Properties

Label 2205.2.d.s.1324.6
Level $2205$
Weight $2$
Character 2205.1324
Analytic conductor $17.607$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,2,Mod(1324,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.1324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,2,0,0,0,0,4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2058981376.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 18x^{4} - 34x^{3} + 32x^{2} - 8x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1324.6
Root \(-1.43917 - 1.43917i\) of defining polynomial
Character \(\chi\) \(=\) 2205.1324
Dual form 2205.2.d.s.1324.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.55241i q^{2} -0.409975 q^{4} +(-0.0917505 + 2.23418i) q^{5} +2.46837i q^{8} +(-3.46837 - 0.142434i) q^{10} -4.43075 q^{11} -1.73246i q^{13} -4.65187 q^{16} +2.73246i q^{17} +0.305156 q^{19} +(0.0376154 - 0.915960i) q^{20} -6.87834i q^{22} -7.02423i q^{23} +(-4.98316 - 0.409975i) q^{25} +2.68949 q^{26} -7.79430 q^{29} -5.28487 q^{31} -2.28487i q^{32} -4.24190 q^{34} -3.67406i q^{37} +0.473727i q^{38} +(-5.51479 - 0.226474i) q^{40} +6.71562 q^{41} +9.71562i q^{43} +1.81650 q^{44} +10.9045 q^{46} -1.81650i q^{47} +(0.636449 - 7.73591i) q^{50} +0.710265i q^{52} -1.71513i q^{53} +(0.406524 - 9.89912i) q^{55} -12.1000i q^{58} -1.14243 q^{59} +9.55635 q^{61} -8.20428i q^{62} -5.75669 q^{64} +(3.87063 + 0.158954i) q^{65} -8.38433i q^{67} -1.12024i q^{68} -10.2888 q^{71} +12.8204i q^{73} +5.70365 q^{74} -0.125106 q^{76} -6.71372 q^{79} +(0.426811 - 10.3931i) q^{80} +10.4254i q^{82} +5.09946i q^{83} +(-6.10482 - 0.250704i) q^{85} -15.0826 q^{86} -10.9367i q^{88} +4.07065 q^{89} +2.87976i q^{92} +2.81995 q^{94} +(-0.0279982 + 0.681775i) q^{95} -2.87834i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 2 q^{5} + 4 q^{10} + 24 q^{19} + 4 q^{20} + 4 q^{25} - 12 q^{26} - 12 q^{29} - 16 q^{31} + 8 q^{34} - 32 q^{40} - 8 q^{41} + 20 q^{44} + 32 q^{46} + 20 q^{50} + 4 q^{55} + 4 q^{59} - 16 q^{61}+ \cdots - 22 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55241i 1.09772i 0.835915 + 0.548860i \(0.184938\pi\)
−0.835915 + 0.548860i \(0.815062\pi\)
\(3\) 0 0
\(4\) −0.409975 −0.204988
\(5\) −0.0917505 + 2.23418i −0.0410321 + 0.999158i
\(6\) 0 0
\(7\) 0 0
\(8\) 2.46837i 0.872700i
\(9\) 0 0
\(10\) −3.46837 0.142434i −1.09679 0.0450417i
\(11\) −4.43075 −1.33592 −0.667961 0.744196i \(-0.732833\pi\)
−0.667961 + 0.744196i \(0.732833\pi\)
\(12\) 0 0
\(13\) 1.73246i 0.480498i −0.970711 0.240249i \(-0.922771\pi\)
0.970711 0.240249i \(-0.0772291\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.65187 −1.16297
\(17\) 2.73246i 0.662719i 0.943505 + 0.331359i \(0.107507\pi\)
−0.943505 + 0.331359i \(0.892493\pi\)
\(18\) 0 0
\(19\) 0.305156 0.0700076 0.0350038 0.999387i \(-0.488856\pi\)
0.0350038 + 0.999387i \(0.488856\pi\)
\(20\) 0.0376154 0.915960i 0.00841106 0.204815i
\(21\) 0 0
\(22\) 6.87834i 1.46647i
\(23\) 7.02423i 1.46465i −0.680954 0.732327i \(-0.738434\pi\)
0.680954 0.732327i \(-0.261566\pi\)
\(24\) 0 0
\(25\) −4.98316 0.409975i −0.996633 0.0819950i
\(26\) 2.68949 0.527452
\(27\) 0 0
\(28\) 0 0
\(29\) −7.79430 −1.44737 −0.723683 0.690132i \(-0.757552\pi\)
−0.723683 + 0.690132i \(0.757552\pi\)
\(30\) 0 0
\(31\) −5.28487 −0.949190 −0.474595 0.880204i \(-0.657406\pi\)
−0.474595 + 0.880204i \(0.657406\pi\)
\(32\) 2.28487i 0.403912i
\(33\) 0 0
\(34\) −4.24190 −0.727479
\(35\) 0 0
\(36\) 0 0
\(37\) 3.67406i 0.604013i −0.953306 0.302006i \(-0.902344\pi\)
0.953306 0.302006i \(-0.0976564\pi\)
\(38\) 0.473727i 0.0768487i
\(39\) 0 0
\(40\) −5.51479 0.226474i −0.871965 0.0358087i
\(41\) 6.71562 1.04880 0.524402 0.851471i \(-0.324289\pi\)
0.524402 + 0.851471i \(0.324289\pi\)
\(42\) 0 0
\(43\) 9.71562i 1.48162i 0.671715 + 0.740809i \(0.265558\pi\)
−0.671715 + 0.740809i \(0.734442\pi\)
\(44\) 1.81650 0.273848
\(45\) 0 0
\(46\) 10.9045 1.60778
\(47\) 1.81650i 0.264964i −0.991185 0.132482i \(-0.957705\pi\)
0.991185 0.132482i \(-0.0422946\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.636449 7.73591i 0.0900075 1.09402i
\(51\) 0 0
\(52\) 0.710265i 0.0984961i
\(53\) 1.71513i 0.235591i −0.993038 0.117796i \(-0.962417\pi\)
0.993038 0.117796i \(-0.0375828\pi\)
\(54\) 0 0
\(55\) 0.406524 9.89912i 0.0548157 1.33480i
\(56\) 0 0
\(57\) 0 0
\(58\) 12.1000i 1.58880i
\(59\) −1.14243 −0.148732 −0.0743661 0.997231i \(-0.523693\pi\)
−0.0743661 + 0.997231i \(0.523693\pi\)
\(60\) 0 0
\(61\) 9.55635 1.22357 0.611783 0.791026i \(-0.290453\pi\)
0.611783 + 0.791026i \(0.290453\pi\)
\(62\) 8.20428i 1.04194i
\(63\) 0 0
\(64\) −5.75669 −0.719586
\(65\) 3.87063 + 0.158954i 0.480093 + 0.0197158i
\(66\) 0 0
\(67\) 8.38433i 1.02431i −0.858893 0.512154i \(-0.828848\pi\)
0.858893 0.512154i \(-0.171152\pi\)
\(68\) 1.12024i 0.135849i
\(69\) 0 0
\(70\) 0 0
\(71\) −10.2888 −1.22106 −0.610529 0.791994i \(-0.709043\pi\)
−0.610529 + 0.791994i \(0.709043\pi\)
\(72\) 0 0
\(73\) 12.8204i 1.50052i 0.661143 + 0.750260i \(0.270072\pi\)
−0.661143 + 0.750260i \(0.729928\pi\)
\(74\) 5.70365 0.663036
\(75\) 0 0
\(76\) −0.125106 −0.0143507
\(77\) 0 0
\(78\) 0 0
\(79\) −6.71372 −0.755352 −0.377676 0.925938i \(-0.623277\pi\)
−0.377676 + 0.925938i \(0.623277\pi\)
\(80\) 0.426811 10.3931i 0.0477190 1.16199i
\(81\) 0 0
\(82\) 10.4254i 1.15129i
\(83\) 5.09946i 0.559739i 0.960038 + 0.279869i \(0.0902911\pi\)
−0.960038 + 0.279869i \(0.909709\pi\)
\(84\) 0 0
\(85\) −6.10482 0.250704i −0.662161 0.0271927i
\(86\) −15.0826 −1.62640
\(87\) 0 0
\(88\) 10.9367i 1.16586i
\(89\) 4.07065 0.431489 0.215744 0.976450i \(-0.430782\pi\)
0.215744 + 0.976450i \(0.430782\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.87976i 0.300236i
\(93\) 0 0
\(94\) 2.81995 0.290856
\(95\) −0.0279982 + 0.681775i −0.00287256 + 0.0699487i
\(96\) 0 0
\(97\) 2.87834i 0.292252i −0.989266 0.146126i \(-0.953320\pi\)
0.989266 0.146126i \(-0.0466804\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2.04297 + 0.168080i 0.204297 + 0.0168080i
\(101\) −7.21767 −0.718185 −0.359092 0.933302i \(-0.616914\pi\)
−0.359092 + 0.933302i \(0.616914\pi\)
\(102\) 0 0
\(103\) 11.2734i 1.11080i 0.831583 + 0.555400i \(0.187435\pi\)
−0.831583 + 0.555400i \(0.812565\pi\)
\(104\) 4.27635 0.419331
\(105\) 0 0
\(106\) 2.66259 0.258613
\(107\) 6.91596i 0.668591i 0.942468 + 0.334296i \(0.108498\pi\)
−0.942468 + 0.334296i \(0.891502\pi\)
\(108\) 0 0
\(109\) −4.42195 −0.423546 −0.211773 0.977319i \(-0.567924\pi\)
−0.211773 + 0.977319i \(0.567924\pi\)
\(110\) 15.3675 + 0.631092i 1.46523 + 0.0601722i
\(111\) 0 0
\(112\) 0 0
\(113\) 2.86151i 0.269188i 0.990901 + 0.134594i \(0.0429730\pi\)
−0.990901 + 0.134594i \(0.957027\pi\)
\(114\) 0 0
\(115\) 15.6934 + 0.644477i 1.46342 + 0.0600978i
\(116\) 3.19547 0.296692
\(117\) 0 0
\(118\) 1.77353i 0.163266i
\(119\) 0 0
\(120\) 0 0
\(121\) 8.63158 0.784689
\(122\) 14.8354i 1.34313i
\(123\) 0 0
\(124\) 2.16666 0.194572
\(125\) 1.37317 11.0957i 0.122820 0.992429i
\(126\) 0 0
\(127\) 13.7325i 1.21856i −0.792956 0.609279i \(-0.791459\pi\)
0.792956 0.609279i \(-0.208541\pi\)
\(128\) 13.5065i 1.19382i
\(129\) 0 0
\(130\) −0.246762 + 6.00881i −0.0216424 + 0.527007i
\(131\) −21.9817 −1.92055 −0.960277 0.279048i \(-0.909981\pi\)
−0.960277 + 0.279048i \(0.909981\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 13.0159 1.12440
\(135\) 0 0
\(136\) −6.74472 −0.578355
\(137\) 3.00191i 0.256470i 0.991744 + 0.128235i \(0.0409312\pi\)
−0.991744 + 0.128235i \(0.959069\pi\)
\(138\) 0 0
\(139\) 21.7364 1.84366 0.921829 0.387597i \(-0.126695\pi\)
0.921829 + 0.387597i \(0.126695\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 15.9724i 1.34038i
\(143\) 7.67610i 0.641908i
\(144\) 0 0
\(145\) 0.715131 17.4139i 0.0593884 1.44615i
\(146\) −19.9026 −1.64715
\(147\) 0 0
\(148\) 1.50628i 0.123815i
\(149\) −5.21309 −0.427073 −0.213536 0.976935i \(-0.568498\pi\)
−0.213536 + 0.976935i \(0.568498\pi\)
\(150\) 0 0
\(151\) −9.71372 −0.790491 −0.395246 0.918576i \(-0.629340\pi\)
−0.395246 + 0.918576i \(0.629340\pi\)
\(152\) 0.753238i 0.0610957i
\(153\) 0 0
\(154\) 0 0
\(155\) 0.484889 11.8074i 0.0389472 0.948391i
\(156\) 0 0
\(157\) 9.47182i 0.755934i −0.925819 0.377967i \(-0.876623\pi\)
0.925819 0.377967i \(-0.123377\pi\)
\(158\) 10.4224i 0.829165i
\(159\) 0 0
\(160\) 5.10482 + 0.209638i 0.403571 + 0.0165733i
\(161\) 0 0
\(162\) 0 0
\(163\) 5.39659i 0.422694i −0.977411 0.211347i \(-0.932215\pi\)
0.977411 0.211347i \(-0.0677849\pi\)
\(164\) −2.75324 −0.214992
\(165\) 0 0
\(166\) −7.91645 −0.614436
\(167\) 0.312550i 0.0241859i 0.999927 + 0.0120929i \(0.00384939\pi\)
−0.999927 + 0.0120929i \(0.996151\pi\)
\(168\) 0 0
\(169\) 9.99859 0.769122
\(170\) 0.389196 9.47718i 0.0298500 0.726866i
\(171\) 0 0
\(172\) 3.98316i 0.303713i
\(173\) 9.61475i 0.730996i 0.930812 + 0.365498i \(0.119101\pi\)
−0.930812 + 0.365498i \(0.880899\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 20.6113 1.55363
\(177\) 0 0
\(178\) 6.31932i 0.473653i
\(179\) −8.85461 −0.661824 −0.330912 0.943662i \(-0.607356\pi\)
−0.330912 + 0.943662i \(0.607356\pi\)
\(180\) 0 0
\(181\) −16.9234 −1.25790 −0.628952 0.777445i \(-0.716516\pi\)
−0.628952 + 0.777445i \(0.716516\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 17.3384 1.27820
\(185\) 8.20854 + 0.337097i 0.603504 + 0.0247839i
\(186\) 0 0
\(187\) 12.1069i 0.885341i
\(188\) 0.744719i 0.0543142i
\(189\) 0 0
\(190\) −1.05839 0.0434647i −0.0767840 0.00315326i
\(191\) −0.318541 −0.0230488 −0.0115244 0.999934i \(-0.503668\pi\)
−0.0115244 + 0.999934i \(0.503668\pi\)
\(192\) 0 0
\(193\) 2.09334i 0.150682i −0.997158 0.0753410i \(-0.975995\pi\)
0.997158 0.0753410i \(-0.0240045\pi\)
\(194\) 4.46837 0.320810
\(195\) 0 0
\(196\) 0 0
\(197\) 22.5798i 1.60874i 0.594126 + 0.804372i \(0.297498\pi\)
−0.594126 + 0.804372i \(0.702502\pi\)
\(198\) 0 0
\(199\) 7.50408 0.531950 0.265975 0.963980i \(-0.414306\pi\)
0.265975 + 0.963980i \(0.414306\pi\)
\(200\) 1.01197 12.3003i 0.0715571 0.869762i
\(201\) 0 0
\(202\) 11.2048i 0.788365i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.616162 + 15.0039i −0.0430346 + 1.04792i
\(206\) −17.5009 −1.21935
\(207\) 0 0
\(208\) 8.05918i 0.558803i
\(209\) −1.35207 −0.0935248
\(210\) 0 0
\(211\) 7.67216 0.528173 0.264087 0.964499i \(-0.414930\pi\)
0.264087 + 0.964499i \(0.414930\pi\)
\(212\) 0.703161i 0.0482933i
\(213\) 0 0
\(214\) −10.7364 −0.733925
\(215\) −21.7065 0.891413i −1.48037 0.0607939i
\(216\) 0 0
\(217\) 0 0
\(218\) 6.86467i 0.464934i
\(219\) 0 0
\(220\) −0.166665 + 4.05839i −0.0112365 + 0.273617i
\(221\) 4.73387 0.318435
\(222\) 0 0
\(223\) 6.90208i 0.462198i −0.972930 0.231099i \(-0.925768\pi\)
0.972930 0.231099i \(-0.0742321\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4.44223 −0.295493
\(227\) 6.34721i 0.421279i −0.977564 0.210639i \(-0.932445\pi\)
0.977564 0.210639i \(-0.0675546\pi\)
\(228\) 0 0
\(229\) −6.75669 −0.446495 −0.223247 0.974762i \(-0.571666\pi\)
−0.223247 + 0.974762i \(0.571666\pi\)
\(230\) −1.00049 + 24.3626i −0.0659705 + 1.60642i
\(231\) 0 0
\(232\) 19.2392i 1.26312i
\(233\) 7.41201i 0.485577i 0.970079 + 0.242789i \(0.0780621\pi\)
−0.970079 + 0.242789i \(0.921938\pi\)
\(234\) 0 0
\(235\) 4.05839 + 0.166665i 0.264740 + 0.0108720i
\(236\) 0.468370 0.0304883
\(237\) 0 0
\(238\) 0 0
\(239\) 7.36355 0.476309 0.238154 0.971227i \(-0.423458\pi\)
0.238154 + 0.971227i \(0.423458\pi\)
\(240\) 0 0
\(241\) 13.6800 0.881209 0.440605 0.897701i \(-0.354764\pi\)
0.440605 + 0.897701i \(0.354764\pi\)
\(242\) 13.3998i 0.861369i
\(243\) 0 0
\(244\) −3.91787 −0.250816
\(245\) 0 0
\(246\) 0 0
\(247\) 0.528671i 0.0336385i
\(248\) 13.0450i 0.828359i
\(249\) 0 0
\(250\) 17.2251 + 2.13172i 1.08941 + 0.134822i
\(251\) −23.4843 −1.48231 −0.741157 0.671331i \(-0.765723\pi\)
−0.741157 + 0.671331i \(0.765723\pi\)
\(252\) 0 0
\(253\) 31.1226i 1.95666i
\(254\) 21.3184 1.33764
\(255\) 0 0
\(256\) 9.45420 0.590888
\(257\) 14.5974i 0.910562i −0.890348 0.455281i \(-0.849539\pi\)
0.890348 0.455281i \(-0.150461\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.58686 0.0651672i −0.0984131 0.00404150i
\(261\) 0 0
\(262\) 34.1247i 2.10823i
\(263\) 5.08940i 0.313826i −0.987612 0.156913i \(-0.949846\pi\)
0.987612 0.156913i \(-0.0501542\pi\)
\(264\) 0 0
\(265\) 3.83192 + 0.157364i 0.235393 + 0.00966680i
\(266\) 0 0
\(267\) 0 0
\(268\) 3.43737i 0.209971i
\(269\) 30.5099 1.86022 0.930112 0.367277i \(-0.119710\pi\)
0.930112 + 0.367277i \(0.119710\pi\)
\(270\) 0 0
\(271\) −19.4880 −1.18381 −0.591907 0.806007i \(-0.701625\pi\)
−0.591907 + 0.806007i \(0.701625\pi\)
\(272\) 12.7110i 0.770720i
\(273\) 0 0
\(274\) −4.66019 −0.281532
\(275\) 22.0792 + 1.81650i 1.33142 + 0.109539i
\(276\) 0 0
\(277\) 25.4802i 1.53096i 0.643462 + 0.765478i \(0.277498\pi\)
−0.643462 + 0.765478i \(0.722502\pi\)
\(278\) 33.7438i 2.02382i
\(279\) 0 0
\(280\) 0 0
\(281\) 22.1914 1.32383 0.661914 0.749580i \(-0.269745\pi\)
0.661914 + 0.749580i \(0.269745\pi\)
\(282\) 0 0
\(283\) 18.1242i 1.07737i 0.842507 + 0.538685i \(0.181079\pi\)
−0.842507 + 0.538685i \(0.818921\pi\)
\(284\) 4.21816 0.250302
\(285\) 0 0
\(286\) −11.9165 −0.704635
\(287\) 0 0
\(288\) 0 0
\(289\) 9.53367 0.560804
\(290\) 27.0335 + 1.11018i 1.58746 + 0.0651918i
\(291\) 0 0
\(292\) 5.25606i 0.307588i
\(293\) 13.8958i 0.811801i −0.913917 0.405901i \(-0.866958\pi\)
0.913917 0.405901i \(-0.133042\pi\)
\(294\) 0 0
\(295\) 0.104819 2.55241i 0.00610279 0.148607i
\(296\) 9.06895 0.527122
\(297\) 0 0
\(298\) 8.09285i 0.468806i
\(299\) −12.1692 −0.703763
\(300\) 0 0
\(301\) 0 0
\(302\) 15.0797i 0.867737i
\(303\) 0 0
\(304\) −1.41955 −0.0814166
\(305\) −0.876800 + 21.3507i −0.0502054 + 1.22254i
\(306\) 0 0
\(307\) 29.8332i 1.70267i 0.524622 + 0.851335i \(0.324207\pi\)
−0.524622 + 0.851335i \(0.675793\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 18.3299 + 0.752747i 1.04107 + 0.0427531i
\(311\) −13.5132 −0.766266 −0.383133 0.923693i \(-0.625155\pi\)
−0.383133 + 0.923693i \(0.625155\pi\)
\(312\) 0 0
\(313\) 28.9857i 1.63837i 0.573531 + 0.819184i \(0.305573\pi\)
−0.573531 + 0.819184i \(0.694427\pi\)
\(314\) 14.7041 0.829803
\(315\) 0 0
\(316\) 2.75246 0.154838
\(317\) 1.15864i 0.0650756i −0.999471 0.0325378i \(-0.989641\pi\)
0.999471 0.0325378i \(-0.0103589\pi\)
\(318\) 0 0
\(319\) 34.5346 1.93357
\(320\) 0.528179 12.8615i 0.0295261 0.718980i
\(321\) 0 0
\(322\) 0 0
\(323\) 0.833827i 0.0463954i
\(324\) 0 0
\(325\) −0.710265 + 8.63313i −0.0393984 + 0.478880i
\(326\) 8.37772 0.463999
\(327\) 0 0
\(328\) 16.5766i 0.915292i
\(329\) 0 0
\(330\) 0 0
\(331\) −28.3491 −1.55821 −0.779104 0.626895i \(-0.784326\pi\)
−0.779104 + 0.626895i \(0.784326\pi\)
\(332\) 2.09065i 0.114739i
\(333\) 0 0
\(334\) −0.485206 −0.0265493
\(335\) 18.7321 + 0.769266i 1.02345 + 0.0420295i
\(336\) 0 0
\(337\) 15.9729i 0.870101i 0.900406 + 0.435051i \(0.143270\pi\)
−0.900406 + 0.435051i \(0.856730\pi\)
\(338\) 15.5219i 0.844280i
\(339\) 0 0
\(340\) 2.50282 + 0.102783i 0.135735 + 0.00557417i
\(341\) 23.4160 1.26805
\(342\) 0 0
\(343\) 0 0
\(344\) −23.9817 −1.29301
\(345\) 0 0
\(346\) −14.9260 −0.802428
\(347\) 13.0120i 0.698519i −0.937026 0.349260i \(-0.886433\pi\)
0.937026 0.349260i \(-0.113567\pi\)
\(348\) 0 0
\(349\) −32.0724 −1.71680 −0.858398 0.512984i \(-0.828540\pi\)
−0.858398 + 0.512984i \(0.828540\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.1237i 0.539595i
\(353\) 13.3689i 0.711555i 0.934571 + 0.355778i \(0.115784\pi\)
−0.934571 + 0.355778i \(0.884216\pi\)
\(354\) 0 0
\(355\) 0.944004 22.9871i 0.0501025 1.22003i
\(356\) −1.66887 −0.0884498
\(357\) 0 0
\(358\) 13.7460i 0.726497i
\(359\) −13.1195 −0.692420 −0.346210 0.938157i \(-0.612531\pi\)
−0.346210 + 0.938157i \(0.612531\pi\)
\(360\) 0 0
\(361\) −18.9069 −0.995099
\(362\) 26.2720i 1.38082i
\(363\) 0 0
\(364\) 0 0
\(365\) −28.6432 1.17628i −1.49926 0.0615694i
\(366\) 0 0
\(367\) 13.1360i 0.685691i 0.939392 + 0.342846i \(0.111391\pi\)
−0.939392 + 0.342846i \(0.888609\pi\)
\(368\) 32.6758i 1.70334i
\(369\) 0 0
\(370\) −0.523313 + 12.7430i −0.0272057 + 0.662478i
\(371\) 0 0
\(372\) 0 0
\(373\) 29.6197i 1.53365i 0.641855 + 0.766826i \(0.278165\pi\)
−0.641855 + 0.766826i \(0.721835\pi\)
\(374\) 18.7948 0.971856
\(375\) 0 0
\(376\) 4.48379 0.231234
\(377\) 13.5033i 0.695456i
\(378\) 0 0
\(379\) −7.47689 −0.384062 −0.192031 0.981389i \(-0.561507\pi\)
−0.192031 + 0.981389i \(0.561507\pi\)
\(380\) 0.0114786 0.279511i 0.000588839 0.0143386i
\(381\) 0 0
\(382\) 0.494506i 0.0253012i
\(383\) 23.7391i 1.21301i −0.795080 0.606505i \(-0.792571\pi\)
0.795080 0.606505i \(-0.207429\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.24972 0.165406
\(387\) 0 0
\(388\) 1.18005i 0.0599079i
\(389\) −14.1305 −0.716443 −0.358221 0.933637i \(-0.616617\pi\)
−0.358221 + 0.933637i \(0.616617\pi\)
\(390\) 0 0
\(391\) 19.1934 0.970653
\(392\) 0 0
\(393\) 0 0
\(394\) −35.0531 −1.76595
\(395\) 0.615987 14.9997i 0.0309937 0.754716i
\(396\) 0 0
\(397\) 11.2696i 0.565604i 0.959178 + 0.282802i \(0.0912639\pi\)
−0.959178 + 0.282802i \(0.908736\pi\)
\(398\) 11.6494i 0.583932i
\(399\) 0 0
\(400\) 23.1810 + 1.90715i 1.15905 + 0.0953576i
\(401\) −23.2968 −1.16339 −0.581694 0.813407i \(-0.697610\pi\)
−0.581694 + 0.813407i \(0.697610\pi\)
\(402\) 0 0
\(403\) 9.15582i 0.456084i
\(404\) 2.95906 0.147219
\(405\) 0 0
\(406\) 0 0
\(407\) 16.2789i 0.806914i
\(408\) 0 0
\(409\) −20.6478 −1.02097 −0.510484 0.859887i \(-0.670534\pi\)
−0.510484 + 0.859887i \(0.670534\pi\)
\(410\) −23.2923 0.956535i −1.15032 0.0472399i
\(411\) 0 0
\(412\) 4.62181i 0.227700i
\(413\) 0 0
\(414\) 0 0
\(415\) −11.3931 0.467878i −0.559267 0.0229672i
\(416\) −3.95844 −0.194079
\(417\) 0 0
\(418\) 2.09897i 0.102664i
\(419\) −5.48254 −0.267839 −0.133920 0.990992i \(-0.542756\pi\)
−0.133920 + 0.990992i \(0.542756\pi\)
\(420\) 0 0
\(421\) −3.78079 −0.184264 −0.0921322 0.995747i \(-0.529368\pi\)
−0.0921322 + 0.995747i \(0.529368\pi\)
\(422\) 11.9103i 0.579786i
\(423\) 0 0
\(424\) 4.23358 0.205601
\(425\) 1.12024 13.6163i 0.0543396 0.660487i
\(426\) 0 0
\(427\) 0 0
\(428\) 2.83537i 0.137053i
\(429\) 0 0
\(430\) 1.38384 33.6974i 0.0667346 1.62503i
\(431\) 27.5127 1.32524 0.662621 0.748955i \(-0.269444\pi\)
0.662621 + 0.748955i \(0.269444\pi\)
\(432\) 0 0
\(433\) 8.75514i 0.420745i −0.977621 0.210373i \(-0.932532\pi\)
0.977621 0.210373i \(-0.0674677\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.81289 0.0868216
\(437\) 2.14349i 0.102537i
\(438\) 0 0
\(439\) 10.6127 0.506517 0.253259 0.967399i \(-0.418498\pi\)
0.253259 + 0.967399i \(0.418498\pi\)
\(440\) 24.4347 + 1.00345i 1.16488 + 0.0478377i
\(441\) 0 0
\(442\) 7.34891i 0.349552i
\(443\) 19.9856i 0.949543i 0.880109 + 0.474771i \(0.157469\pi\)
−0.880109 + 0.474771i \(0.842531\pi\)
\(444\) 0 0
\(445\) −0.373485 + 9.09460i −0.0177049 + 0.431125i
\(446\) 10.7149 0.507363
\(447\) 0 0
\(448\) 0 0
\(449\) 3.02578 0.142795 0.0713976 0.997448i \(-0.477254\pi\)
0.0713976 + 0.997448i \(0.477254\pi\)
\(450\) 0 0
\(451\) −29.7553 −1.40112
\(452\) 1.17315i 0.0551802i
\(453\) 0 0
\(454\) 9.85346 0.462446
\(455\) 0 0
\(456\) 0 0
\(457\) 2.28135i 0.106717i −0.998575 0.0533584i \(-0.983007\pi\)
0.998575 0.0533584i \(-0.0169926\pi\)
\(458\) 10.4891i 0.490126i
\(459\) 0 0
\(460\) −6.43392 0.264219i −0.299983 0.0123193i
\(461\) 24.0678 1.12095 0.560475 0.828171i \(-0.310619\pi\)
0.560475 + 0.828171i \(0.310619\pi\)
\(462\) 0 0
\(463\) 11.1290i 0.517211i 0.965983 + 0.258605i \(0.0832629\pi\)
−0.965983 + 0.258605i \(0.916737\pi\)
\(464\) 36.2581 1.68324
\(465\) 0 0
\(466\) −11.5065 −0.533027
\(467\) 28.5766i 1.32237i 0.750223 + 0.661185i \(0.229946\pi\)
−0.750223 + 0.661185i \(0.770054\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.258732 + 6.30029i −0.0119344 + 0.290611i
\(471\) 0 0
\(472\) 2.81995i 0.129799i
\(473\) 43.0475i 1.97933i
\(474\) 0 0
\(475\) −1.52064 0.125106i −0.0697719 0.00574028i
\(476\) 0 0
\(477\) 0 0
\(478\) 11.4312i 0.522853i
\(479\) −5.58009 −0.254961 −0.127480 0.991841i \(-0.540689\pi\)
−0.127480 + 0.991841i \(0.540689\pi\)
\(480\) 0 0
\(481\) −6.36517 −0.290227
\(482\) 21.2370i 0.967320i
\(483\) 0 0
\(484\) −3.53873 −0.160852
\(485\) 6.43075 + 0.264090i 0.292006 + 0.0119917i
\(486\) 0 0
\(487\) 8.34684i 0.378232i −0.981955 0.189116i \(-0.939438\pi\)
0.981955 0.189116i \(-0.0605622\pi\)
\(488\) 23.5886i 1.06781i
\(489\) 0 0
\(490\) 0 0
\(491\) −0.557405 −0.0251554 −0.0125777 0.999921i \(-0.504004\pi\)
−0.0125777 + 0.999921i \(0.504004\pi\)
\(492\) 0 0
\(493\) 21.2976i 0.959197i
\(494\) 0.820713 0.0369256
\(495\) 0 0
\(496\) 24.5845 1.10388
\(497\) 0 0
\(498\) 0 0
\(499\) 26.0337 1.16543 0.582713 0.812678i \(-0.301991\pi\)
0.582713 + 0.812678i \(0.301991\pi\)
\(500\) −0.562965 + 4.54896i −0.0251765 + 0.203436i
\(501\) 0 0
\(502\) 36.4572i 1.62717i
\(503\) 5.52409i 0.246307i −0.992388 0.123154i \(-0.960699\pi\)
0.992388 0.123154i \(-0.0393008\pi\)
\(504\) 0 0
\(505\) 0.662224 16.1256i 0.0294686 0.717580i
\(506\) −48.3151 −2.14787
\(507\) 0 0
\(508\) 5.62997i 0.249789i
\(509\) 22.8893 1.01455 0.507274 0.861785i \(-0.330653\pi\)
0.507274 + 0.861785i \(0.330653\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 12.3362i 0.545186i
\(513\) 0 0
\(514\) 22.6612 0.999541
\(515\) −25.1868 1.03434i −1.10986 0.0455784i
\(516\) 0 0
\(517\) 8.04846i 0.353971i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.392357 + 9.55416i −0.0172060 + 0.418977i
\(521\) −26.1989 −1.14780 −0.573898 0.818927i \(-0.694569\pi\)
−0.573898 + 0.818927i \(0.694569\pi\)
\(522\) 0 0
\(523\) 26.8760i 1.17521i −0.809149 0.587603i \(-0.800072\pi\)
0.809149 0.587603i \(-0.199928\pi\)
\(524\) 9.01197 0.393690
\(525\) 0 0
\(526\) 7.90083 0.344493
\(527\) 14.4407i 0.629046i
\(528\) 0 0
\(529\) −26.3398 −1.14521
\(530\) −0.244294 + 5.94871i −0.0106114 + 0.258395i
\(531\) 0 0
\(532\) 0 0
\(533\) 11.6345i 0.503948i
\(534\) 0 0
\(535\) −15.4515 0.634543i −0.668028 0.0274337i
\(536\) 20.6956 0.893915
\(537\) 0 0
\(538\) 47.3639i 2.04200i
\(539\) 0 0
\(540\) 0 0
\(541\) −18.7844 −0.807606 −0.403803 0.914846i \(-0.632312\pi\)
−0.403803 + 0.914846i \(0.632312\pi\)
\(542\) 30.2534i 1.29949i
\(543\) 0 0
\(544\) 6.24331 0.267680
\(545\) 0.405716 9.87944i 0.0173789 0.423189i
\(546\) 0 0
\(547\) 13.4126i 0.573483i 0.958008 + 0.286742i \(0.0925721\pi\)
−0.958008 + 0.286742i \(0.907428\pi\)
\(548\) 1.23071i 0.0525732i
\(549\) 0 0
\(550\) −2.81995 + 34.2759i −0.120243 + 1.46153i
\(551\) −2.37848 −0.101327
\(552\) 0 0
\(553\) 0 0
\(554\) −39.5557 −1.68056
\(555\) 0 0
\(556\) −8.91138 −0.377927
\(557\) 40.1845i 1.70267i 0.524621 + 0.851336i \(0.324207\pi\)
−0.524621 + 0.851336i \(0.675793\pi\)
\(558\) 0 0
\(559\) 16.8319 0.711914
\(560\) 0 0
\(561\) 0 0
\(562\) 34.4501i 1.45319i
\(563\) 25.1879i 1.06154i 0.847514 + 0.530772i \(0.178098\pi\)
−0.847514 + 0.530772i \(0.821902\pi\)
\(564\) 0 0
\(565\) −6.39314 0.262545i −0.268961 0.0110453i
\(566\) −28.1362 −1.18265
\(567\) 0 0
\(568\) 25.3966i 1.06562i
\(569\) −11.0351 −0.462617 −0.231309 0.972880i \(-0.574301\pi\)
−0.231309 + 0.972880i \(0.574301\pi\)
\(570\) 0 0
\(571\) 28.7147 1.20167 0.600836 0.799372i \(-0.294834\pi\)
0.600836 + 0.799372i \(0.294834\pi\)
\(572\) 3.14701i 0.131583i
\(573\) 0 0
\(574\) 0 0
\(575\) −2.87976 + 35.0029i −0.120094 + 1.45972i
\(576\) 0 0
\(577\) 6.86405i 0.285754i 0.989740 + 0.142877i \(0.0456353\pi\)
−0.989740 + 0.142877i \(0.954365\pi\)
\(578\) 14.8002i 0.615605i
\(579\) 0 0
\(580\) −0.293186 + 7.13927i −0.0121739 + 0.296442i
\(581\) 0 0
\(582\) 0 0
\(583\) 7.59933i 0.314732i
\(584\) −31.6456 −1.30950
\(585\) 0 0
\(586\) 21.5720 0.891130
\(587\) 9.03965i 0.373106i 0.982445 + 0.186553i \(0.0597317\pi\)
−0.982445 + 0.186553i \(0.940268\pi\)
\(588\) 0 0
\(589\) −1.61271 −0.0664506
\(590\) 3.96238 + 0.162722i 0.163129 + 0.00669915i
\(591\) 0 0
\(592\) 17.0913i 0.702447i
\(593\) 5.10798i 0.209760i 0.994485 + 0.104880i \(0.0334458\pi\)
−0.994485 + 0.104880i \(0.966554\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.13724 0.0875446
\(597\) 0 0
\(598\) 18.8916i 0.772534i
\(599\) −29.9443 −1.22349 −0.611745 0.791055i \(-0.709532\pi\)
−0.611745 + 0.791055i \(0.709532\pi\)
\(600\) 0 0
\(601\) −12.5387 −0.511466 −0.255733 0.966747i \(-0.582317\pi\)
−0.255733 + 0.966747i \(0.582317\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 3.98238 0.162041
\(605\) −0.791952 + 19.2846i −0.0321974 + 0.784029i
\(606\) 0 0
\(607\) 9.59805i 0.389573i −0.980846 0.194786i \(-0.937599\pi\)
0.980846 0.194786i \(-0.0624014\pi\)
\(608\) 0.697242i 0.0282769i
\(609\) 0 0
\(610\) −33.1450 1.36115i −1.34200 0.0551115i
\(611\) −3.14701 −0.127314
\(612\) 0 0
\(613\) 27.6646i 1.11736i 0.829382 + 0.558682i \(0.188693\pi\)
−0.829382 + 0.558682i \(0.811307\pi\)
\(614\) −46.3133 −1.86905
\(615\) 0 0
\(616\) 0 0
\(617\) 20.4155i 0.821896i −0.911659 0.410948i \(-0.865198\pi\)
0.911659 0.410948i \(-0.134802\pi\)
\(618\) 0 0
\(619\) 15.4422 0.620676 0.310338 0.950626i \(-0.399558\pi\)
0.310338 + 0.950626i \(0.399558\pi\)
\(620\) −0.198793 + 4.84073i −0.00798370 + 0.194408i
\(621\) 0 0
\(622\) 20.9781i 0.841145i
\(623\) 0 0
\(624\) 0 0
\(625\) 24.6638 + 4.08595i 0.986554 + 0.163438i
\(626\) −44.9977 −1.79847
\(627\) 0 0
\(628\) 3.88321i 0.154957i
\(629\) 10.0392 0.400290
\(630\) 0 0
\(631\) −38.1722 −1.51961 −0.759805 0.650151i \(-0.774705\pi\)
−0.759805 + 0.650151i \(0.774705\pi\)
\(632\) 16.5719i 0.659196i
\(633\) 0 0
\(634\) 1.79868 0.0714347
\(635\) 30.6809 + 1.25996i 1.21753 + 0.0500000i
\(636\) 0 0
\(637\) 0 0
\(638\) 53.6119i 2.12252i
\(639\) 0 0
\(640\) 30.1760 + 1.23923i 1.19281 + 0.0489847i
\(641\) 16.7801 0.662776 0.331388 0.943495i \(-0.392483\pi\)
0.331388 + 0.943495i \(0.392483\pi\)
\(642\) 0 0
\(643\) 14.2002i 0.560001i −0.960000 0.280001i \(-0.909665\pi\)
0.960000 0.280001i \(-0.0903346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.29444 −0.0509291
\(647\) 14.4885i 0.569602i 0.958587 + 0.284801i \(0.0919276\pi\)
−0.958587 + 0.284801i \(0.908072\pi\)
\(648\) 0 0
\(649\) 5.06185 0.198695
\(650\) −13.4021 1.10262i −0.525676 0.0432484i
\(651\) 0 0
\(652\) 2.21247i 0.0866469i
\(653\) 10.2833i 0.402418i −0.979548 0.201209i \(-0.935513\pi\)
0.979548 0.201209i \(-0.0644870\pi\)
\(654\) 0 0
\(655\) 2.01684 49.1113i 0.0788043 1.91894i
\(656\) −31.2402 −1.21973
\(657\) 0 0
\(658\) 0 0
\(659\) 14.9773 0.583433 0.291717 0.956505i \(-0.405774\pi\)
0.291717 + 0.956505i \(0.405774\pi\)
\(660\) 0 0
\(661\) 2.44647 0.0951565 0.0475782 0.998868i \(-0.484850\pi\)
0.0475782 + 0.998868i \(0.484850\pi\)
\(662\) 44.0094i 1.71048i
\(663\) 0 0
\(664\) −12.5874 −0.488484
\(665\) 0 0
\(666\) 0 0
\(667\) 54.7490i 2.11989i
\(668\) 0.128138i 0.00495780i
\(669\) 0 0
\(670\) −1.19422 + 29.0800i −0.0461366 + 1.12346i
\(671\) −42.3418 −1.63459
\(672\) 0 0
\(673\) 17.2596i 0.665310i 0.943049 + 0.332655i \(0.107945\pi\)
−0.943049 + 0.332655i \(0.892055\pi\)
\(674\) −24.7965 −0.955127
\(675\) 0 0
\(676\) −4.09917 −0.157660
\(677\) 11.6384i 0.447298i 0.974670 + 0.223649i \(0.0717970\pi\)
−0.974670 + 0.223649i \(0.928203\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.618831 15.0689i 0.0237311 0.577868i
\(681\) 0 0
\(682\) 36.3511i 1.39196i
\(683\) 31.0960i 1.18986i 0.803779 + 0.594928i \(0.202819\pi\)
−0.803779 + 0.594928i \(0.797181\pi\)
\(684\) 0 0
\(685\) −6.70681 0.275426i −0.256254 0.0105235i
\(686\) 0 0
\(687\) 0 0
\(688\) 45.1958i 1.72307i
\(689\) −2.97140 −0.113201
\(690\) 0 0
\(691\) −17.9339 −0.682238 −0.341119 0.940020i \(-0.610806\pi\)
−0.341119 + 0.940020i \(0.610806\pi\)
\(692\) 3.94181i 0.149845i
\(693\) 0 0
\(694\) 20.1999 0.766778
\(695\) −1.99433 + 48.5631i −0.0756491 + 1.84210i
\(696\) 0 0
\(697\) 18.3502i 0.695062i
\(698\) 49.7895i 1.88456i
\(699\) 0 0
\(700\) 0 0
\(701\) −7.04488 −0.266081 −0.133041 0.991111i \(-0.542474\pi\)
−0.133041 + 0.991111i \(0.542474\pi\)
\(702\) 0 0
\(703\) 1.12116i 0.0422855i
\(704\) 25.5065 0.961312
\(705\) 0 0
\(706\) −20.7540 −0.781088
\(707\) 0 0
\(708\) 0 0
\(709\) 25.9243 0.973609 0.486804 0.873511i \(-0.338162\pi\)
0.486804 + 0.873511i \(0.338162\pi\)
\(710\) 35.6854 + 1.46548i 1.33925 + 0.0549985i
\(711\) 0 0
\(712\) 10.0479i 0.376560i
\(713\) 37.1221i 1.39023i
\(714\) 0 0
\(715\) −17.1498 0.704286i −0.641367 0.0263388i
\(716\) 3.63017 0.135666
\(717\) 0 0
\(718\) 20.3668i 0.760082i
\(719\) 31.2855 1.16675 0.583376 0.812202i \(-0.301731\pi\)
0.583376 + 0.812202i \(0.301731\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 29.3512i 1.09234i
\(723\) 0 0
\(724\) 6.93815 0.257854
\(725\) 38.8403 + 3.19547i 1.44249 + 0.118677i
\(726\) 0 0
\(727\) 22.8312i 0.846761i 0.905952 + 0.423380i \(0.139157\pi\)
−0.905952 + 0.423380i \(0.860843\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.82607 44.4660i 0.0675859 1.64576i
\(731\) −26.5475 −0.981896
\(732\) 0 0
\(733\) 5.95434i 0.219929i 0.993936 + 0.109964i \(0.0350736\pi\)
−0.993936 + 0.109964i \(0.964926\pi\)
\(734\) −20.3924 −0.752696
\(735\) 0 0
\(736\) −16.0494 −0.591590
\(737\) 37.1489i 1.36840i
\(738\) 0 0
\(739\) −41.5079 −1.52689 −0.763446 0.645872i \(-0.776494\pi\)
−0.763446 + 0.645872i \(0.776494\pi\)
\(740\) −3.36530 0.138201i −0.123711 0.00508039i
\(741\) 0 0
\(742\) 0 0
\(743\) 6.80015i 0.249473i −0.992190 0.124737i \(-0.960191\pi\)
0.992190 0.124737i \(-0.0398086\pi\)
\(744\) 0 0
\(745\) 0.478303 11.6470i 0.0175237 0.426713i
\(746\) −45.9820 −1.68352
\(747\) 0 0
\(748\) 4.96351i 0.181484i
\(749\) 0 0
\(750\) 0 0
\(751\) 23.6113 0.861588 0.430794 0.902450i \(-0.358233\pi\)
0.430794 + 0.902450i \(0.358233\pi\)
\(752\) 8.45012i 0.308144i
\(753\) 0 0
\(754\) −20.9627 −0.763416
\(755\) 0.891238 21.7022i 0.0324355 0.789825i
\(756\) 0 0
\(757\) 16.2267i 0.589769i 0.955533 + 0.294884i \(0.0952811\pi\)
−0.955533 + 0.294884i \(0.904719\pi\)
\(758\) 11.6072i 0.421592i
\(759\) 0 0
\(760\) −1.68287 0.0691100i −0.0610442 0.00250688i
\(761\) 2.55508 0.0926215 0.0463108 0.998927i \(-0.485254\pi\)
0.0463108 + 0.998927i \(0.485254\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.130594 0.00472473
\(765\) 0 0
\(766\) 36.8528 1.33154
\(767\) 1.97922i 0.0714655i
\(768\) 0 0
\(769\) 45.4525 1.63906 0.819530 0.573037i \(-0.194235\pi\)
0.819530 + 0.573037i \(0.194235\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.858217i 0.0308879i
\(773\) 51.4891i 1.85194i −0.377603 0.925968i \(-0.623251\pi\)
0.377603 0.925968i \(-0.376749\pi\)
\(774\) 0 0
\(775\) 26.3354 + 2.16666i 0.945994 + 0.0778289i
\(776\) 7.10482 0.255048
\(777\) 0 0
\(778\) 21.9363i 0.786453i
\(779\) 2.04931 0.0734243
\(780\) 0 0
\(781\) 45.5872 1.63124
\(782\) 29.7961i 1.06550i
\(783\) 0 0
\(784\) 0 0
\(785\) 21.1618 + 0.869044i 0.755297 + 0.0310175i
\(786\) 0 0
\(787\) 20.1514i 0.718321i 0.933276 + 0.359161i \(0.116937\pi\)
−0.933276 + 0.359161i \(0.883063\pi\)
\(788\) 9.25716i 0.329773i
\(789\) 0 0
\(790\) 23.2857 + 0.956264i 0.828466 + 0.0340223i
\(791\) 0 0
\(792\) 0 0
\(793\) 16.5560i 0.587920i
\(794\) −17.4950 −0.620874
\(795\) 0 0
\(796\) −3.07649 −0.109043
\(797\) 13.0702i 0.462971i 0.972838 + 0.231486i \(0.0743587\pi\)
−0.972838 + 0.231486i \(0.925641\pi\)
\(798\) 0 0
\(799\) 4.96351 0.175596
\(800\) −0.936739 + 11.3859i −0.0331187 + 0.402551i
\(801\) 0 0
\(802\) 36.1662i 1.27707i
\(803\) 56.8042i 2.00458i
\(804\) 0 0
\(805\) 0 0
\(806\) −14.2136 −0.500652
\(807\) 0 0
\(808\) 17.8159i 0.626760i
\(809\) −1.73720 −0.0610765 −0.0305383 0.999534i \(-0.509722\pi\)
−0.0305383 + 0.999534i \(0.509722\pi\)
\(810\) 0 0
\(811\) −27.9004 −0.979715 −0.489858 0.871802i \(-0.662951\pi\)
−0.489858 + 0.871802i \(0.662951\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −25.2715 −0.885765
\(815\) 12.0570 + 0.495140i 0.422338 + 0.0173440i
\(816\) 0 0
\(817\) 2.96478i 0.103725i
\(818\) 32.0538i 1.12074i
\(819\) 0 0
\(820\) 0.252611 6.15124i 0.00882156 0.214811i
\(821\) −16.9360 −0.591070 −0.295535 0.955332i \(-0.595498\pi\)
−0.295535 + 0.955332i \(0.595498\pi\)
\(822\) 0 0
\(823\) 9.89031i 0.344755i −0.985031 0.172377i \(-0.944855\pi\)
0.985031 0.172377i \(-0.0551448\pi\)
\(824\) −27.8269 −0.969396
\(825\) 0 0
\(826\) 0 0
\(827\) 35.3201i 1.22820i −0.789228 0.614101i \(-0.789519\pi\)
0.789228 0.614101i \(-0.210481\pi\)
\(828\) 0 0
\(829\) −9.29951 −0.322985 −0.161493 0.986874i \(-0.551631\pi\)
−0.161493 + 0.986874i \(0.551631\pi\)
\(830\) 0.726338 17.6868i 0.0252116 0.613918i
\(831\) 0 0
\(832\) 9.97323i 0.345760i
\(833\) 0 0
\(834\) 0 0
\(835\) −0.698295 0.0286766i −0.0241655 0.000992396i
\(836\) 0.554316 0.0191714
\(837\) 0 0
\(838\) 8.51114i 0.294012i
\(839\) −7.93405 −0.273914 −0.136957 0.990577i \(-0.543732\pi\)
−0.136957 + 0.990577i \(0.543732\pi\)
\(840\) 0 0
\(841\) 31.7512 1.09487
\(842\) 5.86933i 0.202271i
\(843\) 0 0
\(844\) −3.14539 −0.108269
\(845\) −0.917375 + 22.3387i −0.0315587 + 0.768474i
\(846\) 0 0
\(847\) 0 0
\(848\) 7.97857i 0.273985i
\(849\) 0 0
\(850\) 21.1381 + 1.73907i 0.725029 + 0.0596497i
\(851\) −25.8075 −0.884669
\(852\) 0 0
\(853\) 30.0757i 1.02977i −0.857258 0.514887i \(-0.827834\pi\)
0.857258 0.514887i \(-0.172166\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −17.0711 −0.583480
\(857\) 47.1373i 1.61018i −0.593153 0.805090i \(-0.702117\pi\)
0.593153 0.805090i \(-0.297883\pi\)
\(858\) 0 0
\(859\) 32.6367 1.11355 0.556774 0.830664i \(-0.312039\pi\)
0.556774 + 0.830664i \(0.312039\pi\)
\(860\) 8.89912 + 0.365457i 0.303458 + 0.0124620i
\(861\) 0 0
\(862\) 42.7110i 1.45474i
\(863\) 37.4102i 1.27346i −0.771088 0.636728i \(-0.780287\pi\)
0.771088 0.636728i \(-0.219713\pi\)
\(864\) 0 0
\(865\) −21.4811 0.882158i −0.730380 0.0299943i
\(866\) 13.5916 0.461860
\(867\) 0 0
\(868\) 0 0
\(869\) 29.7468 1.00909
\(870\) 0 0
\(871\) −14.5255 −0.492178
\(872\) 10.9150i 0.369628i
\(873\) 0 0
\(874\) 3.32757 0.112557
\(875\) 0 0
\(876\) 0 0
\(877\) 33.5657i 1.13343i −0.823913 0.566716i \(-0.808214\pi\)
0.823913 0.566716i \(-0.191786\pi\)
\(878\) 16.4753i 0.556014i
\(879\) 0 0
\(880\) −1.89110 + 46.0494i −0.0637489 + 1.55233i
\(881\) 12.1952 0.410867 0.205433 0.978671i \(-0.434140\pi\)
0.205433 + 0.978671i \(0.434140\pi\)
\(882\) 0 0
\(883\) 11.0408i 0.371552i −0.982592 0.185776i \(-0.940520\pi\)
0.982592 0.185776i \(-0.0594799\pi\)
\(884\) −1.94077 −0.0652752
\(885\) 0 0
\(886\) −31.0258 −1.04233
\(887\) 1.56093i 0.0524108i 0.999657 + 0.0262054i \(0.00834240\pi\)
−0.999657 + 0.0262054i \(0.991658\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −14.1185 0.579801i −0.473254 0.0194350i
\(891\) 0 0
\(892\) 2.82968i 0.0947448i
\(893\) 0.554316i 0.0185495i
\(894\) 0 0
\(895\) 0.812414 19.7828i 0.0271560 0.661267i
\(896\) 0 0
\(897\) 0 0
\(898\) 4.69724i 0.156749i
\(899\) 41.1919 1.37383
\(900\) 0 0
\(901\) 4.68653 0.156131
\(902\) 46.1924i 1.53804i
\(903\) 0 0
\(904\) −7.06326 −0.234921
\(905\) 1.55273 37.8099i 0.0516144 1.25684i
\(906\) 0 0
\(907\) 17.4078i 0.578016i 0.957327 + 0.289008i \(0.0933255\pi\)
−0.957327 + 0.289008i \(0.906675\pi\)
\(908\) 2.60220i 0.0863569i
\(909\) 0 0
\(910\) 0 0
\(911\) 18.3203 0.606978 0.303489 0.952835i \(-0.401848\pi\)
0.303489 + 0.952835i \(0.401848\pi\)
\(912\) 0 0
\(913\) 22.5945i 0.747767i
\(914\) 3.54158 0.117145
\(915\) 0 0
\(916\) 2.77007 0.0915258
\(917\) 0 0
\(918\) 0 0
\(919\) −22.5927 −0.745264 −0.372632 0.927979i \(-0.621545\pi\)
−0.372632 + 0.927979i \(0.621545\pi\)
\(920\) −1.59081 + 38.7372i −0.0524473 + 1.27713i
\(921\) 0 0
\(922\) 37.3631i 1.23049i
\(923\) 17.8249i 0.586715i
\(924\) 0 0
\(925\) −1.50628 + 18.3085i −0.0495260 + 0.601979i
\(926\) −17.2768 −0.567752
\(927\) 0 0
\(928\) 17.8090i 0.584608i
\(929\) 38.6712 1.26876 0.634381 0.773021i \(-0.281255\pi\)
0.634381 + 0.773021i \(0.281255\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 3.03874i 0.0995372i
\(933\) 0 0
\(934\) −44.3626 −1.45159
\(935\) 27.0490 + 1.11081i 0.884595 + 0.0363274i
\(936\) 0 0
\(937\) 46.7921i 1.52863i −0.644842 0.764316i \(-0.723077\pi\)
0.644842 0.764316i \(-0.276923\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −1.66384 0.0683284i −0.0542685 0.00222863i
\(941\) 41.8922 1.36565 0.682824 0.730583i \(-0.260752\pi\)
0.682824 + 0.730583i \(0.260752\pi\)
\(942\) 0 0
\(943\) 47.1721i 1.53613i
\(944\) 5.31446 0.172971
\(945\) 0 0
\(946\) 66.8274 2.17275
\(947\) 56.1146i 1.82348i −0.410768 0.911740i \(-0.634739\pi\)
0.410768 0.911740i \(-0.365261\pi\)
\(948\) 0 0
\(949\) 22.2109 0.720996
\(950\) 0.194216 2.36066i 0.00630121 0.0765900i
\(951\) 0 0
\(952\) 0 0
\(953\) 17.7705i 0.575643i 0.957684 + 0.287821i \(0.0929309\pi\)
−0.957684 + 0.287821i \(0.907069\pi\)
\(954\) 0 0
\(955\) 0.0292263 0.711680i 0.000945742 0.0230294i
\(956\) −3.01887 −0.0976373
\(957\) 0 0
\(958\) 8.66259i 0.279875i
\(959\) 0 0
\(960\) 0 0
\(961\) −3.07016 −0.0990375
\(962\) 9.88135i 0.318587i
\(963\) 0 0
\(964\) −5.60848 −0.180637
\(965\) 4.67691 + 0.192065i 0.150555 + 0.00618279i
\(966\) 0 0
\(967\) 22.5942i 0.726579i −0.931676 0.363290i \(-0.881654\pi\)
0.931676 0.363290i \(-0.118346\pi\)
\(968\) 21.3059i 0.684799i
\(969\) 0 0
\(970\) −0.409975 + 9.98316i −0.0131635 + 0.320540i
\(971\) −41.0488 −1.31732 −0.658660 0.752441i \(-0.728876\pi\)
−0.658660 + 0.752441i \(0.728876\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 12.9577 0.415192
\(975\) 0 0
\(976\) −44.4549 −1.42297
\(977\) 19.4734i 0.623008i 0.950245 + 0.311504i \(0.100833\pi\)
−0.950245 + 0.311504i \(0.899167\pi\)
\(978\) 0 0
\(979\) −18.0361 −0.576435
\(980\) 0 0
\(981\) 0 0
\(982\) 0.865321i 0.0276135i
\(983\) 51.7272i 1.64984i 0.565249 + 0.824920i \(0.308780\pi\)
−0.565249 + 0.824920i \(0.691220\pi\)
\(984\) 0 0
\(985\) −50.4474 2.07171i −1.60739 0.0660101i
\(986\) 33.0626 1.05293
\(987\) 0 0
\(988\) 0.216742i 0.00689548i
\(989\) 68.2448 2.17006
\(990\) 0 0
\(991\) 35.9499 1.14198 0.570992 0.820955i \(-0.306559\pi\)
0.570992 + 0.820955i \(0.306559\pi\)
\(992\) 12.0752i 0.383389i
\(993\) 0 0
\(994\) 0 0
\(995\) −0.688503 + 16.7655i −0.0218270 + 0.531502i
\(996\) 0 0
\(997\) 56.0599i 1.77544i 0.460388 + 0.887718i \(0.347710\pi\)
−0.460388 + 0.887718i \(0.652290\pi\)
\(998\) 40.4149i 1.27931i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.d.s.1324.6 8
3.2 odd 2 735.2.d.d.589.3 8
5.4 even 2 inner 2205.2.d.s.1324.3 8
7.2 even 3 315.2.bf.b.109.6 16
7.4 even 3 315.2.bf.b.289.3 16
7.6 odd 2 2205.2.d.o.1324.6 8
15.2 even 4 3675.2.a.bz.1.3 4
15.8 even 4 3675.2.a.bp.1.2 4
15.14 odd 2 735.2.d.d.589.6 8
21.2 odd 6 105.2.q.a.4.3 16
21.5 even 6 735.2.q.g.214.3 16
21.11 odd 6 105.2.q.a.79.6 yes 16
21.17 even 6 735.2.q.g.79.6 16
21.20 even 2 735.2.d.e.589.3 8
35.4 even 6 315.2.bf.b.289.6 16
35.9 even 6 315.2.bf.b.109.3 16
35.34 odd 2 2205.2.d.o.1324.3 8
84.11 even 6 1680.2.di.d.289.8 16
84.23 even 6 1680.2.di.d.529.1 16
105.2 even 12 525.2.i.h.151.2 8
105.23 even 12 525.2.i.k.151.3 8
105.32 even 12 525.2.i.h.226.2 8
105.44 odd 6 105.2.q.a.4.6 yes 16
105.53 even 12 525.2.i.k.226.3 8
105.59 even 6 735.2.q.g.79.3 16
105.62 odd 4 3675.2.a.cb.1.3 4
105.74 odd 6 105.2.q.a.79.3 yes 16
105.83 odd 4 3675.2.a.bn.1.2 4
105.89 even 6 735.2.q.g.214.6 16
105.104 even 2 735.2.d.e.589.6 8
420.179 even 6 1680.2.di.d.289.1 16
420.359 even 6 1680.2.di.d.529.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.3 16 21.2 odd 6
105.2.q.a.4.6 yes 16 105.44 odd 6
105.2.q.a.79.3 yes 16 105.74 odd 6
105.2.q.a.79.6 yes 16 21.11 odd 6
315.2.bf.b.109.3 16 35.9 even 6
315.2.bf.b.109.6 16 7.2 even 3
315.2.bf.b.289.3 16 7.4 even 3
315.2.bf.b.289.6 16 35.4 even 6
525.2.i.h.151.2 8 105.2 even 12
525.2.i.h.226.2 8 105.32 even 12
525.2.i.k.151.3 8 105.23 even 12
525.2.i.k.226.3 8 105.53 even 12
735.2.d.d.589.3 8 3.2 odd 2
735.2.d.d.589.6 8 15.14 odd 2
735.2.d.e.589.3 8 21.20 even 2
735.2.d.e.589.6 8 105.104 even 2
735.2.q.g.79.3 16 105.59 even 6
735.2.q.g.79.6 16 21.17 even 6
735.2.q.g.214.3 16 21.5 even 6
735.2.q.g.214.6 16 105.89 even 6
1680.2.di.d.289.1 16 420.179 even 6
1680.2.di.d.289.8 16 84.11 even 6
1680.2.di.d.529.1 16 84.23 even 6
1680.2.di.d.529.8 16 420.359 even 6
2205.2.d.o.1324.3 8 35.34 odd 2
2205.2.d.o.1324.6 8 7.6 odd 2
2205.2.d.s.1324.3 8 5.4 even 2 inner
2205.2.d.s.1324.6 8 1.1 even 1 trivial
3675.2.a.bn.1.2 4 105.83 odd 4
3675.2.a.bp.1.2 4 15.8 even 4
3675.2.a.bz.1.3 4 15.2 even 4
3675.2.a.cb.1.3 4 105.62 odd 4