Defining parameters
Level: | \( N \) | = | \( 736 = 2^{5} \cdot 23 \) |
Weight: | \( k \) | = | \( 5 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(168960\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(736))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 68288 | 38082 | 30206 |
Cusp forms | 66880 | 37662 | 29218 |
Eisenstein series | 1408 | 420 | 988 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(736))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
736.5.d | \(\chi_{736}(415, \cdot)\) | 736.5.d.a | 44 | 1 |
736.5.d.b | 44 | |||
736.5.e | \(\chi_{736}(689, \cdot)\) | 736.5.e.a | 1 | 1 |
736.5.e.b | 1 | |||
736.5.e.c | 2 | |||
736.5.e.d | 6 | |||
736.5.e.e | 84 | |||
736.5.f | \(\chi_{736}(321, \cdot)\) | 736.5.f.a | 48 | 1 |
736.5.f.b | 48 | |||
736.5.g | \(\chi_{736}(47, \cdot)\) | 736.5.g.a | 88 | 1 |
736.5.k | \(\chi_{736}(137, \cdot)\) | None | 0 | 2 |
736.5.l | \(\chi_{736}(231, \cdot)\) | None | 0 | 2 |
736.5.o | \(\chi_{736}(139, \cdot)\) | n/a | 1408 | 4 |
736.5.p | \(\chi_{736}(45, \cdot)\) | n/a | 1528 | 4 |
736.5.s | \(\chi_{736}(239, \cdot)\) | n/a | 940 | 10 |
736.5.t | \(\chi_{736}(33, \cdot)\) | n/a | 960 | 10 |
736.5.u | \(\chi_{736}(17, \cdot)\) | n/a | 940 | 10 |
736.5.v | \(\chi_{736}(31, \cdot)\) | n/a | 960 | 10 |
736.5.y | \(\chi_{736}(39, \cdot)\) | None | 0 | 20 |
736.5.z | \(\chi_{736}(57, \cdot)\) | None | 0 | 20 |
736.5.bc | \(\chi_{736}(5, \cdot)\) | n/a | 15280 | 40 |
736.5.bd | \(\chi_{736}(3, \cdot)\) | n/a | 15280 | 40 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(736))\) into lower level spaces
\( S_{5}^{\mathrm{old}}(\Gamma_1(736)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(184))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(368))\)\(^{\oplus 2}\)