Properties

Label 735.4.a.ba.1.5
Level $735$
Weight $4$
Character 735.1
Self dual yes
Analytic conductor $43.366$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,4,Mod(1,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,3,15,25,25,9,0,21,45,15,43] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 30x^{3} + 22x^{2} + 153x - 84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-4.10571\) of defining polynomial
Character \(\chi\) \(=\) 735.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.10571 q^{2} +3.00000 q^{3} +18.0682 q^{4} +5.00000 q^{5} +15.3171 q^{6} +51.4055 q^{8} +9.00000 q^{9} +25.5285 q^{10} -40.7354 q^{11} +54.2047 q^{12} +70.9263 q^{13} +15.0000 q^{15} +117.915 q^{16} +22.6701 q^{17} +45.9514 q^{18} +77.6588 q^{19} +90.3412 q^{20} -207.983 q^{22} -90.0622 q^{23} +154.217 q^{24} +25.0000 q^{25} +362.129 q^{26} +27.0000 q^{27} +213.332 q^{29} +76.5856 q^{30} -175.729 q^{31} +190.798 q^{32} -122.206 q^{33} +115.747 q^{34} +162.614 q^{36} -354.933 q^{37} +396.503 q^{38} +212.779 q^{39} +257.028 q^{40} +249.001 q^{41} +297.920 q^{43} -736.018 q^{44} +45.0000 q^{45} -459.831 q^{46} +168.771 q^{47} +353.746 q^{48} +127.643 q^{50} +68.0102 q^{51} +1281.51 q^{52} -102.473 q^{53} +137.854 q^{54} -203.677 q^{55} +232.976 q^{57} +1089.21 q^{58} -23.4797 q^{59} +271.024 q^{60} -874.628 q^{61} -897.220 q^{62} +30.8343 q^{64} +354.631 q^{65} -623.949 q^{66} -810.771 q^{67} +409.609 q^{68} -270.187 q^{69} -632.487 q^{71} +462.650 q^{72} +914.872 q^{73} -1812.18 q^{74} +75.0000 q^{75} +1403.16 q^{76} +1086.39 q^{78} -520.886 q^{79} +589.577 q^{80} +81.0000 q^{81} +1271.33 q^{82} -1027.67 q^{83} +113.350 q^{85} +1521.09 q^{86} +639.996 q^{87} -2094.02 q^{88} +1003.75 q^{89} +229.757 q^{90} -1627.27 q^{92} -527.187 q^{93} +861.694 q^{94} +388.294 q^{95} +572.394 q^{96} -639.620 q^{97} -366.619 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 15 q^{3} + 25 q^{4} + 25 q^{5} + 9 q^{6} + 21 q^{8} + 45 q^{9} + 15 q^{10} + 43 q^{11} + 75 q^{12} + 123 q^{13} + 75 q^{15} + 161 q^{16} + 124 q^{17} + 27 q^{18} + 37 q^{19} + 125 q^{20}+ \cdots + 387 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.10571 1.80514 0.902570 0.430543i \(-0.141678\pi\)
0.902570 + 0.430543i \(0.141678\pi\)
\(3\) 3.00000 0.577350
\(4\) 18.0682 2.25853
\(5\) 5.00000 0.447214
\(6\) 15.3171 1.04220
\(7\) 0 0
\(8\) 51.4055 2.27182
\(9\) 9.00000 0.333333
\(10\) 25.5285 0.807283
\(11\) −40.7354 −1.11656 −0.558281 0.829652i \(-0.688539\pi\)
−0.558281 + 0.829652i \(0.688539\pi\)
\(12\) 54.2047 1.30396
\(13\) 70.9263 1.51319 0.756593 0.653887i \(-0.226863\pi\)
0.756593 + 0.653887i \(0.226863\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 117.915 1.84243
\(17\) 22.6701 0.323430 0.161715 0.986838i \(-0.448298\pi\)
0.161715 + 0.986838i \(0.448298\pi\)
\(18\) 45.9514 0.601713
\(19\) 77.6588 0.937692 0.468846 0.883280i \(-0.344670\pi\)
0.468846 + 0.883280i \(0.344670\pi\)
\(20\) 90.3412 1.01005
\(21\) 0 0
\(22\) −207.983 −2.01555
\(23\) −90.0622 −0.816490 −0.408245 0.912872i \(-0.633859\pi\)
−0.408245 + 0.912872i \(0.633859\pi\)
\(24\) 154.217 1.31164
\(25\) 25.0000 0.200000
\(26\) 362.129 2.73151
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 213.332 1.36603 0.683013 0.730406i \(-0.260669\pi\)
0.683013 + 0.730406i \(0.260669\pi\)
\(30\) 76.5856 0.466085
\(31\) −175.729 −1.01812 −0.509062 0.860730i \(-0.670008\pi\)
−0.509062 + 0.860730i \(0.670008\pi\)
\(32\) 190.798 1.05402
\(33\) −122.206 −0.644648
\(34\) 115.747 0.583836
\(35\) 0 0
\(36\) 162.614 0.752844
\(37\) −354.933 −1.57704 −0.788521 0.615007i \(-0.789153\pi\)
−0.788521 + 0.615007i \(0.789153\pi\)
\(38\) 396.503 1.69267
\(39\) 212.779 0.873638
\(40\) 257.028 1.01599
\(41\) 249.001 0.948475 0.474238 0.880397i \(-0.342724\pi\)
0.474238 + 0.880397i \(0.342724\pi\)
\(42\) 0 0
\(43\) 297.920 1.05657 0.528284 0.849068i \(-0.322836\pi\)
0.528284 + 0.849068i \(0.322836\pi\)
\(44\) −736.018 −2.52179
\(45\) 45.0000 0.149071
\(46\) −459.831 −1.47388
\(47\) 168.771 0.523782 0.261891 0.965097i \(-0.415654\pi\)
0.261891 + 0.965097i \(0.415654\pi\)
\(48\) 353.746 1.06373
\(49\) 0 0
\(50\) 127.643 0.361028
\(51\) 68.0102 0.186732
\(52\) 1281.51 3.41757
\(53\) −102.473 −0.265581 −0.132790 0.991144i \(-0.542394\pi\)
−0.132790 + 0.991144i \(0.542394\pi\)
\(54\) 137.854 0.347399
\(55\) −203.677 −0.499342
\(56\) 0 0
\(57\) 232.976 0.541377
\(58\) 1089.21 2.46587
\(59\) −23.4797 −0.0518102 −0.0259051 0.999664i \(-0.508247\pi\)
−0.0259051 + 0.999664i \(0.508247\pi\)
\(60\) 271.024 0.583150
\(61\) −874.628 −1.83581 −0.917907 0.396796i \(-0.870122\pi\)
−0.917907 + 0.396796i \(0.870122\pi\)
\(62\) −897.220 −1.83786
\(63\) 0 0
\(64\) 30.8343 0.0602232
\(65\) 354.631 0.676717
\(66\) −623.949 −1.16368
\(67\) −810.771 −1.47838 −0.739190 0.673497i \(-0.764792\pi\)
−0.739190 + 0.673497i \(0.764792\pi\)
\(68\) 409.609 0.730476
\(69\) −270.187 −0.471401
\(70\) 0 0
\(71\) −632.487 −1.05722 −0.528608 0.848866i \(-0.677286\pi\)
−0.528608 + 0.848866i \(0.677286\pi\)
\(72\) 462.650 0.757275
\(73\) 914.872 1.46682 0.733409 0.679788i \(-0.237928\pi\)
0.733409 + 0.679788i \(0.237928\pi\)
\(74\) −1812.18 −2.84678
\(75\) 75.0000 0.115470
\(76\) 1403.16 2.11781
\(77\) 0 0
\(78\) 1086.39 1.57704
\(79\) −520.886 −0.741827 −0.370913 0.928668i \(-0.620955\pi\)
−0.370913 + 0.928668i \(0.620955\pi\)
\(80\) 589.577 0.823960
\(81\) 81.0000 0.111111
\(82\) 1271.33 1.71213
\(83\) −1027.67 −1.35905 −0.679527 0.733651i \(-0.737815\pi\)
−0.679527 + 0.733651i \(0.737815\pi\)
\(84\) 0 0
\(85\) 113.350 0.144642
\(86\) 1521.09 1.90725
\(87\) 639.996 0.788676
\(88\) −2094.02 −2.53663
\(89\) 1003.75 1.19548 0.597738 0.801692i \(-0.296066\pi\)
0.597738 + 0.801692i \(0.296066\pi\)
\(90\) 229.757 0.269094
\(91\) 0 0
\(92\) −1627.27 −1.84407
\(93\) −527.187 −0.587814
\(94\) 861.694 0.945500
\(95\) 388.294 0.419349
\(96\) 572.394 0.608538
\(97\) −639.620 −0.669522 −0.334761 0.942303i \(-0.608656\pi\)
−0.334761 + 0.942303i \(0.608656\pi\)
\(98\) 0 0
\(99\) −366.619 −0.372188
\(100\) 451.706 0.451706
\(101\) −633.869 −0.624479 −0.312239 0.950003i \(-0.601079\pi\)
−0.312239 + 0.950003i \(0.601079\pi\)
\(102\) 347.240 0.337078
\(103\) −387.578 −0.370769 −0.185385 0.982666i \(-0.559353\pi\)
−0.185385 + 0.982666i \(0.559353\pi\)
\(104\) 3646.00 3.43769
\(105\) 0 0
\(106\) −523.198 −0.479410
\(107\) 138.730 0.125341 0.0626707 0.998034i \(-0.480038\pi\)
0.0626707 + 0.998034i \(0.480038\pi\)
\(108\) 487.843 0.434654
\(109\) −1712.97 −1.50526 −0.752628 0.658447i \(-0.771214\pi\)
−0.752628 + 0.658447i \(0.771214\pi\)
\(110\) −1039.92 −0.901382
\(111\) −1064.80 −0.910506
\(112\) 0 0
\(113\) 2083.35 1.73438 0.867192 0.497975i \(-0.165923\pi\)
0.867192 + 0.497975i \(0.165923\pi\)
\(114\) 1189.51 0.977261
\(115\) −450.311 −0.365145
\(116\) 3854.54 3.08521
\(117\) 638.336 0.504395
\(118\) −119.881 −0.0935246
\(119\) 0 0
\(120\) 771.083 0.586582
\(121\) 328.375 0.246713
\(122\) −4465.59 −3.31390
\(123\) 747.004 0.547602
\(124\) −3175.11 −2.29946
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 432.085 0.301900 0.150950 0.988541i \(-0.451767\pi\)
0.150950 + 0.988541i \(0.451767\pi\)
\(128\) −1368.95 −0.945308
\(129\) 893.760 0.610009
\(130\) 1810.64 1.22157
\(131\) −657.499 −0.438519 −0.219259 0.975667i \(-0.570364\pi\)
−0.219259 + 0.975667i \(0.570364\pi\)
\(132\) −2208.05 −1.45596
\(133\) 0 0
\(134\) −4139.56 −2.66868
\(135\) 135.000 0.0860663
\(136\) 1165.37 0.734775
\(137\) 292.515 0.182418 0.0912090 0.995832i \(-0.470927\pi\)
0.0912090 + 0.995832i \(0.470927\pi\)
\(138\) −1379.49 −0.850944
\(139\) −1673.02 −1.02089 −0.510445 0.859910i \(-0.670519\pi\)
−0.510445 + 0.859910i \(0.670519\pi\)
\(140\) 0 0
\(141\) 506.312 0.302406
\(142\) −3229.29 −1.90842
\(143\) −2889.21 −1.68957
\(144\) 1061.24 0.614143
\(145\) 1066.66 0.610906
\(146\) 4671.07 2.64781
\(147\) 0 0
\(148\) −6413.01 −3.56180
\(149\) 2521.01 1.38610 0.693050 0.720890i \(-0.256266\pi\)
0.693050 + 0.720890i \(0.256266\pi\)
\(150\) 382.928 0.208440
\(151\) 1379.32 0.743361 0.371680 0.928361i \(-0.378782\pi\)
0.371680 + 0.928361i \(0.378782\pi\)
\(152\) 3992.09 2.13027
\(153\) 204.031 0.107810
\(154\) 0 0
\(155\) −878.644 −0.455319
\(156\) 3844.54 1.97314
\(157\) 1992.73 1.01298 0.506488 0.862247i \(-0.330943\pi\)
0.506488 + 0.862247i \(0.330943\pi\)
\(158\) −2659.49 −1.33910
\(159\) −307.420 −0.153333
\(160\) 953.990 0.471372
\(161\) 0 0
\(162\) 413.562 0.200571
\(163\) 1902.94 0.914418 0.457209 0.889359i \(-0.348849\pi\)
0.457209 + 0.889359i \(0.348849\pi\)
\(164\) 4499.02 2.14216
\(165\) −611.031 −0.288295
\(166\) −5246.98 −2.45328
\(167\) −378.184 −0.175238 −0.0876189 0.996154i \(-0.527926\pi\)
−0.0876189 + 0.996154i \(0.527926\pi\)
\(168\) 0 0
\(169\) 2833.54 1.28973
\(170\) 578.734 0.261099
\(171\) 698.929 0.312564
\(172\) 5382.89 2.38629
\(173\) −664.037 −0.291825 −0.145913 0.989297i \(-0.546612\pi\)
−0.145913 + 0.989297i \(0.546612\pi\)
\(174\) 3267.63 1.42367
\(175\) 0 0
\(176\) −4803.34 −2.05719
\(177\) −70.4392 −0.0299126
\(178\) 5124.86 2.15800
\(179\) −334.999 −0.139883 −0.0699414 0.997551i \(-0.522281\pi\)
−0.0699414 + 0.997551i \(0.522281\pi\)
\(180\) 813.071 0.336682
\(181\) 1225.58 0.503298 0.251649 0.967819i \(-0.419027\pi\)
0.251649 + 0.967819i \(0.419027\pi\)
\(182\) 0 0
\(183\) −2623.88 −1.05991
\(184\) −4629.69 −1.85492
\(185\) −1774.66 −0.705275
\(186\) −2691.66 −1.06109
\(187\) −923.475 −0.361129
\(188\) 3049.39 1.18298
\(189\) 0 0
\(190\) 1982.51 0.756983
\(191\) −1581.40 −0.599088 −0.299544 0.954082i \(-0.596835\pi\)
−0.299544 + 0.954082i \(0.596835\pi\)
\(192\) 92.5029 0.0347699
\(193\) −3894.63 −1.45255 −0.726273 0.687406i \(-0.758749\pi\)
−0.726273 + 0.687406i \(0.758749\pi\)
\(194\) −3265.71 −1.20858
\(195\) 1063.89 0.390703
\(196\) 0 0
\(197\) 993.858 0.359439 0.179719 0.983718i \(-0.442481\pi\)
0.179719 + 0.983718i \(0.442481\pi\)
\(198\) −1871.85 −0.671851
\(199\) −3079.88 −1.09712 −0.548560 0.836111i \(-0.684824\pi\)
−0.548560 + 0.836111i \(0.684824\pi\)
\(200\) 1285.14 0.454365
\(201\) −2432.31 −0.853543
\(202\) −3236.35 −1.12727
\(203\) 0 0
\(204\) 1228.83 0.421740
\(205\) 1245.01 0.424171
\(206\) −1978.86 −0.669290
\(207\) −810.560 −0.272163
\(208\) 8363.31 2.78794
\(209\) −3163.46 −1.04699
\(210\) 0 0
\(211\) 2114.72 0.689968 0.344984 0.938609i \(-0.387884\pi\)
0.344984 + 0.938609i \(0.387884\pi\)
\(212\) −1851.51 −0.599822
\(213\) −1897.46 −0.610384
\(214\) 708.315 0.226259
\(215\) 1489.60 0.472511
\(216\) 1387.95 0.437213
\(217\) 0 0
\(218\) −8745.92 −2.71720
\(219\) 2744.62 0.846867
\(220\) −3680.09 −1.12778
\(221\) 1607.90 0.489409
\(222\) −5436.55 −1.64359
\(223\) 2578.44 0.774282 0.387141 0.922021i \(-0.373463\pi\)
0.387141 + 0.922021i \(0.373463\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 10637.0 3.13080
\(227\) 2925.92 0.855509 0.427754 0.903895i \(-0.359305\pi\)
0.427754 + 0.903895i \(0.359305\pi\)
\(228\) 4209.47 1.22272
\(229\) −1047.88 −0.302383 −0.151191 0.988505i \(-0.548311\pi\)
−0.151191 + 0.988505i \(0.548311\pi\)
\(230\) −2299.16 −0.659139
\(231\) 0 0
\(232\) 10966.4 3.10337
\(233\) −3869.99 −1.08812 −0.544058 0.839047i \(-0.683113\pi\)
−0.544058 + 0.839047i \(0.683113\pi\)
\(234\) 3259.16 0.910504
\(235\) 843.854 0.234242
\(236\) −424.237 −0.117015
\(237\) −1562.66 −0.428294
\(238\) 0 0
\(239\) −6060.77 −1.64033 −0.820164 0.572128i \(-0.806118\pi\)
−0.820164 + 0.572128i \(0.806118\pi\)
\(240\) 1768.73 0.475713
\(241\) −4184.12 −1.11835 −0.559176 0.829049i \(-0.688882\pi\)
−0.559176 + 0.829049i \(0.688882\pi\)
\(242\) 1676.58 0.445351
\(243\) 243.000 0.0641500
\(244\) −15803.0 −4.14624
\(245\) 0 0
\(246\) 3813.98 0.988499
\(247\) 5508.05 1.41890
\(248\) −9033.43 −2.31300
\(249\) −3083.01 −0.784650
\(250\) 638.213 0.161457
\(251\) −2631.65 −0.661786 −0.330893 0.943668i \(-0.607350\pi\)
−0.330893 + 0.943668i \(0.607350\pi\)
\(252\) 0 0
\(253\) 3668.72 0.911663
\(254\) 2206.10 0.544972
\(255\) 340.051 0.0835092
\(256\) −7236.14 −1.76664
\(257\) 3288.77 0.798240 0.399120 0.916899i \(-0.369316\pi\)
0.399120 + 0.916899i \(0.369316\pi\)
\(258\) 4563.28 1.10115
\(259\) 0 0
\(260\) 6407.57 1.52839
\(261\) 1919.99 0.455342
\(262\) −3357.00 −0.791588
\(263\) −5408.90 −1.26816 −0.634081 0.773266i \(-0.718622\pi\)
−0.634081 + 0.773266i \(0.718622\pi\)
\(264\) −6282.07 −1.46453
\(265\) −512.366 −0.118771
\(266\) 0 0
\(267\) 3011.25 0.690208
\(268\) −14649.2 −3.33897
\(269\) 539.788 0.122348 0.0611738 0.998127i \(-0.480516\pi\)
0.0611738 + 0.998127i \(0.480516\pi\)
\(270\) 689.270 0.155362
\(271\) 4091.14 0.917045 0.458522 0.888683i \(-0.348379\pi\)
0.458522 + 0.888683i \(0.348379\pi\)
\(272\) 2673.15 0.595896
\(273\) 0 0
\(274\) 1493.50 0.329290
\(275\) −1018.39 −0.223313
\(276\) −4881.80 −1.06467
\(277\) 3091.34 0.670543 0.335271 0.942122i \(-0.391172\pi\)
0.335271 + 0.942122i \(0.391172\pi\)
\(278\) −8541.95 −1.84285
\(279\) −1581.56 −0.339375
\(280\) 0 0
\(281\) 7215.73 1.53187 0.765933 0.642920i \(-0.222277\pi\)
0.765933 + 0.642920i \(0.222277\pi\)
\(282\) 2585.08 0.545884
\(283\) 2964.72 0.622735 0.311368 0.950290i \(-0.399213\pi\)
0.311368 + 0.950290i \(0.399213\pi\)
\(284\) −11427.9 −2.38776
\(285\) 1164.88 0.242111
\(286\) −14751.5 −3.04990
\(287\) 0 0
\(288\) 1717.18 0.351340
\(289\) −4399.07 −0.895393
\(290\) 5446.05 1.10277
\(291\) −1918.86 −0.386548
\(292\) 16530.1 3.31285
\(293\) −7924.10 −1.57997 −0.789984 0.613127i \(-0.789911\pi\)
−0.789984 + 0.613127i \(0.789911\pi\)
\(294\) 0 0
\(295\) −117.399 −0.0231702
\(296\) −18245.5 −3.58276
\(297\) −1099.86 −0.214883
\(298\) 12871.5 2.50210
\(299\) −6387.78 −1.23550
\(300\) 1355.12 0.260793
\(301\) 0 0
\(302\) 7042.41 1.34187
\(303\) −1901.61 −0.360543
\(304\) 9157.17 1.72763
\(305\) −4373.14 −0.821001
\(306\) 1041.72 0.194612
\(307\) −4067.00 −0.756079 −0.378039 0.925790i \(-0.623402\pi\)
−0.378039 + 0.925790i \(0.623402\pi\)
\(308\) 0 0
\(309\) −1162.73 −0.214064
\(310\) −4486.10 −0.821914
\(311\) 7652.58 1.39530 0.697650 0.716439i \(-0.254229\pi\)
0.697650 + 0.716439i \(0.254229\pi\)
\(312\) 10938.0 1.98475
\(313\) 1822.12 0.329049 0.164525 0.986373i \(-0.447391\pi\)
0.164525 + 0.986373i \(0.447391\pi\)
\(314\) 10174.3 1.82856
\(315\) 0 0
\(316\) −9411.50 −1.67544
\(317\) 3148.86 0.557910 0.278955 0.960304i \(-0.410012\pi\)
0.278955 + 0.960304i \(0.410012\pi\)
\(318\) −1569.59 −0.276788
\(319\) −8690.17 −1.52525
\(320\) 154.172 0.0269327
\(321\) 416.190 0.0723659
\(322\) 0 0
\(323\) 1760.53 0.303277
\(324\) 1463.53 0.250948
\(325\) 1773.16 0.302637
\(326\) 9715.87 1.65065
\(327\) −5138.91 −0.869059
\(328\) 12800.0 2.15477
\(329\) 0 0
\(330\) −3119.75 −0.520413
\(331\) −5856.12 −0.972452 −0.486226 0.873833i \(-0.661627\pi\)
−0.486226 + 0.873833i \(0.661627\pi\)
\(332\) −18568.2 −3.06946
\(333\) −3194.39 −0.525681
\(334\) −1930.89 −0.316329
\(335\) −4053.86 −0.661152
\(336\) 0 0
\(337\) −7065.69 −1.14212 −0.571058 0.820910i \(-0.693467\pi\)
−0.571058 + 0.820910i \(0.693467\pi\)
\(338\) 14467.2 2.32814
\(339\) 6250.06 1.00135
\(340\) 2048.04 0.326679
\(341\) 7158.39 1.13680
\(342\) 3568.53 0.564222
\(343\) 0 0
\(344\) 15314.7 2.40033
\(345\) −1350.93 −0.210817
\(346\) −3390.38 −0.526785
\(347\) 9897.45 1.53119 0.765595 0.643323i \(-0.222445\pi\)
0.765595 + 0.643323i \(0.222445\pi\)
\(348\) 11563.6 1.78125
\(349\) 11832.6 1.81486 0.907431 0.420201i \(-0.138040\pi\)
0.907431 + 0.420201i \(0.138040\pi\)
\(350\) 0 0
\(351\) 1915.01 0.291213
\(352\) −7772.23 −1.17688
\(353\) 7007.38 1.05656 0.528279 0.849071i \(-0.322837\pi\)
0.528279 + 0.849071i \(0.322837\pi\)
\(354\) −359.642 −0.0539965
\(355\) −3162.43 −0.472802
\(356\) 18136.0 2.70002
\(357\) 0 0
\(358\) −1710.41 −0.252508
\(359\) 2814.39 0.413754 0.206877 0.978367i \(-0.433670\pi\)
0.206877 + 0.978367i \(0.433670\pi\)
\(360\) 2313.25 0.338663
\(361\) −828.115 −0.120734
\(362\) 6257.47 0.908523
\(363\) 985.124 0.142440
\(364\) 0 0
\(365\) 4574.36 0.655981
\(366\) −13396.8 −1.91328
\(367\) 2349.86 0.334227 0.167114 0.985938i \(-0.446555\pi\)
0.167114 + 0.985938i \(0.446555\pi\)
\(368\) −10619.7 −1.50433
\(369\) 2241.01 0.316158
\(370\) −9060.91 −1.27312
\(371\) 0 0
\(372\) −9525.34 −1.32760
\(373\) −1659.30 −0.230336 −0.115168 0.993346i \(-0.536741\pi\)
−0.115168 + 0.993346i \(0.536741\pi\)
\(374\) −4714.99 −0.651889
\(375\) 375.000 0.0516398
\(376\) 8675.75 1.18994
\(377\) 15130.8 2.06705
\(378\) 0 0
\(379\) 5327.80 0.722087 0.361043 0.932549i \(-0.382421\pi\)
0.361043 + 0.932549i \(0.382421\pi\)
\(380\) 7015.79 0.947111
\(381\) 1296.25 0.174302
\(382\) −8074.15 −1.08144
\(383\) 6239.75 0.832471 0.416235 0.909257i \(-0.363349\pi\)
0.416235 + 0.909257i \(0.363349\pi\)
\(384\) −4106.86 −0.545774
\(385\) 0 0
\(386\) −19884.8 −2.62205
\(387\) 2681.28 0.352189
\(388\) −11556.8 −1.51213
\(389\) 9485.21 1.23630 0.618148 0.786062i \(-0.287883\pi\)
0.618148 + 0.786062i \(0.287883\pi\)
\(390\) 5431.93 0.705273
\(391\) −2041.72 −0.264077
\(392\) 0 0
\(393\) −1972.50 −0.253179
\(394\) 5074.35 0.648837
\(395\) −2604.43 −0.331755
\(396\) −6624.16 −0.840597
\(397\) 7892.74 0.997796 0.498898 0.866661i \(-0.333738\pi\)
0.498898 + 0.866661i \(0.333738\pi\)
\(398\) −15725.0 −1.98046
\(399\) 0 0
\(400\) 2947.89 0.368486
\(401\) −12459.7 −1.55163 −0.775817 0.630958i \(-0.782662\pi\)
−0.775817 + 0.630958i \(0.782662\pi\)
\(402\) −12418.7 −1.54077
\(403\) −12463.8 −1.54061
\(404\) −11452.9 −1.41040
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) 14458.3 1.76087
\(408\) 3496.10 0.424223
\(409\) 3403.62 0.411487 0.205744 0.978606i \(-0.434039\pi\)
0.205744 + 0.978606i \(0.434039\pi\)
\(410\) 6356.64 0.765688
\(411\) 877.546 0.105319
\(412\) −7002.86 −0.837393
\(413\) 0 0
\(414\) −4138.48 −0.491293
\(415\) −5138.35 −0.607787
\(416\) 13532.6 1.59493
\(417\) −5019.06 −0.589411
\(418\) −16151.7 −1.88997
\(419\) −1376.83 −0.160532 −0.0802658 0.996773i \(-0.525577\pi\)
−0.0802658 + 0.996773i \(0.525577\pi\)
\(420\) 0 0
\(421\) −15757.3 −1.82414 −0.912069 0.410036i \(-0.865516\pi\)
−0.912069 + 0.410036i \(0.865516\pi\)
\(422\) 10797.1 1.24549
\(423\) 1518.94 0.174594
\(424\) −5267.69 −0.603353
\(425\) 566.752 0.0646859
\(426\) −9687.88 −1.10183
\(427\) 0 0
\(428\) 2506.61 0.283088
\(429\) −8667.63 −0.975472
\(430\) 7605.46 0.852949
\(431\) 5083.70 0.568152 0.284076 0.958802i \(-0.408313\pi\)
0.284076 + 0.958802i \(0.408313\pi\)
\(432\) 3183.72 0.354576
\(433\) 4631.44 0.514025 0.257013 0.966408i \(-0.417262\pi\)
0.257013 + 0.966408i \(0.417262\pi\)
\(434\) 0 0
\(435\) 3199.98 0.352706
\(436\) −30950.4 −3.39966
\(437\) −6994.12 −0.765616
\(438\) 14013.2 1.52871
\(439\) −2338.87 −0.254279 −0.127139 0.991885i \(-0.540580\pi\)
−0.127139 + 0.991885i \(0.540580\pi\)
\(440\) −10470.1 −1.13442
\(441\) 0 0
\(442\) 8209.49 0.883451
\(443\) 11811.5 1.26677 0.633387 0.773835i \(-0.281664\pi\)
0.633387 + 0.773835i \(0.281664\pi\)
\(444\) −19239.0 −2.05641
\(445\) 5018.75 0.534633
\(446\) 13164.7 1.39769
\(447\) 7563.02 0.800265
\(448\) 0 0
\(449\) 9582.29 1.00716 0.503582 0.863948i \(-0.332015\pi\)
0.503582 + 0.863948i \(0.332015\pi\)
\(450\) 1148.78 0.120343
\(451\) −10143.2 −1.05903
\(452\) 37642.5 3.91716
\(453\) 4137.96 0.429180
\(454\) 14938.9 1.54431
\(455\) 0 0
\(456\) 11976.3 1.22991
\(457\) −6571.95 −0.672697 −0.336349 0.941738i \(-0.609192\pi\)
−0.336349 + 0.941738i \(0.609192\pi\)
\(458\) −5350.15 −0.545843
\(459\) 612.092 0.0622440
\(460\) −8136.33 −0.824692
\(461\) −4197.59 −0.424081 −0.212041 0.977261i \(-0.568011\pi\)
−0.212041 + 0.977261i \(0.568011\pi\)
\(462\) 0 0
\(463\) −6125.75 −0.614876 −0.307438 0.951568i \(-0.599472\pi\)
−0.307438 + 0.951568i \(0.599472\pi\)
\(464\) 25155.2 2.51681
\(465\) −2635.93 −0.262878
\(466\) −19759.0 −1.96420
\(467\) 3228.08 0.319867 0.159934 0.987128i \(-0.448872\pi\)
0.159934 + 0.987128i \(0.448872\pi\)
\(468\) 11533.6 1.13919
\(469\) 0 0
\(470\) 4308.47 0.422840
\(471\) 5978.19 0.584842
\(472\) −1206.99 −0.117704
\(473\) −12135.9 −1.17972
\(474\) −7978.48 −0.773130
\(475\) 1941.47 0.187538
\(476\) 0 0
\(477\) −922.259 −0.0885269
\(478\) −30944.5 −2.96102
\(479\) 3126.31 0.298214 0.149107 0.988821i \(-0.452360\pi\)
0.149107 + 0.988821i \(0.452360\pi\)
\(480\) 2861.97 0.272147
\(481\) −25174.1 −2.38636
\(482\) −21362.9 −2.01878
\(483\) 0 0
\(484\) 5933.15 0.557208
\(485\) −3198.10 −0.299419
\(486\) 1240.69 0.115800
\(487\) −869.038 −0.0808621 −0.0404311 0.999182i \(-0.512873\pi\)
−0.0404311 + 0.999182i \(0.512873\pi\)
\(488\) −44960.7 −4.17065
\(489\) 5708.83 0.527939
\(490\) 0 0
\(491\) 6617.71 0.608254 0.304127 0.952631i \(-0.401635\pi\)
0.304127 + 0.952631i \(0.401635\pi\)
\(492\) 13497.1 1.23678
\(493\) 4836.25 0.441813
\(494\) 28122.5 2.56132
\(495\) −1833.09 −0.166447
\(496\) −20721.2 −1.87582
\(497\) 0 0
\(498\) −15740.9 −1.41640
\(499\) −888.154 −0.0796778 −0.0398389 0.999206i \(-0.512684\pi\)
−0.0398389 + 0.999206i \(0.512684\pi\)
\(500\) 2258.53 0.202009
\(501\) −1134.55 −0.101174
\(502\) −13436.4 −1.19462
\(503\) −10757.4 −0.953572 −0.476786 0.879019i \(-0.658198\pi\)
−0.476786 + 0.879019i \(0.658198\pi\)
\(504\) 0 0
\(505\) −3169.35 −0.279275
\(506\) 18731.4 1.64568
\(507\) 8500.61 0.744626
\(508\) 7807.01 0.681850
\(509\) 8860.03 0.771540 0.385770 0.922595i \(-0.373936\pi\)
0.385770 + 0.922595i \(0.373936\pi\)
\(510\) 1736.20 0.150746
\(511\) 0 0
\(512\) −25994.0 −2.24372
\(513\) 2096.79 0.180459
\(514\) 16791.5 1.44093
\(515\) −1937.89 −0.165813
\(516\) 16148.7 1.37772
\(517\) −6874.95 −0.584835
\(518\) 0 0
\(519\) −1992.11 −0.168485
\(520\) 18230.0 1.53738
\(521\) −75.3875 −0.00633932 −0.00316966 0.999995i \(-0.501009\pi\)
−0.00316966 + 0.999995i \(0.501009\pi\)
\(522\) 9802.90 0.821956
\(523\) 8666.59 0.724596 0.362298 0.932062i \(-0.381992\pi\)
0.362298 + 0.932062i \(0.381992\pi\)
\(524\) −11879.9 −0.990408
\(525\) 0 0
\(526\) −27616.2 −2.28921
\(527\) −3983.79 −0.329291
\(528\) −14410.0 −1.18772
\(529\) −4055.80 −0.333344
\(530\) −2615.99 −0.214399
\(531\) −211.318 −0.0172701
\(532\) 0 0
\(533\) 17660.7 1.43522
\(534\) 15374.6 1.24592
\(535\) 693.650 0.0560544
\(536\) −41678.1 −3.35862
\(537\) −1005.00 −0.0807614
\(538\) 2756.00 0.220854
\(539\) 0 0
\(540\) 2439.21 0.194383
\(541\) 12284.8 0.976272 0.488136 0.872768i \(-0.337677\pi\)
0.488136 + 0.872768i \(0.337677\pi\)
\(542\) 20888.2 1.65539
\(543\) 3676.75 0.290579
\(544\) 4325.40 0.340901
\(545\) −8564.85 −0.673171
\(546\) 0 0
\(547\) −2906.85 −0.227218 −0.113609 0.993526i \(-0.536241\pi\)
−0.113609 + 0.993526i \(0.536241\pi\)
\(548\) 5285.24 0.411997
\(549\) −7871.65 −0.611938
\(550\) −5199.58 −0.403110
\(551\) 16567.1 1.28091
\(552\) −13889.1 −1.07094
\(553\) 0 0
\(554\) 15783.5 1.21042
\(555\) −5323.99 −0.407191
\(556\) −30228.5 −2.30571
\(557\) 3873.82 0.294684 0.147342 0.989086i \(-0.452928\pi\)
0.147342 + 0.989086i \(0.452928\pi\)
\(558\) −8074.98 −0.612619
\(559\) 21130.4 1.59878
\(560\) 0 0
\(561\) −2770.43 −0.208498
\(562\) 36841.4 2.76523
\(563\) −5461.09 −0.408805 −0.204403 0.978887i \(-0.565525\pi\)
−0.204403 + 0.978887i \(0.565525\pi\)
\(564\) 9148.18 0.682992
\(565\) 10416.8 0.775640
\(566\) 15137.0 1.12412
\(567\) 0 0
\(568\) −32513.3 −2.40181
\(569\) 13105.0 0.965534 0.482767 0.875749i \(-0.339632\pi\)
0.482767 + 0.875749i \(0.339632\pi\)
\(570\) 5947.54 0.437044
\(571\) 3439.26 0.252064 0.126032 0.992026i \(-0.459776\pi\)
0.126032 + 0.992026i \(0.459776\pi\)
\(572\) −52203.0 −3.81594
\(573\) −4744.19 −0.345884
\(574\) 0 0
\(575\) −2251.56 −0.163298
\(576\) 277.509 0.0200744
\(577\) 17792.2 1.28371 0.641853 0.766828i \(-0.278166\pi\)
0.641853 + 0.766828i \(0.278166\pi\)
\(578\) −22460.3 −1.61631
\(579\) −11683.9 −0.838628
\(580\) 19272.7 1.37975
\(581\) 0 0
\(582\) −9797.14 −0.697774
\(583\) 4174.29 0.296538
\(584\) 47029.4 3.33235
\(585\) 3191.68 0.225572
\(586\) −40458.1 −2.85206
\(587\) 14416.6 1.01369 0.506846 0.862037i \(-0.330811\pi\)
0.506846 + 0.862037i \(0.330811\pi\)
\(588\) 0 0
\(589\) −13646.9 −0.954686
\(590\) −599.403 −0.0418255
\(591\) 2981.57 0.207522
\(592\) −41852.1 −2.90559
\(593\) 8172.03 0.565911 0.282955 0.959133i \(-0.408685\pi\)
0.282955 + 0.959133i \(0.408685\pi\)
\(594\) −5615.54 −0.387893
\(595\) 0 0
\(596\) 45550.2 3.13055
\(597\) −9239.65 −0.633423
\(598\) −32614.1 −2.23025
\(599\) −2492.18 −0.169996 −0.0849980 0.996381i \(-0.527088\pi\)
−0.0849980 + 0.996381i \(0.527088\pi\)
\(600\) 3855.41 0.262328
\(601\) −13835.4 −0.939031 −0.469516 0.882924i \(-0.655571\pi\)
−0.469516 + 0.882924i \(0.655571\pi\)
\(602\) 0 0
\(603\) −7296.94 −0.492794
\(604\) 24921.9 1.67890
\(605\) 1641.87 0.110333
\(606\) −9709.05 −0.650830
\(607\) 7335.90 0.490536 0.245268 0.969455i \(-0.421124\pi\)
0.245268 + 0.969455i \(0.421124\pi\)
\(608\) 14817.1 0.988345
\(609\) 0 0
\(610\) −22328.0 −1.48202
\(611\) 11970.3 0.792579
\(612\) 3686.48 0.243492
\(613\) 6012.04 0.396124 0.198062 0.980189i \(-0.436535\pi\)
0.198062 + 0.980189i \(0.436535\pi\)
\(614\) −20764.9 −1.36483
\(615\) 3735.02 0.244895
\(616\) 0 0
\(617\) −22927.4 −1.49598 −0.747991 0.663708i \(-0.768982\pi\)
−0.747991 + 0.663708i \(0.768982\pi\)
\(618\) −5936.58 −0.386415
\(619\) 17921.5 1.16369 0.581847 0.813298i \(-0.302330\pi\)
0.581847 + 0.813298i \(0.302330\pi\)
\(620\) −15875.6 −1.02835
\(621\) −2431.68 −0.157134
\(622\) 39071.8 2.51871
\(623\) 0 0
\(624\) 25089.9 1.60962
\(625\) 625.000 0.0400000
\(626\) 9303.22 0.593980
\(627\) −9490.39 −0.604481
\(628\) 36005.1 2.28784
\(629\) −8046.35 −0.510062
\(630\) 0 0
\(631\) 19270.7 1.21578 0.607888 0.794023i \(-0.292017\pi\)
0.607888 + 0.794023i \(0.292017\pi\)
\(632\) −26776.4 −1.68530
\(633\) 6344.16 0.398353
\(634\) 16077.1 1.00711
\(635\) 2160.42 0.135014
\(636\) −5554.53 −0.346308
\(637\) 0 0
\(638\) −44369.5 −2.75330
\(639\) −5692.38 −0.352405
\(640\) −6844.76 −0.422755
\(641\) 28238.6 1.74003 0.870013 0.493029i \(-0.164110\pi\)
0.870013 + 0.493029i \(0.164110\pi\)
\(642\) 2124.94 0.130631
\(643\) −19055.3 −1.16869 −0.584346 0.811505i \(-0.698649\pi\)
−0.584346 + 0.811505i \(0.698649\pi\)
\(644\) 0 0
\(645\) 4468.80 0.272804
\(646\) 8988.75 0.547458
\(647\) −16211.3 −0.985057 −0.492529 0.870296i \(-0.663927\pi\)
−0.492529 + 0.870296i \(0.663927\pi\)
\(648\) 4163.85 0.252425
\(649\) 956.457 0.0578493
\(650\) 9053.22 0.546302
\(651\) 0 0
\(652\) 34382.9 2.06524
\(653\) −26532.1 −1.59001 −0.795007 0.606600i \(-0.792533\pi\)
−0.795007 + 0.606600i \(0.792533\pi\)
\(654\) −26237.8 −1.56877
\(655\) −3287.50 −0.196112
\(656\) 29361.1 1.74750
\(657\) 8233.85 0.488939
\(658\) 0 0
\(659\) 1883.19 0.111318 0.0556592 0.998450i \(-0.482274\pi\)
0.0556592 + 0.998450i \(0.482274\pi\)
\(660\) −11040.3 −0.651124
\(661\) 4674.27 0.275050 0.137525 0.990498i \(-0.456085\pi\)
0.137525 + 0.990498i \(0.456085\pi\)
\(662\) −29899.6 −1.75541
\(663\) 4823.71 0.282560
\(664\) −52827.9 −3.08753
\(665\) 0 0
\(666\) −16309.6 −0.948928
\(667\) −19213.2 −1.11535
\(668\) −6833.11 −0.395780
\(669\) 7735.31 0.447032
\(670\) −20697.8 −1.19347
\(671\) 35628.3 2.04980
\(672\) 0 0
\(673\) −23344.3 −1.33709 −0.668543 0.743674i \(-0.733082\pi\)
−0.668543 + 0.743674i \(0.733082\pi\)
\(674\) −36075.4 −2.06168
\(675\) 675.000 0.0384900
\(676\) 51197.0 2.91289
\(677\) 1399.49 0.0794490 0.0397245 0.999211i \(-0.487352\pi\)
0.0397245 + 0.999211i \(0.487352\pi\)
\(678\) 31911.0 1.80757
\(679\) 0 0
\(680\) 5826.83 0.328601
\(681\) 8777.77 0.493928
\(682\) 36548.6 2.05208
\(683\) 33020.7 1.84993 0.924964 0.380054i \(-0.124095\pi\)
0.924964 + 0.380054i \(0.124095\pi\)
\(684\) 12628.4 0.705935
\(685\) 1462.58 0.0815798
\(686\) 0 0
\(687\) −3143.63 −0.174581
\(688\) 35129.4 1.94665
\(689\) −7268.04 −0.401873
\(690\) −6897.47 −0.380554
\(691\) 720.176 0.0396480 0.0198240 0.999803i \(-0.493689\pi\)
0.0198240 + 0.999803i \(0.493689\pi\)
\(692\) −11998.0 −0.659096
\(693\) 0 0
\(694\) 50533.5 2.76401
\(695\) −8365.10 −0.456556
\(696\) 32899.3 1.79173
\(697\) 5644.88 0.306765
\(698\) 60414.0 3.27608
\(699\) −11610.0 −0.628224
\(700\) 0 0
\(701\) 11675.1 0.629048 0.314524 0.949249i \(-0.398155\pi\)
0.314524 + 0.949249i \(0.398155\pi\)
\(702\) 9777.48 0.525680
\(703\) −27563.6 −1.47878
\(704\) −1256.05 −0.0672430
\(705\) 2531.56 0.135240
\(706\) 35777.6 1.90724
\(707\) 0 0
\(708\) −1272.71 −0.0675586
\(709\) −26771.7 −1.41810 −0.709050 0.705158i \(-0.750876\pi\)
−0.709050 + 0.705158i \(0.750876\pi\)
\(710\) −16146.5 −0.853473
\(711\) −4687.98 −0.247276
\(712\) 51598.3 2.71591
\(713\) 15826.5 0.831288
\(714\) 0 0
\(715\) −14446.1 −0.755597
\(716\) −6052.85 −0.315930
\(717\) −18182.3 −0.947044
\(718\) 14369.4 0.746884
\(719\) 34783.5 1.80418 0.902089 0.431550i \(-0.142033\pi\)
0.902089 + 0.431550i \(0.142033\pi\)
\(720\) 5306.20 0.274653
\(721\) 0 0
\(722\) −4228.11 −0.217942
\(723\) −12552.4 −0.645680
\(724\) 22144.1 1.13671
\(725\) 5333.30 0.273205
\(726\) 5029.75 0.257124
\(727\) 25368.1 1.29415 0.647077 0.762425i \(-0.275991\pi\)
0.647077 + 0.762425i \(0.275991\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 23355.3 1.18414
\(731\) 6753.87 0.341725
\(732\) −47409.0 −2.39383
\(733\) 31691.5 1.59694 0.798468 0.602038i \(-0.205644\pi\)
0.798468 + 0.602038i \(0.205644\pi\)
\(734\) 11997.7 0.603327
\(735\) 0 0
\(736\) −17183.7 −0.860596
\(737\) 33027.1 1.65070
\(738\) 11442.0 0.570710
\(739\) −13196.0 −0.656862 −0.328431 0.944528i \(-0.606520\pi\)
−0.328431 + 0.944528i \(0.606520\pi\)
\(740\) −32065.1 −1.59289
\(741\) 16524.1 0.819203
\(742\) 0 0
\(743\) 8244.34 0.407073 0.203537 0.979067i \(-0.434756\pi\)
0.203537 + 0.979067i \(0.434756\pi\)
\(744\) −27100.3 −1.33541
\(745\) 12605.0 0.619883
\(746\) −8471.90 −0.415788
\(747\) −9249.03 −0.453018
\(748\) −16685.6 −0.815622
\(749\) 0 0
\(750\) 1914.64 0.0932170
\(751\) 31769.8 1.54367 0.771834 0.635824i \(-0.219339\pi\)
0.771834 + 0.635824i \(0.219339\pi\)
\(752\) 19900.7 0.965031
\(753\) −7894.95 −0.382082
\(754\) 77253.7 3.73132
\(755\) 6896.60 0.332441
\(756\) 0 0
\(757\) −3019.09 −0.144954 −0.0724772 0.997370i \(-0.523090\pi\)
−0.0724772 + 0.997370i \(0.523090\pi\)
\(758\) 27202.2 1.30347
\(759\) 11006.2 0.526349
\(760\) 19960.4 0.952686
\(761\) 24096.3 1.14782 0.573910 0.818918i \(-0.305426\pi\)
0.573910 + 0.818918i \(0.305426\pi\)
\(762\) 6618.29 0.314640
\(763\) 0 0
\(764\) −28573.1 −1.35306
\(765\) 1020.15 0.0482140
\(766\) 31858.3 1.50273
\(767\) −1665.33 −0.0783984
\(768\) −21708.4 −1.01997
\(769\) 7954.16 0.372996 0.186498 0.982455i \(-0.440286\pi\)
0.186498 + 0.982455i \(0.440286\pi\)
\(770\) 0 0
\(771\) 9866.30 0.460864
\(772\) −70369.1 −3.28062
\(773\) 36239.4 1.68621 0.843105 0.537749i \(-0.180725\pi\)
0.843105 + 0.537749i \(0.180725\pi\)
\(774\) 13689.8 0.635751
\(775\) −4393.22 −0.203625
\(776\) −32880.0 −1.52104
\(777\) 0 0
\(778\) 48428.7 2.23169
\(779\) 19337.1 0.889377
\(780\) 19222.7 0.882414
\(781\) 25764.6 1.18045
\(782\) −10424.4 −0.476696
\(783\) 5759.96 0.262892
\(784\) 0 0
\(785\) 9963.65 0.453017
\(786\) −10071.0 −0.457024
\(787\) −9684.13 −0.438630 −0.219315 0.975654i \(-0.570382\pi\)
−0.219315 + 0.975654i \(0.570382\pi\)
\(788\) 17957.3 0.811803
\(789\) −16226.7 −0.732174
\(790\) −13297.5 −0.598864
\(791\) 0 0
\(792\) −18846.2 −0.845545
\(793\) −62034.1 −2.77793
\(794\) 40298.0 1.80116
\(795\) −1537.10 −0.0685727
\(796\) −55648.1 −2.47788
\(797\) 6717.98 0.298573 0.149287 0.988794i \(-0.452302\pi\)
0.149287 + 0.988794i \(0.452302\pi\)
\(798\) 0 0
\(799\) 3826.05 0.169407
\(800\) 4769.95 0.210804
\(801\) 9033.75 0.398492
\(802\) −63615.3 −2.80092
\(803\) −37267.7 −1.63779
\(804\) −43947.7 −1.92775
\(805\) 0 0
\(806\) −63636.5 −2.78102
\(807\) 1619.37 0.0706374
\(808\) −32584.4 −1.41871
\(809\) −1210.73 −0.0526167 −0.0263083 0.999654i \(-0.508375\pi\)
−0.0263083 + 0.999654i \(0.508375\pi\)
\(810\) 2067.81 0.0896981
\(811\) 34825.1 1.50786 0.753930 0.656955i \(-0.228156\pi\)
0.753930 + 0.656955i \(0.228156\pi\)
\(812\) 0 0
\(813\) 12273.4 0.529456
\(814\) 73820.0 3.17861
\(815\) 9514.72 0.408940
\(816\) 8019.46 0.344041
\(817\) 23136.1 0.990734
\(818\) 17377.9 0.742792
\(819\) 0 0
\(820\) 22495.1 0.958003
\(821\) 30169.6 1.28249 0.641247 0.767334i \(-0.278417\pi\)
0.641247 + 0.767334i \(0.278417\pi\)
\(822\) 4480.49 0.190116
\(823\) −26016.4 −1.10191 −0.550956 0.834534i \(-0.685737\pi\)
−0.550956 + 0.834534i \(0.685737\pi\)
\(824\) −19923.7 −0.842322
\(825\) −3055.16 −0.128930
\(826\) 0 0
\(827\) 15602.4 0.656045 0.328022 0.944670i \(-0.393618\pi\)
0.328022 + 0.944670i \(0.393618\pi\)
\(828\) −14645.4 −0.614689
\(829\) −19506.0 −0.817215 −0.408607 0.912710i \(-0.633985\pi\)
−0.408607 + 0.912710i \(0.633985\pi\)
\(830\) −26234.9 −1.09714
\(831\) 9274.01 0.387138
\(832\) 2186.96 0.0911289
\(833\) 0 0
\(834\) −25625.8 −1.06397
\(835\) −1890.92 −0.0783687
\(836\) −57158.2 −2.36466
\(837\) −4744.68 −0.195938
\(838\) −7029.71 −0.289782
\(839\) −12231.2 −0.503300 −0.251650 0.967818i \(-0.580973\pi\)
−0.251650 + 0.967818i \(0.580973\pi\)
\(840\) 0 0
\(841\) 21121.6 0.866028
\(842\) −80452.0 −3.29283
\(843\) 21647.2 0.884423
\(844\) 38209.3 1.55831
\(845\) 14167.7 0.576784
\(846\) 7755.25 0.315167
\(847\) 0 0
\(848\) −12083.2 −0.489314
\(849\) 8894.15 0.359536
\(850\) 2893.67 0.116767
\(851\) 31966.0 1.28764
\(852\) −34283.8 −1.37857
\(853\) 1234.83 0.0495660 0.0247830 0.999693i \(-0.492111\pi\)
0.0247830 + 0.999693i \(0.492111\pi\)
\(854\) 0 0
\(855\) 3494.64 0.139783
\(856\) 7131.49 0.284754
\(857\) 24101.4 0.960662 0.480331 0.877087i \(-0.340517\pi\)
0.480331 + 0.877087i \(0.340517\pi\)
\(858\) −44254.4 −1.76086
\(859\) 13362.9 0.530777 0.265389 0.964142i \(-0.414500\pi\)
0.265389 + 0.964142i \(0.414500\pi\)
\(860\) 26914.5 1.06718
\(861\) 0 0
\(862\) 25955.9 1.02559
\(863\) −21934.1 −0.865174 −0.432587 0.901592i \(-0.642399\pi\)
−0.432587 + 0.901592i \(0.642399\pi\)
\(864\) 5151.54 0.202846
\(865\) −3320.18 −0.130508
\(866\) 23646.8 0.927888
\(867\) −13197.2 −0.516956
\(868\) 0 0
\(869\) 21218.5 0.828296
\(870\) 16338.2 0.636685
\(871\) −57505.0 −2.23706
\(872\) −88056.1 −3.41967
\(873\) −5756.58 −0.223174
\(874\) −35709.9 −1.38204
\(875\) 0 0
\(876\) 49590.4 1.91268
\(877\) −770.318 −0.0296600 −0.0148300 0.999890i \(-0.504721\pi\)
−0.0148300 + 0.999890i \(0.504721\pi\)
\(878\) −11941.6 −0.459009
\(879\) −23772.3 −0.912195
\(880\) −24016.7 −0.920003
\(881\) 17887.9 0.684064 0.342032 0.939688i \(-0.388885\pi\)
0.342032 + 0.939688i \(0.388885\pi\)
\(882\) 0 0
\(883\) 583.389 0.0222340 0.0111170 0.999938i \(-0.496461\pi\)
0.0111170 + 0.999938i \(0.496461\pi\)
\(884\) 29052.0 1.10534
\(885\) −352.196 −0.0133773
\(886\) 60306.0 2.28670
\(887\) −42443.8 −1.60668 −0.803340 0.595521i \(-0.796946\pi\)
−0.803340 + 0.595521i \(0.796946\pi\)
\(888\) −54736.5 −2.06851
\(889\) 0 0
\(890\) 25624.3 0.965087
\(891\) −3299.57 −0.124063
\(892\) 46587.8 1.74874
\(893\) 13106.5 0.491146
\(894\) 38614.6 1.44459
\(895\) −1675.00 −0.0625575
\(896\) 0 0
\(897\) −19163.3 −0.713317
\(898\) 48924.4 1.81807
\(899\) −37488.6 −1.39078
\(900\) 4065.35 0.150569
\(901\) −2323.08 −0.0858967
\(902\) −51788.1 −1.91170
\(903\) 0 0
\(904\) 107096. 3.94021
\(905\) 6127.92 0.225082
\(906\) 21127.2 0.774729
\(907\) −27717.8 −1.01472 −0.507362 0.861733i \(-0.669379\pi\)
−0.507362 + 0.861733i \(0.669379\pi\)
\(908\) 52866.3 1.93219
\(909\) −5704.82 −0.208160
\(910\) 0 0
\(911\) 20446.7 0.743609 0.371805 0.928311i \(-0.378739\pi\)
0.371805 + 0.928311i \(0.378739\pi\)
\(912\) 27471.5 0.997448
\(913\) 41862.6 1.51747
\(914\) −33554.4 −1.21431
\(915\) −13119.4 −0.474005
\(916\) −18933.3 −0.682941
\(917\) 0 0
\(918\) 3125.16 0.112359
\(919\) 17455.5 0.626556 0.313278 0.949662i \(-0.398573\pi\)
0.313278 + 0.949662i \(0.398573\pi\)
\(920\) −23148.5 −0.829546
\(921\) −12201.0 −0.436522
\(922\) −21431.7 −0.765526
\(923\) −44859.9 −1.59976
\(924\) 0 0
\(925\) −8873.32 −0.315409
\(926\) −31276.3 −1.10994
\(927\) −3488.20 −0.123590
\(928\) 40703.3 1.43982
\(929\) 20748.8 0.732773 0.366387 0.930463i \(-0.380595\pi\)
0.366387 + 0.930463i \(0.380595\pi\)
\(930\) −13458.3 −0.474532
\(931\) 0 0
\(932\) −69923.8 −2.45754
\(933\) 22957.7 0.805576
\(934\) 16481.7 0.577405
\(935\) −4617.38 −0.161502
\(936\) 32814.0 1.14590
\(937\) 12135.5 0.423106 0.211553 0.977366i \(-0.432148\pi\)
0.211553 + 0.977366i \(0.432148\pi\)
\(938\) 0 0
\(939\) 5466.36 0.189977
\(940\) 15247.0 0.529044
\(941\) −25266.0 −0.875292 −0.437646 0.899147i \(-0.644188\pi\)
−0.437646 + 0.899147i \(0.644188\pi\)
\(942\) 30522.9 1.05572
\(943\) −22425.6 −0.774421
\(944\) −2768.62 −0.0954566
\(945\) 0 0
\(946\) −61962.3 −2.12957
\(947\) −42768.7 −1.46758 −0.733789 0.679377i \(-0.762250\pi\)
−0.733789 + 0.679377i \(0.762250\pi\)
\(948\) −28234.5 −0.967315
\(949\) 64888.4 2.21957
\(950\) 9912.57 0.338533
\(951\) 9446.57 0.322110
\(952\) 0 0
\(953\) −25855.5 −0.878846 −0.439423 0.898280i \(-0.644817\pi\)
−0.439423 + 0.898280i \(0.644817\pi\)
\(954\) −4708.78 −0.159803
\(955\) −7906.98 −0.267920
\(956\) −109507. −3.70473
\(957\) −26070.5 −0.880606
\(958\) 15962.0 0.538318
\(959\) 0 0
\(960\) 462.515 0.0155496
\(961\) 1089.64 0.0365761
\(962\) −128531. −4.30771
\(963\) 1248.57 0.0417805
\(964\) −75599.6 −2.52583
\(965\) −19473.1 −0.649598
\(966\) 0 0
\(967\) −20336.0 −0.676278 −0.338139 0.941096i \(-0.609797\pi\)
−0.338139 + 0.941096i \(0.609797\pi\)
\(968\) 16880.3 0.560488
\(969\) 5281.59 0.175097
\(970\) −16328.6 −0.540493
\(971\) −31123.7 −1.02864 −0.514319 0.857599i \(-0.671955\pi\)
−0.514319 + 0.857599i \(0.671955\pi\)
\(972\) 4390.58 0.144885
\(973\) 0 0
\(974\) −4437.05 −0.145967
\(975\) 5319.47 0.174728
\(976\) −103132. −3.38236
\(977\) 31317.3 1.02552 0.512758 0.858533i \(-0.328624\pi\)
0.512758 + 0.858533i \(0.328624\pi\)
\(978\) 29147.6 0.953004
\(979\) −40888.2 −1.33482
\(980\) 0 0
\(981\) −15416.7 −0.501752
\(982\) 33788.1 1.09798
\(983\) −4002.12 −0.129855 −0.0649277 0.997890i \(-0.520682\pi\)
−0.0649277 + 0.997890i \(0.520682\pi\)
\(984\) 38400.1 1.24406
\(985\) 4969.29 0.160746
\(986\) 24692.5 0.797535
\(987\) 0 0
\(988\) 99520.7 3.20463
\(989\) −26831.3 −0.862677
\(990\) −9359.24 −0.300461
\(991\) 10042.5 0.321906 0.160953 0.986962i \(-0.448543\pi\)
0.160953 + 0.986962i \(0.448543\pi\)
\(992\) −33528.7 −1.07312
\(993\) −17568.4 −0.561445
\(994\) 0 0
\(995\) −15399.4 −0.490647
\(996\) −55704.6 −1.77216
\(997\) −9407.44 −0.298833 −0.149417 0.988774i \(-0.547740\pi\)
−0.149417 + 0.988774i \(0.547740\pi\)
\(998\) −4534.65 −0.143830
\(999\) −9583.18 −0.303502
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.4.a.ba.1.5 5
3.2 odd 2 2205.4.a.br.1.1 5
7.2 even 3 105.4.i.d.46.1 yes 10
7.4 even 3 105.4.i.d.16.1 10
7.6 odd 2 735.4.a.z.1.5 5
21.2 odd 6 315.4.j.h.46.5 10
21.11 odd 6 315.4.j.h.226.5 10
21.20 even 2 2205.4.a.bs.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.i.d.16.1 10 7.4 even 3
105.4.i.d.46.1 yes 10 7.2 even 3
315.4.j.h.46.5 10 21.2 odd 6
315.4.j.h.226.5 10 21.11 odd 6
735.4.a.z.1.5 5 7.6 odd 2
735.4.a.ba.1.5 5 1.1 even 1 trivial
2205.4.a.br.1.1 5 3.2 odd 2
2205.4.a.bs.1.1 5 21.20 even 2