 69337.8i − 0.201231i −0.994925 0.100615i \(-0.967919\pi\)
0.994925 0.100615i \(-0.0320811\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 1.10546e6 3.16495
\(592\) 0 0
\(593\) 621502. 1.76739 0.883697 0.468060i \(-0.155047\pi\)
0.883697 + 0.468060i \(0.155047\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 505634. 1.40923 0.704616 0.709589i \(-0.251119\pi\)
0.704616 + 0.709589i \(0.251119\pi\)
\(600\) 0 0
\(601\) 351933. 0.974343 0.487171 0.873306i \(-0.338029\pi\)
0.487171 + 0.873306i \(0.338029\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −587902. −1.59561 −0.797806 0.602914i \(-0.794006\pi\)
−0.797806 + 0.602914i \(0.794006\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 816138.i 2.18616i
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 1.54252e6i 3.99990i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 390625. 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 841146. 2.09925
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 760163.i 1.87339i
\(638\) 0 0
\(639\) −668442. −1.63705
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 645850. 1.54285 0.771424 0.636321i \(-0.219545\pi\)
0.771424 + 0.636321i \(0.219545\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 772505.i − 1.81165i −0.423650 0.905826i \(-0.639251\pi\)
0.423650 0.905826i \(-0.360749\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.51096e6 5.81713
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 496921.i − 1.11696i
\(668\) 0 0
\(669\) − 836384.i − 1.86876i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 705679. 1.55803 0.779017 0.627002i \(-0.215718\pi\)
0.779017 + 0.627002i \(0.215718\pi\)
\(674\) 0 0
\(675\) − 1.82245e6i − 3.99990i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 169707.i 0.363796i 0.983317 + 0.181898i \(0.0582241\pi\)
−0.983317 + 0.181898i \(0.941776\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 701419.i 1.46900i 0.678609 + 0.734500i \(0.262583\pi\)
−0.678609 + 0.734500i \(0.737417\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) − 1.30743e6i − 2.67586i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −407450. −0.801485
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 2.04561e6i − 3.97911i
\(718\) 0 0
\(719\) −290878. −0.562669 −0.281335 0.959610i \(-0.590777\pi\)
−0.281335 + 0.959610i \(0.590777\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 587100.i 1.11696i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −3.71978e6 −6.99943
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 113939.i − 0.208632i −0.994544 0.104316i \(-0.966735\pi\)
0.994544 0.104316i \(-0.0332654\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −33128.9 −0.0572055 −0.0286027 0.999591i \(-0.509106\pi\)
−0.0286027 + 0.999591i \(0.509106\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −947465. −1.61054
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 2.03178e6i 3.41797i
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 481392. 0.801485
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.73910e6 4.46771
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.03318e6 −3.12198
\(808\) 0 0
\(809\) −1.28765e6 −1.96743 −0.983715 0.179733i \(-0.942476\pi\)
−0.983715 + 0.179733i \(0.942476\pi\)
\(810\) 0 0
\(811\) − 1.19765e6i − 1.82091i −0.413605 0.910457i \(-0.635730\pi\)
0.413605 0.910457i \(-0.364270\pi\)
\(812\) 0 0
\(813\) − 1.17154e6i − 1.77246i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 1.31974e6i − 1.95795i −0.203989 0.978973i \(-0.565391\pi\)
0.203989 0.978973i \(-0.434609\pi\)
\(822\) 0 0
\(823\) 1.18309e6 1.74669 0.873347 0.487099i \(-0.161945\pi\)
0.873347 + 0.487099i \(0.161945\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) − 190375.i − 0.277014i −0.990361 0.138507i \(-0.955770\pi\)
0.990361 0.138507i \(-0.0442303\pi\)
\(830\) 0 0
\(831\) 1.94187e6 2.81202
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.24592e6i − 3.20586i
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −175115. −0.247590
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 924253.i 1.27026i 0.772405 + 0.635130i \(0.219053\pi\)
−0.772405 + 0.635130i \(0.780947\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 354901. 0.483221 0.241610 0.970373i \(-0.422324\pi\)
0.241610 + 0.970373i \(0.422324\pi\)
\(858\) 0 0
\(859\) − 25862.4i − 0.0350495i −0.999846 0.0175248i \(-0.994421\pi\)
0.999846 0.0175248i \(-0.00557859\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.45639e6 −1.95549 −0.977743 0.209805i \(-0.932717\pi\)
−0.977743 + 0.209805i \(0.932717\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.50337e6i − 1.99999i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.25528e6i 1.63208i 0.577995 + 0.816040i \(0.303835\pi\)
−0.577995 + 0.816040i \(0.696165\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) − 1.40353e6i − 1.80011i −0.435772 0.900057i \(-0.643525\pi\)
0.435772 0.900057i \(-0.356475\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.57082e6 −1.99655 −0.998274 0.0587350i \(-0.981293\pi\)
−0.998274 + 0.0587350i \(0.981293\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3.01468e6 3.74676
\(898\) 0 0
\(899\) 723520.i 0.895223i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) − 4.64284e6i − 5.61896i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 2.21681e6 2.61342
\(922\) 0 0
\(923\) 870920.i 1.02229i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −266089. −0.308316 −0.154158 0.988046i \(-0.549266\pi\)
−0.154158 + 0.988046i \(0.549266\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 3.33019e6i 3.82566i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 1.73765e6 1.95407
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.78848e6i 1.99427i 0.0756540 + 0.997134i \(0.475896\pi\)
−0.0756540 + 0.997134i \(0.524104\pi\)
\(948\) 0 0
\(949\) − 3.27155e6i − 3.63263i
\(950\) 0 0
\(951\) 2.75548e6 3.04674
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −330272. −0.357623
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.22322e6 −1.30813 −0.654066 0.756438i \(-0.726938\pi\)
−0.654066 + 0.756438i \(0.726938\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.56176e6 −3.74676
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −632446. −0.643986 −0.321993 0.946742i \(-0.604353\pi\)
−0.321993 + 0.946742i \(0.604353\pi\)
\(992\) 0 0
\(993\) 3.40946e6 3.45770
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.97212e6i 1.98401i 0.126203 + 0.992004i \(0.459721\pi\)
−0.126203 + 0.992004i \(0.540279\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 736.5.e.d.689.1 6
4.3 odd 2 184.5.e.d.45.1 6
8.3 odd 2 184.5.e.d.45.2 yes 6
8.5 even 2 inner 736.5.e.d.689.6 6
23.22 odd 2 CM 736.5.e.d.689.1 6
92.91 even 2 184.5.e.d.45.1 6
184.45 odd 2 inner 736.5.e.d.689.6 6
184.91 even 2 184.5.e.d.45.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.5.e.d.45.1 6 4.3 odd 2
184.5.e.d.45.1 6 92.91 even 2
184.5.e.d.45.2 yes 6 8.3 odd 2
184.5.e.d.45.2 yes 6 184.91 even 2
736.5.e.d.689.1 6 1.1 even 1 trivial
736.5.e.d.689.1 6 23.22 odd 2 CM
736.5.e.d.689.6 6 8.5 even 2 inner
736.5.e.d.689.6 6 184.45 odd 2 inner