Properties

Label 735.4.a.z.1.5
Level $735$
Weight $4$
Character 735.1
Self dual yes
Analytic conductor $43.366$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,4,Mod(1,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,3,-15,25,-25,-9,0,21,45,-15,43] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 30x^{3} + 22x^{2} + 153x - 84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-4.10571\) of defining polynomial
Character \(\chi\) \(=\) 735.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.10571 q^{2} -3.00000 q^{3} +18.0682 q^{4} -5.00000 q^{5} -15.3171 q^{6} +51.4055 q^{8} +9.00000 q^{9} -25.5285 q^{10} -40.7354 q^{11} -54.2047 q^{12} -70.9263 q^{13} +15.0000 q^{15} +117.915 q^{16} -22.6701 q^{17} +45.9514 q^{18} -77.6588 q^{19} -90.3412 q^{20} -207.983 q^{22} -90.0622 q^{23} -154.217 q^{24} +25.0000 q^{25} -362.129 q^{26} -27.0000 q^{27} +213.332 q^{29} +76.5856 q^{30} +175.729 q^{31} +190.798 q^{32} +122.206 q^{33} -115.747 q^{34} +162.614 q^{36} -354.933 q^{37} -396.503 q^{38} +212.779 q^{39} -257.028 q^{40} -249.001 q^{41} +297.920 q^{43} -736.018 q^{44} -45.0000 q^{45} -459.831 q^{46} -168.771 q^{47} -353.746 q^{48} +127.643 q^{50} +68.0102 q^{51} -1281.51 q^{52} -102.473 q^{53} -137.854 q^{54} +203.677 q^{55} +232.976 q^{57} +1089.21 q^{58} +23.4797 q^{59} +271.024 q^{60} +874.628 q^{61} +897.220 q^{62} +30.8343 q^{64} +354.631 q^{65} +623.949 q^{66} -810.771 q^{67} -409.609 q^{68} +270.187 q^{69} -632.487 q^{71} +462.650 q^{72} -914.872 q^{73} -1812.18 q^{74} -75.0000 q^{75} -1403.16 q^{76} +1086.39 q^{78} -520.886 q^{79} -589.577 q^{80} +81.0000 q^{81} -1271.33 q^{82} +1027.67 q^{83} +113.350 q^{85} +1521.09 q^{86} -639.996 q^{87} -2094.02 q^{88} -1003.75 q^{89} -229.757 q^{90} -1627.27 q^{92} -527.187 q^{93} -861.694 q^{94} +388.294 q^{95} -572.394 q^{96} +639.620 q^{97} -366.619 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} - 15 q^{3} + 25 q^{4} - 25 q^{5} - 9 q^{6} + 21 q^{8} + 45 q^{9} - 15 q^{10} + 43 q^{11} - 75 q^{12} - 123 q^{13} + 75 q^{15} + 161 q^{16} - 124 q^{17} + 27 q^{18} - 37 q^{19} - 125 q^{20}+ \cdots + 387 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.10571 1.80514 0.902570 0.430543i \(-0.141678\pi\)
0.902570 + 0.430543i \(0.141678\pi\)
\(3\) −3.00000 −0.577350
\(4\) 18.0682 2.25853
\(5\) −5.00000 −0.447214
\(6\) −15.3171 −1.04220
\(7\) 0 0
\(8\) 51.4055 2.27182
\(9\) 9.00000 0.333333
\(10\) −25.5285 −0.807283
\(11\) −40.7354 −1.11656 −0.558281 0.829652i \(-0.688539\pi\)
−0.558281 + 0.829652i \(0.688539\pi\)
\(12\) −54.2047 −1.30396
\(13\) −70.9263 −1.51319 −0.756593 0.653887i \(-0.773137\pi\)
−0.756593 + 0.653887i \(0.773137\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 117.915 1.84243
\(17\) −22.6701 −0.323430 −0.161715 0.986838i \(-0.551702\pi\)
−0.161715 + 0.986838i \(0.551702\pi\)
\(18\) 45.9514 0.601713
\(19\) −77.6588 −0.937692 −0.468846 0.883280i \(-0.655330\pi\)
−0.468846 + 0.883280i \(0.655330\pi\)
\(20\) −90.3412 −1.01005
\(21\) 0 0
\(22\) −207.983 −2.01555
\(23\) −90.0622 −0.816490 −0.408245 0.912872i \(-0.633859\pi\)
−0.408245 + 0.912872i \(0.633859\pi\)
\(24\) −154.217 −1.31164
\(25\) 25.0000 0.200000
\(26\) −362.129 −2.73151
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 213.332 1.36603 0.683013 0.730406i \(-0.260669\pi\)
0.683013 + 0.730406i \(0.260669\pi\)
\(30\) 76.5856 0.466085
\(31\) 175.729 1.01812 0.509062 0.860730i \(-0.329992\pi\)
0.509062 + 0.860730i \(0.329992\pi\)
\(32\) 190.798 1.05402
\(33\) 122.206 0.644648
\(34\) −115.747 −0.583836
\(35\) 0 0
\(36\) 162.614 0.752844
\(37\) −354.933 −1.57704 −0.788521 0.615007i \(-0.789153\pi\)
−0.788521 + 0.615007i \(0.789153\pi\)
\(38\) −396.503 −1.69267
\(39\) 212.779 0.873638
\(40\) −257.028 −1.01599
\(41\) −249.001 −0.948475 −0.474238 0.880397i \(-0.657276\pi\)
−0.474238 + 0.880397i \(0.657276\pi\)
\(42\) 0 0
\(43\) 297.920 1.05657 0.528284 0.849068i \(-0.322836\pi\)
0.528284 + 0.849068i \(0.322836\pi\)
\(44\) −736.018 −2.52179
\(45\) −45.0000 −0.149071
\(46\) −459.831 −1.47388
\(47\) −168.771 −0.523782 −0.261891 0.965097i \(-0.584346\pi\)
−0.261891 + 0.965097i \(0.584346\pi\)
\(48\) −353.746 −1.06373
\(49\) 0 0
\(50\) 127.643 0.361028
\(51\) 68.0102 0.186732
\(52\) −1281.51 −3.41757
\(53\) −102.473 −0.265581 −0.132790 0.991144i \(-0.542394\pi\)
−0.132790 + 0.991144i \(0.542394\pi\)
\(54\) −137.854 −0.347399
\(55\) 203.677 0.499342
\(56\) 0 0
\(57\) 232.976 0.541377
\(58\) 1089.21 2.46587
\(59\) 23.4797 0.0518102 0.0259051 0.999664i \(-0.491753\pi\)
0.0259051 + 0.999664i \(0.491753\pi\)
\(60\) 271.024 0.583150
\(61\) 874.628 1.83581 0.917907 0.396796i \(-0.129878\pi\)
0.917907 + 0.396796i \(0.129878\pi\)
\(62\) 897.220 1.83786
\(63\) 0 0
\(64\) 30.8343 0.0602232
\(65\) 354.631 0.676717
\(66\) 623.949 1.16368
\(67\) −810.771 −1.47838 −0.739190 0.673497i \(-0.764792\pi\)
−0.739190 + 0.673497i \(0.764792\pi\)
\(68\) −409.609 −0.730476
\(69\) 270.187 0.471401
\(70\) 0 0
\(71\) −632.487 −1.05722 −0.528608 0.848866i \(-0.677286\pi\)
−0.528608 + 0.848866i \(0.677286\pi\)
\(72\) 462.650 0.757275
\(73\) −914.872 −1.46682 −0.733409 0.679788i \(-0.762072\pi\)
−0.733409 + 0.679788i \(0.762072\pi\)
\(74\) −1812.18 −2.84678
\(75\) −75.0000 −0.115470
\(76\) −1403.16 −2.11781
\(77\) 0 0
\(78\) 1086.39 1.57704
\(79\) −520.886 −0.741827 −0.370913 0.928668i \(-0.620955\pi\)
−0.370913 + 0.928668i \(0.620955\pi\)
\(80\) −589.577 −0.823960
\(81\) 81.0000 0.111111
\(82\) −1271.33 −1.71213
\(83\) 1027.67 1.35905 0.679527 0.733651i \(-0.262185\pi\)
0.679527 + 0.733651i \(0.262185\pi\)
\(84\) 0 0
\(85\) 113.350 0.144642
\(86\) 1521.09 1.90725
\(87\) −639.996 −0.788676
\(88\) −2094.02 −2.53663
\(89\) −1003.75 −1.19548 −0.597738 0.801692i \(-0.703934\pi\)
−0.597738 + 0.801692i \(0.703934\pi\)
\(90\) −229.757 −0.269094
\(91\) 0 0
\(92\) −1627.27 −1.84407
\(93\) −527.187 −0.587814
\(94\) −861.694 −0.945500
\(95\) 388.294 0.419349
\(96\) −572.394 −0.608538
\(97\) 639.620 0.669522 0.334761 0.942303i \(-0.391344\pi\)
0.334761 + 0.942303i \(0.391344\pi\)
\(98\) 0 0
\(99\) −366.619 −0.372188
\(100\) 451.706 0.451706
\(101\) 633.869 0.624479 0.312239 0.950003i \(-0.398921\pi\)
0.312239 + 0.950003i \(0.398921\pi\)
\(102\) 347.240 0.337078
\(103\) 387.578 0.370769 0.185385 0.982666i \(-0.440647\pi\)
0.185385 + 0.982666i \(0.440647\pi\)
\(104\) −3646.00 −3.43769
\(105\) 0 0
\(106\) −523.198 −0.479410
\(107\) 138.730 0.125341 0.0626707 0.998034i \(-0.480038\pi\)
0.0626707 + 0.998034i \(0.480038\pi\)
\(108\) −487.843 −0.434654
\(109\) −1712.97 −1.50526 −0.752628 0.658447i \(-0.771214\pi\)
−0.752628 + 0.658447i \(0.771214\pi\)
\(110\) 1039.92 0.901382
\(111\) 1064.80 0.910506
\(112\) 0 0
\(113\) 2083.35 1.73438 0.867192 0.497975i \(-0.165923\pi\)
0.867192 + 0.497975i \(0.165923\pi\)
\(114\) 1189.51 0.977261
\(115\) 450.311 0.365145
\(116\) 3854.54 3.08521
\(117\) −638.336 −0.504395
\(118\) 119.881 0.0935246
\(119\) 0 0
\(120\) 771.083 0.586582
\(121\) 328.375 0.246713
\(122\) 4465.59 3.31390
\(123\) 747.004 0.547602
\(124\) 3175.11 2.29946
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 432.085 0.301900 0.150950 0.988541i \(-0.451767\pi\)
0.150950 + 0.988541i \(0.451767\pi\)
\(128\) −1368.95 −0.945308
\(129\) −893.760 −0.610009
\(130\) 1810.64 1.22157
\(131\) 657.499 0.438519 0.219259 0.975667i \(-0.429636\pi\)
0.219259 + 0.975667i \(0.429636\pi\)
\(132\) 2208.05 1.45596
\(133\) 0 0
\(134\) −4139.56 −2.66868
\(135\) 135.000 0.0860663
\(136\) −1165.37 −0.734775
\(137\) 292.515 0.182418 0.0912090 0.995832i \(-0.470927\pi\)
0.0912090 + 0.995832i \(0.470927\pi\)
\(138\) 1379.49 0.850944
\(139\) 1673.02 1.02089 0.510445 0.859910i \(-0.329481\pi\)
0.510445 + 0.859910i \(0.329481\pi\)
\(140\) 0 0
\(141\) 506.312 0.302406
\(142\) −3229.29 −1.90842
\(143\) 2889.21 1.68957
\(144\) 1061.24 0.614143
\(145\) −1066.66 −0.610906
\(146\) −4671.07 −2.64781
\(147\) 0 0
\(148\) −6413.01 −3.56180
\(149\) 2521.01 1.38610 0.693050 0.720890i \(-0.256266\pi\)
0.693050 + 0.720890i \(0.256266\pi\)
\(150\) −382.928 −0.208440
\(151\) 1379.32 0.743361 0.371680 0.928361i \(-0.378782\pi\)
0.371680 + 0.928361i \(0.378782\pi\)
\(152\) −3992.09 −2.13027
\(153\) −204.031 −0.107810
\(154\) 0 0
\(155\) −878.644 −0.455319
\(156\) 3844.54 1.97314
\(157\) −1992.73 −1.01298 −0.506488 0.862247i \(-0.669057\pi\)
−0.506488 + 0.862247i \(0.669057\pi\)
\(158\) −2659.49 −1.33910
\(159\) 307.420 0.153333
\(160\) −953.990 −0.471372
\(161\) 0 0
\(162\) 413.562 0.200571
\(163\) 1902.94 0.914418 0.457209 0.889359i \(-0.348849\pi\)
0.457209 + 0.889359i \(0.348849\pi\)
\(164\) −4499.02 −2.14216
\(165\) −611.031 −0.288295
\(166\) 5246.98 2.45328
\(167\) 378.184 0.175238 0.0876189 0.996154i \(-0.472074\pi\)
0.0876189 + 0.996154i \(0.472074\pi\)
\(168\) 0 0
\(169\) 2833.54 1.28973
\(170\) 578.734 0.261099
\(171\) −698.929 −0.312564
\(172\) 5382.89 2.38629
\(173\) 664.037 0.291825 0.145913 0.989297i \(-0.453388\pi\)
0.145913 + 0.989297i \(0.453388\pi\)
\(174\) −3267.63 −1.42367
\(175\) 0 0
\(176\) −4803.34 −2.05719
\(177\) −70.4392 −0.0299126
\(178\) −5124.86 −2.15800
\(179\) −334.999 −0.139883 −0.0699414 0.997551i \(-0.522281\pi\)
−0.0699414 + 0.997551i \(0.522281\pi\)
\(180\) −813.071 −0.336682
\(181\) −1225.58 −0.503298 −0.251649 0.967819i \(-0.580973\pi\)
−0.251649 + 0.967819i \(0.580973\pi\)
\(182\) 0 0
\(183\) −2623.88 −1.05991
\(184\) −4629.69 −1.85492
\(185\) 1774.66 0.705275
\(186\) −2691.66 −1.06109
\(187\) 923.475 0.361129
\(188\) −3049.39 −1.18298
\(189\) 0 0
\(190\) 1982.51 0.756983
\(191\) −1581.40 −0.599088 −0.299544 0.954082i \(-0.596835\pi\)
−0.299544 + 0.954082i \(0.596835\pi\)
\(192\) −92.5029 −0.0347699
\(193\) −3894.63 −1.45255 −0.726273 0.687406i \(-0.758749\pi\)
−0.726273 + 0.687406i \(0.758749\pi\)
\(194\) 3265.71 1.20858
\(195\) −1063.89 −0.390703
\(196\) 0 0
\(197\) 993.858 0.359439 0.179719 0.983718i \(-0.442481\pi\)
0.179719 + 0.983718i \(0.442481\pi\)
\(198\) −1871.85 −0.671851
\(199\) 3079.88 1.09712 0.548560 0.836111i \(-0.315176\pi\)
0.548560 + 0.836111i \(0.315176\pi\)
\(200\) 1285.14 0.454365
\(201\) 2432.31 0.853543
\(202\) 3236.35 1.12727
\(203\) 0 0
\(204\) 1228.83 0.421740
\(205\) 1245.01 0.424171
\(206\) 1978.86 0.669290
\(207\) −810.560 −0.272163
\(208\) −8363.31 −2.78794
\(209\) 3163.46 1.04699
\(210\) 0 0
\(211\) 2114.72 0.689968 0.344984 0.938609i \(-0.387884\pi\)
0.344984 + 0.938609i \(0.387884\pi\)
\(212\) −1851.51 −0.599822
\(213\) 1897.46 0.610384
\(214\) 708.315 0.226259
\(215\) −1489.60 −0.472511
\(216\) −1387.95 −0.437213
\(217\) 0 0
\(218\) −8745.92 −2.71720
\(219\) 2744.62 0.846867
\(220\) 3680.09 1.12778
\(221\) 1607.90 0.489409
\(222\) 5436.55 1.64359
\(223\) −2578.44 −0.774282 −0.387141 0.922021i \(-0.626537\pi\)
−0.387141 + 0.922021i \(0.626537\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 10637.0 3.13080
\(227\) −2925.92 −0.855509 −0.427754 0.903895i \(-0.640695\pi\)
−0.427754 + 0.903895i \(0.640695\pi\)
\(228\) 4209.47 1.22272
\(229\) 1047.88 0.302383 0.151191 0.988505i \(-0.451689\pi\)
0.151191 + 0.988505i \(0.451689\pi\)
\(230\) 2299.16 0.659139
\(231\) 0 0
\(232\) 10966.4 3.10337
\(233\) −3869.99 −1.08812 −0.544058 0.839047i \(-0.683113\pi\)
−0.544058 + 0.839047i \(0.683113\pi\)
\(234\) −3259.16 −0.910504
\(235\) 843.854 0.234242
\(236\) 424.237 0.117015
\(237\) 1562.66 0.428294
\(238\) 0 0
\(239\) −6060.77 −1.64033 −0.820164 0.572128i \(-0.806118\pi\)
−0.820164 + 0.572128i \(0.806118\pi\)
\(240\) 1768.73 0.475713
\(241\) 4184.12 1.11835 0.559176 0.829049i \(-0.311118\pi\)
0.559176 + 0.829049i \(0.311118\pi\)
\(242\) 1676.58 0.445351
\(243\) −243.000 −0.0641500
\(244\) 15803.0 4.14624
\(245\) 0 0
\(246\) 3813.98 0.988499
\(247\) 5508.05 1.41890
\(248\) 9033.43 2.31300
\(249\) −3083.01 −0.784650
\(250\) −638.213 −0.161457
\(251\) 2631.65 0.661786 0.330893 0.943668i \(-0.392650\pi\)
0.330893 + 0.943668i \(0.392650\pi\)
\(252\) 0 0
\(253\) 3668.72 0.911663
\(254\) 2206.10 0.544972
\(255\) −340.051 −0.0835092
\(256\) −7236.14 −1.76664
\(257\) −3288.77 −0.798240 −0.399120 0.916899i \(-0.630684\pi\)
−0.399120 + 0.916899i \(0.630684\pi\)
\(258\) −4563.28 −1.10115
\(259\) 0 0
\(260\) 6407.57 1.52839
\(261\) 1919.99 0.455342
\(262\) 3357.00 0.791588
\(263\) −5408.90 −1.26816 −0.634081 0.773266i \(-0.718622\pi\)
−0.634081 + 0.773266i \(0.718622\pi\)
\(264\) 6282.07 1.46453
\(265\) 512.366 0.118771
\(266\) 0 0
\(267\) 3011.25 0.690208
\(268\) −14649.2 −3.33897
\(269\) −539.788 −0.122348 −0.0611738 0.998127i \(-0.519484\pi\)
−0.0611738 + 0.998127i \(0.519484\pi\)
\(270\) 689.270 0.155362
\(271\) −4091.14 −0.917045 −0.458522 0.888683i \(-0.651621\pi\)
−0.458522 + 0.888683i \(0.651621\pi\)
\(272\) −2673.15 −0.595896
\(273\) 0 0
\(274\) 1493.50 0.329290
\(275\) −1018.39 −0.223313
\(276\) 4881.80 1.06467
\(277\) 3091.34 0.670543 0.335271 0.942122i \(-0.391172\pi\)
0.335271 + 0.942122i \(0.391172\pi\)
\(278\) 8541.95 1.84285
\(279\) 1581.56 0.339375
\(280\) 0 0
\(281\) 7215.73 1.53187 0.765933 0.642920i \(-0.222277\pi\)
0.765933 + 0.642920i \(0.222277\pi\)
\(282\) 2585.08 0.545884
\(283\) −2964.72 −0.622735 −0.311368 0.950290i \(-0.600787\pi\)
−0.311368 + 0.950290i \(0.600787\pi\)
\(284\) −11427.9 −2.38776
\(285\) −1164.88 −0.242111
\(286\) 14751.5 3.04990
\(287\) 0 0
\(288\) 1717.18 0.351340
\(289\) −4399.07 −0.895393
\(290\) −5446.05 −1.10277
\(291\) −1918.86 −0.386548
\(292\) −16530.1 −3.31285
\(293\) 7924.10 1.57997 0.789984 0.613127i \(-0.210089\pi\)
0.789984 + 0.613127i \(0.210089\pi\)
\(294\) 0 0
\(295\) −117.399 −0.0231702
\(296\) −18245.5 −3.58276
\(297\) 1099.86 0.214883
\(298\) 12871.5 2.50210
\(299\) 6387.78 1.23550
\(300\) −1355.12 −0.260793
\(301\) 0 0
\(302\) 7042.41 1.34187
\(303\) −1901.61 −0.360543
\(304\) −9157.17 −1.72763
\(305\) −4373.14 −0.821001
\(306\) −1041.72 −0.194612
\(307\) 4067.00 0.756079 0.378039 0.925790i \(-0.376598\pi\)
0.378039 + 0.925790i \(0.376598\pi\)
\(308\) 0 0
\(309\) −1162.73 −0.214064
\(310\) −4486.10 −0.821914
\(311\) −7652.58 −1.39530 −0.697650 0.716439i \(-0.745771\pi\)
−0.697650 + 0.716439i \(0.745771\pi\)
\(312\) 10938.0 1.98475
\(313\) −1822.12 −0.329049 −0.164525 0.986373i \(-0.552609\pi\)
−0.164525 + 0.986373i \(0.552609\pi\)
\(314\) −10174.3 −1.82856
\(315\) 0 0
\(316\) −9411.50 −1.67544
\(317\) 3148.86 0.557910 0.278955 0.960304i \(-0.410012\pi\)
0.278955 + 0.960304i \(0.410012\pi\)
\(318\) 1569.59 0.276788
\(319\) −8690.17 −1.52525
\(320\) −154.172 −0.0269327
\(321\) −416.190 −0.0723659
\(322\) 0 0
\(323\) 1760.53 0.303277
\(324\) 1463.53 0.250948
\(325\) −1773.16 −0.302637
\(326\) 9715.87 1.65065
\(327\) 5138.91 0.869059
\(328\) −12800.0 −2.15477
\(329\) 0 0
\(330\) −3119.75 −0.520413
\(331\) −5856.12 −0.972452 −0.486226 0.873833i \(-0.661627\pi\)
−0.486226 + 0.873833i \(0.661627\pi\)
\(332\) 18568.2 3.06946
\(333\) −3194.39 −0.525681
\(334\) 1930.89 0.316329
\(335\) 4053.86 0.661152
\(336\) 0 0
\(337\) −7065.69 −1.14212 −0.571058 0.820910i \(-0.693467\pi\)
−0.571058 + 0.820910i \(0.693467\pi\)
\(338\) 14467.2 2.32814
\(339\) −6250.06 −1.00135
\(340\) 2048.04 0.326679
\(341\) −7158.39 −1.13680
\(342\) −3568.53 −0.564222
\(343\) 0 0
\(344\) 15314.7 2.40033
\(345\) −1350.93 −0.210817
\(346\) 3390.38 0.526785
\(347\) 9897.45 1.53119 0.765595 0.643323i \(-0.222445\pi\)
0.765595 + 0.643323i \(0.222445\pi\)
\(348\) −11563.6 −1.78125
\(349\) −11832.6 −1.81486 −0.907431 0.420201i \(-0.861960\pi\)
−0.907431 + 0.420201i \(0.861960\pi\)
\(350\) 0 0
\(351\) 1915.01 0.291213
\(352\) −7772.23 −1.17688
\(353\) −7007.38 −1.05656 −0.528279 0.849071i \(-0.677163\pi\)
−0.528279 + 0.849071i \(0.677163\pi\)
\(354\) −359.642 −0.0539965
\(355\) 3162.43 0.472802
\(356\) −18136.0 −2.70002
\(357\) 0 0
\(358\) −1710.41 −0.252508
\(359\) 2814.39 0.413754 0.206877 0.978367i \(-0.433670\pi\)
0.206877 + 0.978367i \(0.433670\pi\)
\(360\) −2313.25 −0.338663
\(361\) −828.115 −0.120734
\(362\) −6257.47 −0.908523
\(363\) −985.124 −0.142440
\(364\) 0 0
\(365\) 4574.36 0.655981
\(366\) −13396.8 −1.91328
\(367\) −2349.86 −0.334227 −0.167114 0.985938i \(-0.553445\pi\)
−0.167114 + 0.985938i \(0.553445\pi\)
\(368\) −10619.7 −1.50433
\(369\) −2241.01 −0.316158
\(370\) 9060.91 1.27312
\(371\) 0 0
\(372\) −9525.34 −1.32760
\(373\) −1659.30 −0.230336 −0.115168 0.993346i \(-0.536741\pi\)
−0.115168 + 0.993346i \(0.536741\pi\)
\(374\) 4714.99 0.651889
\(375\) 375.000 0.0516398
\(376\) −8675.75 −1.18994
\(377\) −15130.8 −2.06705
\(378\) 0 0
\(379\) 5327.80 0.722087 0.361043 0.932549i \(-0.382421\pi\)
0.361043 + 0.932549i \(0.382421\pi\)
\(380\) 7015.79 0.947111
\(381\) −1296.25 −0.174302
\(382\) −8074.15 −1.08144
\(383\) −6239.75 −0.832471 −0.416235 0.909257i \(-0.636651\pi\)
−0.416235 + 0.909257i \(0.636651\pi\)
\(384\) 4106.86 0.545774
\(385\) 0 0
\(386\) −19884.8 −2.62205
\(387\) 2681.28 0.352189
\(388\) 11556.8 1.51213
\(389\) 9485.21 1.23630 0.618148 0.786062i \(-0.287883\pi\)
0.618148 + 0.786062i \(0.287883\pi\)
\(390\) −5431.93 −0.705273
\(391\) 2041.72 0.264077
\(392\) 0 0
\(393\) −1972.50 −0.253179
\(394\) 5074.35 0.648837
\(395\) 2604.43 0.331755
\(396\) −6624.16 −0.840597
\(397\) −7892.74 −0.997796 −0.498898 0.866661i \(-0.666262\pi\)
−0.498898 + 0.866661i \(0.666262\pi\)
\(398\) 15725.0 1.98046
\(399\) 0 0
\(400\) 2947.89 0.368486
\(401\) −12459.7 −1.55163 −0.775817 0.630958i \(-0.782662\pi\)
−0.775817 + 0.630958i \(0.782662\pi\)
\(402\) 12418.7 1.54077
\(403\) −12463.8 −1.54061
\(404\) 11452.9 1.41040
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) 14458.3 1.76087
\(408\) 3496.10 0.424223
\(409\) −3403.62 −0.411487 −0.205744 0.978606i \(-0.565961\pi\)
−0.205744 + 0.978606i \(0.565961\pi\)
\(410\) 6356.64 0.765688
\(411\) −877.546 −0.105319
\(412\) 7002.86 0.837393
\(413\) 0 0
\(414\) −4138.48 −0.491293
\(415\) −5138.35 −0.607787
\(416\) −13532.6 −1.59493
\(417\) −5019.06 −0.589411
\(418\) 16151.7 1.88997
\(419\) 1376.83 0.160532 0.0802658 0.996773i \(-0.474423\pi\)
0.0802658 + 0.996773i \(0.474423\pi\)
\(420\) 0 0
\(421\) −15757.3 −1.82414 −0.912069 0.410036i \(-0.865516\pi\)
−0.912069 + 0.410036i \(0.865516\pi\)
\(422\) 10797.1 1.24549
\(423\) −1518.94 −0.174594
\(424\) −5267.69 −0.603353
\(425\) −566.752 −0.0646859
\(426\) 9687.88 1.10183
\(427\) 0 0
\(428\) 2506.61 0.283088
\(429\) −8667.63 −0.975472
\(430\) −7605.46 −0.852949
\(431\) 5083.70 0.568152 0.284076 0.958802i \(-0.408313\pi\)
0.284076 + 0.958802i \(0.408313\pi\)
\(432\) −3183.72 −0.354576
\(433\) −4631.44 −0.514025 −0.257013 0.966408i \(-0.582738\pi\)
−0.257013 + 0.966408i \(0.582738\pi\)
\(434\) 0 0
\(435\) 3199.98 0.352706
\(436\) −30950.4 −3.39966
\(437\) 6994.12 0.765616
\(438\) 14013.2 1.52871
\(439\) 2338.87 0.254279 0.127139 0.991885i \(-0.459420\pi\)
0.127139 + 0.991885i \(0.459420\pi\)
\(440\) 10470.1 1.13442
\(441\) 0 0
\(442\) 8209.49 0.883451
\(443\) 11811.5 1.26677 0.633387 0.773835i \(-0.281664\pi\)
0.633387 + 0.773835i \(0.281664\pi\)
\(444\) 19239.0 2.05641
\(445\) 5018.75 0.534633
\(446\) −13164.7 −1.39769
\(447\) −7563.02 −0.800265
\(448\) 0 0
\(449\) 9582.29 1.00716 0.503582 0.863948i \(-0.332015\pi\)
0.503582 + 0.863948i \(0.332015\pi\)
\(450\) 1148.78 0.120343
\(451\) 10143.2 1.05903
\(452\) 37642.5 3.91716
\(453\) −4137.96 −0.429180
\(454\) −14938.9 −1.54431
\(455\) 0 0
\(456\) 11976.3 1.22991
\(457\) −6571.95 −0.672697 −0.336349 0.941738i \(-0.609192\pi\)
−0.336349 + 0.941738i \(0.609192\pi\)
\(458\) 5350.15 0.545843
\(459\) 612.092 0.0622440
\(460\) 8136.33 0.824692
\(461\) 4197.59 0.424081 0.212041 0.977261i \(-0.431989\pi\)
0.212041 + 0.977261i \(0.431989\pi\)
\(462\) 0 0
\(463\) −6125.75 −0.614876 −0.307438 0.951568i \(-0.599472\pi\)
−0.307438 + 0.951568i \(0.599472\pi\)
\(464\) 25155.2 2.51681
\(465\) 2635.93 0.262878
\(466\) −19759.0 −1.96420
\(467\) −3228.08 −0.319867 −0.159934 0.987128i \(-0.551128\pi\)
−0.159934 + 0.987128i \(0.551128\pi\)
\(468\) −11533.6 −1.13919
\(469\) 0 0
\(470\) 4308.47 0.422840
\(471\) 5978.19 0.584842
\(472\) 1206.99 0.117704
\(473\) −12135.9 −1.17972
\(474\) 7978.48 0.773130
\(475\) −1941.47 −0.187538
\(476\) 0 0
\(477\) −922.259 −0.0885269
\(478\) −30944.5 −2.96102
\(479\) −3126.31 −0.298214 −0.149107 0.988821i \(-0.547640\pi\)
−0.149107 + 0.988821i \(0.547640\pi\)
\(480\) 2861.97 0.272147
\(481\) 25174.1 2.38636
\(482\) 21362.9 2.01878
\(483\) 0 0
\(484\) 5933.15 0.557208
\(485\) −3198.10 −0.299419
\(486\) −1240.69 −0.115800
\(487\) −869.038 −0.0808621 −0.0404311 0.999182i \(-0.512873\pi\)
−0.0404311 + 0.999182i \(0.512873\pi\)
\(488\) 44960.7 4.17065
\(489\) −5708.83 −0.527939
\(490\) 0 0
\(491\) 6617.71 0.608254 0.304127 0.952631i \(-0.401635\pi\)
0.304127 + 0.952631i \(0.401635\pi\)
\(492\) 13497.1 1.23678
\(493\) −4836.25 −0.441813
\(494\) 28122.5 2.56132
\(495\) 1833.09 0.166447
\(496\) 20721.2 1.87582
\(497\) 0 0
\(498\) −15740.9 −1.41640
\(499\) −888.154 −0.0796778 −0.0398389 0.999206i \(-0.512684\pi\)
−0.0398389 + 0.999206i \(0.512684\pi\)
\(500\) −2258.53 −0.202009
\(501\) −1134.55 −0.101174
\(502\) 13436.4 1.19462
\(503\) 10757.4 0.953572 0.476786 0.879019i \(-0.341802\pi\)
0.476786 + 0.879019i \(0.341802\pi\)
\(504\) 0 0
\(505\) −3169.35 −0.279275
\(506\) 18731.4 1.64568
\(507\) −8500.61 −0.744626
\(508\) 7807.01 0.681850
\(509\) −8860.03 −0.771540 −0.385770 0.922595i \(-0.626064\pi\)
−0.385770 + 0.922595i \(0.626064\pi\)
\(510\) −1736.20 −0.150746
\(511\) 0 0
\(512\) −25994.0 −2.24372
\(513\) 2096.79 0.180459
\(514\) −16791.5 −1.44093
\(515\) −1937.89 −0.165813
\(516\) −16148.7 −1.37772
\(517\) 6874.95 0.584835
\(518\) 0 0
\(519\) −1992.11 −0.168485
\(520\) 18230.0 1.53738
\(521\) 75.3875 0.00633932 0.00316966 0.999995i \(-0.498991\pi\)
0.00316966 + 0.999995i \(0.498991\pi\)
\(522\) 9802.90 0.821956
\(523\) −8666.59 −0.724596 −0.362298 0.932062i \(-0.618008\pi\)
−0.362298 + 0.932062i \(0.618008\pi\)
\(524\) 11879.9 0.990408
\(525\) 0 0
\(526\) −27616.2 −2.28921
\(527\) −3983.79 −0.329291
\(528\) 14410.0 1.18772
\(529\) −4055.80 −0.333344
\(530\) 2615.99 0.214399
\(531\) 211.318 0.0172701
\(532\) 0 0
\(533\) 17660.7 1.43522
\(534\) 15374.6 1.24592
\(535\) −693.650 −0.0560544
\(536\) −41678.1 −3.35862
\(537\) 1005.00 0.0807614
\(538\) −2756.00 −0.220854
\(539\) 0 0
\(540\) 2439.21 0.194383
\(541\) 12284.8 0.976272 0.488136 0.872768i \(-0.337677\pi\)
0.488136 + 0.872768i \(0.337677\pi\)
\(542\) −20888.2 −1.65539
\(543\) 3676.75 0.290579
\(544\) −4325.40 −0.340901
\(545\) 8564.85 0.673171
\(546\) 0 0
\(547\) −2906.85 −0.227218 −0.113609 0.993526i \(-0.536241\pi\)
−0.113609 + 0.993526i \(0.536241\pi\)
\(548\) 5285.24 0.411997
\(549\) 7871.65 0.611938
\(550\) −5199.58 −0.403110
\(551\) −16567.1 −1.28091
\(552\) 13889.1 1.07094
\(553\) 0 0
\(554\) 15783.5 1.21042
\(555\) −5323.99 −0.407191
\(556\) 30228.5 2.30571
\(557\) 3873.82 0.294684 0.147342 0.989086i \(-0.452928\pi\)
0.147342 + 0.989086i \(0.452928\pi\)
\(558\) 8074.98 0.612619
\(559\) −21130.4 −1.59878
\(560\) 0 0
\(561\) −2770.43 −0.208498
\(562\) 36841.4 2.76523
\(563\) 5461.09 0.408805 0.204403 0.978887i \(-0.434475\pi\)
0.204403 + 0.978887i \(0.434475\pi\)
\(564\) 9148.18 0.682992
\(565\) −10416.8 −0.775640
\(566\) −15137.0 −1.12412
\(567\) 0 0
\(568\) −32513.3 −2.40181
\(569\) 13105.0 0.965534 0.482767 0.875749i \(-0.339632\pi\)
0.482767 + 0.875749i \(0.339632\pi\)
\(570\) −5947.54 −0.437044
\(571\) 3439.26 0.252064 0.126032 0.992026i \(-0.459776\pi\)
0.126032 + 0.992026i \(0.459776\pi\)
\(572\) 52203.0 3.81594
\(573\) 4744.19 0.345884
\(574\) 0 0
\(575\) −2251.56 −0.163298
\(576\) 277.509 0.0200744
\(577\) −17792.2 −1.28371 −0.641853 0.766828i \(-0.721834\pi\)
−0.641853 + 0.766828i \(0.721834\pi\)
\(578\) −22460.3 −1.61631
\(579\) 11683.9 0.838628
\(580\) −19272.7 −1.37975
\(581\) 0 0
\(582\) −9797.14 −0.697774
\(583\) 4174.29 0.296538
\(584\) −47029.4 −3.33235
\(585\) 3191.68 0.225572
\(586\) 40458.1 2.85206
\(587\) −14416.6 −1.01369 −0.506846 0.862037i \(-0.669189\pi\)
−0.506846 + 0.862037i \(0.669189\pi\)
\(588\) 0 0
\(589\) −13646.9 −0.954686
\(590\) −599.403 −0.0418255
\(591\) −2981.57 −0.207522
\(592\) −41852.1 −2.90559
\(593\) −8172.03 −0.565911 −0.282955 0.959133i \(-0.591315\pi\)
−0.282955 + 0.959133i \(0.591315\pi\)
\(594\) 5615.54 0.387893
\(595\) 0 0
\(596\) 45550.2 3.13055
\(597\) −9239.65 −0.633423
\(598\) 32614.1 2.23025
\(599\) −2492.18 −0.169996 −0.0849980 0.996381i \(-0.527088\pi\)
−0.0849980 + 0.996381i \(0.527088\pi\)
\(600\) −3855.41 −0.262328
\(601\) 13835.4 0.939031 0.469516 0.882924i \(-0.344429\pi\)
0.469516 + 0.882924i \(0.344429\pi\)
\(602\) 0 0
\(603\) −7296.94 −0.492794
\(604\) 24921.9 1.67890
\(605\) −1641.87 −0.110333
\(606\) −9709.05 −0.650830
\(607\) −7335.90 −0.490536 −0.245268 0.969455i \(-0.578876\pi\)
−0.245268 + 0.969455i \(0.578876\pi\)
\(608\) −14817.1 −0.988345
\(609\) 0 0
\(610\) −22328.0 −1.48202
\(611\) 11970.3 0.792579
\(612\) −3686.48 −0.243492
\(613\) 6012.04 0.396124 0.198062 0.980189i \(-0.436535\pi\)
0.198062 + 0.980189i \(0.436535\pi\)
\(614\) 20764.9 1.36483
\(615\) −3735.02 −0.244895
\(616\) 0 0
\(617\) −22927.4 −1.49598 −0.747991 0.663708i \(-0.768982\pi\)
−0.747991 + 0.663708i \(0.768982\pi\)
\(618\) −5936.58 −0.386415
\(619\) −17921.5 −1.16369 −0.581847 0.813298i \(-0.697670\pi\)
−0.581847 + 0.813298i \(0.697670\pi\)
\(620\) −15875.6 −1.02835
\(621\) 2431.68 0.157134
\(622\) −39071.8 −2.51871
\(623\) 0 0
\(624\) 25089.9 1.60962
\(625\) 625.000 0.0400000
\(626\) −9303.22 −0.593980
\(627\) −9490.39 −0.604481
\(628\) −36005.1 −2.28784
\(629\) 8046.35 0.510062
\(630\) 0 0
\(631\) 19270.7 1.21578 0.607888 0.794023i \(-0.292017\pi\)
0.607888 + 0.794023i \(0.292017\pi\)
\(632\) −26776.4 −1.68530
\(633\) −6344.16 −0.398353
\(634\) 16077.1 1.00711
\(635\) −2160.42 −0.135014
\(636\) 5554.53 0.346308
\(637\) 0 0
\(638\) −44369.5 −2.75330
\(639\) −5692.38 −0.352405
\(640\) 6844.76 0.422755
\(641\) 28238.6 1.74003 0.870013 0.493029i \(-0.164110\pi\)
0.870013 + 0.493029i \(0.164110\pi\)
\(642\) −2124.94 −0.130631
\(643\) 19055.3 1.16869 0.584346 0.811505i \(-0.301351\pi\)
0.584346 + 0.811505i \(0.301351\pi\)
\(644\) 0 0
\(645\) 4468.80 0.272804
\(646\) 8988.75 0.547458
\(647\) 16211.3 0.985057 0.492529 0.870296i \(-0.336073\pi\)
0.492529 + 0.870296i \(0.336073\pi\)
\(648\) 4163.85 0.252425
\(649\) −956.457 −0.0578493
\(650\) −9053.22 −0.546302
\(651\) 0 0
\(652\) 34382.9 2.06524
\(653\) −26532.1 −1.59001 −0.795007 0.606600i \(-0.792533\pi\)
−0.795007 + 0.606600i \(0.792533\pi\)
\(654\) 26237.8 1.56877
\(655\) −3287.50 −0.196112
\(656\) −29361.1 −1.74750
\(657\) −8233.85 −0.488939
\(658\) 0 0
\(659\) 1883.19 0.111318 0.0556592 0.998450i \(-0.482274\pi\)
0.0556592 + 0.998450i \(0.482274\pi\)
\(660\) −11040.3 −0.651124
\(661\) −4674.27 −0.275050 −0.137525 0.990498i \(-0.543915\pi\)
−0.137525 + 0.990498i \(0.543915\pi\)
\(662\) −29899.6 −1.75541
\(663\) −4823.71 −0.282560
\(664\) 52827.9 3.08753
\(665\) 0 0
\(666\) −16309.6 −0.948928
\(667\) −19213.2 −1.11535
\(668\) 6833.11 0.395780
\(669\) 7735.31 0.447032
\(670\) 20697.8 1.19347
\(671\) −35628.3 −2.04980
\(672\) 0 0
\(673\) −23344.3 −1.33709 −0.668543 0.743674i \(-0.733082\pi\)
−0.668543 + 0.743674i \(0.733082\pi\)
\(674\) −36075.4 −2.06168
\(675\) −675.000 −0.0384900
\(676\) 51197.0 2.91289
\(677\) −1399.49 −0.0794490 −0.0397245 0.999211i \(-0.512648\pi\)
−0.0397245 + 0.999211i \(0.512648\pi\)
\(678\) −31911.0 −1.80757
\(679\) 0 0
\(680\) 5826.83 0.328601
\(681\) 8777.77 0.493928
\(682\) −36548.6 −2.05208
\(683\) 33020.7 1.84993 0.924964 0.380054i \(-0.124095\pi\)
0.924964 + 0.380054i \(0.124095\pi\)
\(684\) −12628.4 −0.705935
\(685\) −1462.58 −0.0815798
\(686\) 0 0
\(687\) −3143.63 −0.174581
\(688\) 35129.4 1.94665
\(689\) 7268.04 0.401873
\(690\) −6897.47 −0.380554
\(691\) −720.176 −0.0396480 −0.0198240 0.999803i \(-0.506311\pi\)
−0.0198240 + 0.999803i \(0.506311\pi\)
\(692\) 11998.0 0.659096
\(693\) 0 0
\(694\) 50533.5 2.76401
\(695\) −8365.10 −0.456556
\(696\) −32899.3 −1.79173
\(697\) 5644.88 0.306765
\(698\) −60414.0 −3.27608
\(699\) 11610.0 0.628224
\(700\) 0 0
\(701\) 11675.1 0.629048 0.314524 0.949249i \(-0.398155\pi\)
0.314524 + 0.949249i \(0.398155\pi\)
\(702\) 9777.48 0.525680
\(703\) 27563.6 1.47878
\(704\) −1256.05 −0.0672430
\(705\) −2531.56 −0.135240
\(706\) −35777.6 −1.90724
\(707\) 0 0
\(708\) −1272.71 −0.0675586
\(709\) −26771.7 −1.41810 −0.709050 0.705158i \(-0.750876\pi\)
−0.709050 + 0.705158i \(0.750876\pi\)
\(710\) 16146.5 0.853473
\(711\) −4687.98 −0.247276
\(712\) −51598.3 −2.71591
\(713\) −15826.5 −0.831288
\(714\) 0 0
\(715\) −14446.1 −0.755597
\(716\) −6052.85 −0.315930
\(717\) 18182.3 0.947044
\(718\) 14369.4 0.746884
\(719\) −34783.5 −1.80418 −0.902089 0.431550i \(-0.857967\pi\)
−0.902089 + 0.431550i \(0.857967\pi\)
\(720\) −5306.20 −0.274653
\(721\) 0 0
\(722\) −4228.11 −0.217942
\(723\) −12552.4 −0.645680
\(724\) −22144.1 −1.13671
\(725\) 5333.30 0.273205
\(726\) −5029.75 −0.257124
\(727\) −25368.1 −1.29415 −0.647077 0.762425i \(-0.724009\pi\)
−0.647077 + 0.762425i \(0.724009\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 23355.3 1.18414
\(731\) −6753.87 −0.341725
\(732\) −47409.0 −2.39383
\(733\) −31691.5 −1.59694 −0.798468 0.602038i \(-0.794356\pi\)
−0.798468 + 0.602038i \(0.794356\pi\)
\(734\) −11997.7 −0.603327
\(735\) 0 0
\(736\) −17183.7 −0.860596
\(737\) 33027.1 1.65070
\(738\) −11442.0 −0.570710
\(739\) −13196.0 −0.656862 −0.328431 0.944528i \(-0.606520\pi\)
−0.328431 + 0.944528i \(0.606520\pi\)
\(740\) 32065.1 1.59289
\(741\) −16524.1 −0.819203
\(742\) 0 0
\(743\) 8244.34 0.407073 0.203537 0.979067i \(-0.434756\pi\)
0.203537 + 0.979067i \(0.434756\pi\)
\(744\) −27100.3 −1.33541
\(745\) −12605.0 −0.619883
\(746\) −8471.90 −0.415788
\(747\) 9249.03 0.453018
\(748\) 16685.6 0.815622
\(749\) 0 0
\(750\) 1914.64 0.0932170
\(751\) 31769.8 1.54367 0.771834 0.635824i \(-0.219339\pi\)
0.771834 + 0.635824i \(0.219339\pi\)
\(752\) −19900.7 −0.965031
\(753\) −7894.95 −0.382082
\(754\) −77253.7 −3.73132
\(755\) −6896.60 −0.332441
\(756\) 0 0
\(757\) −3019.09 −0.144954 −0.0724772 0.997370i \(-0.523090\pi\)
−0.0724772 + 0.997370i \(0.523090\pi\)
\(758\) 27202.2 1.30347
\(759\) −11006.2 −0.526349
\(760\) 19960.4 0.952686
\(761\) −24096.3 −1.14782 −0.573910 0.818918i \(-0.694574\pi\)
−0.573910 + 0.818918i \(0.694574\pi\)
\(762\) −6618.29 −0.314640
\(763\) 0 0
\(764\) −28573.1 −1.35306
\(765\) 1020.15 0.0482140
\(766\) −31858.3 −1.50273
\(767\) −1665.33 −0.0783984
\(768\) 21708.4 1.01997
\(769\) −7954.16 −0.372996 −0.186498 0.982455i \(-0.559714\pi\)
−0.186498 + 0.982455i \(0.559714\pi\)
\(770\) 0 0
\(771\) 9866.30 0.460864
\(772\) −70369.1 −3.28062
\(773\) −36239.4 −1.68621 −0.843105 0.537749i \(-0.819275\pi\)
−0.843105 + 0.537749i \(0.819275\pi\)
\(774\) 13689.8 0.635751
\(775\) 4393.22 0.203625
\(776\) 32880.0 1.52104
\(777\) 0 0
\(778\) 48428.7 2.23169
\(779\) 19337.1 0.889377
\(780\) −19222.7 −0.882414
\(781\) 25764.6 1.18045
\(782\) 10424.4 0.476696
\(783\) −5759.96 −0.262892
\(784\) 0 0
\(785\) 9963.65 0.453017
\(786\) −10071.0 −0.457024
\(787\) 9684.13 0.438630 0.219315 0.975654i \(-0.429618\pi\)
0.219315 + 0.975654i \(0.429618\pi\)
\(788\) 17957.3 0.811803
\(789\) 16226.7 0.732174
\(790\) 13297.5 0.598864
\(791\) 0 0
\(792\) −18846.2 −0.845545
\(793\) −62034.1 −2.77793
\(794\) −40298.0 −1.80116
\(795\) −1537.10 −0.0685727
\(796\) 55648.1 2.47788
\(797\) −6717.98 −0.298573 −0.149287 0.988794i \(-0.547698\pi\)
−0.149287 + 0.988794i \(0.547698\pi\)
\(798\) 0 0
\(799\) 3826.05 0.169407
\(800\) 4769.95 0.210804
\(801\) −9033.75 −0.398492
\(802\) −63615.3 −2.80092
\(803\) 37267.7 1.63779
\(804\) 43947.7 1.92775
\(805\) 0 0
\(806\) −63636.5 −2.78102
\(807\) 1619.37 0.0706374
\(808\) 32584.4 1.41871
\(809\) −1210.73 −0.0526167 −0.0263083 0.999654i \(-0.508375\pi\)
−0.0263083 + 0.999654i \(0.508375\pi\)
\(810\) −2067.81 −0.0896981
\(811\) −34825.1 −1.50786 −0.753930 0.656955i \(-0.771844\pi\)
−0.753930 + 0.656955i \(0.771844\pi\)
\(812\) 0 0
\(813\) 12273.4 0.529456
\(814\) 73820.0 3.17861
\(815\) −9514.72 −0.408940
\(816\) 8019.46 0.344041
\(817\) −23136.1 −0.990734
\(818\) −17377.9 −0.742792
\(819\) 0 0
\(820\) 22495.1 0.958003
\(821\) 30169.6 1.28249 0.641247 0.767334i \(-0.278417\pi\)
0.641247 + 0.767334i \(0.278417\pi\)
\(822\) −4480.49 −0.190116
\(823\) −26016.4 −1.10191 −0.550956 0.834534i \(-0.685737\pi\)
−0.550956 + 0.834534i \(0.685737\pi\)
\(824\) 19923.7 0.842322
\(825\) 3055.16 0.128930
\(826\) 0 0
\(827\) 15602.4 0.656045 0.328022 0.944670i \(-0.393618\pi\)
0.328022 + 0.944670i \(0.393618\pi\)
\(828\) −14645.4 −0.614689
\(829\) 19506.0 0.817215 0.408607 0.912710i \(-0.366015\pi\)
0.408607 + 0.912710i \(0.366015\pi\)
\(830\) −26234.9 −1.09714
\(831\) −9274.01 −0.387138
\(832\) −2186.96 −0.0911289
\(833\) 0 0
\(834\) −25625.8 −1.06397
\(835\) −1890.92 −0.0783687
\(836\) 57158.2 2.36466
\(837\) −4744.68 −0.195938
\(838\) 7029.71 0.289782
\(839\) 12231.2 0.503300 0.251650 0.967818i \(-0.419027\pi\)
0.251650 + 0.967818i \(0.419027\pi\)
\(840\) 0 0
\(841\) 21121.6 0.866028
\(842\) −80452.0 −3.29283
\(843\) −21647.2 −0.884423
\(844\) 38209.3 1.55831
\(845\) −14167.7 −0.576784
\(846\) −7755.25 −0.315167
\(847\) 0 0
\(848\) −12083.2 −0.489314
\(849\) 8894.15 0.359536
\(850\) −2893.67 −0.116767
\(851\) 31966.0 1.28764
\(852\) 34283.8 1.37857
\(853\) −1234.83 −0.0495660 −0.0247830 0.999693i \(-0.507889\pi\)
−0.0247830 + 0.999693i \(0.507889\pi\)
\(854\) 0 0
\(855\) 3494.64 0.139783
\(856\) 7131.49 0.284754
\(857\) −24101.4 −0.960662 −0.480331 0.877087i \(-0.659483\pi\)
−0.480331 + 0.877087i \(0.659483\pi\)
\(858\) −44254.4 −1.76086
\(859\) −13362.9 −0.530777 −0.265389 0.964142i \(-0.585500\pi\)
−0.265389 + 0.964142i \(0.585500\pi\)
\(860\) −26914.5 −1.06718
\(861\) 0 0
\(862\) 25955.9 1.02559
\(863\) −21934.1 −0.865174 −0.432587 0.901592i \(-0.642399\pi\)
−0.432587 + 0.901592i \(0.642399\pi\)
\(864\) −5151.54 −0.202846
\(865\) −3320.18 −0.130508
\(866\) −23646.8 −0.927888
\(867\) 13197.2 0.516956
\(868\) 0 0
\(869\) 21218.5 0.828296
\(870\) 16338.2 0.636685
\(871\) 57505.0 2.23706
\(872\) −88056.1 −3.41967
\(873\) 5756.58 0.223174
\(874\) 35709.9 1.38204
\(875\) 0 0
\(876\) 49590.4 1.91268
\(877\) −770.318 −0.0296600 −0.0148300 0.999890i \(-0.504721\pi\)
−0.0148300 + 0.999890i \(0.504721\pi\)
\(878\) 11941.6 0.459009
\(879\) −23772.3 −0.912195
\(880\) 24016.7 0.920003
\(881\) −17887.9 −0.684064 −0.342032 0.939688i \(-0.611115\pi\)
−0.342032 + 0.939688i \(0.611115\pi\)
\(882\) 0 0
\(883\) 583.389 0.0222340 0.0111170 0.999938i \(-0.496461\pi\)
0.0111170 + 0.999938i \(0.496461\pi\)
\(884\) 29052.0 1.10534
\(885\) 352.196 0.0133773
\(886\) 60306.0 2.28670
\(887\) 42443.8 1.60668 0.803340 0.595521i \(-0.203054\pi\)
0.803340 + 0.595521i \(0.203054\pi\)
\(888\) 54736.5 2.06851
\(889\) 0 0
\(890\) 25624.3 0.965087
\(891\) −3299.57 −0.124063
\(892\) −46587.8 −1.74874
\(893\) 13106.5 0.491146
\(894\) −38614.6 −1.44459
\(895\) 1675.00 0.0625575
\(896\) 0 0
\(897\) −19163.3 −0.713317
\(898\) 48924.4 1.81807
\(899\) 37488.6 1.39078
\(900\) 4065.35 0.150569
\(901\) 2323.08 0.0858967
\(902\) 51788.1 1.91170
\(903\) 0 0
\(904\) 107096. 3.94021
\(905\) 6127.92 0.225082
\(906\) −21127.2 −0.774729
\(907\) −27717.8 −1.01472 −0.507362 0.861733i \(-0.669379\pi\)
−0.507362 + 0.861733i \(0.669379\pi\)
\(908\) −52866.3 −1.93219
\(909\) 5704.82 0.208160
\(910\) 0 0
\(911\) 20446.7 0.743609 0.371805 0.928311i \(-0.378739\pi\)
0.371805 + 0.928311i \(0.378739\pi\)
\(912\) 27471.5 0.997448
\(913\) −41862.6 −1.51747
\(914\) −33554.4 −1.21431
\(915\) 13119.4 0.474005
\(916\) 18933.3 0.682941
\(917\) 0 0
\(918\) 3125.16 0.112359
\(919\) 17455.5 0.626556 0.313278 0.949662i \(-0.398573\pi\)
0.313278 + 0.949662i \(0.398573\pi\)
\(920\) 23148.5 0.829546
\(921\) −12201.0 −0.436522
\(922\) 21431.7 0.765526
\(923\) 44859.9 1.59976
\(924\) 0 0
\(925\) −8873.32 −0.315409
\(926\) −31276.3 −1.10994
\(927\) 3488.20 0.123590
\(928\) 40703.3 1.43982
\(929\) −20748.8 −0.732773 −0.366387 0.930463i \(-0.619405\pi\)
−0.366387 + 0.930463i \(0.619405\pi\)
\(930\) 13458.3 0.474532
\(931\) 0 0
\(932\) −69923.8 −2.45754
\(933\) 22957.7 0.805576
\(934\) −16481.7 −0.577405
\(935\) −4617.38 −0.161502
\(936\) −32814.0 −1.14590
\(937\) −12135.5 −0.423106 −0.211553 0.977366i \(-0.567852\pi\)
−0.211553 + 0.977366i \(0.567852\pi\)
\(938\) 0 0
\(939\) 5466.36 0.189977
\(940\) 15247.0 0.529044
\(941\) 25266.0 0.875292 0.437646 0.899147i \(-0.355812\pi\)
0.437646 + 0.899147i \(0.355812\pi\)
\(942\) 30522.9 1.05572
\(943\) 22425.6 0.774421
\(944\) 2768.62 0.0954566
\(945\) 0 0
\(946\) −61962.3 −2.12957
\(947\) −42768.7 −1.46758 −0.733789 0.679377i \(-0.762250\pi\)
−0.733789 + 0.679377i \(0.762250\pi\)
\(948\) 28234.5 0.967315
\(949\) 64888.4 2.21957
\(950\) −9912.57 −0.338533
\(951\) −9446.57 −0.322110
\(952\) 0 0
\(953\) −25855.5 −0.878846 −0.439423 0.898280i \(-0.644817\pi\)
−0.439423 + 0.898280i \(0.644817\pi\)
\(954\) −4708.78 −0.159803
\(955\) 7906.98 0.267920
\(956\) −109507. −3.70473
\(957\) 26070.5 0.880606
\(958\) −15962.0 −0.538318
\(959\) 0 0
\(960\) 462.515 0.0155496
\(961\) 1089.64 0.0365761
\(962\) 128531. 4.30771
\(963\) 1248.57 0.0417805
\(964\) 75599.6 2.52583
\(965\) 19473.1 0.649598
\(966\) 0 0
\(967\) −20336.0 −0.676278 −0.338139 0.941096i \(-0.609797\pi\)
−0.338139 + 0.941096i \(0.609797\pi\)
\(968\) 16880.3 0.560488
\(969\) −5281.59 −0.175097
\(970\) −16328.6 −0.540493
\(971\) 31123.7 1.02864 0.514319 0.857599i \(-0.328045\pi\)
0.514319 + 0.857599i \(0.328045\pi\)
\(972\) −4390.58 −0.144885
\(973\) 0 0
\(974\) −4437.05 −0.145967
\(975\) 5319.47 0.174728
\(976\) 103132. 3.38236
\(977\) 31317.3 1.02552 0.512758 0.858533i \(-0.328624\pi\)
0.512758 + 0.858533i \(0.328624\pi\)
\(978\) −29147.6 −0.953004
\(979\) 40888.2 1.33482
\(980\) 0 0
\(981\) −15416.7 −0.501752
\(982\) 33788.1 1.09798
\(983\) 4002.12 0.129855 0.0649277 0.997890i \(-0.479318\pi\)
0.0649277 + 0.997890i \(0.479318\pi\)
\(984\) 38400.1 1.24406
\(985\) −4969.29 −0.160746
\(986\) −24692.5 −0.797535
\(987\) 0 0
\(988\) 99520.7 3.20463
\(989\) −26831.3 −0.862677
\(990\) 9359.24 0.300461
\(991\) 10042.5 0.321906 0.160953 0.986962i \(-0.448543\pi\)
0.160953 + 0.986962i \(0.448543\pi\)
\(992\) 33528.7 1.07312
\(993\) 17568.4 0.561445
\(994\) 0 0
\(995\) −15399.4 −0.490647
\(996\) −55704.6 −1.77216
\(997\) 9407.44 0.298833 0.149417 0.988774i \(-0.452260\pi\)
0.149417 + 0.988774i \(0.452260\pi\)
\(998\) −4534.65 −0.143830
\(999\) 9583.18 0.303502
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.4.a.z.1.5 5
3.2 odd 2 2205.4.a.bs.1.1 5
7.3 odd 6 105.4.i.d.16.1 10
7.5 odd 6 105.4.i.d.46.1 yes 10
7.6 odd 2 735.4.a.ba.1.5 5
21.5 even 6 315.4.j.h.46.5 10
21.17 even 6 315.4.j.h.226.5 10
21.20 even 2 2205.4.a.br.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.i.d.16.1 10 7.3 odd 6
105.4.i.d.46.1 yes 10 7.5 odd 6
315.4.j.h.46.5 10 21.5 even 6
315.4.j.h.226.5 10 21.17 even 6
735.4.a.z.1.5 5 1.1 even 1 trivial
735.4.a.ba.1.5 5 7.6 odd 2
2205.4.a.br.1.1 5 21.20 even 2
2205.4.a.bs.1.1 5 3.2 odd 2