Properties

Label 735.2.q.g.214.3
Level $735$
Weight $2$
Character 735.214
Analytic conductor $5.869$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(79,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.3
Root \(-1.96595 - 0.526774i\) of defining polynomial
Character \(\chi\) \(=\) 735.214
Dual form 735.2.q.g.79.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34443 + 0.776205i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.204988 - 0.355049i) q^{4} +(1.98074 - 1.03763i) q^{5} +1.55241 q^{6} -2.46837i q^{8} +(0.500000 + 0.866025i) q^{9} +(-1.85754 + 2.93248i) q^{10} +(-2.21538 + 3.83715i) q^{11} +(-0.355049 + 0.204988i) q^{12} +1.73246i q^{13} +(-2.23418 - 0.0917505i) q^{15} +(2.32594 + 4.02864i) q^{16} +(-2.36638 - 1.36623i) q^{17} +(-1.34443 - 0.776205i) q^{18} +(0.152578 + 0.264273i) q^{19} +(0.0376154 - 0.915960i) q^{20} -6.87834i q^{22} +(6.08316 - 3.51212i) q^{23} +(-1.23418 + 2.13767i) q^{24} +(2.84663 - 4.11056i) q^{25} +(-1.34474 - 2.32916i) q^{26} -1.00000i q^{27} +7.79430 q^{29} +(3.07491 - 1.61083i) q^{30} +(-2.64243 + 4.57683i) q^{31} +(-1.97875 - 1.14243i) q^{32} +(3.83715 - 2.21538i) q^{33} +4.24190 q^{34} +0.409975 q^{36} +(-3.18183 + 1.83703i) q^{37} +(-0.410260 - 0.236864i) q^{38} +(0.866230 - 1.50035i) q^{39} +(-2.56126 - 4.88919i) q^{40} +6.71562 q^{41} +9.71562i q^{43} +(0.908250 + 1.57313i) q^{44} +(1.88899 + 1.19655i) q^{45} +(-5.45224 + 9.44356i) q^{46} +(-1.57313 + 0.908250i) q^{47} -4.65187i q^{48} +(-0.636449 + 7.73591i) q^{50} +(1.36623 + 2.36638i) q^{51} +(0.615108 + 0.355133i) q^{52} +(-1.48535 - 0.857566i) q^{53} +(0.776205 + 1.34443i) q^{54} +(-0.406524 + 9.89912i) q^{55} -0.305156i q^{57} +(-10.4789 + 6.04998i) q^{58} +(0.571217 - 0.989377i) q^{59} +(-0.490556 + 0.774437i) q^{60} +(4.77818 + 8.27604i) q^{61} -8.20428i q^{62} -5.75669 q^{64} +(1.79766 + 3.43154i) q^{65} +(-3.43917 + 5.95682i) q^{66} +(7.26104 + 4.19216i) q^{67} +(-0.970157 + 0.560120i) q^{68} -7.02423 q^{69} +10.2888 q^{71} +(2.13767 - 1.23418i) q^{72} +(11.1028 + 6.41022i) q^{73} +(2.85183 - 4.93951i) q^{74} +(-4.52053 + 2.13653i) q^{75} +0.125106 q^{76} +2.68949i q^{78} +(3.35686 + 5.81425i) q^{79} +(8.78732 + 5.56620i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-9.02866 + 5.21270i) q^{82} +5.09946i q^{83} +(-6.10482 - 0.250704i) q^{85} +(-7.54131 - 13.0619i) q^{86} +(-6.75007 - 3.89715i) q^{87} +(9.47149 + 5.46837i) q^{88} +(-2.03533 - 3.52529i) q^{89} +(-3.46837 - 0.142434i) q^{90} -2.87976i q^{92} +(4.57683 - 2.64243i) q^{93} +(1.40998 - 2.44215i) q^{94} +(0.576436 + 0.365135i) q^{95} +(1.14243 + 1.97875i) q^{96} +2.87834i q^{97} -4.43075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 2 q^{5} + 8 q^{6} + 8 q^{9} + 4 q^{10} - 4 q^{15} + 24 q^{19} + 8 q^{20} + 12 q^{24} - 4 q^{25} + 12 q^{26} + 24 q^{29} - 12 q^{30} - 16 q^{31} - 16 q^{34} + 16 q^{36} - 4 q^{39} - 32 q^{40}+ \cdots - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34443 + 0.776205i −0.950653 + 0.548860i −0.893284 0.449493i \(-0.851605\pi\)
−0.0573691 + 0.998353i \(0.518271\pi\)
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 0.204988 0.355049i 0.102494 0.177524i
\(5\) 1.98074 1.03763i 0.885812 0.464044i
\(6\) 1.55241 0.633769
\(7\) 0 0
\(8\) 2.46837i 0.872700i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −1.85754 + 2.93248i −0.587405 + 0.927331i
\(11\) −2.21538 + 3.83715i −0.667961 + 1.15694i 0.310512 + 0.950569i \(0.399500\pi\)
−0.978473 + 0.206373i \(0.933834\pi\)
\(12\) −0.355049 + 0.204988i −0.102494 + 0.0591748i
\(13\) 1.73246i 0.480498i 0.970711 + 0.240249i \(0.0772291\pi\)
−0.970711 + 0.240249i \(0.922771\pi\)
\(14\) 0 0
\(15\) −2.23418 0.0917505i −0.576864 0.0236899i
\(16\) 2.32594 + 4.02864i 0.581484 + 1.00716i
\(17\) −2.36638 1.36623i −0.573931 0.331359i 0.184787 0.982779i \(-0.440841\pi\)
−0.758718 + 0.651419i \(0.774174\pi\)
\(18\) −1.34443 0.776205i −0.316884 0.182953i
\(19\) 0.152578 + 0.264273i 0.0350038 + 0.0606284i 0.882997 0.469379i \(-0.155522\pi\)
−0.847993 + 0.530008i \(0.822189\pi\)
\(20\) 0.0376154 0.915960i 0.00841106 0.204815i
\(21\) 0 0
\(22\) 6.87834i 1.46647i
\(23\) 6.08316 3.51212i 1.26843 0.732327i 0.293737 0.955886i \(-0.405101\pi\)
0.974690 + 0.223560i \(0.0717678\pi\)
\(24\) −1.23418 + 2.13767i −0.251927 + 0.436350i
\(25\) 2.84663 4.11056i 0.569326 0.822112i
\(26\) −1.34474 2.32916i −0.263726 0.456786i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 7.79430 1.44737 0.723683 0.690132i \(-0.242448\pi\)
0.723683 + 0.690132i \(0.242448\pi\)
\(30\) 3.07491 1.61083i 0.561400 0.294097i
\(31\) −2.64243 + 4.57683i −0.474595 + 0.822023i −0.999577 0.0290906i \(-0.990739\pi\)
0.524982 + 0.851114i \(0.324072\pi\)
\(32\) −1.97875 1.14243i −0.349798 0.201956i
\(33\) 3.83715 2.21538i 0.667961 0.385648i
\(34\) 4.24190 0.727479
\(35\) 0 0
\(36\) 0.409975 0.0683292
\(37\) −3.18183 + 1.83703i −0.523090 + 0.302006i −0.738198 0.674584i \(-0.764323\pi\)
0.215108 + 0.976590i \(0.430990\pi\)
\(38\) −0.410260 0.236864i −0.0665530 0.0384244i
\(39\) 0.866230 1.50035i 0.138708 0.240249i
\(40\) −2.56126 4.88919i −0.404972 0.773049i
\(41\) 6.71562 1.04880 0.524402 0.851471i \(-0.324289\pi\)
0.524402 + 0.851471i \(0.324289\pi\)
\(42\) 0 0
\(43\) 9.71562i 1.48162i 0.671715 + 0.740809i \(0.265558\pi\)
−0.671715 + 0.740809i \(0.734442\pi\)
\(44\) 0.908250 + 1.57313i 0.136924 + 0.237159i
\(45\) 1.88899 + 1.19655i 0.281593 + 0.178371i
\(46\) −5.45224 + 9.44356i −0.803889 + 1.39238i
\(47\) −1.57313 + 0.908250i −0.229465 + 0.132482i −0.610325 0.792151i \(-0.708961\pi\)
0.380860 + 0.924633i \(0.375628\pi\)
\(48\) 4.65187i 0.671440i
\(49\) 0 0
\(50\) −0.636449 + 7.73591i −0.0900075 + 1.09402i
\(51\) 1.36623 + 2.36638i 0.191310 + 0.331359i
\(52\) 0.615108 + 0.355133i 0.0853001 + 0.0492480i
\(53\) −1.48535 0.857566i −0.204028 0.117796i 0.394505 0.918894i \(-0.370916\pi\)
−0.598533 + 0.801098i \(0.704249\pi\)
\(54\) 0.776205 + 1.34443i 0.105628 + 0.182953i
\(55\) −0.406524 + 9.89912i −0.0548157 + 1.33480i
\(56\) 0 0
\(57\) 0.305156i 0.0404189i
\(58\) −10.4789 + 6.04998i −1.37594 + 0.794401i
\(59\) 0.571217 0.989377i 0.0743661 0.128806i −0.826444 0.563018i \(-0.809640\pi\)
0.900810 + 0.434213i \(0.142973\pi\)
\(60\) −0.490556 + 0.774437i −0.0633305 + 0.0999794i
\(61\) 4.77818 + 8.27604i 0.611783 + 1.05964i 0.990940 + 0.134307i \(0.0428807\pi\)
−0.379157 + 0.925332i \(0.623786\pi\)
\(62\) 8.20428i 1.04194i
\(63\) 0 0
\(64\) −5.75669 −0.719586
\(65\) 1.79766 + 3.43154i 0.222972 + 0.425631i
\(66\) −3.43917 + 5.95682i −0.423333 + 0.733234i
\(67\) 7.26104 + 4.19216i 0.887078 + 0.512154i 0.872985 0.487746i \(-0.162181\pi\)
0.0140921 + 0.999901i \(0.495514\pi\)
\(68\) −0.970157 + 0.560120i −0.117649 + 0.0679245i
\(69\) −7.02423 −0.845618
\(70\) 0 0
\(71\) 10.2888 1.22106 0.610529 0.791994i \(-0.290957\pi\)
0.610529 + 0.791994i \(0.290957\pi\)
\(72\) 2.13767 1.23418i 0.251927 0.145450i
\(73\) 11.1028 + 6.41022i 1.29949 + 0.750260i 0.980316 0.197437i \(-0.0632618\pi\)
0.319172 + 0.947697i \(0.396595\pi\)
\(74\) 2.85183 4.93951i 0.331518 0.574206i
\(75\) −4.52053 + 2.13653i −0.521986 + 0.246706i
\(76\) 0.125106 0.0143507
\(77\) 0 0
\(78\) 2.68949i 0.304524i
\(79\) 3.35686 + 5.81425i 0.377676 + 0.654154i 0.990724 0.135892i \(-0.0433900\pi\)
−0.613048 + 0.790046i \(0.710057\pi\)
\(80\) 8.78732 + 5.56620i 0.982452 + 0.622320i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −9.02866 + 5.21270i −0.997049 + 0.575646i
\(83\) 5.09946i 0.559739i 0.960038 + 0.279869i \(0.0902911\pi\)
−0.960038 + 0.279869i \(0.909709\pi\)
\(84\) 0 0
\(85\) −6.10482 0.250704i −0.662161 0.0271927i
\(86\) −7.54131 13.0619i −0.813201 1.40850i
\(87\) −6.75007 3.89715i −0.723683 0.417819i
\(88\) 9.47149 + 5.46837i 1.00966 + 0.582930i
\(89\) −2.03533 3.52529i −0.215744 0.373680i 0.737758 0.675065i \(-0.235884\pi\)
−0.953503 + 0.301385i \(0.902551\pi\)
\(90\) −3.46837 0.142434i −0.365598 0.0150139i
\(91\) 0 0
\(92\) 2.87976i 0.300236i
\(93\) 4.57683 2.64243i 0.474595 0.274008i
\(94\) 1.40998 2.44215i 0.145428 0.251888i
\(95\) 0.576436 + 0.365135i 0.0591411 + 0.0374620i
\(96\) 1.14243 + 1.97875i 0.116599 + 0.201956i
\(97\) 2.87834i 0.292252i 0.989266 + 0.146126i \(0.0466804\pi\)
−0.989266 + 0.146126i \(0.953320\pi\)
\(98\) 0 0
\(99\) −4.43075 −0.445308
\(100\) −0.875925 1.85331i −0.0875925 0.185331i
\(101\) 3.60883 6.25068i 0.359092 0.621966i −0.628717 0.777634i \(-0.716420\pi\)
0.987809 + 0.155668i \(0.0497530\pi\)
\(102\) −3.67359 2.12095i −0.363740 0.210005i
\(103\) −9.76304 + 5.63670i −0.961981 + 0.555400i −0.896782 0.442472i \(-0.854102\pi\)
−0.0651989 + 0.997872i \(0.520768\pi\)
\(104\) 4.27635 0.419331
\(105\) 0 0
\(106\) 2.66259 0.258613
\(107\) −5.98940 + 3.45798i −0.579017 + 0.334296i −0.760743 0.649054i \(-0.775165\pi\)
0.181726 + 0.983349i \(0.441832\pi\)
\(108\) −0.355049 0.204988i −0.0341646 0.0197249i
\(109\) 2.21097 3.82952i 0.211773 0.366801i −0.740497 0.672060i \(-0.765410\pi\)
0.952269 + 0.305259i \(0.0987430\pi\)
\(110\) −7.13721 13.6242i −0.680506 1.29902i
\(111\) 3.67406 0.348727
\(112\) 0 0
\(113\) 2.86151i 0.269188i −0.990901 0.134594i \(-0.957027\pi\)
0.990901 0.134594i \(-0.0429730\pi\)
\(114\) 0.236864 + 0.410260i 0.0221843 + 0.0384244i
\(115\) 8.40485 13.2687i 0.783756 1.23731i
\(116\) 1.59774 2.76736i 0.148346 0.256943i
\(117\) −1.50035 + 0.866230i −0.138708 + 0.0800830i
\(118\) 1.77353i 0.163266i
\(119\) 0 0
\(120\) −0.226474 + 5.51479i −0.0206742 + 0.503430i
\(121\) −4.31579 7.47517i −0.392345 0.679561i
\(122\) −12.8478 7.41769i −1.16319 0.671566i
\(123\) −5.81590 3.35781i −0.524402 0.302764i
\(124\) 1.08333 + 1.87639i 0.0972861 + 0.168504i
\(125\) 1.37317 11.0957i 0.122820 0.992429i
\(126\) 0 0
\(127\) 13.7325i 1.21856i −0.792956 0.609279i \(-0.791459\pi\)
0.792956 0.609279i \(-0.208541\pi\)
\(128\) 11.6970 6.75324i 1.03387 0.596908i
\(129\) 4.85781 8.41398i 0.427706 0.740809i
\(130\) −5.08040 3.21811i −0.445581 0.282247i
\(131\) 10.9909 + 19.0368i 0.960277 + 1.66325i 0.721801 + 0.692100i \(0.243314\pi\)
0.238476 + 0.971148i \(0.423352\pi\)
\(132\) 1.81650i 0.158106i
\(133\) 0 0
\(134\) −13.0159 −1.12440
\(135\) −1.03763 1.98074i −0.0893053 0.170475i
\(136\) −3.37236 + 5.84110i −0.289177 + 0.500870i
\(137\) 2.59973 + 1.50095i 0.222110 + 0.128235i 0.606927 0.794758i \(-0.292402\pi\)
−0.384817 + 0.922993i \(0.625735\pi\)
\(138\) 9.44356 5.45224i 0.803889 0.464126i
\(139\) −21.7364 −1.84366 −0.921829 0.387597i \(-0.873305\pi\)
−0.921829 + 0.387597i \(0.873305\pi\)
\(140\) 0 0
\(141\) 1.81650 0.152977
\(142\) −13.8325 + 7.98622i −1.16080 + 0.670189i
\(143\) −6.64770 3.83805i −0.555908 0.320954i
\(144\) −2.32594 + 4.02864i −0.193828 + 0.335720i
\(145\) 15.4385 8.08764i 1.28209 0.671642i
\(146\) −19.9026 −1.64715
\(147\) 0 0
\(148\) 1.50628i 0.123815i
\(149\) −2.60654 4.51467i −0.213536 0.369856i 0.739282 0.673396i \(-0.235165\pi\)
−0.952819 + 0.303540i \(0.901832\pi\)
\(150\) 4.41914 6.38127i 0.360821 0.521029i
\(151\) 4.85686 8.41233i 0.395246 0.684585i −0.597887 0.801580i \(-0.703993\pi\)
0.993132 + 0.116995i \(0.0373262\pi\)
\(152\) 0.652324 0.376619i 0.0529104 0.0305478i
\(153\) 2.73246i 0.220906i
\(154\) 0 0
\(155\) −0.484889 + 11.8074i −0.0389472 + 0.948391i
\(156\) −0.355133 0.615108i −0.0284334 0.0492480i
\(157\) −8.20284 4.73591i −0.654658 0.377967i 0.135581 0.990766i \(-0.456710\pi\)
−0.790238 + 0.612800i \(0.790043\pi\)
\(158\) −9.02610 5.21122i −0.718078 0.414582i
\(159\) 0.857566 + 1.48535i 0.0680094 + 0.117796i
\(160\) −5.10482 0.209638i −0.403571 0.0165733i
\(161\) 0 0
\(162\) 1.55241i 0.121969i
\(163\) −4.67358 + 2.69830i −0.366063 + 0.211347i −0.671737 0.740789i \(-0.734452\pi\)
0.305674 + 0.952136i \(0.401118\pi\)
\(164\) 1.37662 2.38437i 0.107496 0.186188i
\(165\) 5.30162 8.36963i 0.412731 0.651575i
\(166\) −3.95823 6.85585i −0.307218 0.532117i
\(167\) 0.312550i 0.0241859i 0.999927 + 0.0120929i \(0.00384939\pi\)
−0.999927 + 0.0120929i \(0.996151\pi\)
\(168\) 0 0
\(169\) 9.99859 0.769122
\(170\) 8.40208 4.40154i 0.644410 0.337582i
\(171\) −0.152578 + 0.264273i −0.0116679 + 0.0202095i
\(172\) 3.44952 + 1.99158i 0.263024 + 0.151857i
\(173\) 8.32661 4.80737i 0.633061 0.365498i −0.148876 0.988856i \(-0.547565\pi\)
0.781937 + 0.623358i \(0.214232\pi\)
\(174\) 12.1000 0.917295
\(175\) 0 0
\(176\) −20.6113 −1.55363
\(177\) −0.989377 + 0.571217i −0.0743661 + 0.0429353i
\(178\) 5.47269 + 3.15966i 0.410196 + 0.236827i
\(179\) −4.42730 + 7.66831i −0.330912 + 0.573157i −0.982691 0.185252i \(-0.940690\pi\)
0.651779 + 0.758409i \(0.274023\pi\)
\(180\) 0.812053 0.425404i 0.0605268 0.0317078i
\(181\) 16.9234 1.25790 0.628952 0.777445i \(-0.283484\pi\)
0.628952 + 0.777445i \(0.283484\pi\)
\(182\) 0 0
\(183\) 9.55635i 0.706426i
\(184\) −8.66920 15.0155i −0.639102 1.10696i
\(185\) −4.39620 + 6.94026i −0.323215 + 0.510258i
\(186\) −4.10214 + 7.10511i −0.300784 + 0.520972i
\(187\) 10.4848 6.05343i 0.766728 0.442670i
\(188\) 0.744719i 0.0543142i
\(189\) 0 0
\(190\) −1.05839 0.0434647i −0.0767840 0.00315326i
\(191\) −0.159271 0.275865i −0.0115244 0.0199609i 0.860206 0.509947i \(-0.170335\pi\)
−0.871730 + 0.489986i \(0.837002\pi\)
\(192\) 4.98544 + 2.87834i 0.359793 + 0.207727i
\(193\) 1.81289 + 1.04667i 0.130494 + 0.0753410i 0.563826 0.825894i \(-0.309329\pi\)
−0.433332 + 0.901234i \(0.642662\pi\)
\(194\) −2.23418 3.86972i −0.160405 0.277830i
\(195\) 0.158954 3.87063i 0.0113829 0.277182i
\(196\) 0 0
\(197\) 22.5798i 1.60874i −0.594126 0.804372i \(-0.702502\pi\)
0.594126 0.804372i \(-0.297498\pi\)
\(198\) 5.95682 3.43917i 0.423333 0.244411i
\(199\) 3.75204 6.49872i 0.265975 0.460682i −0.701844 0.712331i \(-0.747639\pi\)
0.967819 + 0.251649i \(0.0809728\pi\)
\(200\) −10.1464 7.02654i −0.717457 0.496851i
\(201\) −4.19216 7.26104i −0.295693 0.512154i
\(202\) 11.2048i 0.788365i
\(203\) 0 0
\(204\) 1.12024 0.0784325
\(205\) 13.3019 6.96836i 0.929043 0.486691i
\(206\) 8.75046 15.1562i 0.609673 1.05599i
\(207\) 6.08316 + 3.51212i 0.422809 + 0.244109i
\(208\) −6.97945 + 4.02959i −0.483938 + 0.279402i
\(209\) −1.35207 −0.0935248
\(210\) 0 0
\(211\) 7.67216 0.528173 0.264087 0.964499i \(-0.414930\pi\)
0.264087 + 0.964499i \(0.414930\pi\)
\(212\) −0.608955 + 0.351581i −0.0418232 + 0.0241467i
\(213\) −8.91037 5.14441i −0.610529 0.352489i
\(214\) 5.36820 9.29800i 0.366963 0.635598i
\(215\) 10.0813 + 19.2441i 0.687536 + 1.31244i
\(216\) −2.46837 −0.167951
\(217\) 0 0
\(218\) 6.86467i 0.464934i
\(219\) −6.41022 11.1028i −0.433163 0.750260i
\(220\) 3.43134 + 2.17353i 0.231341 + 0.146540i
\(221\) 2.36694 4.09966i 0.159217 0.275773i
\(222\) −4.93951 + 2.85183i −0.331518 + 0.191402i
\(223\) 6.90208i 0.462198i 0.972930 + 0.231099i \(0.0742321\pi\)
−0.972930 + 0.231099i \(0.925768\pi\)
\(224\) 0 0
\(225\) 4.98316 + 0.409975i 0.332211 + 0.0273317i
\(226\) 2.22112 + 3.84709i 0.147746 + 0.255904i
\(227\) 5.49684 + 3.17360i 0.364838 + 0.210639i 0.671201 0.741275i \(-0.265779\pi\)
−0.306363 + 0.951915i \(0.599112\pi\)
\(228\) −0.108345 0.0625532i −0.00717535 0.00414269i
\(229\) −3.37834 5.85146i −0.223247 0.386676i 0.732545 0.680719i \(-0.238332\pi\)
−0.955792 + 0.294043i \(0.904999\pi\)
\(230\) −1.00049 + 24.3626i −0.0659705 + 1.60642i
\(231\) 0 0
\(232\) 19.2392i 1.26312i
\(233\) −6.41899 + 3.70601i −0.420522 + 0.242789i −0.695301 0.718719i \(-0.744729\pi\)
0.274779 + 0.961508i \(0.411395\pi\)
\(234\) 1.34474 2.32916i 0.0879086 0.152262i
\(235\) −2.17353 + 3.43134i −0.141786 + 0.223836i
\(236\) −0.234185 0.405620i −0.0152441 0.0264036i
\(237\) 6.71372i 0.436103i
\(238\) 0 0
\(239\) −7.36355 −0.476309 −0.238154 0.971227i \(-0.576542\pi\)
−0.238154 + 0.971227i \(0.576542\pi\)
\(240\) −4.82694 9.21413i −0.311578 0.594769i
\(241\) 6.84002 11.8473i 0.440605 0.763149i −0.557130 0.830425i \(-0.688097\pi\)
0.997734 + 0.0672759i \(0.0214308\pi\)
\(242\) 11.6045 + 6.69988i 0.745967 + 0.430684i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 3.91787 0.250816
\(245\) 0 0
\(246\) 10.4254 0.664699
\(247\) −0.457842 + 0.264335i −0.0291318 + 0.0168193i
\(248\) 11.2973 + 6.52250i 0.717380 + 0.414179i
\(249\) 2.54973 4.41626i 0.161583 0.279869i
\(250\) 6.76641 + 15.9832i 0.427945 + 1.01087i
\(251\) −23.4843 −1.48231 −0.741157 0.671331i \(-0.765723\pi\)
−0.741157 + 0.671331i \(0.765723\pi\)
\(252\) 0 0
\(253\) 31.1226i 1.95666i
\(254\) 10.6592 + 18.4623i 0.668818 + 1.15843i
\(255\) 5.16158 + 3.26953i 0.323230 + 0.204746i
\(256\) −4.72710 + 8.18758i −0.295444 + 0.511724i
\(257\) −12.6417 + 7.29871i −0.788570 + 0.455281i −0.839459 0.543423i \(-0.817128\pi\)
0.0508890 + 0.998704i \(0.483795\pi\)
\(258\) 15.0826i 0.939003i
\(259\) 0 0
\(260\) 1.58686 + 0.0651672i 0.0984131 + 0.00404150i
\(261\) 3.89715 + 6.75007i 0.241228 + 0.417819i
\(262\) −29.5528 17.0623i −1.82578 1.05411i
\(263\) −4.40755 2.54470i −0.271781 0.156913i 0.357916 0.933754i \(-0.383488\pi\)
−0.629697 + 0.776841i \(0.716821\pi\)
\(264\) −5.46837 9.47149i −0.336555 0.582930i
\(265\) −3.83192 0.157364i −0.235393 0.00966680i
\(266\) 0 0
\(267\) 4.07065i 0.249120i
\(268\) 2.97685 1.71868i 0.181840 0.104985i
\(269\) −15.2550 + 26.4224i −0.930112 + 1.61100i −0.146984 + 0.989139i \(0.546957\pi\)
−0.783127 + 0.621862i \(0.786377\pi\)
\(270\) 2.93248 + 1.85754i 0.178465 + 0.113046i
\(271\) −9.74401 16.8771i −0.591907 1.02521i −0.993975 0.109603i \(-0.965042\pi\)
0.402069 0.915609i \(-0.368291\pi\)
\(272\) 12.7110i 0.770720i
\(273\) 0 0
\(274\) −4.66019 −0.281532
\(275\) 9.46645 + 20.0294i 0.570849 + 1.20782i
\(276\) −1.43988 + 2.49395i −0.0866706 + 0.150118i
\(277\) −22.0665 12.7401i −1.32585 0.765478i −0.341193 0.939993i \(-0.610831\pi\)
−0.984655 + 0.174515i \(0.944164\pi\)
\(278\) 29.2230 16.8719i 1.75268 1.01191i
\(279\) −5.28487 −0.316397
\(280\) 0 0
\(281\) −22.1914 −1.32383 −0.661914 0.749580i \(-0.730255\pi\)
−0.661914 + 0.749580i \(0.730255\pi\)
\(282\) −2.44215 + 1.40998i −0.145428 + 0.0839628i
\(283\) 15.6960 + 9.06209i 0.933031 + 0.538685i 0.887769 0.460290i \(-0.152254\pi\)
0.0452618 + 0.998975i \(0.485588\pi\)
\(284\) 2.10908 3.65303i 0.125151 0.216768i
\(285\) −0.316641 0.604434i −0.0187562 0.0358036i
\(286\) 11.9165 0.704635
\(287\) 0 0
\(288\) 2.28487i 0.134637i
\(289\) −4.76683 8.25640i −0.280402 0.485670i
\(290\) −14.4782 + 22.8566i −0.850190 + 1.34219i
\(291\) 1.43917 2.49272i 0.0843658 0.146126i
\(292\) 4.55188 2.62803i 0.266379 0.153794i
\(293\) 13.8958i 0.811801i −0.913917 0.405901i \(-0.866958\pi\)
0.913917 0.405901i \(-0.133042\pi\)
\(294\) 0 0
\(295\) 0.104819 2.55241i 0.00610279 0.148607i
\(296\) 4.53447 + 7.85394i 0.263561 + 0.456501i
\(297\) 3.83715 + 2.21538i 0.222654 + 0.128549i
\(298\) 7.00861 + 4.04642i 0.405998 + 0.234403i
\(299\) 6.08460 + 10.5388i 0.351881 + 0.609476i
\(300\) −0.168080 + 2.04297i −0.00970408 + 0.117951i
\(301\) 0 0
\(302\) 15.0797i 0.867737i
\(303\) −6.25068 + 3.60883i −0.359092 + 0.207322i
\(304\) −0.709774 + 1.22936i −0.0407083 + 0.0705089i
\(305\) 18.0518 + 11.4347i 1.03364 + 0.654747i
\(306\) 2.12095 + 3.67359i 0.121247 + 0.210005i
\(307\) 29.8332i 1.70267i −0.524622 0.851335i \(-0.675793\pi\)
0.524622 0.851335i \(-0.324207\pi\)
\(308\) 0 0
\(309\) 11.2734 0.641321
\(310\) −8.51304 16.2505i −0.483508 0.922967i
\(311\) 6.75662 11.7028i 0.383133 0.663606i −0.608375 0.793650i \(-0.708178\pi\)
0.991508 + 0.130044i \(0.0415117\pi\)
\(312\) −3.70343 2.13817i −0.209665 0.121050i
\(313\) −25.1023 + 14.4928i −1.41887 + 0.819184i −0.996200 0.0871001i \(-0.972240\pi\)
−0.422669 + 0.906284i \(0.638907\pi\)
\(314\) 14.7041 0.829803
\(315\) 0 0
\(316\) 2.75246 0.154838
\(317\) 1.00341 0.579319i 0.0563571 0.0325378i −0.471557 0.881836i \(-0.656308\pi\)
0.527914 + 0.849298i \(0.322974\pi\)
\(318\) −2.30587 1.33129i −0.129307 0.0746552i
\(319\) −17.2673 + 29.9079i −0.966785 + 1.67452i
\(320\) −11.4025 + 5.97334i −0.637418 + 0.333920i
\(321\) 6.91596 0.386011
\(322\) 0 0
\(323\) 0.833827i 0.0463954i
\(324\) 0.204988 + 0.355049i 0.0113882 + 0.0197249i
\(325\) 7.12138 + 4.93167i 0.395023 + 0.273560i
\(326\) 4.18886 7.25532i 0.231999 0.401835i
\(327\) −3.82952 + 2.21097i −0.211773 + 0.122267i
\(328\) 16.5766i 0.915292i
\(329\) 0 0
\(330\) −0.631092 + 15.3675i −0.0347404 + 0.845953i
\(331\) 14.1746 + 24.5511i 0.779104 + 1.34945i 0.932459 + 0.361277i \(0.117659\pi\)
−0.153355 + 0.988171i \(0.549008\pi\)
\(332\) 1.81056 + 1.04533i 0.0993673 + 0.0573697i
\(333\) −3.18183 1.83703i −0.174363 0.100669i
\(334\) −0.242603 0.420201i −0.0132746 0.0229924i
\(335\) 18.7321 + 0.769266i 1.02345 + 0.0420295i
\(336\) 0 0
\(337\) 15.9729i 0.870101i 0.900406 + 0.435051i \(0.143270\pi\)
−0.900406 + 0.435051i \(0.856730\pi\)
\(338\) −13.4424 + 7.76095i −0.731168 + 0.422140i
\(339\) −1.43075 + 2.47814i −0.0777079 + 0.134594i
\(340\) −1.34042 + 2.11612i −0.0726947 + 0.114763i
\(341\) −11.7080 20.2788i −0.634023 1.09816i
\(342\) 0.473727i 0.0256162i
\(343\) 0 0
\(344\) 23.9817 1.29301
\(345\) −13.9131 + 7.28858i −0.749059 + 0.392404i
\(346\) −7.46301 + 12.9263i −0.401214 + 0.694923i
\(347\) −11.2687 6.50599i −0.604935 0.349260i 0.166045 0.986118i \(-0.446900\pi\)
−0.770981 + 0.636859i \(0.780234\pi\)
\(348\) −2.76736 + 1.59774i −0.148346 + 0.0856476i
\(349\) 32.0724 1.71680 0.858398 0.512984i \(-0.171460\pi\)
0.858398 + 0.512984i \(0.171460\pi\)
\(350\) 0 0
\(351\) 1.73246 0.0924718
\(352\) 8.76737 5.06185i 0.467303 0.269797i
\(353\) −11.5778 6.68445i −0.616225 0.355778i 0.159173 0.987251i \(-0.449117\pi\)
−0.775398 + 0.631473i \(0.782451\pi\)
\(354\) 0.886763 1.53592i 0.0471309 0.0816331i
\(355\) 20.3794 10.6760i 1.08163 0.566624i
\(356\) −1.66887 −0.0884498
\(357\) 0 0
\(358\) 13.7460i 0.726497i
\(359\) −6.55974 11.3618i −0.346210 0.599653i 0.639363 0.768905i \(-0.279198\pi\)
−0.985573 + 0.169252i \(0.945865\pi\)
\(360\) 2.95353 4.66271i 0.155665 0.245747i
\(361\) 9.45344 16.3738i 0.497549 0.861781i
\(362\) −22.7522 + 13.1360i −1.19583 + 0.690412i
\(363\) 8.63158i 0.453041i
\(364\) 0 0
\(365\) 28.6432 + 1.17628i 1.49926 + 0.0615694i
\(366\) 7.41769 + 12.8478i 0.387729 + 0.671566i
\(367\) 11.3761 + 6.56798i 0.593826 + 0.342846i 0.766609 0.642114i \(-0.221943\pi\)
−0.172783 + 0.984960i \(0.555276\pi\)
\(368\) 28.2981 + 16.3379i 1.47514 + 0.851672i
\(369\) 3.35781 + 5.81590i 0.174801 + 0.302764i
\(370\) 0.523313 12.7430i 0.0272057 0.662478i
\(371\) 0 0
\(372\) 2.16666i 0.112336i
\(373\) 25.6514 14.8099i 1.32818 0.766826i 0.343163 0.939276i \(-0.388502\pi\)
0.985018 + 0.172450i \(0.0551682\pi\)
\(374\) −9.39740 + 16.2768i −0.485928 + 0.841652i
\(375\) −6.73704 + 8.92257i −0.347900 + 0.460759i
\(376\) 2.24190 + 3.88308i 0.115617 + 0.200254i
\(377\) 13.5033i 0.695456i
\(378\) 0 0
\(379\) −7.47689 −0.384062 −0.192031 0.981389i \(-0.561507\pi\)
−0.192031 + 0.981389i \(0.561507\pi\)
\(380\) 0.247803 0.129815i 0.0127120 0.00665936i
\(381\) −6.86623 + 11.8927i −0.351768 + 0.609279i
\(382\) 0.428255 + 0.247253i 0.0219114 + 0.0126506i
\(383\) −20.5586 + 11.8695i −1.05050 + 0.606505i −0.922789 0.385307i \(-0.874096\pi\)
−0.127709 + 0.991812i \(0.540762\pi\)
\(384\) −13.5065 −0.689250
\(385\) 0 0
\(386\) −3.24972 −0.165406
\(387\) −8.41398 + 4.85781i −0.427706 + 0.246936i
\(388\) 1.02195 + 0.590025i 0.0518818 + 0.0299540i
\(389\) −7.06523 + 12.2373i −0.358221 + 0.620458i −0.987664 0.156589i \(-0.949950\pi\)
0.629442 + 0.777047i \(0.283283\pi\)
\(390\) 2.79070 + 5.32716i 0.141313 + 0.269751i
\(391\) −19.1934 −0.970653
\(392\) 0 0
\(393\) 21.9817i 1.10883i
\(394\) 17.5265 + 30.3569i 0.882975 + 1.52936i
\(395\) 12.6821 + 8.03330i 0.638106 + 0.404199i
\(396\) −0.908250 + 1.57313i −0.0456413 + 0.0790530i
\(397\) −9.75974 + 5.63479i −0.489827 + 0.282802i −0.724503 0.689272i \(-0.757931\pi\)
0.234676 + 0.972074i \(0.424597\pi\)
\(398\) 11.6494i 0.583932i
\(399\) 0 0
\(400\) 23.1810 + 1.90715i 1.15905 + 0.0953576i
\(401\) −11.6484 20.1757i −0.581694 1.00752i −0.995279 0.0970583i \(-0.969057\pi\)
0.413584 0.910466i \(-0.364277\pi\)
\(402\) 11.2721 + 6.50796i 0.562202 + 0.324587i
\(403\) −7.92917 4.57791i −0.394980 0.228042i
\(404\) −1.47953 2.56262i −0.0736094 0.127495i
\(405\) −0.0917505 + 2.23418i −0.00455912 + 0.111018i
\(406\) 0 0
\(407\) 16.2789i 0.806914i
\(408\) 5.84110 3.37236i 0.289177 0.166957i
\(409\) −10.3239 + 17.8815i −0.510484 + 0.884184i 0.489443 + 0.872036i \(0.337200\pi\)
−0.999926 + 0.0121481i \(0.996133\pi\)
\(410\) −12.4745 + 19.6934i −0.616072 + 0.972589i
\(411\) −1.50095 2.59973i −0.0740366 0.128235i
\(412\) 4.62181i 0.227700i
\(413\) 0 0
\(414\) −10.9045 −0.535926
\(415\) 5.29138 + 10.1007i 0.259743 + 0.495823i
\(416\) 1.97922 3.42811i 0.0970393 0.168077i
\(417\) 18.8243 + 10.8682i 0.921829 + 0.532218i
\(418\) 1.81776 1.04948i 0.0889096 0.0513320i
\(419\) −5.48254 −0.267839 −0.133920 0.990992i \(-0.542756\pi\)
−0.133920 + 0.990992i \(0.542756\pi\)
\(420\) 0 0
\(421\) −3.78079 −0.184264 −0.0921322 0.995747i \(-0.529368\pi\)
−0.0921322 + 0.995747i \(0.529368\pi\)
\(422\) −10.3146 + 5.95517i −0.502109 + 0.289893i
\(423\) −1.57313 0.908250i −0.0764884 0.0441606i
\(424\) −2.11679 + 3.66639i −0.102800 + 0.178055i
\(425\) −12.3522 + 5.83799i −0.599168 + 0.283184i
\(426\) 15.9724 0.773868
\(427\) 0 0
\(428\) 2.83537i 0.137053i
\(429\) 3.83805 + 6.64770i 0.185303 + 0.320954i
\(430\) −28.4909 18.0471i −1.37395 0.870310i
\(431\) 13.7564 23.8267i 0.662621 1.14769i −0.317303 0.948324i \(-0.602777\pi\)
0.979924 0.199369i \(-0.0638894\pi\)
\(432\) 4.02864 2.32594i 0.193828 0.111907i
\(433\) 8.75514i 0.420745i 0.977621 + 0.210373i \(0.0674677\pi\)
−0.977621 + 0.210373i \(0.932532\pi\)
\(434\) 0 0
\(435\) −17.4139 0.715131i −0.834933 0.0342879i
\(436\) −0.906444 1.57001i −0.0434108 0.0751897i
\(437\) 1.85631 + 1.07174i 0.0887996 + 0.0512685i
\(438\) 17.2361 + 9.95129i 0.823574 + 0.475491i
\(439\) 5.30636 + 9.19088i 0.253259 + 0.438657i 0.964421 0.264371i \(-0.0851643\pi\)
−0.711163 + 0.703028i \(0.751831\pi\)
\(440\) 24.4347 + 1.00345i 1.16488 + 0.0478377i
\(441\) 0 0
\(442\) 7.34891i 0.349552i
\(443\) −17.3080 + 9.99278i −0.822328 + 0.474771i −0.851219 0.524811i \(-0.824136\pi\)
0.0288905 + 0.999583i \(0.490803\pi\)
\(444\) 0.753138 1.30447i 0.0357423 0.0619075i
\(445\) −7.68941 4.87074i −0.364513 0.230895i
\(446\) −5.35743 9.27934i −0.253682 0.439390i
\(447\) 5.21309i 0.246571i
\(448\) 0 0
\(449\) −3.02578 −0.142795 −0.0713976 0.997448i \(-0.522746\pi\)
−0.0713976 + 0.997448i \(0.522746\pi\)
\(450\) −7.01772 + 3.31677i −0.330818 + 0.156354i
\(451\) −14.8776 + 25.7688i −0.700561 + 1.21341i
\(452\) −1.01598 0.586574i −0.0477875 0.0275901i
\(453\) −8.41233 + 4.85686i −0.395246 + 0.228195i
\(454\) −9.85346 −0.462446
\(455\) 0 0
\(456\) −0.753238 −0.0352736
\(457\) −1.97570 + 1.14067i −0.0924195 + 0.0533584i −0.545497 0.838112i \(-0.683659\pi\)
0.453078 + 0.891471i \(0.350326\pi\)
\(458\) 9.08387 + 5.24457i 0.424461 + 0.245063i
\(459\) −1.36623 + 2.36638i −0.0637701 + 0.110453i
\(460\) −2.98814 5.70404i −0.139323 0.265952i
\(461\) 24.0678 1.12095 0.560475 0.828171i \(-0.310619\pi\)
0.560475 + 0.828171i \(0.310619\pi\)
\(462\) 0 0
\(463\) 11.1290i 0.517211i 0.965983 + 0.258605i \(0.0832629\pi\)
−0.965983 + 0.258605i \(0.916737\pi\)
\(464\) 18.1290 + 31.4004i 0.841620 + 1.45773i
\(465\) 6.32361 9.98304i 0.293251 0.462952i
\(466\) 5.75324 9.96490i 0.266514 0.461615i
\(467\) 24.7481 14.2883i 1.14521 0.661185i 0.197491 0.980305i \(-0.436721\pi\)
0.947714 + 0.319120i \(0.103387\pi\)
\(468\) 0.710265i 0.0328320i
\(469\) 0 0
\(470\) 0.258732 6.30029i 0.0119344 0.290611i
\(471\) 4.73591 + 8.20284i 0.218219 + 0.377967i
\(472\) −2.44215 1.40998i −0.112409 0.0648994i
\(473\) −37.2803 21.5238i −1.71415 0.989664i
\(474\) 5.21122 + 9.02610i 0.239359 + 0.414582i
\(475\) 1.52064 + 0.125106i 0.0697719 + 0.00574028i
\(476\) 0 0
\(477\) 1.71513i 0.0785305i
\(478\) 9.89975 5.71562i 0.452804 0.261427i
\(479\) 2.79005 4.83250i 0.127480 0.220803i −0.795219 0.606322i \(-0.792644\pi\)
0.922700 + 0.385519i \(0.125978\pi\)
\(480\) 4.31608 + 2.73396i 0.197001 + 0.124788i
\(481\) −3.18258 5.51240i −0.145113 0.251344i
\(482\) 21.2370i 0.967320i
\(483\) 0 0
\(484\) −3.53873 −0.160852
\(485\) 2.98667 + 5.70124i 0.135618 + 0.258880i
\(486\) −0.776205 + 1.34443i −0.0352094 + 0.0609844i
\(487\) 7.22858 + 4.17342i 0.327558 + 0.189116i 0.654756 0.755840i \(-0.272771\pi\)
−0.327198 + 0.944956i \(0.606105\pi\)
\(488\) 20.4283 11.7943i 0.924747 0.533903i
\(489\) 5.39659 0.244042
\(490\) 0 0
\(491\) 0.557405 0.0251554 0.0125777 0.999921i \(-0.495996\pi\)
0.0125777 + 0.999921i \(0.495996\pi\)
\(492\) −2.38437 + 1.37662i −0.107496 + 0.0620628i
\(493\) −18.4443 10.6488i −0.830689 0.479598i
\(494\) 0.410357 0.710759i 0.0184628 0.0319785i
\(495\) −8.77615 + 4.59750i −0.394459 + 0.206642i
\(496\) −24.5845 −1.10388
\(497\) 0 0
\(498\) 7.91645i 0.354745i
\(499\) −13.0168 22.5458i −0.582713 1.00929i −0.995156 0.0983057i \(-0.968658\pi\)
0.412443 0.910983i \(-0.364676\pi\)
\(500\) −3.65803 2.76202i −0.163592 0.123521i
\(501\) 0.156275 0.270676i 0.00698186 0.0120929i
\(502\) 31.5729 18.2286i 1.40917 0.813583i
\(503\) 5.52409i 0.246307i −0.992388 0.123154i \(-0.960699\pi\)
0.992388 0.123154i \(-0.0393008\pi\)
\(504\) 0 0
\(505\) 0.662224 16.1256i 0.0294686 0.717580i
\(506\) −24.1575 41.8421i −1.07393 1.86011i
\(507\) −8.65903 4.99929i −0.384561 0.222026i
\(508\) −4.87569 2.81498i −0.216324 0.124895i
\(509\) −11.4446 19.8227i −0.507274 0.878625i −0.999965 0.00842016i \(-0.997320\pi\)
0.492690 0.870205i \(-0.336014\pi\)
\(510\) −9.47718 0.389196i −0.419657 0.0172339i
\(511\) 0 0
\(512\) 12.3362i 0.545186i
\(513\) 0.264273 0.152578i 0.0116679 0.00673649i
\(514\) 11.3306 19.6251i 0.499771 0.865628i
\(515\) −13.4892 + 21.2953i −0.594404 + 0.938382i
\(516\) −1.99158 3.44952i −0.0876745 0.151857i
\(517\) 8.04846i 0.353971i
\(518\) 0 0
\(519\) −9.61475 −0.422041
\(520\) 8.47032 4.43729i 0.371448 0.194588i
\(521\) 13.0995 22.6889i 0.573898 0.994020i −0.422263 0.906474i \(-0.638764\pi\)
0.996160 0.0875466i \(-0.0279027\pi\)
\(522\) −10.4789 6.04998i −0.458648 0.264800i
\(523\) 23.2753 13.4380i 1.01776 0.587603i 0.104304 0.994545i \(-0.466738\pi\)
0.913454 + 0.406943i \(0.133405\pi\)
\(524\) 9.01197 0.393690
\(525\) 0 0
\(526\) 7.90083 0.344493
\(527\) 12.5060 7.22034i 0.544770 0.314523i
\(528\) 17.8499 + 10.3056i 0.776817 + 0.448496i
\(529\) 13.1699 22.8109i 0.572605 0.991780i
\(530\) 5.27388 2.76279i 0.229083 0.120008i
\(531\) 1.14243 0.0495774
\(532\) 0 0
\(533\) 11.6345i 0.503948i
\(534\) −3.15966 5.47269i −0.136732 0.236827i
\(535\) −8.27530 + 13.0641i −0.357772 + 0.564812i
\(536\) 10.3478 17.9229i 0.446957 0.774153i
\(537\) 7.66831 4.42730i 0.330912 0.191052i
\(538\) 47.3639i 2.04200i
\(539\) 0 0
\(540\) −0.915960 0.0376154i −0.0394167 0.00161871i
\(541\) 9.39222 + 16.2678i 0.403803 + 0.699408i 0.994181 0.107719i \(-0.0343547\pi\)
−0.590378 + 0.807127i \(0.701021\pi\)
\(542\) 26.2002 + 15.1267i 1.12540 + 0.649747i
\(543\) −14.6561 8.46168i −0.628952 0.363125i
\(544\) 3.12166 + 5.40687i 0.133840 + 0.231817i
\(545\) 0.405716 9.87944i 0.0173789 0.423189i
\(546\) 0 0
\(547\) 13.4126i 0.573483i 0.958008 + 0.286742i \(0.0925721\pi\)
−0.958008 + 0.286742i \(0.907428\pi\)
\(548\) 1.06582 0.615353i 0.0455297 0.0262866i
\(549\) −4.77818 + 8.27604i −0.203928 + 0.353213i
\(550\) −28.2738 19.5801i −1.20560 0.834899i
\(551\) 1.18924 + 2.05982i 0.0506633 + 0.0877515i
\(552\) 17.3384i 0.737971i
\(553\) 0 0
\(554\) 39.5557 1.68056
\(555\) 7.27735 3.81233i 0.308906 0.161825i
\(556\) −4.45569 + 7.71749i −0.188963 + 0.327294i
\(557\) 34.8008 + 20.0922i 1.47456 + 0.851336i 0.999589 0.0286677i \(-0.00912646\pi\)
0.474968 + 0.880003i \(0.342460\pi\)
\(558\) 7.10511 4.10214i 0.300784 0.173657i
\(559\) −16.8319 −0.711914
\(560\) 0 0
\(561\) −12.1069 −0.511152
\(562\) 29.8347 17.2251i 1.25850 0.726595i
\(563\) −21.8134 12.5940i −0.919325 0.530772i −0.0359052 0.999355i \(-0.511431\pi\)
−0.883420 + 0.468583i \(0.844765\pi\)
\(564\) 0.372360 0.644946i 0.0156792 0.0271571i
\(565\) −2.96920 5.66789i −0.124915 0.238450i
\(566\) −28.1362 −1.18265
\(567\) 0 0
\(568\) 25.3966i 1.06562i
\(569\) −5.51757 9.55672i −0.231309 0.400638i 0.726885 0.686759i \(-0.240967\pi\)
−0.958194 + 0.286121i \(0.907634\pi\)
\(570\) 0.894864 + 0.566839i 0.0374817 + 0.0237423i
\(571\) −14.3573 + 24.8677i −0.600836 + 1.04068i 0.391858 + 0.920026i \(0.371832\pi\)
−0.992695 + 0.120654i \(0.961501\pi\)
\(572\) −2.72539 + 1.57351i −0.113954 + 0.0657916i
\(573\) 0.318541i 0.0133073i
\(574\) 0 0
\(575\) 2.87976 35.0029i 0.120094 1.45972i
\(576\) −2.87834 4.98544i −0.119931 0.207727i
\(577\) 5.94444 + 3.43202i 0.247470 + 0.142877i 0.618605 0.785702i \(-0.287698\pi\)
−0.371135 + 0.928579i \(0.621031\pi\)
\(578\) 12.8173 + 7.40008i 0.533130 + 0.307803i
\(579\) −1.04667 1.81289i −0.0434981 0.0753410i
\(580\) 0.293186 7.13927i 0.0121739 0.296442i
\(581\) 0 0
\(582\) 4.46837i 0.185220i
\(583\) 6.58121 3.79966i 0.272566 0.157366i
\(584\) 15.8228 27.4059i 0.654752 1.13406i
\(585\) −2.07298 + 3.27259i −0.0857070 + 0.135305i
\(586\) 10.7860 + 18.6819i 0.445565 + 0.771741i
\(587\) 9.03965i 0.373106i 0.982445 + 0.186553i \(0.0597317\pi\)
−0.982445 + 0.186553i \(0.940268\pi\)
\(588\) 0 0
\(589\) −1.61271 −0.0664506
\(590\) 1.84027 + 3.51289i 0.0757628 + 0.144623i
\(591\) −11.2899 + 19.5547i −0.464404 + 0.804372i
\(592\) −14.8015 8.54564i −0.608337 0.351224i
\(593\) 4.42364 2.55399i 0.181657 0.104880i −0.406414 0.913689i \(-0.633221\pi\)
0.588071 + 0.808809i \(0.299888\pi\)
\(594\) −6.87834 −0.282222
\(595\) 0 0
\(596\) −2.13724 −0.0875446
\(597\) −6.49872 + 3.75204i −0.265975 + 0.153561i
\(598\) −16.3606 9.44578i −0.669034 0.386267i
\(599\) −14.9721 + 25.9325i −0.611745 + 1.05957i 0.379202 + 0.925314i \(0.376199\pi\)
−0.990946 + 0.134259i \(0.957135\pi\)
\(600\) 5.27375 + 11.1583i 0.215300 + 0.455538i
\(601\) 12.5387 0.511466 0.255733 0.966747i \(-0.417683\pi\)
0.255733 + 0.966747i \(0.417683\pi\)
\(602\) 0 0
\(603\) 8.38433i 0.341436i
\(604\) −1.99119 3.44884i −0.0810204 0.140331i
\(605\) −16.3049 10.3281i −0.662890 0.419898i
\(606\) 5.60239 9.70362i 0.227581 0.394182i
\(607\) 8.31216 4.79903i 0.337380 0.194786i −0.321733 0.946831i \(-0.604265\pi\)
0.659113 + 0.752044i \(0.270932\pi\)
\(608\) 0.697242i 0.0282769i
\(609\) 0 0
\(610\) −33.1450 1.36115i −1.34200 0.0551115i
\(611\) −1.57351 2.72539i −0.0636572 0.110258i
\(612\) −0.970157 0.560120i −0.0392163 0.0226415i
\(613\) −23.9583 13.8323i −0.967665 0.558682i −0.0691416 0.997607i \(-0.522026\pi\)
−0.898524 + 0.438925i \(0.855359\pi\)
\(614\) 23.1567 + 40.1085i 0.934527 + 1.61865i
\(615\) −15.0039 0.616162i −0.605017 0.0248460i
\(616\) 0 0
\(617\) 20.4155i 0.821896i 0.911659 + 0.410948i \(0.134802\pi\)
−0.911659 + 0.410948i \(0.865198\pi\)
\(618\) −15.1562 + 8.75046i −0.609673 + 0.351995i
\(619\) 7.72112 13.3734i 0.310338 0.537521i −0.668098 0.744074i \(-0.732891\pi\)
0.978435 + 0.206553i \(0.0662245\pi\)
\(620\) 4.09280 + 2.59252i 0.164371 + 0.104118i
\(621\) −3.51212 6.08316i −0.140936 0.244109i
\(622\) 20.9781i 0.841145i
\(623\) 0 0
\(624\) 8.05918 0.322625
\(625\) −8.79339 23.4025i −0.351735 0.936099i
\(626\) 22.4988 38.9691i 0.899234 1.55752i
\(627\) 1.17093 + 0.676036i 0.0467624 + 0.0269983i
\(628\) −3.36296 + 1.94161i −0.134197 + 0.0774785i
\(629\) 10.0392 0.400290
\(630\) 0 0
\(631\) −38.1722 −1.51961 −0.759805 0.650151i \(-0.774705\pi\)
−0.759805 + 0.650151i \(0.774705\pi\)
\(632\) 14.3517 8.28597i 0.570881 0.329598i
\(633\) −6.64428 3.83608i −0.264087 0.152470i
\(634\) −0.899340 + 1.55770i −0.0357173 + 0.0618643i
\(635\) −14.2493 27.2004i −0.565465 1.07941i
\(636\) 0.703161 0.0278822
\(637\) 0 0
\(638\) 53.6119i 2.12252i
\(639\) 5.14441 + 8.91037i 0.203510 + 0.352489i
\(640\) 16.1612 25.5135i 0.638827 1.00851i
\(641\) 8.39007 14.5320i 0.331388 0.573981i −0.651396 0.758738i \(-0.725816\pi\)
0.982784 + 0.184757i \(0.0591498\pi\)
\(642\) −9.29800 + 5.36820i −0.366963 + 0.211866i
\(643\) 14.2002i 0.560001i 0.960000 + 0.280001i \(0.0903346\pi\)
−0.960000 + 0.280001i \(0.909665\pi\)
\(644\) 0 0
\(645\) 0.891413 21.7065i 0.0350994 0.854692i
\(646\) 0.647220 + 1.12102i 0.0254645 + 0.0441059i
\(647\) −12.5474 7.24426i −0.493290 0.284801i 0.232648 0.972561i \(-0.425261\pi\)
−0.725938 + 0.687760i \(0.758594\pi\)
\(648\) 2.13767 + 1.23418i 0.0839756 + 0.0484834i
\(649\) 2.53092 + 4.38369i 0.0993474 + 0.172075i
\(650\) −13.4021 1.10262i −0.525676 0.0432484i
\(651\) 0 0
\(652\) 2.21247i 0.0866469i
\(653\) 8.90562 5.14166i 0.348504 0.201209i −0.315522 0.948918i \(-0.602180\pi\)
0.664026 + 0.747709i \(0.268846\pi\)
\(654\) 3.43233 5.94498i 0.134215 0.232467i
\(655\) 41.5232 + 26.3023i 1.62245 + 1.02771i
\(656\) 15.6201 + 27.0548i 0.609863 + 1.05631i
\(657\) 12.8204i 0.500173i
\(658\) 0 0
\(659\) −14.9773 −0.583433 −0.291717 0.956505i \(-0.594226\pi\)
−0.291717 + 0.956505i \(0.594226\pi\)
\(660\) −1.88486 3.59801i −0.0733681 0.140052i
\(661\) 1.22323 2.11870i 0.0475782 0.0824079i −0.841256 0.540638i \(-0.818183\pi\)
0.888834 + 0.458230i \(0.151516\pi\)
\(662\) −38.1133 22.0047i −1.48131 0.855238i
\(663\) −4.09966 + 2.36694i −0.159217 + 0.0919242i
\(664\) 12.5874 0.488484
\(665\) 0 0
\(666\) 5.70365 0.221012
\(667\) 47.4140 27.3745i 1.83588 1.05994i
\(668\) 0.110971 + 0.0640689i 0.00429358 + 0.00247890i
\(669\) 3.45104 5.97738i 0.133425 0.231099i
\(670\) −25.7811 + 13.5058i −0.996010 + 0.521773i
\(671\) −42.3418 −1.63459
\(672\) 0 0
\(673\) 17.2596i 0.665310i 0.943049 + 0.332655i \(0.107945\pi\)
−0.943049 + 0.332655i \(0.892055\pi\)
\(674\) −12.3983 21.4744i −0.477564 0.827164i
\(675\) −4.11056 2.84663i −0.158215 0.109567i
\(676\) 2.04959 3.54999i 0.0788302 0.136538i
\(677\) 10.0791 5.81918i 0.387372 0.223649i −0.293649 0.955913i \(-0.594870\pi\)
0.681021 + 0.732264i \(0.261536\pi\)
\(678\) 4.44223i 0.170603i
\(679\) 0 0
\(680\) −0.618831 + 15.0689i −0.0237311 + 0.577868i
\(681\) −3.17360 5.49684i −0.121613 0.210639i
\(682\) 31.4810 + 18.1756i 1.20547 + 0.695979i
\(683\) 26.9299 + 15.5480i 1.03044 + 0.594928i 0.917112 0.398629i \(-0.130514\pi\)
0.113333 + 0.993557i \(0.463847\pi\)
\(684\) 0.0625532 + 0.108345i 0.00239178 + 0.00414269i
\(685\) 6.70681 + 0.275426i 0.256254 + 0.0105235i
\(686\) 0 0
\(687\) 6.75669i 0.257784i
\(688\) −39.1407 + 22.5979i −1.49223 + 0.861537i
\(689\) 1.48570 2.57330i 0.0566006 0.0980351i
\(690\) 13.0478 20.5984i 0.496720 0.784168i
\(691\) −8.96695 15.5312i −0.341119 0.590835i 0.643522 0.765428i \(-0.277473\pi\)
−0.984641 + 0.174592i \(0.944139\pi\)
\(692\) 3.94181i 0.149845i
\(693\) 0 0
\(694\) 20.1999 0.766778
\(695\) −43.0541 + 22.5544i −1.63313 + 0.855538i
\(696\) −9.61961 + 16.6617i −0.364630 + 0.631559i
\(697\) −15.8917 9.17508i −0.601941 0.347531i
\(698\) −43.1190 + 24.8947i −1.63208 + 0.942280i
\(699\) 7.41201 0.280348
\(700\) 0 0
\(701\) 7.04488 0.266081 0.133041 0.991111i \(-0.457526\pi\)
0.133041 + 0.991111i \(0.457526\pi\)
\(702\) −2.32916 + 1.34474i −0.0879086 + 0.0507541i
\(703\) −0.970956 0.560582i −0.0366203 0.0211427i
\(704\) 12.7532 22.0893i 0.480656 0.832520i
\(705\) 3.59801 1.88486i 0.135509 0.0709880i
\(706\) 20.7540 0.781088
\(707\) 0 0
\(708\) 0.468370i 0.0176024i
\(709\) −12.9622 22.4511i −0.486804 0.843170i 0.513080 0.858341i \(-0.328504\pi\)
−0.999885 + 0.0151705i \(0.995171\pi\)
\(710\) −19.1118 + 30.1717i −0.717255 + 1.13232i
\(711\) −3.35686 + 5.81425i −0.125892 + 0.218051i
\(712\) −8.70172 + 5.02394i −0.326111 + 0.188280i
\(713\) 37.1221i 1.39023i
\(714\) 0 0
\(715\) −17.1498 0.704286i −0.641367 0.0263388i
\(716\) 1.81508 + 3.14382i 0.0678329 + 0.117490i
\(717\) 6.37702 + 3.68178i 0.238154 + 0.137498i
\(718\) 17.6382 + 10.1834i 0.658251 + 0.380041i
\(719\) −15.6427 27.0940i −0.583376 1.01044i −0.995076 0.0991173i \(-0.968398\pi\)
0.411700 0.911320i \(-0.364935\pi\)
\(720\) −0.426811 + 10.3931i −0.0159063 + 0.387329i
\(721\) 0 0
\(722\) 29.3512i 1.09234i
\(723\) −11.8473 + 6.84002i −0.440605 + 0.254383i
\(724\) 3.46908 6.00862i 0.128927 0.223309i
\(725\) 22.1875 32.0389i 0.824023 1.18990i
\(726\) −6.69988 11.6045i −0.248656 0.430684i
\(727\) 22.8312i 0.846761i −0.905952 0.423380i \(-0.860843\pi\)
0.905952 0.423380i \(-0.139157\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) −39.4217 + 20.6516i −1.45906 + 0.764350i
\(731\) 13.2738 22.9908i 0.490948 0.850347i
\(732\) −3.39297 1.95893i −0.125408 0.0724043i
\(733\) −5.15661 + 2.97717i −0.190464 + 0.109964i −0.592200 0.805791i \(-0.701740\pi\)
0.401736 + 0.915756i \(0.368407\pi\)
\(734\) −20.3924 −0.752696
\(735\) 0 0
\(736\) −16.0494 −0.591590
\(737\) −32.1719 + 18.5745i −1.18507 + 0.684199i
\(738\) −9.02866 5.21270i −0.332350 0.191882i
\(739\) 20.7539 35.9469i 0.763446 1.32233i −0.177618 0.984099i \(-0.556839\pi\)
0.941064 0.338228i \(-0.109827\pi\)
\(740\) 1.56296 + 2.98353i 0.0574556 + 0.109677i
\(741\) 0.528671 0.0194212
\(742\) 0 0
\(743\) 6.80015i 0.249473i 0.992190 + 0.124737i \(0.0398086\pi\)
−0.992190 + 0.124737i \(0.960191\pi\)
\(744\) −6.52250 11.2973i −0.239127 0.414179i
\(745\) −9.84745 6.23773i −0.360783 0.228533i
\(746\) −22.9910 + 39.8216i −0.841760 + 1.45797i
\(747\) −4.41626 + 2.54973i −0.161583 + 0.0932898i
\(748\) 4.96351i 0.181484i
\(749\) 0 0
\(750\) 2.13172 17.2251i 0.0778394 0.628970i
\(751\) −11.8056 20.4480i −0.430794 0.746157i 0.566148 0.824304i \(-0.308433\pi\)
−0.996942 + 0.0781464i \(0.975100\pi\)
\(752\) −7.31802 4.22506i −0.266861 0.154072i
\(753\) 20.3380 + 11.7421i 0.741157 + 0.427907i
\(754\) −10.4813 18.1542i −0.381708 0.661137i
\(755\) 0.891238 21.7022i 0.0324355 0.789825i
\(756\) 0 0
\(757\) 16.2267i 0.589769i 0.955533 + 0.294884i \(0.0952811\pi\)
−0.955533 + 0.294884i \(0.904719\pi\)
\(758\) 10.0521 5.80360i 0.365110 0.210796i
\(759\) 15.5613 26.9530i 0.564840 0.978332i
\(760\) 0.901288 1.42286i 0.0326931 0.0516124i
\(761\) −1.27754 2.21276i −0.0463108 0.0802126i 0.841941 0.539570i \(-0.181413\pi\)
−0.888252 + 0.459357i \(0.848080\pi\)
\(762\) 21.3184i 0.772284i
\(763\) 0 0
\(764\) −0.130594 −0.00472473
\(765\) −2.83529 5.41228i −0.102510 0.195681i
\(766\) 18.4264 31.9154i 0.665772 1.15315i
\(767\) 1.71406 + 0.989610i 0.0618910 + 0.0357328i
\(768\) 8.18758 4.72710i 0.295444 0.170575i
\(769\) −45.4525 −1.63906 −0.819530 0.573037i \(-0.805765\pi\)
−0.819530 + 0.573037i \(0.805765\pi\)
\(770\) 0 0
\(771\) 14.5974 0.525713
\(772\) 0.743238 0.429109i 0.0267497 0.0154440i
\(773\) 44.5909 + 25.7446i 1.60382 + 0.925968i 0.990713 + 0.135970i \(0.0434152\pi\)
0.613110 + 0.789997i \(0.289918\pi\)
\(774\) 7.54131 13.0619i 0.271067 0.469502i
\(775\) 11.2913 + 23.8904i 0.405595 + 0.858170i
\(776\) 7.10482 0.255048
\(777\) 0 0
\(778\) 21.9363i 0.786453i
\(779\) 1.02466 + 1.77476i 0.0367121 + 0.0635873i
\(780\) −1.34168 0.849868i −0.0480399 0.0304302i
\(781\) −22.7936 + 39.4797i −0.815619 + 1.41269i
\(782\) 25.8041 14.8980i 0.922754 0.532752i
\(783\) 7.79430i 0.278546i
\(784\) 0 0
\(785\) −21.1618 0.869044i −0.755297 0.0310175i
\(786\) 17.0623 + 29.5528i 0.608593 + 1.05411i
\(787\) 17.4517 + 10.0757i 0.622085 + 0.359161i 0.777680 0.628660i \(-0.216396\pi\)
−0.155596 + 0.987821i \(0.549730\pi\)
\(788\) −8.01693 4.62858i −0.285591 0.164886i
\(789\) 2.54470 + 4.40755i 0.0905937 + 0.156913i
\(790\) −23.2857 0.956264i −0.828466 0.0340223i
\(791\) 0 0
\(792\) 10.9367i 0.388620i
\(793\) −14.3379 + 8.27800i −0.509154 + 0.293960i
\(794\) 8.74750 15.1511i 0.310437 0.537693i
\(795\) 3.23986 + 2.05224i 0.114906 + 0.0727855i
\(796\) −1.53824 2.66431i −0.0545216 0.0944341i
\(797\) 13.0702i 0.462971i 0.972838 + 0.231486i \(0.0743587\pi\)
−0.972838 + 0.231486i \(0.925641\pi\)
\(798\) 0 0
\(799\) 4.96351 0.175596
\(800\) −10.3288 + 4.88170i −0.365179 + 0.172594i
\(801\) 2.03533 3.52529i 0.0719148 0.124560i
\(802\) 31.3209 + 18.0831i 1.10598 + 0.638537i
\(803\) −49.1939 + 28.4021i −1.73602 + 1.00229i
\(804\) −3.43737 −0.121227
\(805\) 0 0
\(806\) 14.2136 0.500652
\(807\) 26.4224 15.2550i 0.930112 0.537000i
\(808\) −15.4290 8.90793i −0.542790 0.313380i
\(809\) −0.868598 + 1.50446i −0.0305383 + 0.0528938i −0.880891 0.473320i \(-0.843055\pi\)
0.850352 + 0.526214i \(0.176389\pi\)
\(810\) −1.61083 3.07491i −0.0565989 0.108041i
\(811\) 27.9004 0.979715 0.489858 0.871802i \(-0.337049\pi\)
0.489858 + 0.871802i \(0.337049\pi\)
\(812\) 0 0
\(813\) 19.4880i 0.683475i
\(814\) 12.6357 + 21.8857i 0.442883 + 0.767095i
\(815\) −6.45729 + 10.1941i −0.226189 + 0.357083i
\(816\) −6.35552 + 11.0081i −0.222488 + 0.385360i
\(817\) −2.56758 + 1.48239i −0.0898282 + 0.0518623i
\(818\) 32.0538i 1.12074i
\(819\) 0 0
\(820\) 0.252611 6.15124i 0.00882156 0.214811i
\(821\) −8.46799 14.6670i −0.295535 0.511881i 0.679574 0.733607i \(-0.262165\pi\)
−0.975109 + 0.221725i \(0.928831\pi\)
\(822\) 4.03584 + 2.33009i 0.140766 + 0.0812714i
\(823\) 8.56526 + 4.94516i 0.298566 + 0.172377i 0.641799 0.766873i \(-0.278188\pi\)
−0.343232 + 0.939251i \(0.611522\pi\)
\(824\) 13.9134 + 24.0988i 0.484698 + 0.839521i
\(825\) 1.81650 22.0792i 0.0632424 0.768698i
\(826\) 0 0
\(827\) 35.3201i 1.22820i 0.789228 + 0.614101i \(0.210481\pi\)
−0.789228 + 0.614101i \(0.789519\pi\)
\(828\) 2.49395 1.43988i 0.0866706 0.0500393i
\(829\) −4.64975 + 8.05361i −0.161493 + 0.279713i −0.935404 0.353580i \(-0.884964\pi\)
0.773912 + 0.633294i \(0.218297\pi\)
\(830\) −14.9541 9.47244i −0.519063 0.328793i
\(831\) 12.7401 + 22.0665i 0.441949 + 0.765478i
\(832\) 9.97323i 0.345760i
\(833\) 0 0
\(834\) −33.7438 −1.16845
\(835\) 0.324313 + 0.619080i 0.0112233 + 0.0214241i
\(836\) −0.277158 + 0.480052i −0.00958571 + 0.0166029i
\(837\) 4.57683 + 2.64243i 0.158198 + 0.0913359i
\(838\) 7.37086 4.25557i 0.254622 0.147006i
\(839\) −7.93405 −0.273914 −0.136957 0.990577i \(-0.543732\pi\)
−0.136957 + 0.990577i \(0.543732\pi\)
\(840\) 0 0
\(841\) 31.7512 1.09487
\(842\) 5.08299 2.93467i 0.175171 0.101135i
\(843\) 19.2183 + 11.0957i 0.661914 + 0.382156i
\(844\) 1.57270 2.72399i 0.0541345 0.0937636i
\(845\) 19.8046 10.3749i 0.681298 0.356906i
\(846\) 2.81995 0.0969519
\(847\) 0 0
\(848\) 7.97857i 0.273985i
\(849\) −9.06209 15.6960i −0.311010 0.538685i
\(850\) 12.0751 17.4366i 0.414173 0.598069i
\(851\) −12.9037 + 22.3499i −0.442334 + 0.766146i
\(852\) −3.65303 + 2.10908i −0.125151 + 0.0722558i
\(853\) 30.0757i 1.02977i 0.857258 + 0.514887i \(0.172166\pi\)
−0.857258 + 0.514887i \(0.827834\pi\)
\(854\) 0 0
\(855\) −0.0279982 + 0.681775i −0.000957519 + 0.0233162i
\(856\) 8.53557 + 14.7840i 0.291740 + 0.505308i
\(857\) 40.8221 + 23.5686i 1.39446 + 0.805090i 0.993805 0.111141i \(-0.0354505\pi\)
0.400652 + 0.916230i \(0.368784\pi\)
\(858\) −10.3199 5.95823i −0.352317 0.203410i
\(859\) 16.3183 + 28.2642i 0.556774 + 0.964361i 0.997763 + 0.0668485i \(0.0212944\pi\)
−0.440989 + 0.897512i \(0.645372\pi\)
\(860\) 8.89912 + 0.365457i 0.303458 + 0.0124620i
\(861\) 0 0
\(862\) 42.7110i 1.45474i
\(863\) 32.3982 18.7051i 1.10285 0.636728i 0.165879 0.986146i \(-0.446954\pi\)
0.936967 + 0.349418i \(0.113621\pi\)
\(864\) −1.14243 + 1.97875i −0.0388664 + 0.0673186i
\(865\) 11.5045 18.1621i 0.391166 0.617531i
\(866\) −6.79578 11.7706i −0.230930 0.399983i
\(867\) 9.53367i 0.323780i
\(868\) 0 0
\(869\) −29.7468 −1.00909
\(870\) 23.9668 12.5553i 0.812551 0.425665i
\(871\) −7.26275 + 12.5795i −0.246089 + 0.426239i
\(872\) −9.45266 5.45750i −0.320108 0.184814i
\(873\) −2.49272 + 1.43917i −0.0843658 + 0.0487086i
\(874\) −3.32757 −0.112557
\(875\) 0 0
\(876\) −5.25606 −0.177586
\(877\) −29.0687 + 16.7828i −0.981581 + 0.566716i −0.902747 0.430172i \(-0.858453\pi\)
−0.0788336 + 0.996888i \(0.525120\pi\)
\(878\) −14.2680 8.23764i −0.481522 0.278007i
\(879\) −6.94790 + 12.0341i −0.234347 + 0.405901i
\(880\) −40.8255 + 21.3870i −1.37623 + 0.720955i
\(881\) 12.1952 0.410867 0.205433 0.978671i \(-0.434140\pi\)
0.205433 + 0.978671i \(0.434140\pi\)
\(882\) 0 0
\(883\) 11.0408i 0.371552i −0.982592 0.185776i \(-0.940520\pi\)
0.982592 0.185776i \(-0.0594799\pi\)
\(884\) −0.970385 1.68076i −0.0326376 0.0565300i
\(885\) −1.36698 + 2.15804i −0.0459505 + 0.0725418i
\(886\) 15.5129 26.8691i 0.521166 0.902685i
\(887\) 1.35180 0.780464i 0.0453891 0.0262054i −0.477134 0.878831i \(-0.658324\pi\)
0.522523 + 0.852625i \(0.324991\pi\)
\(888\) 9.06895i 0.304334i
\(889\) 0 0
\(890\) 14.1185 + 0.579801i 0.473254 + 0.0194350i
\(891\) −2.21538 3.83715i −0.0742179 0.128549i
\(892\) 2.45058 + 1.41484i 0.0820514 + 0.0473724i
\(893\) −0.480052 0.277158i −0.0160643 0.00927474i
\(894\) −4.04642 7.00861i −0.135333 0.234403i
\(895\) −0.812414 + 19.7828i −0.0271560 + 0.661267i
\(896\) 0 0
\(897\) 12.1692i 0.406318i
\(898\) 4.06793 2.34862i 0.135749 0.0783745i
\(899\) −20.5959 + 35.6732i −0.686913 + 1.18977i
\(900\) 1.16705 1.68523i 0.0389016 0.0561742i
\(901\) 2.34326 + 4.05865i 0.0780654 + 0.135213i
\(902\) 46.1924i 1.53804i
\(903\) 0 0
\(904\) −7.06326 −0.234921
\(905\) 33.5207 17.5603i 1.11427 0.583722i
\(906\) 7.53983 13.0594i 0.250494 0.433869i
\(907\) −15.0756 8.70390i −0.500577 0.289008i 0.228375 0.973573i \(-0.426659\pi\)
−0.728952 + 0.684565i \(0.759992\pi\)
\(908\) 2.25357 1.30110i 0.0747873 0.0431785i
\(909\) 7.21767 0.239395
\(910\) 0 0
\(911\) −18.3203 −0.606978 −0.303489 0.952835i \(-0.598152\pi\)
−0.303489 + 0.952835i \(0.598152\pi\)
\(912\) 1.22936 0.709774i 0.0407083 0.0235030i
\(913\) −19.5674 11.2972i −0.647586 0.373884i
\(914\) 1.77079 3.06710i 0.0585726 0.101451i
\(915\) −9.91600 18.9286i −0.327813 0.625761i
\(916\) −2.77007 −0.0915258
\(917\) 0 0
\(918\) 4.24190i 0.140003i
\(919\) 11.2963 + 19.5658i 0.372632 + 0.645417i 0.989970 0.141281i \(-0.0451221\pi\)
−0.617338 + 0.786698i \(0.711789\pi\)
\(920\) −32.7520 20.7463i −1.07980 0.683984i
\(921\) −14.9166 + 25.8363i −0.491519 + 0.851335i
\(922\) −32.3574 + 18.6816i −1.06563 + 0.615244i
\(923\) 17.8249i 0.586715i
\(924\) 0 0
\(925\) −1.50628 + 18.3085i −0.0495260 + 0.601979i
\(926\) −8.63842 14.9622i −0.283876 0.491688i
\(927\) −9.76304 5.63670i −0.320660 0.185133i
\(928\) −15.4230 8.90448i −0.506285 0.292304i
\(929\) −19.3356 33.4903i −0.634381 1.09878i −0.986646 0.162880i \(-0.947922\pi\)
0.352265 0.935900i \(-0.385412\pi\)
\(930\) −0.752747 + 18.3299i −0.0246835 + 0.601060i
\(931\) 0 0
\(932\) 3.03874i 0.0995372i
\(933\) −11.7028 + 6.75662i −0.383133 + 0.221202i
\(934\) −22.1813 + 38.4192i −0.725795 + 1.25711i
\(935\) 14.4865 22.8697i 0.473758 0.747918i
\(936\) 2.13817 + 3.70343i 0.0698884 + 0.121050i
\(937\) 46.7921i 1.52863i 0.644842 + 0.764316i \(0.276923\pi\)
−0.644842 + 0.764316i \(0.723077\pi\)
\(938\) 0 0
\(939\) 28.9857 0.945912
\(940\) 0.772746 + 1.47509i 0.0252042 + 0.0481122i
\(941\) −20.9461 + 36.2797i −0.682824 + 1.18268i 0.291292 + 0.956634i \(0.405915\pi\)
−0.974116 + 0.226051i \(0.927418\pi\)
\(942\) −12.7342 7.35207i −0.414901 0.239543i
\(943\) 40.8522 23.5860i 1.33033 0.768067i
\(944\) 5.31446 0.172971
\(945\) 0 0
\(946\) 66.8274 2.17275
\(947\) 48.5967 28.0573i 1.57918 0.911740i 0.584206 0.811605i \(-0.301406\pi\)
0.994974 0.100134i \(-0.0319273\pi\)
\(948\) −2.38370 1.37623i −0.0774189 0.0446978i
\(949\) −11.1054 + 19.2352i −0.360498 + 0.624401i
\(950\) −2.14150 + 1.01213i −0.0694795 + 0.0328380i
\(951\) −1.15864 −0.0375714
\(952\) 0 0
\(953\) 17.7705i 0.575643i −0.957684 0.287821i \(-0.907069\pi\)
0.957684 0.287821i \(-0.0929309\pi\)
\(954\) 1.33129 + 2.30587i 0.0431022 + 0.0746552i
\(955\) −0.601720 0.381151i −0.0194712 0.0123337i
\(956\) −1.50944 + 2.61442i −0.0488187 + 0.0845564i
\(957\) 29.9079 17.2673i 0.966785 0.558173i
\(958\) 8.66259i 0.279875i
\(959\) 0 0
\(960\) 12.8615 + 0.528179i 0.415103 + 0.0170469i
\(961\) 1.53508 + 2.65884i 0.0495188 + 0.0857690i
\(962\) 8.55750 + 4.94067i 0.275905 + 0.159294i
\(963\) −5.98940 3.45798i −0.193006 0.111432i
\(964\) −2.80424 4.85708i −0.0903185 0.156436i
\(965\) 4.67691 + 0.192065i 0.150555 + 0.00618279i
\(966\) 0 0
\(967\) 22.5942i 0.726579i −0.931676 0.363290i \(-0.881654\pi\)
0.931676 0.363290i \(-0.118346\pi\)
\(968\) −18.4515 + 10.6530i −0.593053 + 0.342399i
\(969\) −0.416913 + 0.722115i −0.0133932 + 0.0231977i
\(970\) −8.44069 5.34663i −0.271014 0.171670i
\(971\) 20.5244 + 35.5493i 0.658660 + 1.14083i 0.980963 + 0.194196i \(0.0622096\pi\)
−0.322303 + 0.946637i \(0.604457\pi\)
\(972\) 0.409975i 0.0131500i
\(973\) 0 0
\(974\) −12.9577 −0.415192
\(975\) −3.70146 7.83164i −0.118541 0.250813i
\(976\) −22.2275 + 38.4991i −0.711484 + 1.23233i
\(977\) 16.8644 + 9.73668i 0.539541 + 0.311504i 0.744893 0.667184i \(-0.232501\pi\)
−0.205352 + 0.978688i \(0.565834\pi\)
\(978\) −7.25532 + 4.18886i −0.231999 + 0.133945i
\(979\) 18.0361 0.576435
\(980\) 0 0
\(981\) 4.42195 0.141182
\(982\) −0.749390 + 0.432661i −0.0239140 + 0.0138068i
\(983\) −44.7970 25.8636i −1.42880 0.824920i −0.431777 0.901980i \(-0.642113\pi\)
−0.997026 + 0.0770602i \(0.975447\pi\)
\(984\) −8.28832 + 14.3558i −0.264222 + 0.457646i
\(985\) −23.4296 44.7246i −0.746528 1.42505i
\(986\) 33.0626 1.05293
\(987\) 0 0
\(988\) 0.216742i 0.00689548i
\(989\) 34.1224 + 59.1017i 1.08503 + 1.87932i
\(990\) 8.23029 12.9931i 0.261576 0.412948i
\(991\) −17.9749 + 31.1335i −0.570992 + 0.988988i 0.425472 + 0.904972i \(0.360108\pi\)
−0.996464 + 0.0840162i \(0.973225\pi\)
\(992\) 10.4575 6.03762i 0.332025 0.191694i
\(993\) 28.3491i 0.899632i
\(994\) 0 0
\(995\) 0.688503 16.7655i 0.0218270 0.531502i
\(996\) −1.04533 1.81056i −0.0331224 0.0573697i
\(997\) 48.5493 + 28.0300i 1.53757 + 0.887718i 0.998980 + 0.0451513i \(0.0143770\pi\)
0.538592 + 0.842567i \(0.318956\pi\)
\(998\) 35.0003 + 20.2075i 1.10792 + 0.639656i
\(999\) 1.83703 + 3.18183i 0.0581211 + 0.100669i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.q.g.214.3 16
5.4 even 2 inner 735.2.q.g.214.6 16
7.2 even 3 inner 735.2.q.g.79.6 16
7.3 odd 6 735.2.d.d.589.3 8
7.4 even 3 735.2.d.e.589.3 8
7.5 odd 6 105.2.q.a.79.6 yes 16
7.6 odd 2 105.2.q.a.4.3 16
21.5 even 6 315.2.bf.b.289.3 16
21.11 odd 6 2205.2.d.o.1324.6 8
21.17 even 6 2205.2.d.s.1324.6 8
21.20 even 2 315.2.bf.b.109.6 16
28.19 even 6 1680.2.di.d.289.8 16
28.27 even 2 1680.2.di.d.529.1 16
35.3 even 12 3675.2.a.bp.1.2 4
35.4 even 6 735.2.d.e.589.6 8
35.9 even 6 inner 735.2.q.g.79.3 16
35.12 even 12 525.2.i.h.226.2 8
35.13 even 4 525.2.i.k.151.3 8
35.17 even 12 3675.2.a.bz.1.3 4
35.18 odd 12 3675.2.a.bn.1.2 4
35.19 odd 6 105.2.q.a.79.3 yes 16
35.24 odd 6 735.2.d.d.589.6 8
35.27 even 4 525.2.i.h.151.2 8
35.32 odd 12 3675.2.a.cb.1.3 4
35.33 even 12 525.2.i.k.226.3 8
35.34 odd 2 105.2.q.a.4.6 yes 16
105.59 even 6 2205.2.d.s.1324.3 8
105.74 odd 6 2205.2.d.o.1324.3 8
105.89 even 6 315.2.bf.b.289.6 16
105.104 even 2 315.2.bf.b.109.3 16
140.19 even 6 1680.2.di.d.289.1 16
140.139 even 2 1680.2.di.d.529.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.3 16 7.6 odd 2
105.2.q.a.4.6 yes 16 35.34 odd 2
105.2.q.a.79.3 yes 16 35.19 odd 6
105.2.q.a.79.6 yes 16 7.5 odd 6
315.2.bf.b.109.3 16 105.104 even 2
315.2.bf.b.109.6 16 21.20 even 2
315.2.bf.b.289.3 16 21.5 even 6
315.2.bf.b.289.6 16 105.89 even 6
525.2.i.h.151.2 8 35.27 even 4
525.2.i.h.226.2 8 35.12 even 12
525.2.i.k.151.3 8 35.13 even 4
525.2.i.k.226.3 8 35.33 even 12
735.2.d.d.589.3 8 7.3 odd 6
735.2.d.d.589.6 8 35.24 odd 6
735.2.d.e.589.3 8 7.4 even 3
735.2.d.e.589.6 8 35.4 even 6
735.2.q.g.79.3 16 35.9 even 6 inner
735.2.q.g.79.6 16 7.2 even 3 inner
735.2.q.g.214.3 16 1.1 even 1 trivial
735.2.q.g.214.6 16 5.4 even 2 inner
1680.2.di.d.289.1 16 140.19 even 6
1680.2.di.d.289.8 16 28.19 even 6
1680.2.di.d.529.1 16 28.27 even 2
1680.2.di.d.529.8 16 140.139 even 2
2205.2.d.o.1324.3 8 105.74 odd 6
2205.2.d.o.1324.6 8 21.11 odd 6
2205.2.d.s.1324.3 8 105.59 even 6
2205.2.d.s.1324.6 8 21.17 even 6
3675.2.a.bn.1.2 4 35.18 odd 12
3675.2.a.bp.1.2 4 35.3 even 12
3675.2.a.bz.1.3 4 35.17 even 12
3675.2.a.cb.1.3 4 35.32 odd 12