Properties

Label 736.5
Level 736
Weight 5
Dimension 37662
Nonzero newspaces 12
Sturm bound 168960
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(168960\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(736))\).

Total New Old
Modular forms 68288 38082 30206
Cusp forms 66880 37662 29218
Eisenstein series 1408 420 988

Trace form

\( 37662 q - 80 q^{2} - 62 q^{3} - 80 q^{4} - 32 q^{5} - 80 q^{6} - 58 q^{7} - 80 q^{8} - 182 q^{9} + 320 q^{10} - 254 q^{11} - 1520 q^{12} - 544 q^{13} - 944 q^{14} - 50 q^{15} + 1160 q^{16} + 824 q^{17}+ \cdots + 87874 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(736))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
736.5.d \(\chi_{736}(415, \cdot)\) 736.5.d.a 44 1
736.5.d.b 44
736.5.e \(\chi_{736}(689, \cdot)\) 736.5.e.a 1 1
736.5.e.b 1
736.5.e.c 2
736.5.e.d 6
736.5.e.e 84
736.5.f \(\chi_{736}(321, \cdot)\) 736.5.f.a 48 1
736.5.f.b 48
736.5.g \(\chi_{736}(47, \cdot)\) 736.5.g.a 88 1
736.5.k \(\chi_{736}(137, \cdot)\) None 0 2
736.5.l \(\chi_{736}(231, \cdot)\) None 0 2
736.5.o \(\chi_{736}(139, \cdot)\) n/a 1408 4
736.5.p \(\chi_{736}(45, \cdot)\) n/a 1528 4
736.5.s \(\chi_{736}(239, \cdot)\) n/a 940 10
736.5.t \(\chi_{736}(33, \cdot)\) n/a 960 10
736.5.u \(\chi_{736}(17, \cdot)\) n/a 940 10
736.5.v \(\chi_{736}(31, \cdot)\) n/a 960 10
736.5.y \(\chi_{736}(39, \cdot)\) None 0 20
736.5.z \(\chi_{736}(57, \cdot)\) None 0 20
736.5.bc \(\chi_{736}(5, \cdot)\) n/a 15280 40
736.5.bd \(\chi_{736}(3, \cdot)\) n/a 15280 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(736))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(736)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(184))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(368))\)\(^{\oplus 2}\)