Properties

Label 736.5.e.d
Level $736$
Weight $5$
Character orbit 736.e
Analytic conductor $76.080$
Analytic rank $0$
Dimension $6$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [736,5,Mod(689,736)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("736.689"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 736.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(76.0802928297\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.8869743.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{3} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 184)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} + (9 \beta_{3} + 5 \beta_1 - 81) q^{9} + (18 \beta_{4} - 7 \beta_{2}) q^{13} + 529 q^{23} - 625 q^{25} + ( - 19 \beta_{5} + 81 \beta_{4}) q^{27} + ( - 57 \beta_{4} + 82 \beta_{2}) q^{29}+ \cdots + ( - 91 \beta_{5} + \cdots - 932 \beta_{2}) q^{93}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 486 q^{9} + 3174 q^{23} - 3750 q^{25} + 17076 q^{39} + 14406 q^{49} + 39366 q^{81} - 50484 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{3} + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{5} - 2\nu^{4} + 7\nu^{2} + 10\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{5} + 10\nu^{4} + 11\nu^{2} - 18\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 5\nu^{5} - 6\nu^{4} - 3\nu^{2} - 2\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 7\nu^{5} + 2\nu^{4} - 17\nu^{2} + 22\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 32\nu^{3} - 48 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 5\beta_{4} - 4\beta_{3} - \beta_{2} + 3\beta_1 ) / 64 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{4} + 4\beta_{3} + 7\beta_{2} + 5\beta_1 ) / 64 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{5} + 48 ) / 32 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 9\beta_{4} - 20\beta_{3} + 11\beta_{2} - \beta_1 ) / 64 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 11\beta_{4} + 28\beta_{3} + 17\beta_{2} + 3\beta_1 ) / 64 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/736\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(415\) \(645\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
689.1
−0.261988 + 1.38973i
1.33454 + 0.467979i
−1.07255 + 0.921756i
−1.07255 0.921756i
1.33454 0.467979i
−0.261988 1.38973i
0 17.9999i 0 0 0 0 0 −242.997 0
689.2 0 9.04985i 0 0 0 0 0 −0.899768 0
689.3 0 8.95006i 0 0 0 0 0 0.896448 0
689.4 0 8.95006i 0 0 0 0 0 0.896448 0
689.5 0 9.04985i 0 0 0 0 0 −0.899768 0
689.6 0 17.9999i 0 0 0 0 0 −242.997 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 689.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
8.b even 2 1 inner
184.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 736.5.e.d 6
4.b odd 2 1 184.5.e.d 6
8.b even 2 1 inner 736.5.e.d 6
8.d odd 2 1 184.5.e.d 6
23.b odd 2 1 CM 736.5.e.d 6
92.b even 2 1 184.5.e.d 6
184.e odd 2 1 inner 736.5.e.d 6
184.h even 2 1 184.5.e.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.5.e.d 6 4.b odd 2 1
184.5.e.d 6 8.d odd 2 1
184.5.e.d 6 92.b even 2 1
184.5.e.d 6 184.h even 2 1
736.5.e.d 6 1.a even 1 1 trivial
736.5.e.d 6 8.b even 2 1 inner
736.5.e.d 6 23.b odd 2 1 CM
736.5.e.d 6 184.e odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(736, [\chi])\):

\( T_{3}^{6} + 486T_{3}^{4} + 59049T_{3}^{2} + 2125568 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 486 T^{4} + \cdots + 2125568 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 21232849874688 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( (T - 529)^{6} \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 13\!\cdots\!88 \) Copy content Toggle raw display
$31$ \( (T^{3} - 2770563 T - 1677025154)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( (T^{3} - 8477283 T - 7596282526)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} \) Copy content Toggle raw display
$47$ \( (T^{3} - 14639043 T + 20606906306)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( (T^{2} + 8955648)^{3} \) Copy content Toggle raw display
$61$ \( T^{6} \) Copy content Toggle raw display
$67$ \( T^{6} \) Copy content Toggle raw display
$71$ \( (T^{3} - 76235043 T + 188893891874)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} - 85194723 T + 223017449186)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less