Properties

Label 729.6.a.b.1.2
Level $729$
Weight $6$
Character 729.1
Self dual yes
Analytic conductor $116.920$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,6,Mod(1,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(116.919804644\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Character \(\chi\) \(=\) 729.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.81893 q^{2} +64.4115 q^{4} -77.7846 q^{5} +224.654 q^{7} -318.246 q^{8} +763.762 q^{10} -105.037 q^{11} -930.252 q^{13} -2205.86 q^{14} +1063.67 q^{16} -1594.51 q^{17} -979.171 q^{19} -5010.22 q^{20} +1031.35 q^{22} -1931.89 q^{23} +2925.45 q^{25} +9134.09 q^{26} +14470.3 q^{28} -2729.53 q^{29} +7368.21 q^{31} -260.228 q^{32} +15656.4 q^{34} -17474.6 q^{35} -12260.3 q^{37} +9614.42 q^{38} +24754.6 q^{40} +3873.68 q^{41} -14881.2 q^{43} -6765.58 q^{44} +18969.1 q^{46} +5291.61 q^{47} +33662.2 q^{49} -28724.8 q^{50} -59918.9 q^{52} -9959.46 q^{53} +8170.25 q^{55} -71495.1 q^{56} +26801.1 q^{58} +1647.45 q^{59} -45998.2 q^{61} -72348.0 q^{62} -31482.3 q^{64} +72359.3 q^{65} +30817.8 q^{67} -102705. q^{68} +171582. q^{70} +50609.8 q^{71} -37868.1 q^{73} +120383. q^{74} -63069.8 q^{76} -23596.9 q^{77} +18556.5 q^{79} -82737.1 q^{80} -38035.4 q^{82} +97148.8 q^{83} +124028. q^{85} +146118. q^{86} +33427.6 q^{88} -107778. q^{89} -208984. q^{91} -124436. q^{92} -51957.9 q^{94} +76164.4 q^{95} +3723.59 q^{97} -330527. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{2} + 432 q^{4} + 33 q^{5} + 294 q^{7} + 843 q^{8} + 600 q^{10} + 30 q^{11} + 1014 q^{13} - 3720 q^{14} + 8448 q^{16} - 2709 q^{17} + 4332 q^{19} + 861 q^{20} - 2193 q^{22} + 4020 q^{23} + 15417 q^{25}+ \cdots + 944667 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.81893 −1.73576 −0.867879 0.496775i \(-0.834517\pi\)
−0.867879 + 0.496775i \(0.834517\pi\)
\(3\) 0 0
\(4\) 64.4115 2.01286
\(5\) −77.7846 −1.39145 −0.695727 0.718307i \(-0.744918\pi\)
−0.695727 + 0.718307i \(0.744918\pi\)
\(6\) 0 0
\(7\) 224.654 1.73288 0.866439 0.499282i \(-0.166403\pi\)
0.866439 + 0.499282i \(0.166403\pi\)
\(8\) −318.246 −1.75808
\(9\) 0 0
\(10\) 763.762 2.41523
\(11\) −105.037 −0.261734 −0.130867 0.991400i \(-0.541776\pi\)
−0.130867 + 0.991400i \(0.541776\pi\)
\(12\) 0 0
\(13\) −930.252 −1.52666 −0.763330 0.646009i \(-0.776437\pi\)
−0.763330 + 0.646009i \(0.776437\pi\)
\(14\) −2205.86 −3.00786
\(15\) 0 0
\(16\) 1063.67 1.03874
\(17\) −1594.51 −1.33815 −0.669075 0.743195i \(-0.733309\pi\)
−0.669075 + 0.743195i \(0.733309\pi\)
\(18\) 0 0
\(19\) −979.171 −0.622264 −0.311132 0.950367i \(-0.600708\pi\)
−0.311132 + 0.950367i \(0.600708\pi\)
\(20\) −5010.22 −2.80080
\(21\) 0 0
\(22\) 1031.35 0.454307
\(23\) −1931.89 −0.761487 −0.380744 0.924681i \(-0.624332\pi\)
−0.380744 + 0.924681i \(0.624332\pi\)
\(24\) 0 0
\(25\) 2925.45 0.936143
\(26\) 9134.09 2.64991
\(27\) 0 0
\(28\) 14470.3 3.48804
\(29\) −2729.53 −0.602689 −0.301345 0.953515i \(-0.597435\pi\)
−0.301345 + 0.953515i \(0.597435\pi\)
\(30\) 0 0
\(31\) 7368.21 1.37708 0.688538 0.725200i \(-0.258253\pi\)
0.688538 + 0.725200i \(0.258253\pi\)
\(32\) −260.228 −0.0449241
\(33\) 0 0
\(34\) 15656.4 2.32271
\(35\) −17474.6 −2.41122
\(36\) 0 0
\(37\) −12260.3 −1.47230 −0.736152 0.676816i \(-0.763359\pi\)
−0.736152 + 0.676816i \(0.763359\pi\)
\(38\) 9614.42 1.08010
\(39\) 0 0
\(40\) 24754.6 2.44628
\(41\) 3873.68 0.359885 0.179943 0.983677i \(-0.442409\pi\)
0.179943 + 0.983677i \(0.442409\pi\)
\(42\) 0 0
\(43\) −14881.2 −1.22735 −0.613673 0.789560i \(-0.710309\pi\)
−0.613673 + 0.789560i \(0.710309\pi\)
\(44\) −6765.58 −0.526833
\(45\) 0 0
\(46\) 18969.1 1.32176
\(47\) 5291.61 0.349416 0.174708 0.984620i \(-0.444102\pi\)
0.174708 + 0.984620i \(0.444102\pi\)
\(48\) 0 0
\(49\) 33662.2 2.00287
\(50\) −28724.8 −1.62492
\(51\) 0 0
\(52\) −59918.9 −3.07295
\(53\) −9959.46 −0.487019 −0.243510 0.969898i \(-0.578299\pi\)
−0.243510 + 0.969898i \(0.578299\pi\)
\(54\) 0 0
\(55\) 8170.25 0.364191
\(56\) −71495.1 −3.04653
\(57\) 0 0
\(58\) 26801.1 1.04612
\(59\) 1647.45 0.0616146 0.0308073 0.999525i \(-0.490192\pi\)
0.0308073 + 0.999525i \(0.490192\pi\)
\(60\) 0 0
\(61\) −45998.2 −1.58277 −0.791383 0.611321i \(-0.790638\pi\)
−0.791383 + 0.611321i \(0.790638\pi\)
\(62\) −72348.0 −2.39027
\(63\) 0 0
\(64\) −31482.3 −0.960762
\(65\) 72359.3 2.12428
\(66\) 0 0
\(67\) 30817.8 0.838716 0.419358 0.907821i \(-0.362255\pi\)
0.419358 + 0.907821i \(0.362255\pi\)
\(68\) −102705. −2.69351
\(69\) 0 0
\(70\) 171582. 4.18530
\(71\) 50609.8 1.19149 0.595743 0.803175i \(-0.296858\pi\)
0.595743 + 0.803175i \(0.296858\pi\)
\(72\) 0 0
\(73\) −37868.1 −0.831700 −0.415850 0.909433i \(-0.636516\pi\)
−0.415850 + 0.909433i \(0.636516\pi\)
\(74\) 120383. 2.55557
\(75\) 0 0
\(76\) −63069.8 −1.25253
\(77\) −23596.9 −0.453553
\(78\) 0 0
\(79\) 18556.5 0.334525 0.167263 0.985912i \(-0.446507\pi\)
0.167263 + 0.985912i \(0.446507\pi\)
\(80\) −82737.1 −1.44536
\(81\) 0 0
\(82\) −38035.4 −0.624674
\(83\) 97148.8 1.54790 0.773949 0.633249i \(-0.218279\pi\)
0.773949 + 0.633249i \(0.218279\pi\)
\(84\) 0 0
\(85\) 124028. 1.86197
\(86\) 146118. 2.13038
\(87\) 0 0
\(88\) 33427.6 0.460149
\(89\) −107778. −1.44230 −0.721151 0.692778i \(-0.756387\pi\)
−0.721151 + 0.692778i \(0.756387\pi\)
\(90\) 0 0
\(91\) −208984. −2.64552
\(92\) −124436. −1.53277
\(93\) 0 0
\(94\) −51957.9 −0.606502
\(95\) 76164.4 0.865851
\(96\) 0 0
\(97\) 3723.59 0.0401820 0.0200910 0.999798i \(-0.493604\pi\)
0.0200910 + 0.999798i \(0.493604\pi\)
\(98\) −330527. −3.47650
\(99\) 0 0
\(100\) 188432. 1.88432
\(101\) −170223. −1.66040 −0.830202 0.557463i \(-0.811775\pi\)
−0.830202 + 0.557463i \(0.811775\pi\)
\(102\) 0 0
\(103\) −146836. −1.36377 −0.681883 0.731462i \(-0.738838\pi\)
−0.681883 + 0.731462i \(0.738838\pi\)
\(104\) 296049. 2.68399
\(105\) 0 0
\(106\) 97791.3 0.845348
\(107\) −122455. −1.03399 −0.516996 0.855988i \(-0.672950\pi\)
−0.516996 + 0.855988i \(0.672950\pi\)
\(108\) 0 0
\(109\) 86313.5 0.695845 0.347922 0.937523i \(-0.386887\pi\)
0.347922 + 0.937523i \(0.386887\pi\)
\(110\) −80223.2 −0.632147
\(111\) 0 0
\(112\) 238957. 1.80001
\(113\) −121204. −0.892935 −0.446467 0.894800i \(-0.647318\pi\)
−0.446467 + 0.894800i \(0.647318\pi\)
\(114\) 0 0
\(115\) 150271. 1.05957
\(116\) −175813. −1.21313
\(117\) 0 0
\(118\) −16176.2 −0.106948
\(119\) −358212. −2.31885
\(120\) 0 0
\(121\) −150018. −0.931495
\(122\) 451654. 2.74730
\(123\) 0 0
\(124\) 474597. 2.77186
\(125\) 15522.3 0.0888547
\(126\) 0 0
\(127\) −19675.3 −0.108246 −0.0541231 0.998534i \(-0.517236\pi\)
−0.0541231 + 0.998534i \(0.517236\pi\)
\(128\) 317449. 1.71258
\(129\) 0 0
\(130\) −710491. −3.68723
\(131\) 141007. 0.717896 0.358948 0.933358i \(-0.383136\pi\)
0.358948 + 0.933358i \(0.383136\pi\)
\(132\) 0 0
\(133\) −219974. −1.07831
\(134\) −302598. −1.45581
\(135\) 0 0
\(136\) 507446. 2.35257
\(137\) −32119.4 −0.146206 −0.0731031 0.997324i \(-0.523290\pi\)
−0.0731031 + 0.997324i \(0.523290\pi\)
\(138\) 0 0
\(139\) 276266. 1.21281 0.606403 0.795158i \(-0.292612\pi\)
0.606403 + 0.795158i \(0.292612\pi\)
\(140\) −1.12556e6 −4.85344
\(141\) 0 0
\(142\) −496934. −2.06813
\(143\) 97710.8 0.399579
\(144\) 0 0
\(145\) 212316. 0.838614
\(146\) 371825. 1.44363
\(147\) 0 0
\(148\) −789705. −2.96354
\(149\) 26146.0 0.0964804 0.0482402 0.998836i \(-0.484639\pi\)
0.0482402 + 0.998836i \(0.484639\pi\)
\(150\) 0 0
\(151\) −12850.1 −0.0458631 −0.0229315 0.999737i \(-0.507300\pi\)
−0.0229315 + 0.999737i \(0.507300\pi\)
\(152\) 311617. 1.09399
\(153\) 0 0
\(154\) 231696. 0.787259
\(155\) −573133. −1.91614
\(156\) 0 0
\(157\) 88963.9 0.288048 0.144024 0.989574i \(-0.453996\pi\)
0.144024 + 0.989574i \(0.453996\pi\)
\(158\) −182205. −0.580655
\(159\) 0 0
\(160\) 20241.8 0.0625098
\(161\) −434006. −1.31957
\(162\) 0 0
\(163\) −198942. −0.586485 −0.293243 0.956038i \(-0.594734\pi\)
−0.293243 + 0.956038i \(0.594734\pi\)
\(164\) 249509. 0.724398
\(165\) 0 0
\(166\) −953897. −2.68678
\(167\) −82697.2 −0.229456 −0.114728 0.993397i \(-0.536600\pi\)
−0.114728 + 0.993397i \(0.536600\pi\)
\(168\) 0 0
\(169\) 494076. 1.33069
\(170\) −1.21783e6 −3.23194
\(171\) 0 0
\(172\) −958521. −2.47047
\(173\) −251666. −0.639307 −0.319653 0.947535i \(-0.603566\pi\)
−0.319653 + 0.947535i \(0.603566\pi\)
\(174\) 0 0
\(175\) 657212. 1.62222
\(176\) −111725. −0.271874
\(177\) 0 0
\(178\) 1.05827e6 2.50349
\(179\) −387612. −0.904199 −0.452100 0.891967i \(-0.649325\pi\)
−0.452100 + 0.891967i \(0.649325\pi\)
\(180\) 0 0
\(181\) 268627. 0.609472 0.304736 0.952437i \(-0.401432\pi\)
0.304736 + 0.952437i \(0.401432\pi\)
\(182\) 2.05200e6 4.59198
\(183\) 0 0
\(184\) 614816. 1.33875
\(185\) 953665. 2.04864
\(186\) 0 0
\(187\) 167482. 0.350239
\(188\) 340840. 0.703325
\(189\) 0 0
\(190\) −747854. −1.50291
\(191\) −51024.6 −0.101204 −0.0506018 0.998719i \(-0.516114\pi\)
−0.0506018 + 0.998719i \(0.516114\pi\)
\(192\) 0 0
\(193\) −355230. −0.686462 −0.343231 0.939251i \(-0.611521\pi\)
−0.343231 + 0.939251i \(0.611521\pi\)
\(194\) −36561.6 −0.0697463
\(195\) 0 0
\(196\) 2.16823e6 4.03149
\(197\) 661385. 1.21420 0.607098 0.794627i \(-0.292333\pi\)
0.607098 + 0.794627i \(0.292333\pi\)
\(198\) 0 0
\(199\) −136835. −0.244943 −0.122471 0.992472i \(-0.539082\pi\)
−0.122471 + 0.992472i \(0.539082\pi\)
\(200\) −931011. −1.64581
\(201\) 0 0
\(202\) 1.67140e6 2.88206
\(203\) −613199. −1.04439
\(204\) 0 0
\(205\) −301313. −0.500763
\(206\) 1.44177e6 2.36717
\(207\) 0 0
\(208\) −989481. −1.58580
\(209\) 102849. 0.162868
\(210\) 0 0
\(211\) −413951. −0.640093 −0.320047 0.947402i \(-0.603699\pi\)
−0.320047 + 0.947402i \(0.603699\pi\)
\(212\) −641503. −0.980301
\(213\) 0 0
\(214\) 1.20238e6 1.79476
\(215\) 1.15753e6 1.70780
\(216\) 0 0
\(217\) 1.65529e6 2.38630
\(218\) −847506. −1.20782
\(219\) 0 0
\(220\) 526258. 0.733064
\(221\) 1.48330e6 2.04290
\(222\) 0 0
\(223\) −390155. −0.525382 −0.262691 0.964880i \(-0.584610\pi\)
−0.262691 + 0.964880i \(0.584610\pi\)
\(224\) −58461.2 −0.0778480
\(225\) 0 0
\(226\) 1.19009e6 1.54992
\(227\) 461470. 0.594400 0.297200 0.954815i \(-0.403947\pi\)
0.297200 + 0.954815i \(0.403947\pi\)
\(228\) 0 0
\(229\) 74595.7 0.0939994 0.0469997 0.998895i \(-0.485034\pi\)
0.0469997 + 0.998895i \(0.485034\pi\)
\(230\) −1.47550e6 −1.83917
\(231\) 0 0
\(232\) 868663. 1.05957
\(233\) 167417. 0.202028 0.101014 0.994885i \(-0.467791\pi\)
0.101014 + 0.994885i \(0.467791\pi\)
\(234\) 0 0
\(235\) −411606. −0.486196
\(236\) 106115. 0.124021
\(237\) 0 0
\(238\) 3.51726e6 4.02497
\(239\) −706366. −0.799899 −0.399949 0.916537i \(-0.630972\pi\)
−0.399949 + 0.916537i \(0.630972\pi\)
\(240\) 0 0
\(241\) 1.44753e6 1.60541 0.802704 0.596377i \(-0.203394\pi\)
0.802704 + 0.596377i \(0.203394\pi\)
\(242\) 1.47302e6 1.61685
\(243\) 0 0
\(244\) −2.96281e6 −3.18588
\(245\) −2.61840e6 −2.78690
\(246\) 0 0
\(247\) 910876. 0.949986
\(248\) −2.34490e6 −2.42101
\(249\) 0 0
\(250\) −152412. −0.154230
\(251\) −1.58229e6 −1.58526 −0.792631 0.609701i \(-0.791289\pi\)
−0.792631 + 0.609701i \(0.791289\pi\)
\(252\) 0 0
\(253\) 202920. 0.199307
\(254\) 193191. 0.187889
\(255\) 0 0
\(256\) −2.10958e6 −2.01186
\(257\) 947115. 0.894478 0.447239 0.894414i \(-0.352407\pi\)
0.447239 + 0.894414i \(0.352407\pi\)
\(258\) 0 0
\(259\) −2.75433e6 −2.55133
\(260\) 4.66077e6 4.27587
\(261\) 0 0
\(262\) −1.38454e6 −1.24609
\(263\) 1.58841e6 1.41604 0.708018 0.706194i \(-0.249590\pi\)
0.708018 + 0.706194i \(0.249590\pi\)
\(264\) 0 0
\(265\) 774693. 0.677665
\(266\) 2.15991e6 1.87168
\(267\) 0 0
\(268\) 1.98502e6 1.68822
\(269\) −211624. −0.178313 −0.0891567 0.996018i \(-0.528417\pi\)
−0.0891567 + 0.996018i \(0.528417\pi\)
\(270\) 0 0
\(271\) 1.00424e6 0.830642 0.415321 0.909675i \(-0.363669\pi\)
0.415321 + 0.909675i \(0.363669\pi\)
\(272\) −1.69603e6 −1.38999
\(273\) 0 0
\(274\) 315378. 0.253779
\(275\) −307280. −0.245020
\(276\) 0 0
\(277\) 1.71934e6 1.34636 0.673182 0.739477i \(-0.264927\pi\)
0.673182 + 0.739477i \(0.264927\pi\)
\(278\) −2.71264e6 −2.10514
\(279\) 0 0
\(280\) 5.56122e6 4.23911
\(281\) 1.94339e6 1.46823 0.734117 0.679024i \(-0.237597\pi\)
0.734117 + 0.679024i \(0.237597\pi\)
\(282\) 0 0
\(283\) −988317. −0.733551 −0.366775 0.930310i \(-0.619538\pi\)
−0.366775 + 0.930310i \(0.619538\pi\)
\(284\) 3.25985e6 2.39829
\(285\) 0 0
\(286\) −959416. −0.693573
\(287\) 870236. 0.623637
\(288\) 0 0
\(289\) 1.12260e6 0.790645
\(290\) −2.08471e6 −1.45563
\(291\) 0 0
\(292\) −2.43914e6 −1.67409
\(293\) 886046. 0.602958 0.301479 0.953473i \(-0.402520\pi\)
0.301479 + 0.953473i \(0.402520\pi\)
\(294\) 0 0
\(295\) −128147. −0.0857338
\(296\) 3.90180e6 2.58843
\(297\) 0 0
\(298\) −256726. −0.167467
\(299\) 1.79714e6 1.16253
\(300\) 0 0
\(301\) −3.34312e6 −2.12684
\(302\) 126174. 0.0796073
\(303\) 0 0
\(304\) −1.04151e6 −0.646370
\(305\) 3.57795e6 2.20234
\(306\) 0 0
\(307\) −1.12119e6 −0.678945 −0.339473 0.940616i \(-0.610249\pi\)
−0.339473 + 0.940616i \(0.610249\pi\)
\(308\) −1.51991e6 −0.912938
\(309\) 0 0
\(310\) 5.62756e6 3.32595
\(311\) 3.30770e6 1.93921 0.969606 0.244672i \(-0.0786801\pi\)
0.969606 + 0.244672i \(0.0786801\pi\)
\(312\) 0 0
\(313\) −1.72639e6 −0.996041 −0.498021 0.867165i \(-0.665940\pi\)
−0.498021 + 0.867165i \(0.665940\pi\)
\(314\) −873531. −0.499982
\(315\) 0 0
\(316\) 1.19525e6 0.673352
\(317\) 671534. 0.375336 0.187668 0.982233i \(-0.439907\pi\)
0.187668 + 0.982233i \(0.439907\pi\)
\(318\) 0 0
\(319\) 286702. 0.157744
\(320\) 2.44884e6 1.33686
\(321\) 0 0
\(322\) 4.26147e6 2.29045
\(323\) 1.56130e6 0.832682
\(324\) 0 0
\(325\) −2.72140e6 −1.42917
\(326\) 1.95340e6 1.01800
\(327\) 0 0
\(328\) −1.23278e6 −0.632706
\(329\) 1.18878e6 0.605496
\(330\) 0 0
\(331\) −336611. −0.168872 −0.0844361 0.996429i \(-0.526909\pi\)
−0.0844361 + 0.996429i \(0.526909\pi\)
\(332\) 6.25749e6 3.11570
\(333\) 0 0
\(334\) 811998. 0.398280
\(335\) −2.39715e6 −1.16703
\(336\) 0 0
\(337\) 1.37938e6 0.661620 0.330810 0.943697i \(-0.392678\pi\)
0.330810 + 0.943697i \(0.392678\pi\)
\(338\) −4.85130e6 −2.30976
\(339\) 0 0
\(340\) 7.98884e6 3.74789
\(341\) −773934. −0.360428
\(342\) 0 0
\(343\) 3.78658e6 1.73785
\(344\) 4.73589e6 2.15777
\(345\) 0 0
\(346\) 2.47109e6 1.10968
\(347\) 560232. 0.249772 0.124886 0.992171i \(-0.460143\pi\)
0.124886 + 0.992171i \(0.460143\pi\)
\(348\) 0 0
\(349\) 227898. 0.100156 0.0500780 0.998745i \(-0.484053\pi\)
0.0500780 + 0.998745i \(0.484053\pi\)
\(350\) −6.45312e6 −2.81578
\(351\) 0 0
\(352\) 27333.6 0.0117582
\(353\) 3.01656e6 1.28847 0.644236 0.764827i \(-0.277176\pi\)
0.644236 + 0.764827i \(0.277176\pi\)
\(354\) 0 0
\(355\) −3.93666e6 −1.65790
\(356\) −6.94216e6 −2.90315
\(357\) 0 0
\(358\) 3.80593e6 1.56947
\(359\) −4.42207e6 −1.81088 −0.905440 0.424474i \(-0.860459\pi\)
−0.905440 + 0.424474i \(0.860459\pi\)
\(360\) 0 0
\(361\) −1.51732e6 −0.612788
\(362\) −2.63763e6 −1.05790
\(363\) 0 0
\(364\) −1.34610e7 −5.32505
\(365\) 2.94556e6 1.15727
\(366\) 0 0
\(367\) 140993. 0.0546426 0.0273213 0.999627i \(-0.491302\pi\)
0.0273213 + 0.999627i \(0.491302\pi\)
\(368\) −2.05489e6 −0.790987
\(369\) 0 0
\(370\) −9.36397e6 −3.55595
\(371\) −2.23743e6 −0.843945
\(372\) 0 0
\(373\) −4.61535e6 −1.71764 −0.858820 0.512277i \(-0.828802\pi\)
−0.858820 + 0.512277i \(0.828802\pi\)
\(374\) −1.64450e6 −0.607931
\(375\) 0 0
\(376\) −1.68403e6 −0.614300
\(377\) 2.53916e6 0.920102
\(378\) 0 0
\(379\) −2.62222e6 −0.937716 −0.468858 0.883274i \(-0.655334\pi\)
−0.468858 + 0.883274i \(0.655334\pi\)
\(380\) 4.90586e6 1.74284
\(381\) 0 0
\(382\) 501007. 0.175665
\(383\) −306222. −0.106669 −0.0533346 0.998577i \(-0.516985\pi\)
−0.0533346 + 0.998577i \(0.516985\pi\)
\(384\) 0 0
\(385\) 1.83548e6 0.631098
\(386\) 3.48798e6 1.19153
\(387\) 0 0
\(388\) 239842. 0.0808807
\(389\) −371122. −0.124349 −0.0621745 0.998065i \(-0.519804\pi\)
−0.0621745 + 0.998065i \(0.519804\pi\)
\(390\) 0 0
\(391\) 3.08042e6 1.01898
\(392\) −1.07129e7 −3.52120
\(393\) 0 0
\(394\) −6.49410e6 −2.10755
\(395\) −1.44341e6 −0.465477
\(396\) 0 0
\(397\) 266590. 0.0848921 0.0424461 0.999099i \(-0.486485\pi\)
0.0424461 + 0.999099i \(0.486485\pi\)
\(398\) 1.34358e6 0.425162
\(399\) 0 0
\(400\) 3.11171e6 0.972408
\(401\) −3.84744e6 −1.19484 −0.597422 0.801927i \(-0.703808\pi\)
−0.597422 + 0.801927i \(0.703808\pi\)
\(402\) 0 0
\(403\) −6.85429e6 −2.10233
\(404\) −1.09643e7 −3.34216
\(405\) 0 0
\(406\) 6.02096e6 1.81280
\(407\) 1.28779e6 0.385352
\(408\) 0 0
\(409\) −288628. −0.0853161 −0.0426580 0.999090i \(-0.513583\pi\)
−0.0426580 + 0.999090i \(0.513583\pi\)
\(410\) 2.95857e6 0.869204
\(411\) 0 0
\(412\) −9.45792e6 −2.74507
\(413\) 370106. 0.106771
\(414\) 0 0
\(415\) −7.55668e6 −2.15383
\(416\) 242078. 0.0685839
\(417\) 0 0
\(418\) −1.00987e6 −0.282699
\(419\) 5.11049e6 1.42209 0.711045 0.703146i \(-0.248222\pi\)
0.711045 + 0.703146i \(0.248222\pi\)
\(420\) 0 0
\(421\) 5.11020e6 1.40518 0.702591 0.711594i \(-0.252027\pi\)
0.702591 + 0.711594i \(0.252027\pi\)
\(422\) 4.06456e6 1.11105
\(423\) 0 0
\(424\) 3.16956e6 0.856217
\(425\) −4.66465e6 −1.25270
\(426\) 0 0
\(427\) −1.03337e7 −2.74274
\(428\) −7.88751e6 −2.08128
\(429\) 0 0
\(430\) −1.13657e7 −2.96432
\(431\) −581904. −0.150889 −0.0754446 0.997150i \(-0.524038\pi\)
−0.0754446 + 0.997150i \(0.524038\pi\)
\(432\) 0 0
\(433\) 4.03750e6 1.03489 0.517443 0.855718i \(-0.326884\pi\)
0.517443 + 0.855718i \(0.326884\pi\)
\(434\) −1.62532e7 −4.14205
\(435\) 0 0
\(436\) 5.55958e6 1.40064
\(437\) 1.89165e6 0.473846
\(438\) 0 0
\(439\) 3.61017e6 0.894060 0.447030 0.894519i \(-0.352482\pi\)
0.447030 + 0.894519i \(0.352482\pi\)
\(440\) −2.60015e6 −0.640275
\(441\) 0 0
\(442\) −1.45644e7 −3.54598
\(443\) −109125. −0.0264189 −0.0132094 0.999913i \(-0.504205\pi\)
−0.0132094 + 0.999913i \(0.504205\pi\)
\(444\) 0 0
\(445\) 8.38349e6 2.00690
\(446\) 3.83091e6 0.911936
\(447\) 0 0
\(448\) −7.07260e6 −1.66488
\(449\) 1.29009e6 0.301998 0.150999 0.988534i \(-0.451751\pi\)
0.150999 + 0.988534i \(0.451751\pi\)
\(450\) 0 0
\(451\) −406879. −0.0941942
\(452\) −7.80691e6 −1.79735
\(453\) 0 0
\(454\) −4.53114e6 −1.03173
\(455\) 1.62558e7 3.68111
\(456\) 0 0
\(457\) 8.35403e6 1.87114 0.935568 0.353146i \(-0.114888\pi\)
0.935568 + 0.353146i \(0.114888\pi\)
\(458\) −732450. −0.163160
\(459\) 0 0
\(460\) 9.67919e6 2.13277
\(461\) −5.54610e6 −1.21544 −0.607722 0.794150i \(-0.707917\pi\)
−0.607722 + 0.794150i \(0.707917\pi\)
\(462\) 0 0
\(463\) 8769.70 0.00190122 0.000950610 1.00000i \(-0.499697\pi\)
0.000950610 1.00000i \(0.499697\pi\)
\(464\) −2.90332e6 −0.626037
\(465\) 0 0
\(466\) −1.64386e6 −0.350671
\(467\) −6.14127e6 −1.30306 −0.651532 0.758621i \(-0.725873\pi\)
−0.651532 + 0.758621i \(0.725873\pi\)
\(468\) 0 0
\(469\) 6.92333e6 1.45339
\(470\) 4.04153e6 0.843919
\(471\) 0 0
\(472\) −524296. −0.108323
\(473\) 1.56308e6 0.321238
\(474\) 0 0
\(475\) −2.86451e6 −0.582528
\(476\) −2.30730e7 −4.66752
\(477\) 0 0
\(478\) 6.93576e6 1.38843
\(479\) 2.57553e6 0.512895 0.256448 0.966558i \(-0.417448\pi\)
0.256448 + 0.966558i \(0.417448\pi\)
\(480\) 0 0
\(481\) 1.14052e7 2.24771
\(482\) −1.42132e7 −2.78660
\(483\) 0 0
\(484\) −9.66289e6 −1.87497
\(485\) −289638. −0.0559114
\(486\) 0 0
\(487\) 2.42151e6 0.462662 0.231331 0.972875i \(-0.425692\pi\)
0.231331 + 0.972875i \(0.425692\pi\)
\(488\) 1.46388e7 2.78262
\(489\) 0 0
\(490\) 2.57099e7 4.83738
\(491\) 7.86505e6 1.47231 0.736153 0.676815i \(-0.236640\pi\)
0.736153 + 0.676815i \(0.236640\pi\)
\(492\) 0 0
\(493\) 4.35227e6 0.806489
\(494\) −8.94383e6 −1.64895
\(495\) 0 0
\(496\) 7.83734e6 1.43042
\(497\) 1.13697e7 2.06470
\(498\) 0 0
\(499\) 9.14176e6 1.64353 0.821766 0.569825i \(-0.192989\pi\)
0.821766 + 0.569825i \(0.192989\pi\)
\(500\) 999812. 0.178852
\(501\) 0 0
\(502\) 1.55364e7 2.75163
\(503\) −8.62863e6 −1.52062 −0.760312 0.649558i \(-0.774954\pi\)
−0.760312 + 0.649558i \(0.774954\pi\)
\(504\) 0 0
\(505\) 1.32407e7 2.31037
\(506\) −1.99245e6 −0.345949
\(507\) 0 0
\(508\) −1.26732e6 −0.217884
\(509\) −4.61271e6 −0.789154 −0.394577 0.918863i \(-0.629109\pi\)
−0.394577 + 0.918863i \(0.629109\pi\)
\(510\) 0 0
\(511\) −8.50721e6 −1.44123
\(512\) 1.05555e7 1.77952
\(513\) 0 0
\(514\) −9.29966e6 −1.55260
\(515\) 1.14216e7 1.89762
\(516\) 0 0
\(517\) −555814. −0.0914541
\(518\) 2.70445e7 4.42848
\(519\) 0 0
\(520\) −2.30281e7 −3.73464
\(521\) 300956. 0.0485745 0.0242873 0.999705i \(-0.492268\pi\)
0.0242873 + 0.999705i \(0.492268\pi\)
\(522\) 0 0
\(523\) −4.56248e6 −0.729368 −0.364684 0.931131i \(-0.618823\pi\)
−0.364684 + 0.931131i \(0.618823\pi\)
\(524\) 9.08245e6 1.44502
\(525\) 0 0
\(526\) −1.55965e7 −2.45790
\(527\) −1.17487e7 −1.84273
\(528\) 0 0
\(529\) −2.70415e6 −0.420137
\(530\) −7.60666e6 −1.17626
\(531\) 0 0
\(532\) −1.41689e7 −2.17048
\(533\) −3.60350e6 −0.549422
\(534\) 0 0
\(535\) 9.52512e6 1.43875
\(536\) −9.80765e6 −1.47453
\(537\) 0 0
\(538\) 2.07792e6 0.309509
\(539\) −3.53577e6 −0.524219
\(540\) 0 0
\(541\) −2.92926e6 −0.430294 −0.215147 0.976582i \(-0.569023\pi\)
−0.215147 + 0.976582i \(0.569023\pi\)
\(542\) −9.86056e6 −1.44179
\(543\) 0 0
\(544\) 414936. 0.0601152
\(545\) −6.71386e6 −0.968236
\(546\) 0 0
\(547\) −8.87074e6 −1.26763 −0.633814 0.773486i \(-0.718511\pi\)
−0.633814 + 0.773486i \(0.718511\pi\)
\(548\) −2.06886e6 −0.294292
\(549\) 0 0
\(550\) 3.01716e6 0.425296
\(551\) 2.67268e6 0.375032
\(552\) 0 0
\(553\) 4.16879e6 0.579692
\(554\) −1.68821e7 −2.33696
\(555\) 0 0
\(556\) 1.77947e7 2.44120
\(557\) 4.45693e6 0.608693 0.304346 0.952561i \(-0.401562\pi\)
0.304346 + 0.952561i \(0.401562\pi\)
\(558\) 0 0
\(559\) 1.38433e7 1.87374
\(560\) −1.85872e7 −2.50463
\(561\) 0 0
\(562\) −1.90821e7 −2.54850
\(563\) 9.90939e6 1.31758 0.658788 0.752329i \(-0.271069\pi\)
0.658788 + 0.752329i \(0.271069\pi\)
\(564\) 0 0
\(565\) 9.42778e6 1.24248
\(566\) 9.70422e6 1.27327
\(567\) 0 0
\(568\) −1.61064e7 −2.09472
\(569\) 8.63426e6 1.11801 0.559003 0.829165i \(-0.311184\pi\)
0.559003 + 0.829165i \(0.311184\pi\)
\(570\) 0 0
\(571\) 1.03013e7 1.32221 0.661107 0.750292i \(-0.270087\pi\)
0.661107 + 0.750292i \(0.270087\pi\)
\(572\) 6.29370e6 0.804296
\(573\) 0 0
\(574\) −8.54478e6 −1.08248
\(575\) −5.65164e6 −0.712861
\(576\) 0 0
\(577\) −8.11115e6 −1.01425 −0.507123 0.861874i \(-0.669291\pi\)
−0.507123 + 0.861874i \(0.669291\pi\)
\(578\) −1.10228e7 −1.37237
\(579\) 0 0
\(580\) 1.36756e7 1.68801
\(581\) 2.18248e7 2.68232
\(582\) 0 0
\(583\) 1.04611e6 0.127470
\(584\) 1.20514e7 1.46219
\(585\) 0 0
\(586\) −8.70003e6 −1.04659
\(587\) 7.43685e6 0.890828 0.445414 0.895325i \(-0.353057\pi\)
0.445414 + 0.895325i \(0.353057\pi\)
\(588\) 0 0
\(589\) −7.21474e6 −0.856904
\(590\) 1.25826e6 0.148813
\(591\) 0 0
\(592\) −1.30409e7 −1.52934
\(593\) −7.25150e6 −0.846820 −0.423410 0.905938i \(-0.639167\pi\)
−0.423410 + 0.905938i \(0.639167\pi\)
\(594\) 0 0
\(595\) 2.78634e7 3.22657
\(596\) 1.68410e6 0.194201
\(597\) 0 0
\(598\) −1.76460e7 −2.01788
\(599\) 4.59027e6 0.522722 0.261361 0.965241i \(-0.415829\pi\)
0.261361 + 0.965241i \(0.415829\pi\)
\(600\) 0 0
\(601\) 1.35428e7 1.52941 0.764705 0.644381i \(-0.222885\pi\)
0.764705 + 0.644381i \(0.222885\pi\)
\(602\) 3.28259e7 3.69169
\(603\) 0 0
\(604\) −827692. −0.0923159
\(605\) 1.16691e7 1.29613
\(606\) 0 0
\(607\) −5.21495e6 −0.574484 −0.287242 0.957858i \(-0.592738\pi\)
−0.287242 + 0.957858i \(0.592738\pi\)
\(608\) 254808. 0.0279547
\(609\) 0 0
\(610\) −3.51317e7 −3.82274
\(611\) −4.92253e6 −0.533440
\(612\) 0 0
\(613\) 4.36235e6 0.468888 0.234444 0.972130i \(-0.424673\pi\)
0.234444 + 0.972130i \(0.424673\pi\)
\(614\) 1.10089e7 1.17849
\(615\) 0 0
\(616\) 7.50962e6 0.797382
\(617\) 1.09030e7 1.15302 0.576508 0.817092i \(-0.304415\pi\)
0.576508 + 0.817092i \(0.304415\pi\)
\(618\) 0 0
\(619\) −8.10259e6 −0.849958 −0.424979 0.905203i \(-0.639718\pi\)
−0.424979 + 0.905203i \(0.639718\pi\)
\(620\) −3.69164e7 −3.85691
\(621\) 0 0
\(622\) −3.24781e7 −3.36600
\(623\) −2.42128e7 −2.49933
\(624\) 0 0
\(625\) −1.03494e7 −1.05978
\(626\) 1.69513e7 1.72889
\(627\) 0 0
\(628\) 5.73029e6 0.579800
\(629\) 1.95492e7 1.97016
\(630\) 0 0
\(631\) 8.43939e6 0.843797 0.421898 0.906643i \(-0.361364\pi\)
0.421898 + 0.906643i \(0.361364\pi\)
\(632\) −5.90554e6 −0.588122
\(633\) 0 0
\(634\) −6.59375e6 −0.651492
\(635\) 1.53044e6 0.150620
\(636\) 0 0
\(637\) −3.13143e7 −3.05770
\(638\) −2.81511e6 −0.273806
\(639\) 0 0
\(640\) −2.46927e7 −2.38297
\(641\) −2.65870e6 −0.255579 −0.127789 0.991801i \(-0.540788\pi\)
−0.127789 + 0.991801i \(0.540788\pi\)
\(642\) 0 0
\(643\) −2.40948e6 −0.229825 −0.114912 0.993376i \(-0.536659\pi\)
−0.114912 + 0.993376i \(0.536659\pi\)
\(644\) −2.79549e7 −2.65610
\(645\) 0 0
\(646\) −1.53303e7 −1.44534
\(647\) 1.28476e7 1.20660 0.603298 0.797516i \(-0.293853\pi\)
0.603298 + 0.797516i \(0.293853\pi\)
\(648\) 0 0
\(649\) −173044. −0.0161266
\(650\) 2.67213e7 2.48070
\(651\) 0 0
\(652\) −1.28141e7 −1.18051
\(653\) −6.74963e6 −0.619437 −0.309718 0.950828i \(-0.600235\pi\)
−0.309718 + 0.950828i \(0.600235\pi\)
\(654\) 0 0
\(655\) −1.09682e7 −0.998919
\(656\) 4.12031e6 0.373827
\(657\) 0 0
\(658\) −1.16725e7 −1.05099
\(659\) −1.09503e7 −0.982229 −0.491115 0.871095i \(-0.663410\pi\)
−0.491115 + 0.871095i \(0.663410\pi\)
\(660\) 0 0
\(661\) −9.77692e6 −0.870359 −0.435180 0.900344i \(-0.643315\pi\)
−0.435180 + 0.900344i \(0.643315\pi\)
\(662\) 3.30516e6 0.293121
\(663\) 0 0
\(664\) −3.09172e7 −2.72132
\(665\) 1.71106e7 1.50041
\(666\) 0 0
\(667\) 5.27316e6 0.458940
\(668\) −5.32665e6 −0.461863
\(669\) 0 0
\(670\) 2.35375e7 2.02569
\(671\) 4.83151e6 0.414264
\(672\) 0 0
\(673\) 1.07479e7 0.914715 0.457357 0.889283i \(-0.348796\pi\)
0.457357 + 0.889283i \(0.348796\pi\)
\(674\) −1.35440e7 −1.14841
\(675\) 0 0
\(676\) 3.18242e7 2.67849
\(677\) −1.87032e6 −0.156835 −0.0784177 0.996921i \(-0.524987\pi\)
−0.0784177 + 0.996921i \(0.524987\pi\)
\(678\) 0 0
\(679\) 836517. 0.0696306
\(680\) −3.94715e7 −3.27349
\(681\) 0 0
\(682\) 7.59921e6 0.625615
\(683\) 5.71730e6 0.468963 0.234482 0.972121i \(-0.424661\pi\)
0.234482 + 0.972121i \(0.424661\pi\)
\(684\) 0 0
\(685\) 2.49839e6 0.203439
\(686\) −3.71802e7 −3.01649
\(687\) 0 0
\(688\) −1.58287e7 −1.27489
\(689\) 9.26481e6 0.743513
\(690\) 0 0
\(691\) 9.41471e6 0.750087 0.375044 0.927007i \(-0.377628\pi\)
0.375044 + 0.927007i \(0.377628\pi\)
\(692\) −1.62102e7 −1.28683
\(693\) 0 0
\(694\) −5.50088e6 −0.433544
\(695\) −2.14893e7 −1.68756
\(696\) 0 0
\(697\) −6.17662e6 −0.481580
\(698\) −2.23772e6 −0.173847
\(699\) 0 0
\(700\) 4.23320e7 3.26530
\(701\) 1.87698e7 1.44266 0.721332 0.692589i \(-0.243530\pi\)
0.721332 + 0.692589i \(0.243530\pi\)
\(702\) 0 0
\(703\) 1.20050e7 0.916162
\(704\) 3.30680e6 0.251464
\(705\) 0 0
\(706\) −2.96194e7 −2.23647
\(707\) −3.82411e7 −2.87728
\(708\) 0 0
\(709\) 7.43878e6 0.555759 0.277879 0.960616i \(-0.410368\pi\)
0.277879 + 0.960616i \(0.410368\pi\)
\(710\) 3.86538e7 2.87771
\(711\) 0 0
\(712\) 3.43000e7 2.53568
\(713\) −1.42346e7 −1.04863
\(714\) 0 0
\(715\) −7.60040e6 −0.555995
\(716\) −2.49666e7 −1.82002
\(717\) 0 0
\(718\) 4.34200e7 3.14325
\(719\) −1.04144e6 −0.0751295 −0.0375648 0.999294i \(-0.511960\pi\)
−0.0375648 + 0.999294i \(0.511960\pi\)
\(720\) 0 0
\(721\) −3.29872e7 −2.36324
\(722\) 1.48985e7 1.06365
\(723\) 0 0
\(724\) 1.73027e7 1.22678
\(725\) −7.98510e6 −0.564203
\(726\) 0 0
\(727\) 4.56479e6 0.320321 0.160160 0.987091i \(-0.448799\pi\)
0.160160 + 0.987091i \(0.448799\pi\)
\(728\) 6.65085e7 4.65102
\(729\) 0 0
\(730\) −2.89222e7 −2.00874
\(731\) 2.37282e7 1.64237
\(732\) 0 0
\(733\) −1.83949e7 −1.26456 −0.632278 0.774742i \(-0.717880\pi\)
−0.632278 + 0.774742i \(0.717880\pi\)
\(734\) −1.38440e6 −0.0948464
\(735\) 0 0
\(736\) 502732. 0.0342091
\(737\) −3.23701e6 −0.219520
\(738\) 0 0
\(739\) 1.71709e7 1.15660 0.578299 0.815825i \(-0.303717\pi\)
0.578299 + 0.815825i \(0.303717\pi\)
\(740\) 6.14269e7 4.12363
\(741\) 0 0
\(742\) 2.19692e7 1.46489
\(743\) −1.78392e6 −0.118550 −0.0592752 0.998242i \(-0.518879\pi\)
−0.0592752 + 0.998242i \(0.518879\pi\)
\(744\) 0 0
\(745\) −2.03375e6 −0.134248
\(746\) 4.53178e7 2.98141
\(747\) 0 0
\(748\) 1.07878e7 0.704982
\(749\) −2.75100e7 −1.79178
\(750\) 0 0
\(751\) −2.00358e7 −1.29630 −0.648152 0.761511i \(-0.724458\pi\)
−0.648152 + 0.761511i \(0.724458\pi\)
\(752\) 5.62852e6 0.362952
\(753\) 0 0
\(754\) −2.49318e7 −1.59707
\(755\) 999538. 0.0638164
\(756\) 0 0
\(757\) −2.54926e7 −1.61687 −0.808433 0.588589i \(-0.799684\pi\)
−0.808433 + 0.588589i \(0.799684\pi\)
\(758\) 2.57474e7 1.62765
\(759\) 0 0
\(760\) −2.42390e7 −1.52223
\(761\) 1.84607e7 1.15554 0.577771 0.816199i \(-0.303923\pi\)
0.577771 + 0.816199i \(0.303923\pi\)
\(762\) 0 0
\(763\) 1.93906e7 1.20581
\(764\) −3.28657e6 −0.203709
\(765\) 0 0
\(766\) 3.00677e6 0.185152
\(767\) −1.53255e6 −0.0940645
\(768\) 0 0
\(769\) 1.55369e7 0.947432 0.473716 0.880678i \(-0.342912\pi\)
0.473716 + 0.880678i \(0.342912\pi\)
\(770\) −1.80224e7 −1.09543
\(771\) 0 0
\(772\) −2.28809e7 −1.38175
\(773\) −9.75906e6 −0.587434 −0.293717 0.955892i \(-0.594892\pi\)
−0.293717 + 0.955892i \(0.594892\pi\)
\(774\) 0 0
\(775\) 2.15553e7 1.28914
\(776\) −1.18502e6 −0.0706431
\(777\) 0 0
\(778\) 3.64402e6 0.215840
\(779\) −3.79299e6 −0.223944
\(780\) 0 0
\(781\) −5.31590e6 −0.311852
\(782\) −3.02464e7 −1.76871
\(783\) 0 0
\(784\) 3.58055e7 2.08046
\(785\) −6.92002e6 −0.400805
\(786\) 0 0
\(787\) 1.36290e7 0.784383 0.392191 0.919884i \(-0.371717\pi\)
0.392191 + 0.919884i \(0.371717\pi\)
\(788\) 4.26008e7 2.44401
\(789\) 0 0
\(790\) 1.41728e7 0.807955
\(791\) −2.72288e7 −1.54735
\(792\) 0 0
\(793\) 4.27900e7 2.41635
\(794\) −2.61763e6 −0.147352
\(795\) 0 0
\(796\) −8.81375e6 −0.493035
\(797\) 1.33882e7 0.746578 0.373289 0.927715i \(-0.378230\pi\)
0.373289 + 0.927715i \(0.378230\pi\)
\(798\) 0 0
\(799\) −8.43751e6 −0.467571
\(800\) −761284. −0.0420554
\(801\) 0 0
\(802\) 3.77778e7 2.07396
\(803\) 3.97755e6 0.217684
\(804\) 0 0
\(805\) 3.37590e7 1.83611
\(806\) 6.73019e7 3.64913
\(807\) 0 0
\(808\) 5.41727e7 2.91912
\(809\) 3.54909e7 1.90654 0.953270 0.302120i \(-0.0976944\pi\)
0.953270 + 0.302120i \(0.0976944\pi\)
\(810\) 0 0
\(811\) −1.61925e7 −0.864495 −0.432247 0.901755i \(-0.642279\pi\)
−0.432247 + 0.901755i \(0.642279\pi\)
\(812\) −3.94971e7 −2.10220
\(813\) 0 0
\(814\) −1.26447e7 −0.668878
\(815\) 1.54746e7 0.816067
\(816\) 0 0
\(817\) 1.45713e7 0.763734
\(818\) 2.83402e6 0.148088
\(819\) 0 0
\(820\) −1.94080e7 −1.00797
\(821\) 2.16190e7 1.11938 0.559689 0.828702i \(-0.310920\pi\)
0.559689 + 0.828702i \(0.310920\pi\)
\(822\) 0 0
\(823\) 1.14562e7 0.589578 0.294789 0.955562i \(-0.404751\pi\)
0.294789 + 0.955562i \(0.404751\pi\)
\(824\) 4.67300e7 2.39760
\(825\) 0 0
\(826\) −3.63405e6 −0.185328
\(827\) −3.51307e7 −1.78617 −0.893085 0.449887i \(-0.851464\pi\)
−0.893085 + 0.449887i \(0.851464\pi\)
\(828\) 0 0
\(829\) −1.17530e7 −0.593968 −0.296984 0.954882i \(-0.595981\pi\)
−0.296984 + 0.954882i \(0.595981\pi\)
\(830\) 7.41985e7 3.73852
\(831\) 0 0
\(832\) 2.92864e7 1.46676
\(833\) −5.36747e7 −2.68014
\(834\) 0 0
\(835\) 6.43257e6 0.319277
\(836\) 6.62466e6 0.327829
\(837\) 0 0
\(838\) −5.01795e7 −2.46841
\(839\) −2.81875e7 −1.38246 −0.691230 0.722635i \(-0.742931\pi\)
−0.691230 + 0.722635i \(0.742931\pi\)
\(840\) 0 0
\(841\) −1.30608e7 −0.636766
\(842\) −5.01767e7 −2.43906
\(843\) 0 0
\(844\) −2.66632e7 −1.28842
\(845\) −3.84315e7 −1.85160
\(846\) 0 0
\(847\) −3.37021e7 −1.61417
\(848\) −1.05936e7 −0.505886
\(849\) 0 0
\(850\) 4.58019e7 2.17438
\(851\) 2.36856e7 1.12114
\(852\) 0 0
\(853\) 2.14819e7 1.01088 0.505440 0.862862i \(-0.331330\pi\)
0.505440 + 0.862862i \(0.331330\pi\)
\(854\) 1.01466e8 4.76074
\(855\) 0 0
\(856\) 3.89708e7 1.81784
\(857\) −1.80715e7 −0.840507 −0.420254 0.907407i \(-0.638059\pi\)
−0.420254 + 0.907407i \(0.638059\pi\)
\(858\) 0 0
\(859\) −1.80796e7 −0.835999 −0.417999 0.908447i \(-0.637269\pi\)
−0.417999 + 0.908447i \(0.637269\pi\)
\(860\) 7.45582e7 3.43755
\(861\) 0 0
\(862\) 5.71368e6 0.261907
\(863\) 1.48203e7 0.677377 0.338688 0.940899i \(-0.390017\pi\)
0.338688 + 0.940899i \(0.390017\pi\)
\(864\) 0 0
\(865\) 1.95757e7 0.889566
\(866\) −3.96439e7 −1.79631
\(867\) 0 0
\(868\) 1.06620e8 4.80329
\(869\) −1.94912e6 −0.0875567
\(870\) 0 0
\(871\) −2.86683e7 −1.28043
\(872\) −2.74689e7 −1.22335
\(873\) 0 0
\(874\) −1.85740e7 −0.822482
\(875\) 3.48713e6 0.153974
\(876\) 0 0
\(877\) −3.52762e7 −1.54876 −0.774378 0.632723i \(-0.781937\pi\)
−0.774378 + 0.632723i \(0.781937\pi\)
\(878\) −3.54481e7 −1.55187
\(879\) 0 0
\(880\) 8.69045e6 0.378299
\(881\) 2.90408e6 0.126057 0.0630287 0.998012i \(-0.479924\pi\)
0.0630287 + 0.998012i \(0.479924\pi\)
\(882\) 0 0
\(883\) −2.16118e7 −0.932803 −0.466401 0.884573i \(-0.654450\pi\)
−0.466401 + 0.884573i \(0.654450\pi\)
\(884\) 9.55413e7 4.11207
\(885\) 0 0
\(886\) 1.07149e6 0.0458568
\(887\) −2.88078e7 −1.22942 −0.614711 0.788752i \(-0.710728\pi\)
−0.614711 + 0.788752i \(0.710728\pi\)
\(888\) 0 0
\(889\) −4.42013e6 −0.187578
\(890\) −8.23170e7 −3.48349
\(891\) 0 0
\(892\) −2.51305e7 −1.05752
\(893\) −5.18139e6 −0.217429
\(894\) 0 0
\(895\) 3.01502e7 1.25815
\(896\) 7.13161e7 2.96769
\(897\) 0 0
\(898\) −1.26673e7 −0.524196
\(899\) −2.01118e7 −0.829949
\(900\) 0 0
\(901\) 1.58805e7 0.651705
\(902\) 3.99512e6 0.163498
\(903\) 0 0
\(904\) 3.85726e7 1.56985
\(905\) −2.08951e7 −0.848052
\(906\) 0 0
\(907\) −2.88533e6 −0.116460 −0.0582302 0.998303i \(-0.518546\pi\)
−0.0582302 + 0.998303i \(0.518546\pi\)
\(908\) 2.97239e7 1.19644
\(909\) 0 0
\(910\) −1.59614e8 −6.38952
\(911\) −1.43791e7 −0.574031 −0.287015 0.957926i \(-0.592663\pi\)
−0.287015 + 0.957926i \(0.592663\pi\)
\(912\) 0 0
\(913\) −1.02042e7 −0.405137
\(914\) −8.20276e7 −3.24784
\(915\) 0 0
\(916\) 4.80482e6 0.189207
\(917\) 3.16776e7 1.24403
\(918\) 0 0
\(919\) 4.00971e7 1.56612 0.783058 0.621949i \(-0.213659\pi\)
0.783058 + 0.621949i \(0.213659\pi\)
\(920\) −4.78232e7 −1.86281
\(921\) 0 0
\(922\) 5.44567e7 2.10972
\(923\) −4.70799e7 −1.81899
\(924\) 0 0
\(925\) −3.58669e7 −1.37829
\(926\) −86109.1 −0.00330006
\(927\) 0 0
\(928\) 710302. 0.0270753
\(929\) −3.70883e7 −1.40993 −0.704965 0.709242i \(-0.749037\pi\)
−0.704965 + 0.709242i \(0.749037\pi\)
\(930\) 0 0
\(931\) −3.29611e7 −1.24631
\(932\) 1.07836e7 0.406653
\(933\) 0 0
\(934\) 6.03007e7 2.26180
\(935\) −1.30275e7 −0.487342
\(936\) 0 0
\(937\) 9.91089e6 0.368777 0.184388 0.982853i \(-0.440970\pi\)
0.184388 + 0.982853i \(0.440970\pi\)
\(938\) −6.79797e7 −2.52274
\(939\) 0 0
\(940\) −2.65121e7 −0.978644
\(941\) 3.56335e7 1.31185 0.655925 0.754826i \(-0.272279\pi\)
0.655925 + 0.754826i \(0.272279\pi\)
\(942\) 0 0
\(943\) −7.48352e6 −0.274048
\(944\) 1.75235e6 0.0640015
\(945\) 0 0
\(946\) −1.53477e7 −0.557592
\(947\) 1.44861e7 0.524899 0.262450 0.964946i \(-0.415470\pi\)
0.262450 + 0.964946i \(0.415470\pi\)
\(948\) 0 0
\(949\) 3.52269e7 1.26972
\(950\) 2.81265e7 1.01113
\(951\) 0 0
\(952\) 1.14000e8 4.07672
\(953\) 1.98924e7 0.709505 0.354753 0.934960i \(-0.384565\pi\)
0.354753 + 0.934960i \(0.384565\pi\)
\(954\) 0 0
\(955\) 3.96893e6 0.140820
\(956\) −4.54981e7 −1.61008
\(957\) 0 0
\(958\) −2.52890e7 −0.890262
\(959\) −7.21573e6 −0.253358
\(960\) 0 0
\(961\) 2.56614e7 0.896337
\(962\) −1.11987e8 −3.90148
\(963\) 0 0
\(964\) 9.32377e7 3.23146
\(965\) 2.76315e7 0.955180
\(966\) 0 0
\(967\) 3.02252e7 1.03945 0.519724 0.854334i \(-0.326035\pi\)
0.519724 + 0.854334i \(0.326035\pi\)
\(968\) 4.77427e7 1.63764
\(969\) 0 0
\(970\) 2.84393e6 0.0970488
\(971\) −1.51348e7 −0.515144 −0.257572 0.966259i \(-0.582922\pi\)
−0.257572 + 0.966259i \(0.582922\pi\)
\(972\) 0 0
\(973\) 6.20642e7 2.10164
\(974\) −2.37766e7 −0.803069
\(975\) 0 0
\(976\) −4.89269e7 −1.64408
\(977\) −1.33828e7 −0.448548 −0.224274 0.974526i \(-0.572001\pi\)
−0.224274 + 0.974526i \(0.572001\pi\)
\(978\) 0 0
\(979\) 1.13207e7 0.377500
\(980\) −1.68655e8 −5.60963
\(981\) 0 0
\(982\) −7.72264e7 −2.55557
\(983\) 4.91967e7 1.62387 0.811937 0.583746i \(-0.198414\pi\)
0.811937 + 0.583746i \(0.198414\pi\)
\(984\) 0 0
\(985\) −5.14456e7 −1.68950
\(986\) −4.27346e7 −1.39987
\(987\) 0 0
\(988\) 5.86709e7 1.91219
\(989\) 2.87489e7 0.934609
\(990\) 0 0
\(991\) 5.27043e7 1.70476 0.852378 0.522927i \(-0.175160\pi\)
0.852378 + 0.522927i \(0.175160\pi\)
\(992\) −1.91742e6 −0.0618639
\(993\) 0 0
\(994\) −1.11638e8 −3.58382
\(995\) 1.06437e7 0.340827
\(996\) 0 0
\(997\) 4.95166e7 1.57766 0.788829 0.614612i \(-0.210688\pi\)
0.788829 + 0.614612i \(0.210688\pi\)
\(998\) −8.97623e7 −2.85278
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.6.a.b.1.2 yes 24
3.2 odd 2 729.6.a.a.1.23 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.6.a.a.1.23 24 3.2 odd 2
729.6.a.b.1.2 yes 24 1.1 even 1 trivial