Properties

Label 735.4.a.z
Level $735$
Weight $4$
Character orbit 735.a
Self dual yes
Analytic conductor $43.366$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,4,Mod(1,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,3,-15,25,-25,-9,0,21,45,-15,43] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 30x^{3} + 22x^{2} + 153x - 84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} - 3 q^{3} + (\beta_{2} + 5) q^{4} - 5 q^{5} + (3 \beta_1 - 3) q^{6} + ( - \beta_{3} - 6 \beta_1 + 7) q^{8} + 9 q^{9} + (5 \beta_1 - 5) q^{10} + ( - \beta_{4} + \beta_{3} + \beta_{2} + \cdots + 6) q^{11}+ \cdots + ( - 9 \beta_{4} + 9 \beta_{3} + \cdots + 54) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} - 15 q^{3} + 25 q^{4} - 25 q^{5} - 9 q^{6} + 21 q^{8} + 45 q^{9} - 15 q^{10} + 43 q^{11} - 75 q^{12} - 123 q^{13} + 75 q^{15} + 161 q^{16} - 124 q^{17} + 27 q^{18} - 37 q^{19} - 125 q^{20}+ \cdots + 387 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 30x^{3} + 22x^{2} + 153x - 84 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu^{2} - 19\nu + 22 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 3\nu^{3} - 23\nu^{2} + 29\nu + 54 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_{2} + 25\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 3\beta_{3} + 32\beta_{2} + 92\beta _1 + 264 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.80647
2.44043
0.538750
−2.67994
−4.10571
−4.80647 −3.00000 15.1022 −5.00000 14.4194 0 −34.1365 9.00000 24.0324
1.2 −1.44043 −3.00000 −5.92517 −5.00000 4.32128 0 20.0582 9.00000 7.20214
1.3 0.461250 −3.00000 −7.78725 −5.00000 −1.38375 0 −7.28187 9.00000 −2.30625
1.4 3.67994 −3.00000 5.54199 −5.00000 −11.0398 0 −9.04535 9.00000 −18.3997
1.5 5.10571 −3.00000 18.0682 −5.00000 −15.3171 0 51.4055 9.00000 −25.5285
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.4.a.z 5
3.b odd 2 1 2205.4.a.bs 5
7.b odd 2 1 735.4.a.ba 5
7.d odd 6 2 105.4.i.d 10
21.c even 2 1 2205.4.a.br 5
21.g even 6 2 315.4.j.h 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.i.d 10 7.d odd 6 2
315.4.j.h 10 21.g even 6 2
735.4.a.z 5 1.a even 1 1 trivial
735.4.a.ba 5 7.b odd 2 1
2205.4.a.br 5 21.c even 2 1
2205.4.a.bs 5 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(735))\):

\( T_{2}^{5} - 3T_{2}^{4} - 28T_{2}^{3} + 70T_{2}^{2} + 104T_{2} - 60 \) Copy content Toggle raw display
\( T_{11}^{5} - 43T_{11}^{4} - 3788T_{11}^{3} + 74940T_{11}^{2} + 4542452T_{11} + 35201580 \) Copy content Toggle raw display
\( T_{13}^{5} + 123T_{13}^{4} - 1074T_{13}^{3} - 566590T_{13}^{2} - 14427235T_{13} + 125988247 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 3 T^{4} + \cdots - 60 \) Copy content Toggle raw display
$3$ \( (T + 3)^{5} \) Copy content Toggle raw display
$5$ \( (T + 5)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} \) Copy content Toggle raw display
$11$ \( T^{5} - 43 T^{4} + \cdots + 35201580 \) Copy content Toggle raw display
$13$ \( T^{5} + 123 T^{4} + \cdots + 125988247 \) Copy content Toggle raw display
$17$ \( T^{5} + 124 T^{4} + \cdots - 20514480 \) Copy content Toggle raw display
$19$ \( T^{5} + 37 T^{4} + \cdots + 235295225 \) Copy content Toggle raw display
$23$ \( T^{5} - 77 T^{4} + \cdots + 152403300 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 15483733056 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 69079322070 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 212593667013 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 914820763500 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 45414054020 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 439521150192 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 12693539474880 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 1309411612752 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 16475195520000 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 74697164857140 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 12244368636072 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 65528941041926 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 1149495333516 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 217219935694608 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 8415535021416 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 207081920604160 \) Copy content Toggle raw display
show more
show less