Properties

Label 735.2.q.g.214.6
Level $735$
Weight $2$
Character 735.214
Analytic conductor $5.869$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(79,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.6
Root \(0.526774 - 1.96595i\) of defining polynomial
Character \(\chi\) \(=\) 735.214
Dual form 735.2.q.g.79.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34443 - 0.776205i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.204988 - 0.355049i) q^{4} +(-1.88899 + 1.19655i) q^{5} +1.55241 q^{6} +2.46837i q^{8} +(0.500000 + 0.866025i) q^{9} +(-1.61083 + 3.07491i) q^{10} +(-2.21538 + 3.83715i) q^{11} +(0.355049 - 0.204988i) q^{12} -1.73246i q^{13} +(-2.23418 + 0.0917505i) q^{15} +(2.32594 + 4.02864i) q^{16} +(2.36638 + 1.36623i) q^{17} +(1.34443 + 0.776205i) q^{18} +(0.152578 + 0.264273i) q^{19} +(0.0376154 + 0.915960i) q^{20} +6.87834i q^{22} +(-6.08316 + 3.51212i) q^{23} +(-1.23418 + 2.13767i) q^{24} +(2.13653 - 4.52053i) q^{25} +(-1.34474 - 2.32916i) q^{26} +1.00000i q^{27} +7.79430 q^{29} +(-2.93248 + 1.85754i) q^{30} +(-2.64243 + 4.57683i) q^{31} +(1.97875 + 1.14243i) q^{32} +(-3.83715 + 2.21538i) q^{33} +4.24190 q^{34} +0.409975 q^{36} +(3.18183 - 1.83703i) q^{37} +(0.410260 + 0.236864i) q^{38} +(0.866230 - 1.50035i) q^{39} +(-2.95353 - 4.66271i) q^{40} +6.71562 q^{41} -9.71562i q^{43} +(0.908250 + 1.57313i) q^{44} +(-1.98074 - 1.03763i) q^{45} +(-5.45224 + 9.44356i) q^{46} +(1.57313 - 0.908250i) q^{47} +4.65187i q^{48} +(-0.636449 - 7.73591i) q^{50} +(1.36623 + 2.36638i) q^{51} +(-0.615108 - 0.355133i) q^{52} +(1.48535 + 0.857566i) q^{53} +(0.776205 + 1.34443i) q^{54} +(-0.406524 - 9.89912i) q^{55} +0.305156i q^{57} +(10.4789 - 6.04998i) q^{58} +(0.571217 - 0.989377i) q^{59} +(-0.425404 + 0.812053i) q^{60} +(4.77818 + 8.27604i) q^{61} +8.20428i q^{62} -5.75669 q^{64} +(2.07298 + 3.27259i) q^{65} +(-3.43917 + 5.95682i) q^{66} +(-7.26104 - 4.19216i) q^{67} +(0.970157 - 0.560120i) q^{68} -7.02423 q^{69} +10.2888 q^{71} +(-2.13767 + 1.23418i) q^{72} +(-11.1028 - 6.41022i) q^{73} +(2.85183 - 4.93951i) q^{74} +(4.11056 - 2.84663i) q^{75} +0.125106 q^{76} -2.68949i q^{78} +(3.35686 + 5.81425i) q^{79} +(-9.21413 - 4.82694i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(9.02866 - 5.21270i) q^{82} -5.09946i q^{83} +(-6.10482 + 0.250704i) q^{85} +(-7.54131 - 13.0619i) q^{86} +(6.75007 + 3.89715i) q^{87} +(-9.47149 - 5.46837i) q^{88} +(-2.03533 - 3.52529i) q^{89} +(-3.46837 + 0.142434i) q^{90} +2.87976i q^{92} +(-4.57683 + 2.64243i) q^{93} +(1.40998 - 2.44215i) q^{94} +(-0.604434 - 0.316641i) q^{95} +(1.14243 + 1.97875i) q^{96} -2.87834i q^{97} -4.43075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 2 q^{5} + 8 q^{6} + 8 q^{9} + 4 q^{10} - 4 q^{15} + 24 q^{19} + 8 q^{20} + 12 q^{24} - 4 q^{25} + 12 q^{26} + 24 q^{29} - 12 q^{30} - 16 q^{31} - 16 q^{34} + 16 q^{36} - 4 q^{39} - 32 q^{40}+ \cdots - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34443 0.776205i 0.950653 0.548860i 0.0573691 0.998353i \(-0.481729\pi\)
0.893284 + 0.449493i \(0.148395\pi\)
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.204988 0.355049i 0.102494 0.177524i
\(5\) −1.88899 + 1.19655i −0.844780 + 0.535114i
\(6\) 1.55241 0.633769
\(7\) 0 0
\(8\) 2.46837i 0.872700i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −1.61083 + 3.07491i −0.509390 + 0.972373i
\(11\) −2.21538 + 3.83715i −0.667961 + 1.15694i 0.310512 + 0.950569i \(0.399500\pi\)
−0.978473 + 0.206373i \(0.933834\pi\)
\(12\) 0.355049 0.204988i 0.102494 0.0591748i
\(13\) 1.73246i 0.480498i −0.970711 0.240249i \(-0.922771\pi\)
0.970711 0.240249i \(-0.0772291\pi\)
\(14\) 0 0
\(15\) −2.23418 + 0.0917505i −0.576864 + 0.0236899i
\(16\) 2.32594 + 4.02864i 0.581484 + 1.00716i
\(17\) 2.36638 + 1.36623i 0.573931 + 0.331359i 0.758718 0.651419i \(-0.225826\pi\)
−0.184787 + 0.982779i \(0.559159\pi\)
\(18\) 1.34443 + 0.776205i 0.316884 + 0.182953i
\(19\) 0.152578 + 0.264273i 0.0350038 + 0.0606284i 0.882997 0.469379i \(-0.155522\pi\)
−0.847993 + 0.530008i \(0.822189\pi\)
\(20\) 0.0376154 + 0.915960i 0.00841106 + 0.204815i
\(21\) 0 0
\(22\) 6.87834i 1.46647i
\(23\) −6.08316 + 3.51212i −1.26843 + 0.732327i −0.974690 0.223560i \(-0.928232\pi\)
−0.293737 + 0.955886i \(0.594899\pi\)
\(24\) −1.23418 + 2.13767i −0.251927 + 0.436350i
\(25\) 2.13653 4.52053i 0.427307 0.904107i
\(26\) −1.34474 2.32916i −0.263726 0.456786i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 7.79430 1.44737 0.723683 0.690132i \(-0.242448\pi\)
0.723683 + 0.690132i \(0.242448\pi\)
\(30\) −2.93248 + 1.85754i −0.535395 + 0.339138i
\(31\) −2.64243 + 4.57683i −0.474595 + 0.822023i −0.999577 0.0290906i \(-0.990739\pi\)
0.524982 + 0.851114i \(0.324072\pi\)
\(32\) 1.97875 + 1.14243i 0.349798 + 0.201956i
\(33\) −3.83715 + 2.21538i −0.667961 + 0.385648i
\(34\) 4.24190 0.727479
\(35\) 0 0
\(36\) 0.409975 0.0683292
\(37\) 3.18183 1.83703i 0.523090 0.302006i −0.215108 0.976590i \(-0.569010\pi\)
0.738198 + 0.674584i \(0.235677\pi\)
\(38\) 0.410260 + 0.236864i 0.0665530 + 0.0384244i
\(39\) 0.866230 1.50035i 0.138708 0.240249i
\(40\) −2.95353 4.66271i −0.466994 0.737240i
\(41\) 6.71562 1.04880 0.524402 0.851471i \(-0.324289\pi\)
0.524402 + 0.851471i \(0.324289\pi\)
\(42\) 0 0
\(43\) 9.71562i 1.48162i −0.671715 0.740809i \(-0.734442\pi\)
0.671715 0.740809i \(-0.265558\pi\)
\(44\) 0.908250 + 1.57313i 0.136924 + 0.237159i
\(45\) −1.98074 1.03763i −0.295271 0.154681i
\(46\) −5.45224 + 9.44356i −0.803889 + 1.39238i
\(47\) 1.57313 0.908250i 0.229465 0.132482i −0.380860 0.924633i \(-0.624372\pi\)
0.610325 + 0.792151i \(0.291039\pi\)
\(48\) 4.65187i 0.671440i
\(49\) 0 0
\(50\) −0.636449 7.73591i −0.0900075 1.09402i
\(51\) 1.36623 + 2.36638i 0.191310 + 0.331359i
\(52\) −0.615108 0.355133i −0.0853001 0.0492480i
\(53\) 1.48535 + 0.857566i 0.204028 + 0.117796i 0.598533 0.801098i \(-0.295751\pi\)
−0.394505 + 0.918894i \(0.629084\pi\)
\(54\) 0.776205 + 1.34443i 0.105628 + 0.182953i
\(55\) −0.406524 9.89912i −0.0548157 1.33480i
\(56\) 0 0
\(57\) 0.305156i 0.0404189i
\(58\) 10.4789 6.04998i 1.37594 0.794401i
\(59\) 0.571217 0.989377i 0.0743661 0.128806i −0.826444 0.563018i \(-0.809640\pi\)
0.900810 + 0.434213i \(0.142973\pi\)
\(60\) −0.425404 + 0.812053i −0.0549194 + 0.104836i
\(61\) 4.77818 + 8.27604i 0.611783 + 1.05964i 0.990940 + 0.134307i \(0.0428807\pi\)
−0.379157 + 0.925332i \(0.623786\pi\)
\(62\) 8.20428i 1.04194i
\(63\) 0 0
\(64\) −5.75669 −0.719586
\(65\) 2.07298 + 3.27259i 0.257121 + 0.405915i
\(66\) −3.43917 + 5.95682i −0.423333 + 0.733234i
\(67\) −7.26104 4.19216i −0.887078 0.512154i −0.0140921 0.999901i \(-0.504486\pi\)
−0.872985 + 0.487746i \(0.837819\pi\)
\(68\) 0.970157 0.560120i 0.117649 0.0679245i
\(69\) −7.02423 −0.845618
\(70\) 0 0
\(71\) 10.2888 1.22106 0.610529 0.791994i \(-0.290957\pi\)
0.610529 + 0.791994i \(0.290957\pi\)
\(72\) −2.13767 + 1.23418i −0.251927 + 0.145450i
\(73\) −11.1028 6.41022i −1.29949 0.750260i −0.319172 0.947697i \(-0.603405\pi\)
−0.980316 + 0.197437i \(0.936738\pi\)
\(74\) 2.85183 4.93951i 0.331518 0.574206i
\(75\) 4.11056 2.84663i 0.474646 0.328701i
\(76\) 0.125106 0.0143507
\(77\) 0 0
\(78\) 2.68949i 0.304524i
\(79\) 3.35686 + 5.81425i 0.377676 + 0.654154i 0.990724 0.135892i \(-0.0433900\pi\)
−0.613048 + 0.790046i \(0.710057\pi\)
\(80\) −9.21413 4.82694i −1.03017 0.539668i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 9.02866 5.21270i 0.997049 0.575646i
\(83\) 5.09946i 0.559739i −0.960038 0.279869i \(-0.909709\pi\)
0.960038 0.279869i \(-0.0902911\pi\)
\(84\) 0 0
\(85\) −6.10482 + 0.250704i −0.662161 + 0.0271927i
\(86\) −7.54131 13.0619i −0.813201 1.40850i
\(87\) 6.75007 + 3.89715i 0.723683 + 0.417819i
\(88\) −9.47149 5.46837i −1.00966 0.582930i
\(89\) −2.03533 3.52529i −0.215744 0.373680i 0.737758 0.675065i \(-0.235884\pi\)
−0.953503 + 0.301385i \(0.902551\pi\)
\(90\) −3.46837 + 0.142434i −0.365598 + 0.0150139i
\(91\) 0 0
\(92\) 2.87976i 0.300236i
\(93\) −4.57683 + 2.64243i −0.474595 + 0.274008i
\(94\) 1.40998 2.44215i 0.145428 0.251888i
\(95\) −0.604434 0.316641i −0.0620136 0.0324866i
\(96\) 1.14243 + 1.97875i 0.116599 + 0.201956i
\(97\) 2.87834i 0.292252i −0.989266 0.146126i \(-0.953320\pi\)
0.989266 0.146126i \(-0.0466804\pi\)
\(98\) 0 0
\(99\) −4.43075 −0.445308
\(100\) −1.16705 1.68523i −0.116705 0.168523i
\(101\) 3.60883 6.25068i 0.359092 0.621966i −0.628717 0.777634i \(-0.716420\pi\)
0.987809 + 0.155668i \(0.0497530\pi\)
\(102\) 3.67359 + 2.12095i 0.363740 + 0.210005i
\(103\) 9.76304 5.63670i 0.961981 0.555400i 0.0651989 0.997872i \(-0.479232\pi\)
0.896782 + 0.442472i \(0.145898\pi\)
\(104\) 4.27635 0.419331
\(105\) 0 0
\(106\) 2.66259 0.258613
\(107\) 5.98940 3.45798i 0.579017 0.334296i −0.181726 0.983349i \(-0.558168\pi\)
0.760743 + 0.649054i \(0.224835\pi\)
\(108\) 0.355049 + 0.204988i 0.0341646 + 0.0197249i
\(109\) 2.21097 3.82952i 0.211773 0.366801i −0.740497 0.672060i \(-0.765410\pi\)
0.952269 + 0.305259i \(0.0987430\pi\)
\(110\) −8.23029 12.9931i −0.784727 1.23884i
\(111\) 3.67406 0.348727
\(112\) 0 0
\(113\) 2.86151i 0.269188i 0.990901 + 0.134594i \(0.0429730\pi\)
−0.990901 + 0.134594i \(0.957027\pi\)
\(114\) 0.236864 + 0.410260i 0.0221843 + 0.0384244i
\(115\) 7.28858 13.9131i 0.679664 1.29741i
\(116\) 1.59774 2.76736i 0.148346 0.256943i
\(117\) 1.50035 0.866230i 0.138708 0.0800830i
\(118\) 1.77353i 0.163266i
\(119\) 0 0
\(120\) −0.226474 5.51479i −0.0206742 0.503430i
\(121\) −4.31579 7.47517i −0.392345 0.679561i
\(122\) 12.8478 + 7.41769i 1.16319 + 0.671566i
\(123\) 5.81590 + 3.35781i 0.524402 + 0.302764i
\(124\) 1.08333 + 1.87639i 0.0972861 + 0.168504i
\(125\) 1.37317 + 11.0957i 0.122820 + 0.992429i
\(126\) 0 0
\(127\) 13.7325i 1.21856i 0.792956 + 0.609279i \(0.208541\pi\)
−0.792956 + 0.609279i \(0.791459\pi\)
\(128\) −11.6970 + 6.75324i −1.03387 + 0.596908i
\(129\) 4.85781 8.41398i 0.427706 0.740809i
\(130\) 5.32716 + 2.79070i 0.467223 + 0.244761i
\(131\) 10.9909 + 19.0368i 0.960277 + 1.66325i 0.721801 + 0.692100i \(0.243314\pi\)
0.238476 + 0.971148i \(0.423352\pi\)
\(132\) 1.81650i 0.158106i
\(133\) 0 0
\(134\) −13.0159 −1.12440
\(135\) −1.19655 1.88899i −0.102983 0.162578i
\(136\) −3.37236 + 5.84110i −0.289177 + 0.500870i
\(137\) −2.59973 1.50095i −0.222110 0.128235i 0.384817 0.922993i \(-0.374265\pi\)
−0.606927 + 0.794758i \(0.707598\pi\)
\(138\) −9.44356 + 5.45224i −0.803889 + 0.464126i
\(139\) −21.7364 −1.84366 −0.921829 0.387597i \(-0.873305\pi\)
−0.921829 + 0.387597i \(0.873305\pi\)
\(140\) 0 0
\(141\) 1.81650 0.152977
\(142\) 13.8325 7.98622i 1.16080 0.670189i
\(143\) 6.64770 + 3.83805i 0.555908 + 0.320954i
\(144\) −2.32594 + 4.02864i −0.193828 + 0.335720i
\(145\) −14.7233 + 9.32628i −1.22271 + 0.774505i
\(146\) −19.9026 −1.64715
\(147\) 0 0
\(148\) 1.50628i 0.123815i
\(149\) −2.60654 4.51467i −0.213536 0.369856i 0.739282 0.673396i \(-0.235165\pi\)
−0.952819 + 0.303540i \(0.901832\pi\)
\(150\) 3.31677 7.01772i 0.270813 0.572994i
\(151\) 4.85686 8.41233i 0.395246 0.684585i −0.597887 0.801580i \(-0.703993\pi\)
0.993132 + 0.116995i \(0.0373262\pi\)
\(152\) −0.652324 + 0.376619i −0.0529104 + 0.0305478i
\(153\) 2.73246i 0.220906i
\(154\) 0 0
\(155\) −0.484889 11.8074i −0.0389472 0.948391i
\(156\) −0.355133 0.615108i −0.0284334 0.0492480i
\(157\) 8.20284 + 4.73591i 0.654658 + 0.377967i 0.790238 0.612800i \(-0.209957\pi\)
−0.135581 + 0.990766i \(0.543290\pi\)
\(158\) 9.02610 + 5.21122i 0.718078 + 0.414582i
\(159\) 0.857566 + 1.48535i 0.0680094 + 0.117796i
\(160\) −5.10482 + 0.209638i −0.403571 + 0.0165733i
\(161\) 0 0
\(162\) 1.55241i 0.121969i
\(163\) 4.67358 2.69830i 0.366063 0.211347i −0.305674 0.952136i \(-0.598882\pi\)
0.671737 + 0.740789i \(0.265548\pi\)
\(164\) 1.37662 2.38437i 0.107496 0.186188i
\(165\) 4.59750 8.77615i 0.357915 0.683223i
\(166\) −3.95823 6.85585i −0.307218 0.532117i
\(167\) 0.312550i 0.0241859i −0.999927 0.0120929i \(-0.996151\pi\)
0.999927 0.0120929i \(-0.00384939\pi\)
\(168\) 0 0
\(169\) 9.99859 0.769122
\(170\) −8.01288 + 5.07564i −0.614560 + 0.389284i
\(171\) −0.152578 + 0.264273i −0.0116679 + 0.0202095i
\(172\) −3.44952 1.99158i −0.263024 0.151857i
\(173\) −8.32661 + 4.80737i −0.633061 + 0.365498i −0.781937 0.623358i \(-0.785768\pi\)
0.148876 + 0.988856i \(0.452435\pi\)
\(174\) 12.1000 0.917295
\(175\) 0 0
\(176\) −20.6113 −1.55363
\(177\) 0.989377 0.571217i 0.0743661 0.0429353i
\(178\) −5.47269 3.15966i −0.410196 0.236827i
\(179\) −4.42730 + 7.66831i −0.330912 + 0.573157i −0.982691 0.185252i \(-0.940690\pi\)
0.651779 + 0.758409i \(0.274023\pi\)
\(180\) −0.774437 + 0.490556i −0.0577231 + 0.0365639i
\(181\) 16.9234 1.25790 0.628952 0.777445i \(-0.283484\pi\)
0.628952 + 0.777445i \(0.283484\pi\)
\(182\) 0 0
\(183\) 9.55635i 0.706426i
\(184\) −8.66920 15.0155i −0.639102 1.10696i
\(185\) −3.81233 + 7.27735i −0.280288 + 0.535042i
\(186\) −4.10214 + 7.10511i −0.300784 + 0.520972i
\(187\) −10.4848 + 6.05343i −0.766728 + 0.442670i
\(188\) 0.744719i 0.0543142i
\(189\) 0 0
\(190\) −1.05839 + 0.0434647i −0.0767840 + 0.00315326i
\(191\) −0.159271 0.275865i −0.0115244 0.0199609i 0.860206 0.509947i \(-0.170335\pi\)
−0.871730 + 0.489986i \(0.837002\pi\)
\(192\) −4.98544 2.87834i −0.359793 0.207727i
\(193\) −1.81289 1.04667i −0.130494 0.0753410i 0.433332 0.901234i \(-0.357338\pi\)
−0.563826 + 0.825894i \(0.690671\pi\)
\(194\) −2.23418 3.86972i −0.160405 0.277830i
\(195\) 0.158954 + 3.87063i 0.0113829 + 0.277182i
\(196\) 0 0
\(197\) 22.5798i 1.60874i 0.594126 + 0.804372i \(0.297498\pi\)
−0.594126 + 0.804372i \(0.702502\pi\)
\(198\) −5.95682 + 3.43917i −0.423333 + 0.244411i
\(199\) 3.75204 6.49872i 0.265975 0.460682i −0.701844 0.712331i \(-0.747639\pi\)
0.967819 + 0.251649i \(0.0809728\pi\)
\(200\) 11.1583 + 5.27375i 0.789014 + 0.372911i
\(201\) −4.19216 7.26104i −0.295693 0.512154i
\(202\) 11.2048i 0.788365i
\(203\) 0 0
\(204\) 1.12024 0.0784325
\(205\) −12.6857 + 8.03558i −0.886009 + 0.561229i
\(206\) 8.75046 15.1562i 0.609673 1.05599i
\(207\) −6.08316 3.51212i −0.422809 0.244109i
\(208\) 6.97945 4.02959i 0.483938 0.279402i
\(209\) −1.35207 −0.0935248
\(210\) 0 0
\(211\) 7.67216 0.528173 0.264087 0.964499i \(-0.414930\pi\)
0.264087 + 0.964499i \(0.414930\pi\)
\(212\) 0.608955 0.351581i 0.0418232 0.0241467i
\(213\) 8.91037 + 5.14441i 0.610529 + 0.352489i
\(214\) 5.36820 9.29800i 0.366963 0.635598i
\(215\) 11.6252 + 18.3527i 0.792834 + 1.25164i
\(216\) −2.46837 −0.167951
\(217\) 0 0
\(218\) 6.86467i 0.464934i
\(219\) −6.41022 11.1028i −0.433163 0.750260i
\(220\) −3.59801 1.88486i −0.242577 0.127077i
\(221\) 2.36694 4.09966i 0.159217 0.275773i
\(222\) 4.93951 2.85183i 0.331518 0.191402i
\(223\) 6.90208i 0.462198i −0.972930 0.231099i \(-0.925768\pi\)
0.972930 0.231099i \(-0.0742321\pi\)
\(224\) 0 0
\(225\) 4.98316 0.409975i 0.332211 0.0273317i
\(226\) 2.22112 + 3.84709i 0.147746 + 0.255904i
\(227\) −5.49684 3.17360i −0.364838 0.210639i 0.306363 0.951915i \(-0.400888\pi\)
−0.671201 + 0.741275i \(0.734221\pi\)
\(228\) 0.108345 + 0.0625532i 0.00717535 + 0.00414269i
\(229\) −3.37834 5.85146i −0.223247 0.386676i 0.732545 0.680719i \(-0.238332\pi\)
−0.955792 + 0.294043i \(0.904999\pi\)
\(230\) −1.00049 24.3626i −0.0659705 1.60642i
\(231\) 0 0
\(232\) 19.2392i 1.26312i
\(233\) 6.41899 3.70601i 0.420522 0.242789i −0.274779 0.961508i \(-0.588605\pi\)
0.695301 + 0.718719i \(0.255271\pi\)
\(234\) 1.34474 2.32916i 0.0879086 0.152262i
\(235\) −1.88486 + 3.59801i −0.122955 + 0.234708i
\(236\) −0.234185 0.405620i −0.0152441 0.0264036i
\(237\) 6.71372i 0.436103i
\(238\) 0 0
\(239\) −7.36355 −0.476309 −0.238154 0.971227i \(-0.576542\pi\)
−0.238154 + 0.971227i \(0.576542\pi\)
\(240\) −5.56620 8.78732i −0.359297 0.567219i
\(241\) 6.84002 11.8473i 0.440605 0.763149i −0.557130 0.830425i \(-0.688097\pi\)
0.997734 + 0.0672759i \(0.0214308\pi\)
\(242\) −11.6045 6.69988i −0.745967 0.430684i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 3.91787 0.250816
\(245\) 0 0
\(246\) 10.4254 0.664699
\(247\) 0.457842 0.264335i 0.0291318 0.0168193i
\(248\) −11.2973 6.52250i −0.717380 0.414179i
\(249\) 2.54973 4.41626i 0.161583 0.279869i
\(250\) 10.4587 + 13.8515i 0.661463 + 0.876044i
\(251\) −23.4843 −1.48231 −0.741157 0.671331i \(-0.765723\pi\)
−0.741157 + 0.671331i \(0.765723\pi\)
\(252\) 0 0
\(253\) 31.1226i 1.95666i
\(254\) 10.6592 + 18.4623i 0.668818 + 1.15843i
\(255\) −5.41228 2.83529i −0.338930 0.177553i
\(256\) −4.72710 + 8.18758i −0.295444 + 0.511724i
\(257\) 12.6417 7.29871i 0.788570 0.455281i −0.0508890 0.998704i \(-0.516205\pi\)
0.839459 + 0.543423i \(0.182872\pi\)
\(258\) 15.0826i 0.939003i
\(259\) 0 0
\(260\) 1.58686 0.0651672i 0.0984131 0.00404150i
\(261\) 3.89715 + 6.75007i 0.241228 + 0.417819i
\(262\) 29.5528 + 17.0623i 1.82578 + 1.05411i
\(263\) 4.40755 + 2.54470i 0.271781 + 0.156913i 0.629697 0.776841i \(-0.283179\pi\)
−0.357916 + 0.933754i \(0.616512\pi\)
\(264\) −5.46837 9.47149i −0.336555 0.582930i
\(265\) −3.83192 + 0.157364i −0.235393 + 0.00966680i
\(266\) 0 0
\(267\) 4.07065i 0.249120i
\(268\) −2.97685 + 1.71868i −0.181840 + 0.104985i
\(269\) −15.2550 + 26.4224i −0.930112 + 1.61100i −0.146984 + 0.989139i \(0.546957\pi\)
−0.783127 + 0.621862i \(0.786377\pi\)
\(270\) −3.07491 1.61083i −0.187133 0.0980322i
\(271\) −9.74401 16.8771i −0.591907 1.02521i −0.993975 0.109603i \(-0.965042\pi\)
0.402069 0.915609i \(-0.368291\pi\)
\(272\) 12.7110i 0.770720i
\(273\) 0 0
\(274\) −4.66019 −0.281532
\(275\) 12.6127 + 18.2129i 0.760576 + 1.09828i
\(276\) −1.43988 + 2.49395i −0.0866706 + 0.150118i
\(277\) 22.0665 + 12.7401i 1.32585 + 0.765478i 0.984655 0.174515i \(-0.0558357\pi\)
0.341193 + 0.939993i \(0.389169\pi\)
\(278\) −29.2230 + 16.8719i −1.75268 + 1.01191i
\(279\) −5.28487 −0.316397
\(280\) 0 0
\(281\) −22.1914 −1.32383 −0.661914 0.749580i \(-0.730255\pi\)
−0.661914 + 0.749580i \(0.730255\pi\)
\(282\) 2.44215 1.40998i 0.145428 0.0839628i
\(283\) −15.6960 9.06209i −0.933031 0.538685i −0.0452618 0.998975i \(-0.514412\pi\)
−0.887769 + 0.460290i \(0.847746\pi\)
\(284\) 2.10908 3.65303i 0.125151 0.216768i
\(285\) −0.365135 0.576436i −0.0216287 0.0341451i
\(286\) 11.9165 0.704635
\(287\) 0 0
\(288\) 2.28487i 0.134637i
\(289\) −4.76683 8.25640i −0.280402 0.485670i
\(290\) −12.5553 + 23.9668i −0.737274 + 1.40738i
\(291\) 1.43917 2.49272i 0.0843658 0.146126i
\(292\) −4.55188 + 2.62803i −0.266379 + 0.153794i
\(293\) 13.8958i 0.811801i 0.913917 + 0.405901i \(0.133042\pi\)
−0.913917 + 0.405901i \(0.866958\pi\)
\(294\) 0 0
\(295\) 0.104819 + 2.55241i 0.00610279 + 0.148607i
\(296\) 4.53447 + 7.85394i 0.263561 + 0.456501i
\(297\) −3.83715 2.21538i −0.222654 0.128549i
\(298\) −7.00861 4.04642i −0.405998 0.234403i
\(299\) 6.08460 + 10.5388i 0.351881 + 0.609476i
\(300\) −0.168080 2.04297i −0.00970408 0.117951i
\(301\) 0 0
\(302\) 15.0797i 0.867737i
\(303\) 6.25068 3.60883i 0.359092 0.207322i
\(304\) −0.709774 + 1.22936i −0.0407083 + 0.0705089i
\(305\) −18.9286 9.91600i −1.08385 0.567788i
\(306\) 2.12095 + 3.67359i 0.121247 + 0.210005i
\(307\) 29.8332i 1.70267i 0.524622 + 0.851335i \(0.324207\pi\)
−0.524622 + 0.851335i \(0.675793\pi\)
\(308\) 0 0
\(309\) 11.2734 0.641321
\(310\) −9.81684 15.4978i −0.557559 0.880214i
\(311\) 6.75662 11.7028i 0.383133 0.663606i −0.608375 0.793650i \(-0.708178\pi\)
0.991508 + 0.130044i \(0.0415117\pi\)
\(312\) 3.70343 + 2.13817i 0.209665 + 0.121050i
\(313\) 25.1023 14.4928i 1.41887 0.819184i 0.422669 0.906284i \(-0.361093\pi\)
0.996200 + 0.0871001i \(0.0277600\pi\)
\(314\) 14.7041 0.829803
\(315\) 0 0
\(316\) 2.75246 0.154838
\(317\) −1.00341 + 0.579319i −0.0563571 + 0.0325378i −0.527914 0.849298i \(-0.677026\pi\)
0.471557 + 0.881836i \(0.343692\pi\)
\(318\) 2.30587 + 1.33129i 0.129307 + 0.0746552i
\(319\) −17.2673 + 29.9079i −0.966785 + 1.67452i
\(320\) 10.8743 6.88817i 0.607892 0.385060i
\(321\) 6.91596 0.386011
\(322\) 0 0
\(323\) 0.833827i 0.0463954i
\(324\) 0.204988 + 0.355049i 0.0113882 + 0.0197249i
\(325\) −7.83164 3.70146i −0.434421 0.205320i
\(326\) 4.18886 7.25532i 0.231999 0.401835i
\(327\) 3.82952 2.21097i 0.211773 0.122267i
\(328\) 16.5766i 0.915292i
\(329\) 0 0
\(330\) −0.631092 15.3675i −0.0347404 0.845953i
\(331\) 14.1746 + 24.5511i 0.779104 + 1.34945i 0.932459 + 0.361277i \(0.117659\pi\)
−0.153355 + 0.988171i \(0.549008\pi\)
\(332\) −1.81056 1.04533i −0.0993673 0.0573697i
\(333\) 3.18183 + 1.83703i 0.174363 + 0.100669i
\(334\) −0.242603 0.420201i −0.0132746 0.0229924i
\(335\) 18.7321 0.769266i 1.02345 0.0420295i
\(336\) 0 0
\(337\) 15.9729i 0.870101i −0.900406 0.435051i \(-0.856730\pi\)
0.900406 0.435051i \(-0.143270\pi\)
\(338\) 13.4424 7.76095i 0.731168 0.422140i
\(339\) −1.43075 + 2.47814i −0.0777079 + 0.134594i
\(340\) −1.16240 + 2.21890i −0.0630400 + 0.120337i
\(341\) −11.7080 20.2788i −0.634023 1.09816i
\(342\) 0.473727i 0.0256162i
\(343\) 0 0
\(344\) 23.9817 1.29301
\(345\) 13.2687 8.40485i 0.714361 0.452502i
\(346\) −7.46301 + 12.9263i −0.401214 + 0.694923i
\(347\) 11.2687 + 6.50599i 0.604935 + 0.349260i 0.770981 0.636859i \(-0.219766\pi\)
−0.166045 + 0.986118i \(0.553100\pi\)
\(348\) 2.76736 1.59774i 0.148346 0.0856476i
\(349\) 32.0724 1.71680 0.858398 0.512984i \(-0.171460\pi\)
0.858398 + 0.512984i \(0.171460\pi\)
\(350\) 0 0
\(351\) 1.73246 0.0924718
\(352\) −8.76737 + 5.06185i −0.467303 + 0.269797i
\(353\) 11.5778 + 6.68445i 0.616225 + 0.355778i 0.775398 0.631473i \(-0.217549\pi\)
−0.159173 + 0.987251i \(0.550883\pi\)
\(354\) 0.886763 1.53592i 0.0471309 0.0816331i
\(355\) −19.4354 + 12.3111i −1.03152 + 0.653405i
\(356\) −1.66887 −0.0884498
\(357\) 0 0
\(358\) 13.7460i 0.726497i
\(359\) −6.55974 11.3618i −0.346210 0.599653i 0.639363 0.768905i \(-0.279198\pi\)
−0.985573 + 0.169252i \(0.945865\pi\)
\(360\) 2.56126 4.88919i 0.134991 0.257683i
\(361\) 9.45344 16.3738i 0.497549 0.861781i
\(362\) 22.7522 13.1360i 1.19583 0.690412i
\(363\) 8.63158i 0.453041i
\(364\) 0 0
\(365\) 28.6432 1.17628i 1.49926 0.0615694i
\(366\) 7.41769 + 12.8478i 0.387729 + 0.671566i
\(367\) −11.3761 6.56798i −0.593826 0.342846i 0.172783 0.984960i \(-0.444724\pi\)
−0.766609 + 0.642114i \(0.778057\pi\)
\(368\) −28.2981 16.3379i −1.47514 0.851672i
\(369\) 3.35781 + 5.81590i 0.174801 + 0.302764i
\(370\) 0.523313 + 12.7430i 0.0272057 + 0.662478i
\(371\) 0 0
\(372\) 2.16666i 0.112336i
\(373\) −25.6514 + 14.8099i −1.32818 + 0.766826i −0.985018 0.172450i \(-0.944832\pi\)
−0.343163 + 0.939276i \(0.611498\pi\)
\(374\) −9.39740 + 16.2768i −0.485928 + 0.841652i
\(375\) −4.35865 + 10.2957i −0.225080 + 0.531670i
\(376\) 2.24190 + 3.88308i 0.115617 + 0.200254i
\(377\) 13.5033i 0.695456i
\(378\) 0 0
\(379\) −7.47689 −0.384062 −0.192031 0.981389i \(-0.561507\pi\)
−0.192031 + 0.981389i \(0.561507\pi\)
\(380\) −0.236324 + 0.149696i −0.0121232 + 0.00767925i
\(381\) −6.86623 + 11.8927i −0.351768 + 0.609279i
\(382\) −0.428255 0.247253i −0.0219114 0.0126506i
\(383\) 20.5586 11.8695i 1.05050 0.606505i 0.127709 0.991812i \(-0.459238\pi\)
0.922789 + 0.385307i \(0.125904\pi\)
\(384\) −13.5065 −0.689250
\(385\) 0 0
\(386\) −3.24972 −0.165406
\(387\) 8.41398 4.85781i 0.427706 0.246936i
\(388\) −1.02195 0.590025i −0.0518818 0.0299540i
\(389\) −7.06523 + 12.2373i −0.358221 + 0.620458i −0.987664 0.156589i \(-0.949950\pi\)
0.629442 + 0.777047i \(0.283283\pi\)
\(390\) 3.21811 + 5.08040i 0.162955 + 0.257256i
\(391\) −19.1934 −0.970653
\(392\) 0 0
\(393\) 21.9817i 1.10883i
\(394\) 17.5265 + 30.3569i 0.882975 + 1.52936i
\(395\) −13.2981 6.96638i −0.669100 0.350517i
\(396\) −0.908250 + 1.57313i −0.0456413 + 0.0790530i
\(397\) 9.75974 5.63479i 0.489827 0.282802i −0.234676 0.972074i \(-0.575403\pi\)
0.724503 + 0.689272i \(0.242069\pi\)
\(398\) 11.6494i 0.583932i
\(399\) 0 0
\(400\) 23.1810 1.90715i 1.15905 0.0953576i
\(401\) −11.6484 20.1757i −0.581694 1.00752i −0.995279 0.0970583i \(-0.969057\pi\)
0.413584 0.910466i \(-0.364277\pi\)
\(402\) −11.2721 6.50796i −0.562202 0.324587i
\(403\) 7.92917 + 4.57791i 0.394980 + 0.228042i
\(404\) −1.47953 2.56262i −0.0736094 0.127495i
\(405\) −0.0917505 2.23418i −0.00455912 0.111018i
\(406\) 0 0
\(407\) 16.2789i 0.806914i
\(408\) −5.84110 + 3.37236i −0.289177 + 0.166957i
\(409\) −10.3239 + 17.8815i −0.510484 + 0.884184i 0.489443 + 0.872036i \(0.337200\pi\)
−0.999926 + 0.0121481i \(0.996133\pi\)
\(410\) −10.8177 + 20.6500i −0.534250 + 1.01983i
\(411\) −1.50095 2.59973i −0.0740366 0.128235i
\(412\) 4.62181i 0.227700i
\(413\) 0 0
\(414\) −10.9045 −0.535926
\(415\) 6.10176 + 9.63281i 0.299524 + 0.472856i
\(416\) 1.97922 3.42811i 0.0970393 0.168077i
\(417\) −18.8243 10.8682i −0.921829 0.532218i
\(418\) −1.81776 + 1.04948i −0.0889096 + 0.0513320i
\(419\) −5.48254 −0.267839 −0.133920 0.990992i \(-0.542756\pi\)
−0.133920 + 0.990992i \(0.542756\pi\)
\(420\) 0 0
\(421\) −3.78079 −0.184264 −0.0921322 0.995747i \(-0.529368\pi\)
−0.0921322 + 0.995747i \(0.529368\pi\)
\(422\) 10.3146 5.95517i 0.502109 0.289893i
\(423\) 1.57313 + 0.908250i 0.0764884 + 0.0441606i
\(424\) −2.11679 + 3.66639i −0.102800 + 0.178055i
\(425\) 11.2319 7.77830i 0.544829 0.377303i
\(426\) 15.9724 0.773868
\(427\) 0 0
\(428\) 2.83537i 0.137053i
\(429\) 3.83805 + 6.64770i 0.185303 + 0.320954i
\(430\) 29.8747 + 15.6502i 1.44069 + 0.754722i
\(431\) 13.7564 23.8267i 0.662621 1.14769i −0.317303 0.948324i \(-0.602777\pi\)
0.979924 0.199369i \(-0.0638894\pi\)
\(432\) −4.02864 + 2.32594i −0.193828 + 0.111907i
\(433\) 8.75514i 0.420745i −0.977621 0.210373i \(-0.932532\pi\)
0.977621 0.210373i \(-0.0674677\pi\)
\(434\) 0 0
\(435\) −17.4139 + 0.715131i −0.834933 + 0.0342879i
\(436\) −0.906444 1.57001i −0.0434108 0.0751897i
\(437\) −1.85631 1.07174i −0.0887996 0.0512685i
\(438\) −17.2361 9.95129i −0.823574 0.475491i
\(439\) 5.30636 + 9.19088i 0.253259 + 0.438657i 0.964421 0.264371i \(-0.0851643\pi\)
−0.711163 + 0.703028i \(0.751831\pi\)
\(440\) 24.4347 1.00345i 1.16488 0.0478377i
\(441\) 0 0
\(442\) 7.34891i 0.349552i
\(443\) 17.3080 9.99278i 0.822328 0.474771i −0.0288905 0.999583i \(-0.509197\pi\)
0.851219 + 0.524811i \(0.175864\pi\)
\(444\) 0.753138 1.30447i 0.0357423 0.0619075i
\(445\) 8.06289 + 4.22385i 0.382218 + 0.200230i
\(446\) −5.35743 9.27934i −0.253682 0.439390i
\(447\) 5.21309i 0.246571i
\(448\) 0 0
\(449\) −3.02578 −0.142795 −0.0713976 0.997448i \(-0.522746\pi\)
−0.0713976 + 0.997448i \(0.522746\pi\)
\(450\) 6.38127 4.41914i 0.300816 0.208320i
\(451\) −14.8776 + 25.7688i −0.700561 + 1.21341i
\(452\) 1.01598 + 0.586574i 0.0477875 + 0.0275901i
\(453\) 8.41233 4.85686i 0.395246 0.228195i
\(454\) −9.85346 −0.462446
\(455\) 0 0
\(456\) −0.753238 −0.0352736
\(457\) 1.97570 1.14067i 0.0924195 0.0533584i −0.453078 0.891471i \(-0.649674\pi\)
0.545497 + 0.838112i \(0.316341\pi\)
\(458\) −9.08387 5.24457i −0.424461 0.245063i
\(459\) −1.36623 + 2.36638i −0.0637701 + 0.110453i
\(460\) −3.44578 5.43982i −0.160660 0.253633i
\(461\) 24.0678 1.12095 0.560475 0.828171i \(-0.310619\pi\)
0.560475 + 0.828171i \(0.310619\pi\)
\(462\) 0 0
\(463\) 11.1290i 0.517211i −0.965983 0.258605i \(-0.916737\pi\)
0.965983 0.258605i \(-0.0832629\pi\)
\(464\) 18.1290 + 31.4004i 0.841620 + 1.45773i
\(465\) 5.48376 10.4679i 0.254303 0.485439i
\(466\) 5.75324 9.96490i 0.266514 0.461615i
\(467\) −24.7481 + 14.2883i −1.14521 + 0.661185i −0.947714 0.319120i \(-0.896613\pi\)
−0.197491 + 0.980305i \(0.563279\pi\)
\(468\) 0.710265i 0.0328320i
\(469\) 0 0
\(470\) 0.258732 + 6.30029i 0.0119344 + 0.290611i
\(471\) 4.73591 + 8.20284i 0.218219 + 0.377967i
\(472\) 2.44215 + 1.40998i 0.112409 + 0.0648994i
\(473\) 37.2803 + 21.5238i 1.71415 + 0.989664i
\(474\) 5.21122 + 9.02610i 0.239359 + 0.414582i
\(475\) 1.52064 0.125106i 0.0697719 0.00574028i
\(476\) 0 0
\(477\) 1.71513i 0.0785305i
\(478\) −9.89975 + 5.71562i −0.452804 + 0.261427i
\(479\) 2.79005 4.83250i 0.127480 0.220803i −0.795219 0.606322i \(-0.792644\pi\)
0.922700 + 0.385519i \(0.125978\pi\)
\(480\) −4.52572 2.37086i −0.206570 0.108214i
\(481\) −3.18258 5.51240i −0.145113 0.251344i
\(482\) 21.2370i 0.967320i
\(483\) 0 0
\(484\) −3.53873 −0.160852
\(485\) 3.44409 + 5.43715i 0.156388 + 0.246888i
\(486\) −0.776205 + 1.34443i −0.0352094 + 0.0609844i
\(487\) −7.22858 4.17342i −0.327558 0.189116i 0.327198 0.944956i \(-0.393895\pi\)
−0.654756 + 0.755840i \(0.727229\pi\)
\(488\) −20.4283 + 11.7943i −0.924747 + 0.533903i
\(489\) 5.39659 0.244042
\(490\) 0 0
\(491\) 0.557405 0.0251554 0.0125777 0.999921i \(-0.495996\pi\)
0.0125777 + 0.999921i \(0.495996\pi\)
\(492\) 2.38437 1.37662i 0.107496 0.0620628i
\(493\) 18.4443 + 10.6488i 0.830689 + 0.479598i
\(494\) 0.410357 0.710759i 0.0184628 0.0319785i
\(495\) 8.36963 5.30162i 0.376187 0.238290i
\(496\) −24.5845 −1.10388
\(497\) 0 0
\(498\) 7.91645i 0.354745i
\(499\) −13.0168 22.5458i −0.582713 1.00929i −0.995156 0.0983057i \(-0.968658\pi\)
0.412443 0.910983i \(-0.364676\pi\)
\(500\) 4.22100 + 1.78694i 0.188769 + 0.0799143i
\(501\) 0.156275 0.270676i 0.00698186 0.0120929i
\(502\) −31.5729 + 18.2286i −1.40917 + 0.813583i
\(503\) 5.52409i 0.246307i 0.992388 + 0.123154i \(0.0393008\pi\)
−0.992388 + 0.123154i \(0.960699\pi\)
\(504\) 0 0
\(505\) 0.662224 + 16.1256i 0.0294686 + 0.717580i
\(506\) −24.1575 41.8421i −1.07393 1.86011i
\(507\) 8.65903 + 4.99929i 0.384561 + 0.222026i
\(508\) 4.87569 + 2.81498i 0.216324 + 0.124895i
\(509\) −11.4446 19.8227i −0.507274 0.878625i −0.999965 0.00842016i \(-0.997320\pi\)
0.492690 0.870205i \(-0.336014\pi\)
\(510\) −9.47718 + 0.389196i −0.419657 + 0.0172339i
\(511\) 0 0
\(512\) 12.3362i 0.545186i
\(513\) −0.264273 + 0.152578i −0.0116679 + 0.00673649i
\(514\) 11.3306 19.6251i 0.499771 0.865628i
\(515\) −11.6977 + 22.3296i −0.515460 + 0.983960i
\(516\) −1.99158 3.44952i −0.0876745 0.151857i
\(517\) 8.04846i 0.353971i
\(518\) 0 0
\(519\) −9.61475 −0.422041
\(520\) −8.07796 + 5.11687i −0.354242 + 0.224390i
\(521\) 13.0995 22.6889i 0.573898 0.994020i −0.422263 0.906474i \(-0.638764\pi\)
0.996160 0.0875466i \(-0.0279027\pi\)
\(522\) 10.4789 + 6.04998i 0.458648 + 0.264800i
\(523\) −23.2753 + 13.4380i −1.01776 + 0.587603i −0.913454 0.406943i \(-0.866595\pi\)
−0.104304 + 0.994545i \(0.533262\pi\)
\(524\) 9.01197 0.393690
\(525\) 0 0
\(526\) 7.90083 0.344493
\(527\) −12.5060 + 7.22034i −0.544770 + 0.314523i
\(528\) −17.8499 10.3056i −0.776817 0.448496i
\(529\) 13.1699 22.8109i 0.572605 0.991780i
\(530\) −5.02959 + 3.18592i −0.218471 + 0.138387i
\(531\) 1.14243 0.0495774
\(532\) 0 0
\(533\) 11.6345i 0.503948i
\(534\) −3.15966 5.47269i −0.136732 0.236827i
\(535\) −7.17624 + 13.6987i −0.310256 + 0.592246i
\(536\) 10.3478 17.9229i 0.446957 0.774153i
\(537\) −7.66831 + 4.42730i −0.330912 + 0.191052i
\(538\) 47.3639i 2.04200i
\(539\) 0 0
\(540\) −0.915960 + 0.0376154i −0.0394167 + 0.00161871i
\(541\) 9.39222 + 16.2678i 0.403803 + 0.699408i 0.994181 0.107719i \(-0.0343547\pi\)
−0.590378 + 0.807127i \(0.701021\pi\)
\(542\) −26.2002 15.1267i −1.12540 0.649747i
\(543\) 14.6561 + 8.46168i 0.628952 + 0.363125i
\(544\) 3.12166 + 5.40687i 0.133840 + 0.231817i
\(545\) 0.405716 + 9.87944i 0.0173789 + 0.423189i
\(546\) 0 0
\(547\) 13.4126i 0.573483i −0.958008 0.286742i \(-0.907428\pi\)
0.958008 0.286742i \(-0.0925721\pi\)
\(548\) −1.06582 + 0.615353i −0.0455297 + 0.0262866i
\(549\) −4.77818 + 8.27604i −0.203928 + 0.353213i
\(550\) 31.0938 + 14.6958i 1.32584 + 0.626631i
\(551\) 1.18924 + 2.05982i 0.0506633 + 0.0877515i
\(552\) 17.3384i 0.737971i
\(553\) 0 0
\(554\) 39.5557 1.68056
\(555\) −6.94026 + 4.39620i −0.294597 + 0.186608i
\(556\) −4.45569 + 7.71749i −0.188963 + 0.327294i
\(557\) −34.8008 20.0922i −1.47456 0.851336i −0.474968 0.880003i \(-0.657540\pi\)
−0.999589 + 0.0286677i \(0.990874\pi\)
\(558\) −7.10511 + 4.10214i −0.300784 + 0.173657i
\(559\) −16.8319 −0.711914
\(560\) 0 0
\(561\) −12.1069 −0.511152
\(562\) −29.8347 + 17.2251i −1.25850 + 0.726595i
\(563\) 21.8134 + 12.5940i 0.919325 + 0.530772i 0.883420 0.468583i \(-0.155235\pi\)
0.0359052 + 0.999355i \(0.488569\pi\)
\(564\) 0.372360 0.644946i 0.0156792 0.0271571i
\(565\) −3.42394 5.40535i −0.144046 0.227405i
\(566\) −28.1362 −1.18265
\(567\) 0 0
\(568\) 25.3966i 1.06562i
\(569\) −5.51757 9.55672i −0.231309 0.400638i 0.726885 0.686759i \(-0.240967\pi\)
−0.958194 + 0.286121i \(0.907634\pi\)
\(570\) −0.938329 0.491556i −0.0393023 0.0205890i
\(571\) −14.3573 + 24.8677i −0.600836 + 1.04068i 0.391858 + 0.920026i \(0.371832\pi\)
−0.992695 + 0.120654i \(0.961501\pi\)
\(572\) 2.72539 1.57351i 0.113954 0.0657916i
\(573\) 0.318541i 0.0133073i
\(574\) 0 0
\(575\) 2.87976 + 35.0029i 0.120094 + 1.45972i
\(576\) −2.87834 4.98544i −0.119931 0.207727i
\(577\) −5.94444 3.43202i −0.247470 0.142877i 0.371135 0.928579i \(-0.378969\pi\)
−0.618605 + 0.785702i \(0.712302\pi\)
\(578\) −12.8173 7.40008i −0.533130 0.307803i
\(579\) −1.04667 1.81289i −0.0434981 0.0753410i
\(580\) 0.293186 + 7.13927i 0.0121739 + 0.296442i
\(581\) 0 0
\(582\) 4.46837i 0.185220i
\(583\) −6.58121 + 3.79966i −0.272566 + 0.157366i
\(584\) 15.8228 27.4059i 0.654752 1.13406i
\(585\) −1.79766 + 3.43154i −0.0743240 + 0.141877i
\(586\) 10.7860 + 18.6819i 0.445565 + 0.771741i
\(587\) 9.03965i 0.373106i −0.982445 0.186553i \(-0.940268\pi\)
0.982445 0.186553i \(-0.0597317\pi\)
\(588\) 0 0
\(589\) −1.61271 −0.0664506
\(590\) 2.12211 + 3.35016i 0.0873660 + 0.137924i
\(591\) −11.2899 + 19.5547i −0.464404 + 0.804372i
\(592\) 14.8015 + 8.54564i 0.608337 + 0.351224i
\(593\) −4.42364 + 2.55399i −0.181657 + 0.104880i −0.588071 0.808809i \(-0.700112\pi\)
0.406414 + 0.913689i \(0.366779\pi\)
\(594\) −6.87834 −0.282222
\(595\) 0 0
\(596\) −2.13724 −0.0875446
\(597\) 6.49872 3.75204i 0.265975 0.153561i
\(598\) 16.3606 + 9.44578i 0.669034 + 0.386267i
\(599\) −14.9721 + 25.9325i −0.611745 + 1.05957i 0.379202 + 0.925314i \(0.376199\pi\)
−0.990946 + 0.134259i \(0.957135\pi\)
\(600\) 7.02654 + 10.1464i 0.286857 + 0.414224i
\(601\) 12.5387 0.511466 0.255733 0.966747i \(-0.417683\pi\)
0.255733 + 0.966747i \(0.417683\pi\)
\(602\) 0 0
\(603\) 8.38433i 0.341436i
\(604\) −1.99119 3.44884i −0.0810204 0.140331i
\(605\) 17.0969 + 8.95643i 0.695087 + 0.364130i
\(606\) 5.60239 9.70362i 0.227581 0.394182i
\(607\) −8.31216 + 4.79903i −0.337380 + 0.194786i −0.659113 0.752044i \(-0.729068\pi\)
0.321733 + 0.946831i \(0.395735\pi\)
\(608\) 0.697242i 0.0282769i
\(609\) 0 0
\(610\) −33.1450 + 1.36115i −1.34200 + 0.0551115i
\(611\) −1.57351 2.72539i −0.0636572 0.110258i
\(612\) 0.970157 + 0.560120i 0.0392163 + 0.0226415i
\(613\) 23.9583 + 13.8323i 0.967665 + 0.558682i 0.898524 0.438925i \(-0.144641\pi\)
0.0691416 + 0.997607i \(0.477974\pi\)
\(614\) 23.1567 + 40.1085i 0.934527 + 1.61865i
\(615\) −15.0039 + 0.616162i −0.605017 + 0.0248460i
\(616\) 0 0
\(617\) 20.4155i 0.821896i −0.911659 0.410948i \(-0.865198\pi\)
0.911659 0.410948i \(-0.134802\pi\)
\(618\) 15.1562 8.75046i 0.609673 0.351995i
\(619\) 7.72112 13.3734i 0.310338 0.537521i −0.668098 0.744074i \(-0.732891\pi\)
0.978435 + 0.206553i \(0.0662245\pi\)
\(620\) −4.29159 2.24821i −0.172354 0.0902901i
\(621\) −3.51212 6.08316i −0.140936 0.244109i
\(622\) 20.9781i 0.841145i
\(623\) 0 0
\(624\) 8.05918 0.322625
\(625\) −15.8705 19.3165i −0.634818 0.772662i
\(626\) 22.4988 38.9691i 0.899234 1.55752i
\(627\) −1.17093 0.676036i −0.0467624 0.0269983i
\(628\) 3.36296 1.94161i 0.134197 0.0774785i
\(629\) 10.0392 0.400290
\(630\) 0 0
\(631\) −38.1722 −1.51961 −0.759805 0.650151i \(-0.774705\pi\)
−0.759805 + 0.650151i \(0.774705\pi\)
\(632\) −14.3517 + 8.28597i −0.570881 + 0.329598i
\(633\) 6.64428 + 3.83608i 0.264087 + 0.152470i
\(634\) −0.899340 + 1.55770i −0.0357173 + 0.0618643i
\(635\) −16.4316 25.9404i −0.652067 1.02941i
\(636\) 0.703161 0.0278822
\(637\) 0 0
\(638\) 53.6119i 2.12252i
\(639\) 5.14441 + 8.91037i 0.203510 + 0.352489i
\(640\) 14.0148 26.7528i 0.553983 1.05750i
\(641\) 8.39007 14.5320i 0.331388 0.573981i −0.651396 0.758738i \(-0.725816\pi\)
0.982784 + 0.184757i \(0.0591498\pi\)
\(642\) 9.29800 5.36820i 0.366963 0.211866i
\(643\) 14.2002i 0.560001i −0.960000 0.280001i \(-0.909665\pi\)
0.960000 0.280001i \(-0.0903346\pi\)
\(644\) 0 0
\(645\) 0.891413 + 21.7065i 0.0350994 + 0.854692i
\(646\) 0.647220 + 1.12102i 0.0254645 + 0.0441059i
\(647\) 12.5474 + 7.24426i 0.493290 + 0.284801i 0.725938 0.687760i \(-0.241406\pi\)
−0.232648 + 0.972561i \(0.574739\pi\)
\(648\) −2.13767 1.23418i −0.0839756 0.0484834i
\(649\) 2.53092 + 4.38369i 0.0993474 + 0.172075i
\(650\) −13.4021 + 1.10262i −0.525676 + 0.0432484i
\(651\) 0 0
\(652\) 2.21247i 0.0866469i
\(653\) −8.90562 + 5.14166i −0.348504 + 0.201209i −0.664026 0.747709i \(-0.731154\pi\)
0.315522 + 0.948918i \(0.397820\pi\)
\(654\) 3.43233 5.94498i 0.134215 0.232467i
\(655\) −43.5400 22.8090i −1.70125 0.891222i
\(656\) 15.6201 + 27.0548i 0.609863 + 1.05631i
\(657\) 12.8204i 0.500173i
\(658\) 0 0
\(659\) −14.9773 −0.583433 −0.291717 0.956505i \(-0.594226\pi\)
−0.291717 + 0.956505i \(0.594226\pi\)
\(660\) −2.17353 3.43134i −0.0846047 0.133565i
\(661\) 1.22323 2.11870i 0.0475782 0.0824079i −0.841256 0.540638i \(-0.818183\pi\)
0.888834 + 0.458230i \(0.151516\pi\)
\(662\) 38.1133 + 22.0047i 1.48131 + 0.855238i
\(663\) 4.09966 2.36694i 0.159217 0.0919242i
\(664\) 12.5874 0.488484
\(665\) 0 0
\(666\) 5.70365 0.221012
\(667\) −47.4140 + 27.3745i −1.83588 + 1.05994i
\(668\) −0.110971 0.0640689i −0.00429358 0.00247890i
\(669\) 3.45104 5.97738i 0.133425 0.231099i
\(670\) 24.5869 15.5742i 0.949874 0.601684i
\(671\) −42.3418 −1.63459
\(672\) 0 0
\(673\) 17.2596i 0.665310i −0.943049 0.332655i \(-0.892055\pi\)
0.943049 0.332655i \(-0.107945\pi\)
\(674\) −12.3983 21.4744i −0.477564 0.827164i
\(675\) 4.52053 + 2.13653i 0.173995 + 0.0822352i
\(676\) 2.04959 3.54999i 0.0788302 0.136538i
\(677\) −10.0791 + 5.81918i −0.387372 + 0.223649i −0.681021 0.732264i \(-0.738464\pi\)
0.293649 + 0.955913i \(0.405130\pi\)
\(678\) 4.44223i 0.170603i
\(679\) 0 0
\(680\) −0.618831 15.0689i −0.0237311 0.577868i
\(681\) −3.17360 5.49684i −0.121613 0.210639i
\(682\) −31.4810 18.1756i −1.20547 0.695979i
\(683\) −26.9299 15.5480i −1.03044 0.594928i −0.113333 0.993557i \(-0.536153\pi\)
−0.917112 + 0.398629i \(0.869486\pi\)
\(684\) 0.0625532 + 0.108345i 0.00239178 + 0.00414269i
\(685\) 6.70681 0.275426i 0.256254 0.0105235i
\(686\) 0 0
\(687\) 6.75669i 0.257784i
\(688\) 39.1407 22.5979i 1.49223 0.861537i
\(689\) 1.48570 2.57330i 0.0566006 0.0980351i
\(690\) 11.3149 21.5989i 0.430749 0.822256i
\(691\) −8.96695 15.5312i −0.341119 0.590835i 0.643522 0.765428i \(-0.277473\pi\)
−0.984641 + 0.174592i \(0.944139\pi\)
\(692\) 3.94181i 0.149845i
\(693\) 0 0
\(694\) 20.1999 0.766778
\(695\) 41.0597 26.0087i 1.55749 0.986566i
\(696\) −9.61961 + 16.6617i −0.364630 + 0.631559i
\(697\) 15.8917 + 9.17508i 0.601941 + 0.347531i
\(698\) 43.1190 24.8947i 1.63208 0.942280i
\(699\) 7.41201 0.280348
\(700\) 0 0
\(701\) 7.04488 0.266081 0.133041 0.991111i \(-0.457526\pi\)
0.133041 + 0.991111i \(0.457526\pi\)
\(702\) 2.32916 1.34474i 0.0879086 0.0507541i
\(703\) 0.970956 + 0.560582i 0.0366203 + 0.0211427i
\(704\) 12.7532 22.0893i 0.480656 0.832520i
\(705\) −3.43134 + 2.17353i −0.129232 + 0.0818600i
\(706\) 20.7540 0.781088
\(707\) 0 0
\(708\) 0.468370i 0.0176024i
\(709\) −12.9622 22.4511i −0.486804 0.843170i 0.513080 0.858341i \(-0.328504\pi\)
−0.999885 + 0.0151705i \(0.995171\pi\)
\(710\) −16.5736 + 31.6372i −0.621995 + 1.18732i
\(711\) −3.35686 + 5.81425i −0.125892 + 0.218051i
\(712\) 8.70172 5.02394i 0.326111 0.188280i
\(713\) 37.1221i 1.39023i
\(714\) 0 0
\(715\) −17.1498 + 0.704286i −0.641367 + 0.0263388i
\(716\) 1.81508 + 3.14382i 0.0678329 + 0.117490i
\(717\) −6.37702 3.68178i −0.238154 0.137498i
\(718\) −17.6382 10.1834i −0.658251 0.380041i
\(719\) −15.6427 27.0940i −0.583376 1.01044i −0.995076 0.0991173i \(-0.968398\pi\)
0.411700 0.911320i \(-0.364935\pi\)
\(720\) −0.426811 10.3931i −0.0159063 0.387329i
\(721\) 0 0
\(722\) 29.3512i 1.09234i
\(723\) 11.8473 6.84002i 0.440605 0.254383i
\(724\) 3.46908 6.00862i 0.128927 0.223309i
\(725\) 16.6528 35.2344i 0.618469 1.30857i
\(726\) −6.69988 11.6045i −0.248656 0.430684i
\(727\) 22.8312i 0.846761i 0.905952 + 0.423380i \(0.139157\pi\)
−0.905952 + 0.423380i \(0.860843\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 37.5957 23.8144i 1.39148 0.881412i
\(731\) 13.2738 22.9908i 0.490948 0.850347i
\(732\) 3.39297 + 1.95893i 0.125408 + 0.0724043i
\(733\) 5.15661 2.97717i 0.190464 0.109964i −0.401736 0.915756i \(-0.631593\pi\)
0.592200 + 0.805791i \(0.298260\pi\)
\(734\) −20.3924 −0.752696
\(735\) 0 0
\(736\) −16.0494 −0.591590
\(737\) 32.1719 18.5745i 1.18507 0.684199i
\(738\) 9.02866 + 5.21270i 0.332350 + 0.191882i
\(739\) 20.7539 35.9469i 0.763446 1.32233i −0.177618 0.984099i \(-0.556839\pi\)
0.941064 0.338228i \(-0.109827\pi\)
\(740\) 1.80233 + 2.84533i 0.0662551 + 0.104596i
\(741\) 0.528671 0.0194212
\(742\) 0 0
\(743\) 6.80015i 0.249473i −0.992190 0.124737i \(-0.960191\pi\)
0.992190 0.124737i \(-0.0398086\pi\)
\(744\) −6.52250 11.2973i −0.239127 0.414179i
\(745\) 10.3258 + 5.40928i 0.378306 + 0.198181i
\(746\) −22.9910 + 39.8216i −0.841760 + 1.45797i
\(747\) 4.41626 2.54973i 0.161583 0.0932898i
\(748\) 4.96351i 0.181484i
\(749\) 0 0
\(750\) 2.13172 + 17.2251i 0.0778394 + 0.628970i
\(751\) −11.8056 20.4480i −0.430794 0.746157i 0.566148 0.824304i \(-0.308433\pi\)
−0.996942 + 0.0781464i \(0.975100\pi\)
\(752\) 7.31802 + 4.22506i 0.266861 + 0.154072i
\(753\) −20.3380 11.7421i −0.741157 0.427907i
\(754\) −10.4813 18.1542i −0.381708 0.661137i
\(755\) 0.891238 + 21.7022i 0.0324355 + 0.789825i
\(756\) 0 0
\(757\) 16.2267i 0.589769i −0.955533 0.294884i \(-0.904719\pi\)
0.955533 0.294884i \(-0.0952811\pi\)
\(758\) −10.0521 + 5.80360i −0.365110 + 0.210796i
\(759\) 15.5613 26.9530i 0.564840 0.978332i
\(760\) 0.781586 1.49197i 0.0283511 0.0541193i
\(761\) −1.27754 2.21276i −0.0463108 0.0802126i 0.841941 0.539570i \(-0.181413\pi\)
−0.888252 + 0.459357i \(0.848080\pi\)
\(762\) 21.3184i 0.772284i
\(763\) 0 0
\(764\) −0.130594 −0.00472473
\(765\) −3.26953 5.16158i −0.118210 0.186617i
\(766\) 18.4264 31.9154i 0.665772 1.15315i
\(767\) −1.71406 0.989610i −0.0618910 0.0357328i
\(768\) −8.18758 + 4.72710i −0.295444 + 0.170575i
\(769\) −45.4525 −1.63906 −0.819530 0.573037i \(-0.805765\pi\)
−0.819530 + 0.573037i \(0.805765\pi\)
\(770\) 0 0
\(771\) 14.5974 0.525713
\(772\) −0.743238 + 0.429109i −0.0267497 + 0.0154440i
\(773\) −44.5909 25.7446i −1.60382 0.925968i −0.990713 0.135970i \(-0.956585\pi\)
−0.613110 0.789997i \(-0.710082\pi\)
\(774\) 7.54131 13.0619i 0.271067 0.469502i
\(775\) 15.0441 + 21.7238i 0.540399 + 0.780341i
\(776\) 7.10482 0.255048
\(777\) 0 0
\(778\) 21.9363i 0.786453i
\(779\) 1.02466 + 1.77476i 0.0367121 + 0.0635873i
\(780\) 1.40685 + 0.736995i 0.0503732 + 0.0263887i
\(781\) −22.7936 + 39.4797i −0.815619 + 1.41269i
\(782\) −25.8041 + 14.8980i −0.922754 + 0.532752i
\(783\) 7.79430i 0.278546i
\(784\) 0 0
\(785\) −21.1618 + 0.869044i −0.755297 + 0.0310175i
\(786\) 17.0623 + 29.5528i 0.608593 + 1.05411i
\(787\) −17.4517 10.0757i −0.622085 0.359161i 0.155596 0.987821i \(-0.450270\pi\)
−0.777680 + 0.628660i \(0.783604\pi\)
\(788\) 8.01693 + 4.62858i 0.285591 + 0.164886i
\(789\) 2.54470 + 4.40755i 0.0905937 + 0.156913i
\(790\) −23.2857 + 0.956264i −0.828466 + 0.0340223i
\(791\) 0 0
\(792\) 10.9367i 0.388620i
\(793\) 14.3379 8.27800i 0.509154 0.293960i
\(794\) 8.74750 15.1511i 0.310437 0.537693i
\(795\) −3.39722 1.77968i −0.120487 0.0631187i
\(796\) −1.53824 2.66431i −0.0545216 0.0944341i
\(797\) 13.0702i 0.462971i −0.972838 0.231486i \(-0.925641\pi\)
0.972838 0.231486i \(-0.0743587\pi\)
\(798\) 0 0
\(799\) 4.96351 0.175596
\(800\) 9.39209 6.50418i 0.332060 0.229957i
\(801\) 2.03533 3.52529i 0.0719148 0.124560i
\(802\) −31.3209 18.0831i −1.10598 0.638537i
\(803\) 49.1939 28.4021i 1.73602 1.00229i
\(804\) −3.43737 −0.121227
\(805\) 0 0
\(806\) 14.2136 0.500652
\(807\) −26.4224 + 15.2550i −0.930112 + 0.537000i
\(808\) 15.4290 + 8.90793i 0.542790 + 0.313380i
\(809\) −0.868598 + 1.50446i −0.0305383 + 0.0528938i −0.880891 0.473320i \(-0.843055\pi\)
0.850352 + 0.526214i \(0.176389\pi\)
\(810\) −1.85754 2.93248i −0.0652672 0.103037i
\(811\) 27.9004 0.979715 0.489858 0.871802i \(-0.337049\pi\)
0.489858 + 0.871802i \(0.337049\pi\)
\(812\) 0 0
\(813\) 19.4880i 0.683475i
\(814\) 12.6357 + 21.8857i 0.442883 + 0.767095i
\(815\) −5.59969 + 10.6892i −0.196148 + 0.374427i
\(816\) −6.35552 + 11.0081i −0.222488 + 0.385360i
\(817\) 2.56758 1.48239i 0.0898282 0.0518623i
\(818\) 32.0538i 1.12074i
\(819\) 0 0
\(820\) 0.252611 + 6.15124i 0.00882156 + 0.214811i
\(821\) −8.46799 14.6670i −0.295535 0.511881i 0.679574 0.733607i \(-0.262165\pi\)
−0.975109 + 0.221725i \(0.928831\pi\)
\(822\) −4.03584 2.33009i −0.140766 0.0812714i
\(823\) −8.56526 4.94516i −0.298566 0.172377i 0.343232 0.939251i \(-0.388478\pi\)
−0.641799 + 0.766873i \(0.721812\pi\)
\(824\) 13.9134 + 24.0988i 0.484698 + 0.839521i
\(825\) 1.81650 + 22.0792i 0.0632424 + 0.768698i
\(826\) 0 0
\(827\) 35.3201i 1.22820i −0.789228 0.614101i \(-0.789519\pi\)
0.789228 0.614101i \(-0.210481\pi\)
\(828\) −2.49395 + 1.43988i −0.0866706 + 0.0500393i
\(829\) −4.64975 + 8.05361i −0.161493 + 0.279713i −0.935404 0.353580i \(-0.884964\pi\)
0.773912 + 0.633294i \(0.218297\pi\)
\(830\) 15.6804 + 8.21438i 0.544275 + 0.285125i
\(831\) 12.7401 + 22.0665i 0.441949 + 0.765478i
\(832\) 9.97323i 0.345760i
\(833\) 0 0
\(834\) −33.7438 −1.16845
\(835\) 0.373982 + 0.590403i 0.0129422 + 0.0204317i
\(836\) −0.277158 + 0.480052i −0.00958571 + 0.0166029i
\(837\) −4.57683 2.64243i −0.158198 0.0913359i
\(838\) −7.37086 + 4.25557i −0.254622 + 0.147006i
\(839\) −7.93405 −0.273914 −0.136957 0.990577i \(-0.543732\pi\)
−0.136957 + 0.990577i \(0.543732\pi\)
\(840\) 0 0
\(841\) 31.7512 1.09487
\(842\) −5.08299 + 2.93467i −0.175171 + 0.101135i
\(843\) −19.2183 11.0957i −0.661914 0.382156i
\(844\) 1.57270 2.72399i 0.0541345 0.0937636i
\(845\) −18.8872 + 11.9638i −0.649739 + 0.411568i
\(846\) 2.81995 0.0969519
\(847\) 0 0
\(848\) 7.97857i 0.273985i
\(849\) −9.06209 15.6960i −0.311010 0.538685i
\(850\) 9.06295 19.1756i 0.310857 0.657719i
\(851\) −12.9037 + 22.3499i −0.442334 + 0.766146i
\(852\) 3.65303 2.10908i 0.125151 0.0722558i
\(853\) 30.0757i 1.02977i −0.857258 0.514887i \(-0.827834\pi\)
0.857258 0.514887i \(-0.172166\pi\)
\(854\) 0 0
\(855\) −0.0279982 0.681775i −0.000957519 0.0233162i
\(856\) 8.53557 + 14.7840i 0.291740 + 0.505308i
\(857\) −40.8221 23.5686i −1.39446 0.805090i −0.400652 0.916230i \(-0.631216\pi\)
−0.993805 + 0.111141i \(0.964550\pi\)
\(858\) 10.3199 + 5.95823i 0.352317 + 0.203410i
\(859\) 16.3183 + 28.2642i 0.556774 + 0.964361i 0.997763 + 0.0668485i \(0.0212944\pi\)
−0.440989 + 0.897512i \(0.645372\pi\)
\(860\) 8.89912 0.365457i 0.303458 0.0124620i
\(861\) 0 0
\(862\) 42.7110i 1.45474i
\(863\) −32.3982 + 18.7051i −1.10285 + 0.636728i −0.936967 0.349418i \(-0.886379\pi\)
−0.165879 + 0.986146i \(0.553046\pi\)
\(864\) −1.14243 + 1.97875i −0.0388664 + 0.0673186i
\(865\) 9.97659 19.0443i 0.339214 0.647525i
\(866\) −6.79578 11.7706i −0.230930 0.399983i
\(867\) 9.53367i 0.323780i
\(868\) 0 0
\(869\) −29.7468 −1.00909
\(870\) −22.8566 + 14.4782i −0.774913 + 0.490857i
\(871\) −7.26275 + 12.5795i −0.246089 + 0.426239i
\(872\) 9.45266 + 5.45750i 0.320108 + 0.184814i
\(873\) 2.49272 1.43917i 0.0843658 0.0487086i
\(874\) −3.32757 −0.112557
\(875\) 0 0
\(876\) −5.25606 −0.177586
\(877\) 29.0687 16.7828i 0.981581 0.566716i 0.0788336 0.996888i \(-0.474880\pi\)
0.902747 + 0.430172i \(0.141547\pi\)
\(878\) 14.2680 + 8.23764i 0.481522 + 0.278007i
\(879\) −6.94790 + 12.0341i −0.234347 + 0.405901i
\(880\) 38.9344 24.6625i 1.31248 0.831371i
\(881\) 12.1952 0.410867 0.205433 0.978671i \(-0.434140\pi\)
0.205433 + 0.978671i \(0.434140\pi\)
\(882\) 0 0
\(883\) 11.0408i 0.371552i 0.982592 + 0.185776i \(0.0594799\pi\)
−0.982592 + 0.185776i \(0.940520\pi\)
\(884\) −0.970385 1.68076i −0.0326376 0.0565300i
\(885\) −1.18543 + 2.26286i −0.0398478 + 0.0760652i
\(886\) 15.5129 26.8691i 0.521166 0.902685i
\(887\) −1.35180 + 0.780464i −0.0453891 + 0.0262054i −0.522523 0.852625i \(-0.675009\pi\)
0.477134 + 0.878831i \(0.341676\pi\)
\(888\) 9.06895i 0.304334i
\(889\) 0 0
\(890\) 14.1185 0.579801i 0.473254 0.0194350i
\(891\) −2.21538 3.83715i −0.0742179 0.128549i
\(892\) −2.45058 1.41484i −0.0820514 0.0473724i
\(893\) 0.480052 + 0.277158i 0.0160643 + 0.00927474i
\(894\) −4.04642 7.00861i −0.135333 0.234403i
\(895\) −0.812414 19.7828i −0.0271560 0.661267i
\(896\) 0 0
\(897\) 12.1692i 0.406318i
\(898\) −4.06793 + 2.34862i −0.135749 + 0.0783745i
\(899\) −20.5959 + 35.6732i −0.686913 + 1.18977i
\(900\) 0.875925 1.85331i 0.0291975 0.0617769i
\(901\) 2.34326 + 4.05865i 0.0780654 + 0.135213i
\(902\) 46.1924i 1.53804i
\(903\) 0 0
\(904\) −7.06326 −0.234921
\(905\) −31.9680 + 20.2497i −1.06265 + 0.673121i
\(906\) 7.53983 13.0594i 0.250494 0.433869i
\(907\) 15.0756 + 8.70390i 0.500577 + 0.289008i 0.728952 0.684565i \(-0.240008\pi\)
−0.228375 + 0.973573i \(0.573341\pi\)
\(908\) −2.25357 + 1.30110i −0.0747873 + 0.0431785i
\(909\) 7.21767 0.239395
\(910\) 0 0
\(911\) −18.3203 −0.606978 −0.303489 0.952835i \(-0.598152\pi\)
−0.303489 + 0.952835i \(0.598152\pi\)
\(912\) −1.22936 + 0.709774i −0.0407083 + 0.0235030i
\(913\) 19.5674 + 11.2972i 0.647586 + 0.373884i
\(914\) 1.77079 3.06710i 0.0585726 0.101451i
\(915\) −11.4347 18.0518i −0.378018 0.596774i
\(916\) −2.77007 −0.0915258
\(917\) 0 0
\(918\) 4.24190i 0.140003i
\(919\) 11.2963 + 19.5658i 0.372632 + 0.645417i 0.989970 0.141281i \(-0.0451221\pi\)
−0.617338 + 0.786698i \(0.711789\pi\)
\(920\) 34.3428 + 17.9909i 1.13225 + 0.593143i
\(921\) −14.9166 + 25.8363i −0.491519 + 0.851335i
\(922\) 32.3574 18.6816i 1.06563 0.615244i
\(923\) 17.8249i 0.586715i
\(924\) 0 0
\(925\) −1.50628 18.3085i −0.0495260 0.601979i
\(926\) −8.63842 14.9622i −0.283876 0.491688i
\(927\) 9.76304 + 5.63670i 0.320660 + 0.185133i
\(928\) 15.4230 + 8.90448i 0.506285 + 0.292304i
\(929\) −19.3356 33.4903i −0.634381 1.09878i −0.986646 0.162880i \(-0.947922\pi\)
0.352265 0.935900i \(-0.385412\pi\)
\(930\) −0.752747 18.3299i −0.0246835 0.601060i
\(931\) 0 0
\(932\) 3.03874i 0.0995372i
\(933\) 11.7028 6.75662i 0.383133 0.221202i
\(934\) −22.1813 + 38.4192i −0.725795 + 1.25711i
\(935\) 12.5625 23.9805i 0.410837 0.784246i
\(936\) 2.13817 + 3.70343i 0.0698884 + 0.121050i
\(937\) 46.7921i 1.52863i −0.644842 0.764316i \(-0.723077\pi\)
0.644842 0.764316i \(-0.276923\pi\)
\(938\) 0 0
\(939\) 28.9857 0.945912
\(940\) 0.891095 + 1.40676i 0.0290643 + 0.0458836i
\(941\) −20.9461 + 36.2797i −0.682824 + 1.18268i 0.291292 + 0.956634i \(0.405915\pi\)
−0.974116 + 0.226051i \(0.927418\pi\)
\(942\) 12.7342 + 7.35207i 0.414901 + 0.239543i
\(943\) −40.8522 + 23.5860i −1.33033 + 0.768067i
\(944\) 5.31446 0.172971
\(945\) 0 0
\(946\) 66.8274 2.17275
\(947\) −48.5967 + 28.0573i −1.57918 + 0.911740i −0.584206 + 0.811605i \(0.698594\pi\)
−0.994974 + 0.100134i \(0.968073\pi\)
\(948\) 2.38370 + 1.37623i 0.0774189 + 0.0446978i
\(949\) −11.1054 + 19.2352i −0.360498 + 0.624401i
\(950\) 1.94728 1.34853i 0.0631782 0.0437520i
\(951\) −1.15864 −0.0375714
\(952\) 0 0
\(953\) 17.7705i 0.575643i 0.957684 + 0.287821i \(0.0929309\pi\)
−0.957684 + 0.287821i \(0.907069\pi\)
\(954\) 1.33129 + 2.30587i 0.0431022 + 0.0746552i
\(955\) 0.630946 + 0.330529i 0.0204169 + 0.0106957i
\(956\) −1.50944 + 2.61442i −0.0488187 + 0.0845564i
\(957\) −29.9079 + 17.2673i −0.966785 + 0.558173i
\(958\) 8.66259i 0.279875i
\(959\) 0 0
\(960\) 12.8615 0.528179i 0.415103 0.0170469i
\(961\) 1.53508 + 2.65884i 0.0495188 + 0.0857690i
\(962\) −8.55750 4.94067i −0.275905 0.159294i
\(963\) 5.98940 + 3.45798i 0.193006 + 0.111432i
\(964\) −2.80424 4.85708i −0.0903185 0.156436i
\(965\) 4.67691 0.192065i 0.150555 0.00618279i
\(966\) 0 0
\(967\) 22.5942i 0.726579i 0.931676 + 0.363290i \(0.118346\pi\)
−0.931676 + 0.363290i \(0.881654\pi\)
\(968\) 18.4515 10.6530i 0.593053 0.342399i
\(969\) −0.416913 + 0.722115i −0.0133932 + 0.0231977i
\(970\) 8.85066 + 4.63653i 0.284178 + 0.148870i
\(971\) 20.5244 + 35.5493i 0.658660 + 1.14083i 0.980963 + 0.194196i \(0.0622096\pi\)
−0.322303 + 0.946637i \(0.604457\pi\)
\(972\) 0.409975i 0.0131500i
\(973\) 0 0
\(974\) −12.9577 −0.415192
\(975\) −4.93167 7.12138i −0.157940 0.228067i
\(976\) −22.2275 + 38.4991i −0.711484 + 1.23233i
\(977\) −16.8644 9.73668i −0.539541 0.311504i 0.205352 0.978688i \(-0.434166\pi\)
−0.744893 + 0.667184i \(0.767499\pi\)
\(978\) 7.25532 4.18886i 0.231999 0.133945i
\(979\) 18.0361 0.576435
\(980\) 0 0
\(981\) 4.42195 0.141182
\(982\) 0.749390 0.432661i 0.0239140 0.0138068i
\(983\) 44.7970 + 25.8636i 1.42880 + 0.824920i 0.997026 0.0770602i \(-0.0245534\pi\)
0.431777 + 0.901980i \(0.357887\pi\)
\(984\) −8.28832 + 14.3558i −0.264222 + 0.457646i
\(985\) −27.0179 42.6529i −0.860861 1.35903i
\(986\) 33.0626 1.05293
\(987\) 0 0
\(988\) 0.216742i 0.00689548i
\(989\) 34.1224 + 59.1017i 1.08503 + 1.87932i
\(990\) 7.13721 13.6242i 0.226835 0.433005i
\(991\) −17.9749 + 31.1335i −0.570992 + 0.988988i 0.425472 + 0.904972i \(0.360108\pi\)
−0.996464 + 0.0840162i \(0.973225\pi\)
\(992\) −10.4575 + 6.03762i −0.332025 + 0.191694i
\(993\) 28.3491i 0.899632i
\(994\) 0 0
\(995\) 0.688503 + 16.7655i 0.0218270 + 0.531502i
\(996\) −1.04533 1.81056i −0.0331224 0.0573697i
\(997\) −48.5493 28.0300i −1.53757 0.887718i −0.998980 0.0451513i \(-0.985623\pi\)
−0.538592 0.842567i \(-0.681044\pi\)
\(998\) −35.0003 20.2075i −1.10792 0.639656i
\(999\) 1.83703 + 3.18183i 0.0581211 + 0.100669i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.q.g.214.6 16
5.4 even 2 inner 735.2.q.g.214.3 16
7.2 even 3 inner 735.2.q.g.79.3 16
7.3 odd 6 735.2.d.d.589.6 8
7.4 even 3 735.2.d.e.589.6 8
7.5 odd 6 105.2.q.a.79.3 yes 16
7.6 odd 2 105.2.q.a.4.6 yes 16
21.5 even 6 315.2.bf.b.289.6 16
21.11 odd 6 2205.2.d.o.1324.3 8
21.17 even 6 2205.2.d.s.1324.3 8
21.20 even 2 315.2.bf.b.109.3 16
28.19 even 6 1680.2.di.d.289.1 16
28.27 even 2 1680.2.di.d.529.8 16
35.3 even 12 3675.2.a.bz.1.3 4
35.4 even 6 735.2.d.e.589.3 8
35.9 even 6 inner 735.2.q.g.79.6 16
35.12 even 12 525.2.i.k.226.3 8
35.13 even 4 525.2.i.h.151.2 8
35.17 even 12 3675.2.a.bp.1.2 4
35.18 odd 12 3675.2.a.cb.1.3 4
35.19 odd 6 105.2.q.a.79.6 yes 16
35.24 odd 6 735.2.d.d.589.3 8
35.27 even 4 525.2.i.k.151.3 8
35.32 odd 12 3675.2.a.bn.1.2 4
35.33 even 12 525.2.i.h.226.2 8
35.34 odd 2 105.2.q.a.4.3 16
105.59 even 6 2205.2.d.s.1324.6 8
105.74 odd 6 2205.2.d.o.1324.6 8
105.89 even 6 315.2.bf.b.289.3 16
105.104 even 2 315.2.bf.b.109.6 16
140.19 even 6 1680.2.di.d.289.8 16
140.139 even 2 1680.2.di.d.529.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.3 16 35.34 odd 2
105.2.q.a.4.6 yes 16 7.6 odd 2
105.2.q.a.79.3 yes 16 7.5 odd 6
105.2.q.a.79.6 yes 16 35.19 odd 6
315.2.bf.b.109.3 16 21.20 even 2
315.2.bf.b.109.6 16 105.104 even 2
315.2.bf.b.289.3 16 105.89 even 6
315.2.bf.b.289.6 16 21.5 even 6
525.2.i.h.151.2 8 35.13 even 4
525.2.i.h.226.2 8 35.33 even 12
525.2.i.k.151.3 8 35.27 even 4
525.2.i.k.226.3 8 35.12 even 12
735.2.d.d.589.3 8 35.24 odd 6
735.2.d.d.589.6 8 7.3 odd 6
735.2.d.e.589.3 8 35.4 even 6
735.2.d.e.589.6 8 7.4 even 3
735.2.q.g.79.3 16 7.2 even 3 inner
735.2.q.g.79.6 16 35.9 even 6 inner
735.2.q.g.214.3 16 5.4 even 2 inner
735.2.q.g.214.6 16 1.1 even 1 trivial
1680.2.di.d.289.1 16 28.19 even 6
1680.2.di.d.289.8 16 140.19 even 6
1680.2.di.d.529.1 16 140.139 even 2
1680.2.di.d.529.8 16 28.27 even 2
2205.2.d.o.1324.3 8 21.11 odd 6
2205.2.d.o.1324.6 8 105.74 odd 6
2205.2.d.s.1324.3 8 21.17 even 6
2205.2.d.s.1324.6 8 105.59 even 6
3675.2.a.bn.1.2 4 35.32 odd 12
3675.2.a.bp.1.2 4 35.17 even 12
3675.2.a.bz.1.3 4 35.3 even 12
3675.2.a.cb.1.3 4 35.18 odd 12