Properties

Label 728.2.c.b.365.15
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.15
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.b.365.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.581532 - 1.28912i) q^{2} +2.40918i q^{3} +(-1.32364 + 1.49933i) q^{4} -0.687773i q^{5} +(3.10571 - 1.40101i) q^{6} +1.00000 q^{7} +(2.70254 + 0.834421i) q^{8} -2.80413 q^{9} +(-0.886619 + 0.399962i) q^{10} +3.21615i q^{11} +(-3.61214 - 3.18888i) q^{12} -1.00000i q^{13} +(-0.581532 - 1.28912i) q^{14} +1.65697 q^{15} +(-0.495951 - 3.96913i) q^{16} +6.73233 q^{17} +(1.63069 + 3.61485i) q^{18} +4.13763i q^{19} +(1.03119 + 0.910364i) q^{20} +2.40918i q^{21} +(4.14598 - 1.87029i) q^{22} -7.04171 q^{23} +(-2.01027 + 6.51091i) q^{24} +4.52697 q^{25} +(-1.28912 + 0.581532i) q^{26} +0.471879i q^{27} +(-1.32364 + 1.49933i) q^{28} -4.45687i q^{29} +(-0.963579 - 2.13602i) q^{30} -8.29157 q^{31} +(-4.82826 + 2.94752i) q^{32} -7.74826 q^{33} +(-3.91507 - 8.67876i) q^{34} -0.687773i q^{35} +(3.71166 - 4.20431i) q^{36} +7.82265i q^{37} +(5.33388 - 2.40616i) q^{38} +2.40918 q^{39} +(0.573892 - 1.85874i) q^{40} -4.81888 q^{41} +(3.10571 - 1.40101i) q^{42} +12.7017i q^{43} +(-4.82205 - 4.25702i) q^{44} +1.92861i q^{45} +(4.09498 + 9.07758i) q^{46} +7.90753 q^{47} +(9.56235 - 1.19483i) q^{48} +1.00000 q^{49} +(-2.63258 - 5.83579i) q^{50} +16.2194i q^{51} +(1.49933 + 1.32364i) q^{52} +10.0261i q^{53} +(0.608307 - 0.274413i) q^{54} +2.21198 q^{55} +(2.70254 + 0.834421i) q^{56} -9.96828 q^{57} +(-5.74542 + 2.59181i) q^{58} +3.97386i q^{59} +(-2.19323 + 2.48433i) q^{60} -2.07834i q^{61} +(4.82182 + 10.6888i) q^{62} -2.80413 q^{63} +(6.60748 + 4.51012i) q^{64} -0.687773 q^{65} +(4.50586 + 9.98841i) q^{66} -11.4528i q^{67} +(-8.91119 + 10.0940i) q^{68} -16.9647i q^{69} +(-0.886619 + 0.399962i) q^{70} +11.8606 q^{71} +(-7.57829 - 2.33983i) q^{72} -16.8777 q^{73} +(10.0843 - 4.54912i) q^{74} +10.9063i q^{75} +(-6.20365 - 5.47673i) q^{76} +3.21615i q^{77} +(-1.40101 - 3.10571i) q^{78} +0.900413 q^{79} +(-2.72986 + 0.341102i) q^{80} -9.54924 q^{81} +(2.80233 + 6.21210i) q^{82} +2.06372i q^{83} +(-3.61214 - 3.18888i) q^{84} -4.63031i q^{85} +(16.3740 - 7.38644i) q^{86} +10.7374 q^{87} +(-2.68362 + 8.69177i) q^{88} +11.8949 q^{89} +(2.48620 - 1.12155i) q^{90} -1.00000i q^{91} +(9.32069 - 10.5578i) q^{92} -19.9759i q^{93} +(-4.59848 - 10.1937i) q^{94} +2.84575 q^{95} +(-7.10109 - 11.6321i) q^{96} -8.07789 q^{97} +(-0.581532 - 1.28912i) q^{98} -9.01850i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 8 q^{4} + 14 q^{6} + 38 q^{7} - 6 q^{8} - 46 q^{9} - 4 q^{12} - 8 q^{15} - 4 q^{16} + 20 q^{17} + 4 q^{18} - 24 q^{20} + 10 q^{22} + 12 q^{23} + 10 q^{24} - 50 q^{25} + 8 q^{28} + 4 q^{30} + 16 q^{31}+ \cdots + 82 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.581532 1.28912i −0.411205 0.911543i
\(3\) 2.40918i 1.39094i 0.718556 + 0.695469i \(0.244804\pi\)
−0.718556 + 0.695469i \(0.755196\pi\)
\(4\) −1.32364 + 1.49933i −0.661820 + 0.749663i
\(5\) 0.687773i 0.307581i −0.988103 0.153791i \(-0.950852\pi\)
0.988103 0.153791i \(-0.0491481\pi\)
\(6\) 3.10571 1.40101i 1.26790 0.571962i
\(7\) 1.00000 0.377964
\(8\) 2.70254 + 0.834421i 0.955493 + 0.295012i
\(9\) −2.80413 −0.934711
\(10\) −0.886619 + 0.399962i −0.280373 + 0.126479i
\(11\) 3.21615i 0.969704i 0.874596 + 0.484852i \(0.161127\pi\)
−0.874596 + 0.484852i \(0.838873\pi\)
\(12\) −3.61214 3.18888i −1.04273 0.920552i
\(13\) 1.00000i 0.277350i
\(14\) −0.581532 1.28912i −0.155421 0.344531i
\(15\) 1.65697 0.427827
\(16\) −0.495951 3.96913i −0.123988 0.992284i
\(17\) 6.73233 1.63283 0.816415 0.577466i \(-0.195958\pi\)
0.816415 + 0.577466i \(0.195958\pi\)
\(18\) 1.63069 + 3.61485i 0.384358 + 0.852029i
\(19\) 4.13763i 0.949237i 0.880192 + 0.474618i \(0.157414\pi\)
−0.880192 + 0.474618i \(0.842586\pi\)
\(20\) 1.03119 + 0.910364i 0.230582 + 0.203564i
\(21\) 2.40918i 0.525725i
\(22\) 4.14598 1.87029i 0.883927 0.398748i
\(23\) −7.04171 −1.46830 −0.734149 0.678988i \(-0.762419\pi\)
−0.734149 + 0.678988i \(0.762419\pi\)
\(24\) −2.01027 + 6.51091i −0.410344 + 1.32903i
\(25\) 4.52697 0.905394
\(26\) −1.28912 + 0.581532i −0.252816 + 0.114048i
\(27\) 0.471879i 0.0908132i
\(28\) −1.32364 + 1.49933i −0.250145 + 0.283346i
\(29\) 4.45687i 0.827620i −0.910363 0.413810i \(-0.864198\pi\)
0.910363 0.413810i \(-0.135802\pi\)
\(30\) −0.963579 2.13602i −0.175925 0.389982i
\(31\) −8.29157 −1.48921 −0.744605 0.667505i \(-0.767362\pi\)
−0.744605 + 0.667505i \(0.767362\pi\)
\(32\) −4.82826 + 2.94752i −0.853525 + 0.521053i
\(33\) −7.74826 −1.34880
\(34\) −3.91507 8.67876i −0.671428 1.48839i
\(35\) 0.687773i 0.116255i
\(36\) 3.71166 4.20431i 0.618611 0.700718i
\(37\) 7.82265i 1.28604i 0.765851 + 0.643018i \(0.222318\pi\)
−0.765851 + 0.643018i \(0.777682\pi\)
\(38\) 5.33388 2.40616i 0.865270 0.390331i
\(39\) 2.40918 0.385777
\(40\) 0.573892 1.85874i 0.0907402 0.293892i
\(41\) −4.81888 −0.752583 −0.376291 0.926501i \(-0.622801\pi\)
−0.376291 + 0.926501i \(0.622801\pi\)
\(42\) 3.10571 1.40101i 0.479221 0.216181i
\(43\) 12.7017i 1.93699i 0.249032 + 0.968495i \(0.419887\pi\)
−0.249032 + 0.968495i \(0.580113\pi\)
\(44\) −4.82205 4.25702i −0.726951 0.641770i
\(45\) 1.92861i 0.287500i
\(46\) 4.09498 + 9.07758i 0.603772 + 1.33842i
\(47\) 7.90753 1.15343 0.576716 0.816945i \(-0.304334\pi\)
0.576716 + 0.816945i \(0.304334\pi\)
\(48\) 9.56235 1.19483i 1.38021 0.172459i
\(49\) 1.00000 0.142857
\(50\) −2.63258 5.83579i −0.372303 0.825305i
\(51\) 16.2194i 2.27117i
\(52\) 1.49933 + 1.32364i 0.207919 + 0.183556i
\(53\) 10.0261i 1.37719i 0.725147 + 0.688594i \(0.241772\pi\)
−0.725147 + 0.688594i \(0.758228\pi\)
\(54\) 0.608307 0.274413i 0.0827801 0.0373429i
\(55\) 2.21198 0.298263
\(56\) 2.70254 + 0.834421i 0.361143 + 0.111504i
\(57\) −9.96828 −1.32033
\(58\) −5.74542 + 2.59181i −0.754411 + 0.340322i
\(59\) 3.97386i 0.517352i 0.965964 + 0.258676i \(0.0832862\pi\)
−0.965964 + 0.258676i \(0.916714\pi\)
\(60\) −2.19323 + 2.48433i −0.283144 + 0.320726i
\(61\) 2.07834i 0.266104i −0.991109 0.133052i \(-0.957522\pi\)
0.991109 0.133052i \(-0.0424777\pi\)
\(62\) 4.82182 + 10.6888i 0.612371 + 1.35748i
\(63\) −2.80413 −0.353287
\(64\) 6.60748 + 4.51012i 0.825936 + 0.563765i
\(65\) −0.687773 −0.0853077
\(66\) 4.50586 + 9.98841i 0.554633 + 1.22949i
\(67\) 11.4528i 1.39918i −0.714543 0.699591i \(-0.753365\pi\)
0.714543 0.699591i \(-0.246635\pi\)
\(68\) −8.91119 + 10.0940i −1.08064 + 1.22407i
\(69\) 16.9647i 2.04231i
\(70\) −0.886619 + 0.399962i −0.105971 + 0.0478046i
\(71\) 11.8606 1.40759 0.703797 0.710401i \(-0.251486\pi\)
0.703797 + 0.710401i \(0.251486\pi\)
\(72\) −7.57829 2.33983i −0.893110 0.275751i
\(73\) −16.8777 −1.97538 −0.987691 0.156420i \(-0.950005\pi\)
−0.987691 + 0.156420i \(0.950005\pi\)
\(74\) 10.0843 4.54912i 1.17228 0.528825i
\(75\) 10.9063i 1.25935i
\(76\) −6.20365 5.47673i −0.711607 0.628224i
\(77\) 3.21615i 0.366514i
\(78\) −1.40101 3.10571i −0.158634 0.351652i
\(79\) 0.900413 0.101304 0.0506522 0.998716i \(-0.483870\pi\)
0.0506522 + 0.998716i \(0.483870\pi\)
\(80\) −2.72986 + 0.341102i −0.305208 + 0.0381363i
\(81\) −9.54924 −1.06103
\(82\) 2.80233 + 6.21210i 0.309466 + 0.686011i
\(83\) 2.06372i 0.226522i 0.993565 + 0.113261i \(0.0361297\pi\)
−0.993565 + 0.113261i \(0.963870\pi\)
\(84\) −3.61214 3.18888i −0.394117 0.347936i
\(85\) 4.63031i 0.502228i
\(86\) 16.3740 7.38644i 1.76565 0.796501i
\(87\) 10.7374 1.15117
\(88\) −2.68362 + 8.69177i −0.286075 + 0.926546i
\(89\) 11.8949 1.26085 0.630427 0.776249i \(-0.282880\pi\)
0.630427 + 0.776249i \(0.282880\pi\)
\(90\) 2.48620 1.12155i 0.262068 0.118221i
\(91\) 1.00000i 0.104828i
\(92\) 9.32069 10.5578i 0.971749 1.10073i
\(93\) 19.9759i 2.07140i
\(94\) −4.59848 10.1937i −0.474297 1.05140i
\(95\) 2.84575 0.291968
\(96\) −7.10109 11.6321i −0.724752 1.18720i
\(97\) −8.07789 −0.820185 −0.410093 0.912044i \(-0.634504\pi\)
−0.410093 + 0.912044i \(0.634504\pi\)
\(98\) −0.581532 1.28912i −0.0587436 0.130220i
\(99\) 9.01850i 0.906393i
\(100\) −5.99208 + 6.78740i −0.599208 + 0.678740i
\(101\) 7.62035i 0.758254i 0.925345 + 0.379127i \(0.123776\pi\)
−0.925345 + 0.379127i \(0.876224\pi\)
\(102\) 20.9087 9.43209i 2.07027 0.933916i
\(103\) −5.04500 −0.497098 −0.248549 0.968619i \(-0.579954\pi\)
−0.248549 + 0.968619i \(0.579954\pi\)
\(104\) 0.834421 2.70254i 0.0818217 0.265006i
\(105\) 1.65697 0.161703
\(106\) 12.9248 5.83049i 1.25537 0.566307i
\(107\) 16.1219i 1.55856i −0.626675 0.779281i \(-0.715585\pi\)
0.626675 0.779281i \(-0.284415\pi\)
\(108\) −0.707500 0.624599i −0.0680793 0.0601020i
\(109\) 11.1382i 1.06685i −0.845848 0.533424i \(-0.820905\pi\)
0.845848 0.533424i \(-0.179095\pi\)
\(110\) −1.28634 2.85149i −0.122647 0.271879i
\(111\) −18.8462 −1.78880
\(112\) −0.495951 3.96913i −0.0468630 0.375048i
\(113\) 19.2899 1.81464 0.907320 0.420442i \(-0.138125\pi\)
0.907320 + 0.420442i \(0.138125\pi\)
\(114\) 5.79687 + 12.8503i 0.542927 + 1.20354i
\(115\) 4.84309i 0.451621i
\(116\) 6.68230 + 5.89930i 0.620436 + 0.547736i
\(117\) 2.80413i 0.259242i
\(118\) 5.12276 2.31093i 0.471589 0.212738i
\(119\) 6.73233 0.617152
\(120\) 4.47802 + 1.38261i 0.408786 + 0.126214i
\(121\) 0.656411 0.0596738
\(122\) −2.67922 + 1.20862i −0.242565 + 0.109423i
\(123\) 11.6095i 1.04680i
\(124\) 10.9751 12.4318i 0.985590 1.11641i
\(125\) 6.55239i 0.586063i
\(126\) 1.63069 + 3.61485i 0.145274 + 0.322037i
\(127\) 12.8222 1.13778 0.568892 0.822412i \(-0.307372\pi\)
0.568892 + 0.822412i \(0.307372\pi\)
\(128\) 1.97160 11.1406i 0.174266 0.984699i
\(129\) −30.6006 −2.69424
\(130\) 0.399962 + 0.886619i 0.0350790 + 0.0777616i
\(131\) 3.98575i 0.348237i 0.984725 + 0.174118i \(0.0557075\pi\)
−0.984725 + 0.174118i \(0.944292\pi\)
\(132\) 10.2559 11.6172i 0.892663 1.01114i
\(133\) 4.13763i 0.358778i
\(134\) −14.7640 + 6.66017i −1.27541 + 0.575351i
\(135\) 0.324546 0.0279324
\(136\) 18.1944 + 5.61760i 1.56016 + 0.481705i
\(137\) 5.92401 0.506122 0.253061 0.967450i \(-0.418563\pi\)
0.253061 + 0.967450i \(0.418563\pi\)
\(138\) −21.8695 + 9.86553i −1.86166 + 0.839810i
\(139\) 3.12806i 0.265318i −0.991162 0.132659i \(-0.957648\pi\)
0.991162 0.132659i \(-0.0423516\pi\)
\(140\) 1.03119 + 0.910364i 0.0871519 + 0.0769398i
\(141\) 19.0506i 1.60435i
\(142\) −6.89732 15.2897i −0.578811 1.28308i
\(143\) 3.21615 0.268948
\(144\) 1.39071 + 11.1300i 0.115893 + 0.927498i
\(145\) −3.06531 −0.254560
\(146\) 9.81490 + 21.7573i 0.812287 + 1.80064i
\(147\) 2.40918i 0.198706i
\(148\) −11.7287 10.3544i −0.964093 0.851125i
\(149\) 2.20901i 0.180969i 0.995898 + 0.0904846i \(0.0288416\pi\)
−0.995898 + 0.0904846i \(0.971158\pi\)
\(150\) 14.0594 6.34235i 1.14795 0.517850i
\(151\) −4.94770 −0.402638 −0.201319 0.979526i \(-0.564523\pi\)
−0.201319 + 0.979526i \(0.564523\pi\)
\(152\) −3.45252 + 11.1821i −0.280037 + 0.906990i
\(153\) −18.8783 −1.52622
\(154\) 4.14598 1.87029i 0.334093 0.150712i
\(155\) 5.70272i 0.458053i
\(156\) −3.18888 + 3.61214i −0.255315 + 0.289203i
\(157\) 20.8723i 1.66579i −0.553430 0.832895i \(-0.686681\pi\)
0.553430 0.832895i \(-0.313319\pi\)
\(158\) −0.523619 1.16074i −0.0416569 0.0923432i
\(159\) −24.1546 −1.91558
\(160\) 2.02722 + 3.32075i 0.160266 + 0.262528i
\(161\) −7.04171 −0.554964
\(162\) 5.55319 + 12.3101i 0.436300 + 0.967171i
\(163\) 11.1250i 0.871374i −0.900098 0.435687i \(-0.856505\pi\)
0.900098 0.435687i \(-0.143495\pi\)
\(164\) 6.37847 7.22507i 0.498075 0.564183i
\(165\) 5.32904i 0.414865i
\(166\) 2.66037 1.20012i 0.206485 0.0931472i
\(167\) −5.73008 −0.443407 −0.221703 0.975114i \(-0.571162\pi\)
−0.221703 + 0.975114i \(0.571162\pi\)
\(168\) −2.01027 + 6.51091i −0.155095 + 0.502327i
\(169\) −1.00000 −0.0769231
\(170\) −5.96901 + 2.69268i −0.457802 + 0.206519i
\(171\) 11.6025i 0.887262i
\(172\) −19.0440 16.8125i −1.45209 1.28194i
\(173\) 8.86006i 0.673618i −0.941573 0.336809i \(-0.890652\pi\)
0.941573 0.336809i \(-0.109348\pi\)
\(174\) −6.24414 13.8417i −0.473367 1.04934i
\(175\) 4.52697 0.342207
\(176\) 12.7653 1.59505i 0.962222 0.120231i
\(177\) −9.57373 −0.719605
\(178\) −6.91725 15.3339i −0.518470 1.14932i
\(179\) 5.50445i 0.411422i −0.978613 0.205711i \(-0.934049\pi\)
0.978613 0.205711i \(-0.0659507\pi\)
\(180\) −2.89161 2.55278i −0.215528 0.190273i
\(181\) 14.5090i 1.07845i 0.842163 + 0.539223i \(0.181282\pi\)
−0.842163 + 0.539223i \(0.818718\pi\)
\(182\) −1.28912 + 0.581532i −0.0955556 + 0.0431060i
\(183\) 5.00708 0.370134
\(184\) −19.0305 5.87575i −1.40295 0.433166i
\(185\) 5.38021 0.395561
\(186\) −25.7512 + 11.6166i −1.88817 + 0.851771i
\(187\) 21.6522i 1.58336i
\(188\) −10.4667 + 11.8560i −0.763364 + 0.864684i
\(189\) 0.471879i 0.0343242i
\(190\) −1.65489 3.66850i −0.120059 0.266141i
\(191\) 17.4734 1.26433 0.632165 0.774834i \(-0.282166\pi\)
0.632165 + 0.774834i \(0.282166\pi\)
\(192\) −10.8657 + 15.9186i −0.784162 + 1.14883i
\(193\) 5.20134 0.374401 0.187200 0.982322i \(-0.440059\pi\)
0.187200 + 0.982322i \(0.440059\pi\)
\(194\) 4.69755 + 10.4133i 0.337265 + 0.747634i
\(195\) 1.65697i 0.118658i
\(196\) −1.32364 + 1.49933i −0.0945458 + 0.107095i
\(197\) 5.95897i 0.424559i −0.977209 0.212279i \(-0.931911\pi\)
0.977209 0.212279i \(-0.0680887\pi\)
\(198\) −11.6259 + 5.24455i −0.826216 + 0.372714i
\(199\) 12.1075 0.858276 0.429138 0.903239i \(-0.358817\pi\)
0.429138 + 0.903239i \(0.358817\pi\)
\(200\) 12.2343 + 3.77740i 0.865098 + 0.267102i
\(201\) 27.5918 1.94618
\(202\) 9.82352 4.43148i 0.691180 0.311798i
\(203\) 4.45687i 0.312811i
\(204\) −24.3181 21.4686i −1.70261 1.50310i
\(205\) 3.31429i 0.231480i
\(206\) 2.93383 + 6.50359i 0.204409 + 0.453126i
\(207\) 19.7459 1.37243
\(208\) −3.96913 + 0.495951i −0.275210 + 0.0343880i
\(209\) −13.3072 −0.920479
\(210\) −0.963579 2.13602i −0.0664933 0.147399i
\(211\) 9.71594i 0.668873i 0.942418 + 0.334437i \(0.108546\pi\)
−0.942418 + 0.334437i \(0.891454\pi\)
\(212\) −15.0324 13.2709i −1.03243 0.911451i
\(213\) 28.5743i 1.95788i
\(214\) −20.7830 + 9.37540i −1.42070 + 0.640889i
\(215\) 8.73588 0.595782
\(216\) −0.393746 + 1.27527i −0.0267910 + 0.0867714i
\(217\) −8.29157 −0.562869
\(218\) −14.3585 + 6.47723i −0.972478 + 0.438694i
\(219\) 40.6613i 2.74763i
\(220\) −2.92786 + 3.31647i −0.197396 + 0.223596i
\(221\) 6.73233i 0.452866i
\(222\) 10.9596 + 24.2949i 0.735563 + 1.63057i
\(223\) −19.4803 −1.30450 −0.652249 0.758005i \(-0.726174\pi\)
−0.652249 + 0.758005i \(0.726174\pi\)
\(224\) −4.82826 + 2.94752i −0.322602 + 0.196939i
\(225\) −12.6942 −0.846281
\(226\) −11.2177 24.8669i −0.746189 1.65412i
\(227\) 5.75489i 0.381966i 0.981593 + 0.190983i \(0.0611675\pi\)
−0.981593 + 0.190983i \(0.938833\pi\)
\(228\) 13.1944 14.9457i 0.873822 0.989802i
\(229\) 4.51943i 0.298652i 0.988788 + 0.149326i \(0.0477104\pi\)
−0.988788 + 0.149326i \(0.952290\pi\)
\(230\) 6.24331 2.81642i 0.411672 0.185709i
\(231\) −7.74826 −0.509798
\(232\) 3.71891 12.0449i 0.244158 0.790786i
\(233\) 2.03939 0.133605 0.0668025 0.997766i \(-0.478720\pi\)
0.0668025 + 0.997766i \(0.478720\pi\)
\(234\) 3.61485 1.63069i 0.236310 0.106602i
\(235\) 5.43858i 0.354774i
\(236\) −5.95810 5.25996i −0.387840 0.342394i
\(237\) 2.16925i 0.140908i
\(238\) −3.91507 8.67876i −0.253776 0.562560i
\(239\) 8.01616 0.518522 0.259261 0.965807i \(-0.416521\pi\)
0.259261 + 0.965807i \(0.416521\pi\)
\(240\) −0.821774 6.57672i −0.0530453 0.424526i
\(241\) 3.51113 0.226172 0.113086 0.993585i \(-0.463927\pi\)
0.113086 + 0.993585i \(0.463927\pi\)
\(242\) −0.381724 0.846190i −0.0245382 0.0543952i
\(243\) 21.5902i 1.38501i
\(244\) 3.11610 + 2.75097i 0.199488 + 0.176113i
\(245\) 0.687773i 0.0439402i
\(246\) −14.9660 + 6.75132i −0.954200 + 0.430448i
\(247\) 4.13763 0.263271
\(248\) −22.4083 6.91866i −1.42293 0.439335i
\(249\) −4.97186 −0.315079
\(250\) −8.44679 + 3.81042i −0.534222 + 0.240992i
\(251\) 12.4594i 0.786430i −0.919447 0.393215i \(-0.871363\pi\)
0.919447 0.393215i \(-0.128637\pi\)
\(252\) 3.71166 4.20431i 0.233813 0.264846i
\(253\) 22.6472i 1.42381i
\(254\) −7.45651 16.5293i −0.467863 1.03714i
\(255\) 11.1552 0.698568
\(256\) −15.5081 + 3.93699i −0.969254 + 0.246062i
\(257\) 1.98847 0.124037 0.0620186 0.998075i \(-0.480246\pi\)
0.0620186 + 0.998075i \(0.480246\pi\)
\(258\) 17.7952 + 39.4478i 1.10788 + 2.45591i
\(259\) 7.82265i 0.486076i
\(260\) 0.910364 1.03119i 0.0564584 0.0639520i
\(261\) 12.4977i 0.773586i
\(262\) 5.13809 2.31784i 0.317433 0.143197i
\(263\) 25.0187 1.54272 0.771360 0.636399i \(-0.219577\pi\)
0.771360 + 0.636399i \(0.219577\pi\)
\(264\) −20.9400 6.46531i −1.28877 0.397912i
\(265\) 6.89566 0.423597
\(266\) 5.33388 2.40616i 0.327041 0.147531i
\(267\) 28.6569i 1.75377i
\(268\) 17.1715 + 15.1594i 1.04891 + 0.926008i
\(269\) 16.1113i 0.982326i 0.871068 + 0.491163i \(0.163428\pi\)
−0.871068 + 0.491163i \(0.836572\pi\)
\(270\) −0.188734 0.418377i −0.0114860 0.0254616i
\(271\) −16.8822 −1.02552 −0.512759 0.858532i \(-0.671377\pi\)
−0.512759 + 0.858532i \(0.671377\pi\)
\(272\) −3.33891 26.7215i −0.202451 1.62023i
\(273\) 2.40918 0.145810
\(274\) −3.44500 7.63673i −0.208120 0.461352i
\(275\) 14.5594i 0.877964i
\(276\) 25.4356 + 22.4552i 1.53105 + 1.35164i
\(277\) 6.69730i 0.402402i 0.979550 + 0.201201i \(0.0644844\pi\)
−0.979550 + 0.201201i \(0.935516\pi\)
\(278\) −4.03243 + 1.81907i −0.241849 + 0.109100i
\(279\) 23.2507 1.39198
\(280\) 0.573892 1.85874i 0.0342966 0.111081i
\(281\) −22.9392 −1.36844 −0.684218 0.729278i \(-0.739856\pi\)
−0.684218 + 0.729278i \(0.739856\pi\)
\(282\) 24.5585 11.0786i 1.46244 0.659718i
\(283\) 1.57480i 0.0936120i 0.998904 + 0.0468060i \(0.0149043\pi\)
−0.998904 + 0.0468060i \(0.985096\pi\)
\(284\) −15.6992 + 17.7829i −0.931575 + 1.05522i
\(285\) 6.85591i 0.406109i
\(286\) −1.87029 4.14598i −0.110593 0.245157i
\(287\) −4.81888 −0.284450
\(288\) 13.5391 8.26523i 0.797799 0.487033i
\(289\) 28.3243 1.66613
\(290\) 1.78258 + 3.95155i 0.104677 + 0.232043i
\(291\) 19.4611i 1.14083i
\(292\) 22.3400 25.3051i 1.30735 1.48087i
\(293\) 27.8609i 1.62765i −0.581111 0.813825i \(-0.697382\pi\)
0.581111 0.813825i \(-0.302618\pi\)
\(294\) 3.10571 1.40101i 0.181129 0.0817088i
\(295\) 2.73311 0.159128
\(296\) −6.52738 + 21.1411i −0.379396 + 1.22880i
\(297\) −1.51763 −0.0880619
\(298\) 2.84767 1.28461i 0.164961 0.0744155i
\(299\) 7.04171i 0.407233i
\(300\) −16.3520 14.4360i −0.944085 0.833462i
\(301\) 12.7017i 0.732114i
\(302\) 2.87725 + 6.37816i 0.165567 + 0.367022i
\(303\) −18.3588 −1.05468
\(304\) 16.4228 2.05206i 0.941912 0.117694i
\(305\) −1.42942 −0.0818485
\(306\) 10.9784 + 24.3364i 0.627591 + 1.39122i
\(307\) 21.6337i 1.23470i −0.786689 0.617349i \(-0.788207\pi\)
0.786689 0.617349i \(-0.211793\pi\)
\(308\) −4.82205 4.25702i −0.274762 0.242566i
\(309\) 12.1543i 0.691433i
\(310\) 7.35146 3.31631i 0.417535 0.188354i
\(311\) 12.6974 0.720006 0.360003 0.932951i \(-0.382776\pi\)
0.360003 + 0.932951i \(0.382776\pi\)
\(312\) 6.51091 + 2.01027i 0.368607 + 0.113809i
\(313\) 23.8266 1.34676 0.673380 0.739297i \(-0.264842\pi\)
0.673380 + 0.739297i \(0.264842\pi\)
\(314\) −26.9068 + 12.1379i −1.51844 + 0.684982i
\(315\) 1.92861i 0.108665i
\(316\) −1.19182 + 1.35001i −0.0670453 + 0.0759441i
\(317\) 0.958688i 0.0538453i 0.999638 + 0.0269226i \(0.00857078\pi\)
−0.999638 + 0.0269226i \(0.991429\pi\)
\(318\) 14.0467 + 31.1381i 0.787699 + 1.74614i
\(319\) 14.3339 0.802547
\(320\) 3.10193 4.54445i 0.173403 0.254042i
\(321\) 38.8405 2.16786
\(322\) 4.09498 + 9.07758i 0.228204 + 0.505874i
\(323\) 27.8559i 1.54994i
\(324\) 12.6398 14.3174i 0.702209 0.795412i
\(325\) 4.52697i 0.251111i
\(326\) −14.3414 + 6.46952i −0.794295 + 0.358314i
\(327\) 26.8339 1.48392
\(328\) −13.0232 4.02097i −0.719088 0.222021i
\(329\) 7.90753 0.435956
\(330\) 6.86975 3.09901i 0.378168 0.170595i
\(331\) 6.17550i 0.339436i −0.985493 0.169718i \(-0.945714\pi\)
0.985493 0.169718i \(-0.0542857\pi\)
\(332\) −3.09418 2.73162i −0.169815 0.149917i
\(333\) 21.9358i 1.20207i
\(334\) 3.33223 + 7.38674i 0.182331 + 0.404184i
\(335\) −7.87693 −0.430362
\(336\) 9.56235 1.19483i 0.521669 0.0651835i
\(337\) −6.59480 −0.359242 −0.179621 0.983736i \(-0.557487\pi\)
−0.179621 + 0.983736i \(0.557487\pi\)
\(338\) 0.581532 + 1.28912i 0.0316312 + 0.0701187i
\(339\) 46.4727i 2.52405i
\(340\) 6.94234 + 6.12887i 0.376501 + 0.332385i
\(341\) 26.6669i 1.44409i
\(342\) −14.9569 + 6.74720i −0.808777 + 0.364847i
\(343\) 1.00000 0.0539949
\(344\) −10.5986 + 34.3269i −0.571436 + 1.85078i
\(345\) −11.6679 −0.628177
\(346\) −11.4216 + 5.15241i −0.614032 + 0.276995i
\(347\) 10.6595i 0.572233i −0.958195 0.286117i \(-0.907636\pi\)
0.958195 0.286117i \(-0.0923645\pi\)
\(348\) −14.2124 + 16.0988i −0.761867 + 0.862988i
\(349\) 20.7465i 1.11053i 0.831673 + 0.555266i \(0.187384\pi\)
−0.831673 + 0.555266i \(0.812616\pi\)
\(350\) −2.63258 5.83579i −0.140717 0.311936i
\(351\) 0.471879 0.0251871
\(352\) −9.47965 15.5284i −0.505267 0.827666i
\(353\) 5.86613 0.312223 0.156111 0.987739i \(-0.450104\pi\)
0.156111 + 0.987739i \(0.450104\pi\)
\(354\) 5.56743 + 12.3416i 0.295906 + 0.655951i
\(355\) 8.15740i 0.432950i
\(356\) −15.7445 + 17.8343i −0.834459 + 0.945215i
\(357\) 16.2194i 0.858420i
\(358\) −7.09587 + 3.20101i −0.375029 + 0.169179i
\(359\) 32.1557 1.69711 0.848556 0.529105i \(-0.177472\pi\)
0.848556 + 0.529105i \(0.177472\pi\)
\(360\) −1.60927 + 5.21214i −0.0848159 + 0.274704i
\(361\) 1.88004 0.0989492
\(362\) 18.7038 8.43745i 0.983049 0.443462i
\(363\) 1.58141i 0.0830025i
\(364\) 1.49933 + 1.32364i 0.0785860 + 0.0693776i
\(365\) 11.6080i 0.607590i
\(366\) −2.91178 6.45470i −0.152201 0.337393i
\(367\) −0.00587334 −0.000306586 −0.000153293 1.00000i \(-0.500049\pi\)
−0.000153293 1.00000i \(0.500049\pi\)
\(368\) 3.49234 + 27.9495i 0.182051 + 1.45697i
\(369\) 13.5128 0.703447
\(370\) −3.12876 6.93571i −0.162657 0.360570i
\(371\) 10.0261i 0.520528i
\(372\) 29.9503 + 26.4409i 1.55285 + 1.37090i
\(373\) 22.2332i 1.15119i −0.817734 0.575596i \(-0.804770\pi\)
0.817734 0.575596i \(-0.195230\pi\)
\(374\) 27.9121 12.5914i 1.44330 0.651087i
\(375\) 15.7859 0.815178
\(376\) 21.3704 + 6.59820i 1.10210 + 0.340276i
\(377\) −4.45687 −0.229541
\(378\) 0.608307 0.274413i 0.0312879 0.0141143i
\(379\) 4.20029i 0.215754i −0.994164 0.107877i \(-0.965595\pi\)
0.994164 0.107877i \(-0.0344053\pi\)
\(380\) −3.76675 + 4.26670i −0.193230 + 0.218877i
\(381\) 30.8909i 1.58259i
\(382\) −10.1613 22.5252i −0.519899 1.15249i
\(383\) 3.25784 0.166468 0.0832339 0.996530i \(-0.473475\pi\)
0.0832339 + 0.996530i \(0.473475\pi\)
\(384\) 26.8397 + 4.74993i 1.36966 + 0.242394i
\(385\) 2.21198 0.112733
\(386\) −3.02475 6.70514i −0.153956 0.341282i
\(387\) 35.6172i 1.81053i
\(388\) 10.6922 12.1114i 0.542815 0.614862i
\(389\) 20.0798i 1.01809i 0.860741 + 0.509043i \(0.170001\pi\)
−0.860741 + 0.509043i \(0.829999\pi\)
\(390\) −2.13602 + 0.963579i −0.108162 + 0.0487927i
\(391\) −47.4071 −2.39748
\(392\) 2.70254 + 0.834421i 0.136499 + 0.0421446i
\(393\) −9.60238 −0.484376
\(394\) −7.68180 + 3.46533i −0.387004 + 0.174581i
\(395\) 0.619279i 0.0311593i
\(396\) 13.5217 + 11.9372i 0.679489 + 0.599869i
\(397\) 23.0645i 1.15758i −0.815478 0.578788i \(-0.803526\pi\)
0.815478 0.578788i \(-0.196474\pi\)
\(398\) −7.04089 15.6079i −0.352928 0.782355i
\(399\) −9.96828 −0.499038
\(400\) −2.24515 17.9682i −0.112258 0.898408i
\(401\) 6.25670 0.312445 0.156222 0.987722i \(-0.450068\pi\)
0.156222 + 0.987722i \(0.450068\pi\)
\(402\) −16.0455 35.5691i −0.800279 1.77402i
\(403\) 8.29157i 0.413033i
\(404\) −11.4254 10.0866i −0.568434 0.501828i
\(405\) 6.56770i 0.326352i
\(406\) −5.74542 + 2.59181i −0.285141 + 0.128630i
\(407\) −25.1588 −1.24707
\(408\) −13.5338 + 43.8336i −0.670022 + 2.17009i
\(409\) 20.2811 1.00284 0.501418 0.865205i \(-0.332812\pi\)
0.501418 + 0.865205i \(0.332812\pi\)
\(410\) 4.27251 1.92737i 0.211004 0.0951860i
\(411\) 14.2720i 0.703985i
\(412\) 6.67776 7.56409i 0.328990 0.372656i
\(413\) 3.97386i 0.195541i
\(414\) −11.4829 25.4547i −0.564352 1.25103i
\(415\) 1.41937 0.0696740
\(416\) 2.94752 + 4.82826i 0.144514 + 0.236725i
\(417\) 7.53604 0.369042
\(418\) 7.73857 + 17.1545i 0.378506 + 0.839056i
\(419\) 31.6138i 1.54444i 0.635357 + 0.772219i \(0.280853\pi\)
−0.635357 + 0.772219i \(0.719147\pi\)
\(420\) −2.19323 + 2.48433i −0.107019 + 0.121223i
\(421\) 1.28516i 0.0626348i 0.999509 + 0.0313174i \(0.00997027\pi\)
−0.999509 + 0.0313174i \(0.990030\pi\)
\(422\) 12.5250 5.65013i 0.609706 0.275044i
\(423\) −22.1738 −1.07812
\(424\) −8.36597 + 27.0959i −0.406287 + 1.31589i
\(425\) 30.4771 1.47835
\(426\) 36.8356 16.6169i 1.78469 0.805090i
\(427\) 2.07834i 0.100578i
\(428\) 24.1719 + 21.3396i 1.16840 + 1.03149i
\(429\) 7.74826i 0.374090i
\(430\) −5.08019 11.2616i −0.244989 0.543081i
\(431\) 13.9878 0.673770 0.336885 0.941546i \(-0.390627\pi\)
0.336885 + 0.941546i \(0.390627\pi\)
\(432\) 1.87295 0.234029i 0.0901125 0.0112597i
\(433\) −12.4382 −0.597740 −0.298870 0.954294i \(-0.596610\pi\)
−0.298870 + 0.954294i \(0.596610\pi\)
\(434\) 4.82182 + 10.6888i 0.231455 + 0.513079i
\(435\) 7.38488i 0.354078i
\(436\) 16.6998 + 14.7430i 0.799776 + 0.706062i
\(437\) 29.1360i 1.39376i
\(438\) −52.4171 + 23.6458i −2.50459 + 1.12984i
\(439\) −29.1671 −1.39207 −0.696034 0.718008i \(-0.745054\pi\)
−0.696034 + 0.718008i \(0.745054\pi\)
\(440\) 5.97796 + 1.84572i 0.284988 + 0.0879912i
\(441\) −2.80413 −0.133530
\(442\) −8.67876 + 3.91507i −0.412806 + 0.186221i
\(443\) 7.38931i 0.351077i −0.984473 0.175538i \(-0.943833\pi\)
0.984473 0.175538i \(-0.0561666\pi\)
\(444\) 24.9455 28.2565i 1.18386 1.34099i
\(445\) 8.18097i 0.387815i
\(446\) 11.3284 + 25.1124i 0.536416 + 1.18910i
\(447\) −5.32190 −0.251717
\(448\) 6.60748 + 4.51012i 0.312174 + 0.213083i
\(449\) −18.4074 −0.868700 −0.434350 0.900744i \(-0.643022\pi\)
−0.434350 + 0.900744i \(0.643022\pi\)
\(450\) 7.38210 + 16.3643i 0.347995 + 0.771422i
\(451\) 15.4982i 0.729783i
\(452\) −25.5329 + 28.9218i −1.20097 + 1.36037i
\(453\) 11.9199i 0.560045i
\(454\) 7.41872 3.34665i 0.348178 0.157066i
\(455\) −0.687773 −0.0322433
\(456\) −26.9397 8.31774i −1.26157 0.389514i
\(457\) 21.1297 0.988405 0.494202 0.869347i \(-0.335460\pi\)
0.494202 + 0.869347i \(0.335460\pi\)
\(458\) 5.82607 2.62819i 0.272234 0.122807i
\(459\) 3.17685i 0.148283i
\(460\) −7.26137 6.41052i −0.338563 0.298892i
\(461\) 10.0573i 0.468415i −0.972187 0.234207i \(-0.924751\pi\)
0.972187 0.234207i \(-0.0752494\pi\)
\(462\) 4.50586 + 9.98841i 0.209632 + 0.464703i
\(463\) −35.0391 −1.62840 −0.814202 0.580582i \(-0.802825\pi\)
−0.814202 + 0.580582i \(0.802825\pi\)
\(464\) −17.6899 + 2.21039i −0.821234 + 0.102615i
\(465\) −13.7389 −0.637124
\(466\) −1.18597 2.62901i −0.0549391 0.121787i
\(467\) 22.2151i 1.02799i 0.857792 + 0.513996i \(0.171835\pi\)
−0.857792 + 0.513996i \(0.828165\pi\)
\(468\) −4.20431 3.71166i −0.194344 0.171572i
\(469\) 11.4528i 0.528841i
\(470\) −7.01096 + 3.16271i −0.323392 + 0.145885i
\(471\) 50.2851 2.31701
\(472\) −3.31587 + 10.7395i −0.152625 + 0.494327i
\(473\) −40.8505 −1.87831
\(474\) 2.79642 1.26149i 0.128444 0.0579422i
\(475\) 18.7309i 0.859433i
\(476\) −8.91119 + 10.0940i −0.408444 + 0.462656i
\(477\) 28.1145i 1.28727i
\(478\) −4.66165 10.3338i −0.213219 0.472655i
\(479\) −26.9888 −1.23315 −0.616574 0.787297i \(-0.711480\pi\)
−0.616574 + 0.787297i \(0.711480\pi\)
\(480\) −8.00027 + 4.88394i −0.365161 + 0.222920i
\(481\) 7.82265 0.356682
\(482\) −2.04183 4.52625i −0.0930029 0.206165i
\(483\) 16.9647i 0.771922i
\(484\) −0.868853 + 0.984174i −0.0394933 + 0.0447352i
\(485\) 5.55575i 0.252274i
\(486\) −27.8322 + 12.5554i −1.26250 + 0.569523i
\(487\) 4.49681 0.203770 0.101885 0.994796i \(-0.467513\pi\)
0.101885 + 0.994796i \(0.467513\pi\)
\(488\) 1.73421 5.61679i 0.0785038 0.254260i
\(489\) 26.8020 1.21203
\(490\) −0.886619 + 0.399962i −0.0400534 + 0.0180684i
\(491\) 41.3602i 1.86656i −0.359152 0.933279i \(-0.616934\pi\)
0.359152 0.933279i \(-0.383066\pi\)
\(492\) 17.4065 + 15.3669i 0.784744 + 0.692791i
\(493\) 30.0051i 1.35136i
\(494\) −2.40616 5.33388i −0.108258 0.239983i
\(495\) −6.20268 −0.278790
\(496\) 4.11221 + 32.9104i 0.184644 + 1.47772i
\(497\) 11.8606 0.532021
\(498\) 2.89130 + 6.40930i 0.129562 + 0.287208i
\(499\) 2.02432i 0.0906210i 0.998973 + 0.0453105i \(0.0144277\pi\)
−0.998973 + 0.0453105i \(0.985572\pi\)
\(500\) 9.82416 + 8.67301i 0.439350 + 0.387869i
\(501\) 13.8048i 0.616752i
\(502\) −16.0616 + 7.24554i −0.716865 + 0.323384i
\(503\) −13.6836 −0.610123 −0.305062 0.952333i \(-0.598677\pi\)
−0.305062 + 0.952333i \(0.598677\pi\)
\(504\) −7.57829 2.33983i −0.337564 0.104224i
\(505\) 5.24107 0.233225
\(506\) −29.1948 + 13.1701i −1.29787 + 0.585480i
\(507\) 2.40918i 0.106995i
\(508\) −16.9720 + 19.2246i −0.753009 + 0.852954i
\(509\) 15.2121i 0.674265i −0.941457 0.337133i \(-0.890543\pi\)
0.941457 0.337133i \(-0.109457\pi\)
\(510\) −6.48713 14.3804i −0.287255 0.636775i
\(511\) −16.8777 −0.746624
\(512\) 14.0937 + 17.7022i 0.622859 + 0.782334i
\(513\) −1.95246 −0.0862032
\(514\) −1.15636 2.56337i −0.0510048 0.113065i
\(515\) 3.46981i 0.152898i
\(516\) 40.5042 45.8803i 1.78310 2.01977i
\(517\) 25.4318i 1.11849i
\(518\) 10.0843 4.54912i 0.443079 0.199877i
\(519\) 21.3455 0.936961
\(520\) −1.85874 0.573892i −0.0815109 0.0251668i
\(521\) 26.9487 1.18064 0.590322 0.807168i \(-0.299001\pi\)
0.590322 + 0.807168i \(0.299001\pi\)
\(522\) 16.1109 7.26779i 0.705156 0.318103i
\(523\) 0.627284i 0.0274292i −0.999906 0.0137146i \(-0.995634\pi\)
0.999906 0.0137146i \(-0.00436563\pi\)
\(524\) −5.97593 5.27570i −0.261060 0.230470i
\(525\) 10.9063i 0.475989i
\(526\) −14.5492 32.2520i −0.634375 1.40625i
\(527\) −55.8216 −2.43163
\(528\) 3.84276 + 30.7539i 0.167235 + 1.33839i
\(529\) 26.5857 1.15590
\(530\) −4.01005 8.88931i −0.174185 0.386127i
\(531\) 11.1432i 0.483575i
\(532\) −6.20365 5.47673i −0.268962 0.237446i
\(533\) 4.81888i 0.208729i
\(534\) 36.9420 16.6649i 1.59864 0.721160i
\(535\) −11.0882 −0.479384
\(536\) 9.55646 30.9517i 0.412776 1.33691i
\(537\) 13.2612 0.572263
\(538\) 20.7694 9.36927i 0.895432 0.403938i
\(539\) 3.21615i 0.138529i
\(540\) −0.429582 + 0.486599i −0.0184863 + 0.0209399i
\(541\) 7.91671i 0.340366i 0.985412 + 0.170183i \(0.0544359\pi\)
−0.985412 + 0.170183i \(0.945564\pi\)
\(542\) 9.81753 + 21.7631i 0.421699 + 0.934804i
\(543\) −34.9547 −1.50005
\(544\) −32.5055 + 19.8437i −1.39366 + 0.850790i
\(545\) −7.66056 −0.328142
\(546\) −1.40101 3.10571i −0.0599579 0.132912i
\(547\) 29.4627i 1.25973i −0.776704 0.629866i \(-0.783110\pi\)
0.776704 0.629866i \(-0.216890\pi\)
\(548\) −7.84125 + 8.88201i −0.334962 + 0.379421i
\(549\) 5.82793i 0.248730i
\(550\) 18.7687 8.46675i 0.800302 0.361024i
\(551\) 18.4409 0.785608
\(552\) 14.1557 45.8479i 0.602507 1.95142i
\(553\) 0.900413 0.0382894
\(554\) 8.63360 3.89470i 0.366806 0.165470i
\(555\) 12.9619i 0.550201i
\(556\) 4.68997 + 4.14042i 0.198899 + 0.175593i
\(557\) 6.15890i 0.260961i −0.991451 0.130480i \(-0.958348\pi\)
0.991451 0.130480i \(-0.0416520\pi\)
\(558\) −13.5210 29.9728i −0.572390 1.26885i
\(559\) 12.7017 0.537224
\(560\) −2.72986 + 0.341102i −0.115358 + 0.0144142i
\(561\) −52.1639 −2.20236
\(562\) 13.3399 + 29.5712i 0.562708 + 1.24739i
\(563\) 27.4626i 1.15741i −0.815536 0.578706i \(-0.803558\pi\)
0.815536 0.578706i \(-0.196442\pi\)
\(564\) −28.5631 25.2162i −1.20272 1.06179i
\(565\) 13.2671i 0.558149i
\(566\) 2.03010 0.915795i 0.0853313 0.0384937i
\(567\) −9.54924 −0.401030
\(568\) 32.0538 + 9.89673i 1.34495 + 0.415258i
\(569\) −25.1770 −1.05547 −0.527737 0.849408i \(-0.676959\pi\)
−0.527737 + 0.849408i \(0.676959\pi\)
\(570\) 8.83806 3.98693i 0.370186 0.166994i
\(571\) 34.0974i 1.42693i 0.700689 + 0.713467i \(0.252876\pi\)
−0.700689 + 0.713467i \(0.747124\pi\)
\(572\) −4.25702 + 4.82205i −0.177995 + 0.201620i
\(573\) 42.0965i 1.75861i
\(574\) 2.80233 + 6.21210i 0.116967 + 0.259288i
\(575\) −31.8776 −1.32939
\(576\) −18.5283 12.6470i −0.772011 0.526957i
\(577\) −34.3580 −1.43034 −0.715170 0.698950i \(-0.753651\pi\)
−0.715170 + 0.698950i \(0.753651\pi\)
\(578\) −16.4715 36.5133i −0.685123 1.51875i
\(579\) 12.5310i 0.520769i
\(580\) 4.05737 4.59590i 0.168473 0.190834i
\(581\) 2.06372i 0.0856174i
\(582\) −25.0876 + 11.3172i −1.03991 + 0.469114i
\(583\) −32.2453 −1.33547
\(584\) −45.6126 14.0831i −1.88746 0.582762i
\(585\) 1.92861 0.0797380
\(586\) −35.9159 + 16.2020i −1.48367 + 0.669298i
\(587\) 4.39822i 0.181534i −0.995872 0.0907669i \(-0.971068\pi\)
0.995872 0.0907669i \(-0.0289318\pi\)
\(588\) −3.61214 3.18888i −0.148962 0.131507i
\(589\) 34.3074i 1.41361i
\(590\) −1.58939 3.52330i −0.0654342 0.145052i
\(591\) 14.3562 0.590536
\(592\) 31.0492 3.87965i 1.27611 0.159453i
\(593\) −1.50359 −0.0617451 −0.0308725 0.999523i \(-0.509829\pi\)
−0.0308725 + 0.999523i \(0.509829\pi\)
\(594\) 0.882552 + 1.95640i 0.0362115 + 0.0802722i
\(595\) 4.63031i 0.189824i
\(596\) −3.31203 2.92394i −0.135666 0.119769i
\(597\) 29.1691i 1.19381i
\(598\) 9.07758 4.09498i 0.371210 0.167456i
\(599\) 13.7500 0.561809 0.280904 0.959736i \(-0.409366\pi\)
0.280904 + 0.959736i \(0.409366\pi\)
\(600\) −9.10042 + 29.4747i −0.371523 + 1.20330i
\(601\) 7.31520 0.298393 0.149197 0.988808i \(-0.452331\pi\)
0.149197 + 0.988808i \(0.452331\pi\)
\(602\) 16.3740 7.38644i 0.667353 0.301049i
\(603\) 32.1152i 1.30783i
\(604\) 6.54898 7.41821i 0.266474 0.301843i
\(605\) 0.451462i 0.0183545i
\(606\) 10.6762 + 23.6666i 0.433692 + 0.961390i
\(607\) −19.5840 −0.794889 −0.397445 0.917626i \(-0.630103\pi\)
−0.397445 + 0.917626i \(0.630103\pi\)
\(608\) −12.1957 19.9776i −0.494602 0.810197i
\(609\) 10.7374 0.435101
\(610\) 0.831255 + 1.84269i 0.0336565 + 0.0746084i
\(611\) 7.90753i 0.319904i
\(612\) 24.9881 28.3048i 1.01009 1.14415i
\(613\) 44.5486i 1.79930i 0.436610 + 0.899651i \(0.356179\pi\)
−0.436610 + 0.899651i \(0.643821\pi\)
\(614\) −27.8883 + 12.5807i −1.12548 + 0.507715i
\(615\) −7.98472 −0.321975
\(616\) −2.68362 + 8.69177i −0.108126 + 0.350201i
\(617\) −17.9533 −0.722772 −0.361386 0.932416i \(-0.617696\pi\)
−0.361386 + 0.932416i \(0.617696\pi\)
\(618\) −15.6683 + 7.06811i −0.630271 + 0.284321i
\(619\) 14.7130i 0.591365i −0.955286 0.295683i \(-0.904453\pi\)
0.955286 0.295683i \(-0.0955471\pi\)
\(620\) −8.55023 7.54835i −0.343385 0.303149i
\(621\) 3.32284i 0.133341i
\(622\) −7.38397 16.3685i −0.296070 0.656316i
\(623\) 11.8949 0.476558
\(624\) −1.19483 9.56235i −0.0478316 0.382800i
\(625\) 18.1283 0.725132
\(626\) −13.8559 30.7153i −0.553795 1.22763i
\(627\) 32.0594i 1.28033i
\(628\) 31.2944 + 27.6274i 1.24878 + 1.10245i
\(629\) 52.6647i 2.09988i
\(630\) 2.48620 1.12155i 0.0990524 0.0446835i
\(631\) 17.9131 0.713110 0.356555 0.934274i \(-0.383951\pi\)
0.356555 + 0.934274i \(0.383951\pi\)
\(632\) 2.43340 + 0.751323i 0.0967956 + 0.0298860i
\(633\) −23.4074 −0.930362
\(634\) 1.23586 0.557508i 0.0490823 0.0221415i
\(635\) 8.81874i 0.349961i
\(636\) 31.9720 36.2156i 1.26777 1.43604i
\(637\) 1.00000i 0.0396214i
\(638\) −8.33565 18.4781i −0.330012 0.731556i
\(639\) −33.2587 −1.31569
\(640\) −7.66219 1.35601i −0.302875 0.0536011i
\(641\) 46.0544 1.81904 0.909520 0.415660i \(-0.136449\pi\)
0.909520 + 0.415660i \(0.136449\pi\)
\(642\) −22.5870 50.0699i −0.891437 1.97610i
\(643\) 20.1393i 0.794215i 0.917772 + 0.397107i \(0.129986\pi\)
−0.917772 + 0.397107i \(0.870014\pi\)
\(644\) 9.32069 10.5578i 0.367287 0.416036i
\(645\) 21.0463i 0.828696i
\(646\) 35.9095 16.1991i 1.41284 0.637345i
\(647\) 3.30439 0.129909 0.0649544 0.997888i \(-0.479310\pi\)
0.0649544 + 0.997888i \(0.479310\pi\)
\(648\) −25.8072 7.96808i −1.01380 0.313016i
\(649\) −12.7805 −0.501679
\(650\) −5.83579 + 2.63258i −0.228898 + 0.103258i
\(651\) 19.9759i 0.782916i
\(652\) 16.6799 + 14.7254i 0.653236 + 0.576693i
\(653\) 13.9169i 0.544610i −0.962211 0.272305i \(-0.912214\pi\)
0.962211 0.272305i \(-0.0877860\pi\)
\(654\) −15.6048 34.5921i −0.610196 1.35266i
\(655\) 2.74129 0.107111
\(656\) 2.38993 + 19.1268i 0.0933111 + 0.746776i
\(657\) 47.3272 1.84641
\(658\) −4.59848 10.1937i −0.179267 0.397393i
\(659\) 23.5824i 0.918638i 0.888271 + 0.459319i \(0.151907\pi\)
−0.888271 + 0.459319i \(0.848093\pi\)
\(660\) −7.98997 7.05374i −0.311009 0.274566i
\(661\) 47.2373i 1.83732i 0.395050 + 0.918660i \(0.370727\pi\)
−0.395050 + 0.918660i \(0.629273\pi\)
\(662\) −7.96094 + 3.59125i −0.309411 + 0.139578i
\(663\) 16.2194 0.629908
\(664\) −1.72201 + 5.57729i −0.0668269 + 0.216441i
\(665\) 2.84575 0.110353
\(666\) −28.2777 + 12.7563i −1.09574 + 0.494298i
\(667\) 31.3840i 1.21519i
\(668\) 7.58457 8.59125i 0.293456 0.332405i
\(669\) 46.9315i 1.81448i
\(670\) 4.58069 + 10.1543i 0.176967 + 0.392294i
\(671\) 6.68423 0.258042
\(672\) −7.10109 11.6321i −0.273931 0.448720i
\(673\) −8.68063 −0.334614 −0.167307 0.985905i \(-0.553507\pi\)
−0.167307 + 0.985905i \(0.553507\pi\)
\(674\) 3.83509 + 8.50147i 0.147722 + 0.327464i
\(675\) 2.13618i 0.0822217i
\(676\) 1.32364 1.49933i 0.0509093 0.0576663i
\(677\) 9.39355i 0.361024i −0.983573 0.180512i \(-0.942225\pi\)
0.983573 0.180512i \(-0.0577754\pi\)
\(678\) 59.9087 27.0254i 2.30078 1.03790i
\(679\) −8.07789 −0.310001
\(680\) 3.86363 12.5136i 0.148163 0.479876i
\(681\) −13.8646 −0.531291
\(682\) −34.3767 + 15.5077i −1.31635 + 0.593819i
\(683\) 7.64309i 0.292455i 0.989251 + 0.146227i \(0.0467131\pi\)
−0.989251 + 0.146227i \(0.953287\pi\)
\(684\) 17.3959 + 15.3575i 0.665147 + 0.587208i
\(685\) 4.07437i 0.155674i
\(686\) −0.581532 1.28912i −0.0222030 0.0492187i
\(687\) −10.8881 −0.415407
\(688\) 50.4147 6.29942i 1.92204 0.240163i
\(689\) 10.0261 0.381963
\(690\) 6.78524 + 15.0412i 0.258310 + 0.572610i
\(691\) 38.5172i 1.46526i −0.680626 0.732631i \(-0.738292\pi\)
0.680626 0.732631i \(-0.261708\pi\)
\(692\) 13.2841 + 11.7275i 0.504986 + 0.445814i
\(693\) 9.01850i 0.342584i
\(694\) −13.7414 + 6.19886i −0.521615 + 0.235305i
\(695\) −2.15139 −0.0816070
\(696\) 29.0183 + 8.95950i 1.09993 + 0.339609i
\(697\) −32.4423 −1.22884
\(698\) 26.7446 12.0647i 1.01230 0.456657i
\(699\) 4.91326i 0.185836i
\(700\) −5.99208 + 6.78740i −0.226479 + 0.256540i
\(701\) 18.4756i 0.697814i −0.937157 0.348907i \(-0.886553\pi\)
0.937157 0.348907i \(-0.113447\pi\)
\(702\) −0.274413 0.608307i −0.0103571 0.0229591i
\(703\) −32.3672 −1.22075
\(704\) −14.5052 + 21.2506i −0.546685 + 0.800913i
\(705\) 13.1025 0.493469
\(706\) −3.41134 7.56212i −0.128388 0.284604i
\(707\) 7.62035i 0.286593i
\(708\) 12.6722 14.3541i 0.476249 0.539461i
\(709\) 2.94207i 0.110492i 0.998473 + 0.0552459i \(0.0175943\pi\)
−0.998473 + 0.0552459i \(0.982406\pi\)
\(710\) −10.5158 + 4.74379i −0.394652 + 0.178031i
\(711\) −2.52488 −0.0946903
\(712\) 32.1464 + 9.92533i 1.20474 + 0.371967i
\(713\) 58.3868 2.18660
\(714\) 20.9087 9.43209i 0.782487 0.352987i
\(715\) 2.21198i 0.0827232i
\(716\) 8.25296 + 7.28591i 0.308428 + 0.272287i
\(717\) 19.3123i 0.721233i
\(718\) −18.6996 41.4524i −0.697862 1.54699i
\(719\) −4.53648 −0.169182 −0.0845911 0.996416i \(-0.526958\pi\)
−0.0845911 + 0.996416i \(0.526958\pi\)
\(720\) 7.65490 0.956494i 0.285281 0.0356464i
\(721\) −5.04500 −0.187885
\(722\) −1.09330 2.42358i −0.0406885 0.0901965i
\(723\) 8.45892i 0.314591i
\(724\) −21.7537 19.2047i −0.808470 0.713737i
\(725\) 20.1761i 0.749322i
\(726\) 2.03862 0.919641i 0.0756604 0.0341311i
\(727\) −0.575488 −0.0213437 −0.0106718 0.999943i \(-0.503397\pi\)
−0.0106718 + 0.999943i \(0.503397\pi\)
\(728\) 0.834421 2.70254i 0.0309257 0.100163i
\(729\) 23.3668 0.865437
\(730\) 14.9641 6.75042i 0.553844 0.249844i
\(731\) 85.5120i 3.16278i
\(732\) −6.62757 + 7.50724i −0.244962 + 0.277475i
\(733\) 4.34048i 0.160319i 0.996782 + 0.0801597i \(0.0255430\pi\)
−0.996782 + 0.0801597i \(0.974457\pi\)
\(734\) 0.00341554 + 0.00757142i 0.000126070 + 0.000279466i
\(735\) 1.65697 0.0611181
\(736\) 33.9992 20.7556i 1.25323 0.765060i
\(737\) 36.8339 1.35679
\(738\) −7.85812 17.4195i −0.289261 0.641222i
\(739\) 5.99047i 0.220363i −0.993911 0.110181i \(-0.964857\pi\)
0.993911 0.110181i \(-0.0351432\pi\)
\(740\) −7.12146 + 8.06668i −0.261790 + 0.296537i
\(741\) 9.96828i 0.366194i
\(742\) 12.9248 5.83049i 0.474484 0.214044i
\(743\) 14.2196 0.521665 0.260833 0.965384i \(-0.416003\pi\)
0.260833 + 0.965384i \(0.416003\pi\)
\(744\) 16.6683 53.9856i 0.611089 1.97921i
\(745\) 1.51930 0.0556628
\(746\) −28.6612 + 12.9293i −1.04936 + 0.473377i
\(747\) 5.78694i 0.211733i
\(748\) −32.4636 28.6597i −1.18699 1.04790i
\(749\) 16.1219i 0.589081i
\(750\) −9.17999 20.3498i −0.335206 0.743070i
\(751\) 4.72032 0.172247 0.0861234 0.996284i \(-0.472552\pi\)
0.0861234 + 0.996284i \(0.472552\pi\)
\(752\) −3.92175 31.3860i −0.143011 1.14453i
\(753\) 30.0169 1.09388
\(754\) 2.59181 + 5.74542i 0.0943883 + 0.209236i
\(755\) 3.40289i 0.123844i
\(756\) −0.707500 0.624599i −0.0257315 0.0227164i
\(757\) 34.5160i 1.25451i 0.778816 + 0.627253i \(0.215821\pi\)
−0.778816 + 0.627253i \(0.784179\pi\)
\(758\) −5.41466 + 2.44260i −0.196669 + 0.0887193i
\(759\) 54.5610 1.98044
\(760\) 7.69076 + 2.37455i 0.278973 + 0.0861340i
\(761\) 13.0455 0.472900 0.236450 0.971644i \(-0.424016\pi\)
0.236450 + 0.971644i \(0.424016\pi\)
\(762\) 39.8219 17.9640i 1.44260 0.650769i
\(763\) 11.1382i 0.403231i
\(764\) −23.1285 + 26.1983i −0.836759 + 0.947821i
\(765\) 12.9840i 0.469438i
\(766\) −1.89454 4.19973i −0.0684525 0.151743i
\(767\) 3.97386 0.143488
\(768\) −9.48491 37.3617i −0.342257 1.34817i
\(769\) 15.5443 0.560541 0.280271 0.959921i \(-0.409576\pi\)
0.280271 + 0.959921i \(0.409576\pi\)
\(770\) −1.28634 2.85149i −0.0463563 0.102761i
\(771\) 4.79057i 0.172528i
\(772\) −6.88471 + 7.79850i −0.247786 + 0.280674i
\(773\) 36.8531i 1.32551i −0.748834 0.662757i \(-0.769386\pi\)
0.748834 0.662757i \(-0.230614\pi\)
\(774\) −45.9148 + 20.7126i −1.65037 + 0.744498i
\(775\) −37.5357 −1.34832
\(776\) −21.8308 6.74036i −0.783682 0.241965i
\(777\) −18.8462 −0.676102
\(778\) 25.8852 11.6770i 0.928029 0.418643i
\(779\) 19.9387i 0.714379i
\(780\) 2.48433 + 2.19323i 0.0889533 + 0.0785301i
\(781\) 38.1454i 1.36495i
\(782\) 27.5688 + 61.1133i 0.985857 + 2.18541i
\(783\) 2.10311 0.0751588
\(784\) −0.495951 3.96913i −0.0177125 0.141755i
\(785\) −14.3554 −0.512366
\(786\) 5.58409 + 12.3786i 0.199178 + 0.441529i
\(787\) 19.8020i 0.705866i −0.935649 0.352933i \(-0.885184\pi\)
0.935649 0.352933i \(-0.114816\pi\)
\(788\) 8.93443 + 7.88753i 0.318276 + 0.280982i
\(789\) 60.2745i 2.14583i
\(790\) −0.798323 + 0.360131i −0.0284031 + 0.0128129i
\(791\) 19.2899 0.685869
\(792\) 7.52522 24.3729i 0.267397 0.866053i
\(793\) −2.07834 −0.0738039
\(794\) −29.7329 + 13.4128i −1.05518 + 0.476001i
\(795\) 16.6129i 0.589198i
\(796\) −16.0259 + 18.1530i −0.568025 + 0.643418i
\(797\) 14.0956i 0.499292i −0.968337 0.249646i \(-0.919686\pi\)
0.968337 0.249646i \(-0.0803143\pi\)
\(798\) 5.79687 + 12.8503i 0.205207 + 0.454894i
\(799\) 53.2361 1.88336
\(800\) −21.8574 + 13.3433i −0.772776 + 0.471758i
\(801\) −33.3548 −1.17853
\(802\) −3.63847 8.06562i −0.128479 0.284807i
\(803\) 54.2810i 1.91554i
\(804\) −36.5217 + 41.3691i −1.28802 + 1.45898i
\(805\) 4.84309i 0.170697i
\(806\) 10.6888 4.82182i 0.376497 0.169841i
\(807\) −38.8151 −1.36636
\(808\) −6.35858 + 20.5943i −0.223694 + 0.724506i
\(809\) −13.6176 −0.478770 −0.239385 0.970925i \(-0.576946\pi\)
−0.239385 + 0.970925i \(0.576946\pi\)
\(810\) 8.46653 3.81933i 0.297484 0.134198i
\(811\) 18.9691i 0.666095i −0.942910 0.333047i \(-0.891923\pi\)
0.942910 0.333047i \(-0.108077\pi\)
\(812\) 6.68230 + 5.89930i 0.234503 + 0.207025i
\(813\) 40.6721i 1.42643i
\(814\) 14.6306 + 32.4326i 0.512804 + 1.13676i
\(815\) −7.65144 −0.268018
\(816\) 64.3769 8.04402i 2.25364 0.281597i
\(817\) −52.5549 −1.83866
\(818\) −11.7941 26.1447i −0.412371 0.914127i
\(819\) 2.80413i 0.0979843i
\(820\) −4.96921 4.38694i −0.173532 0.153198i
\(821\) 6.42394i 0.224197i −0.993697 0.112099i \(-0.964243\pi\)
0.993697 0.112099i \(-0.0357572\pi\)
\(822\) 18.3982 8.29961i 0.641712 0.289482i
\(823\) −9.99062 −0.348251 −0.174125 0.984723i \(-0.555710\pi\)
−0.174125 + 0.984723i \(0.555710\pi\)
\(824\) −13.6343 4.20965i −0.474974 0.146650i
\(825\) −35.0761 −1.22119
\(826\) 5.12276 2.31093i 0.178244 0.0804074i
\(827\) 36.5643i 1.27147i 0.771909 + 0.635733i \(0.219302\pi\)
−0.771909 + 0.635733i \(0.780698\pi\)
\(828\) −26.1365 + 29.6055i −0.908305 + 1.02886i
\(829\) 45.0922i 1.56612i −0.621948 0.783059i \(-0.713658\pi\)
0.621948 0.783059i \(-0.286342\pi\)
\(830\) −0.825408 1.82973i −0.0286503 0.0635109i
\(831\) −16.1350 −0.559716
\(832\) 4.51012 6.60748i 0.156360 0.229073i
\(833\) 6.73233 0.233261
\(834\) −4.38245 9.71483i −0.151752 0.336397i
\(835\) 3.94099i 0.136384i
\(836\) 17.6140 19.9518i 0.609192 0.690049i
\(837\) 3.91262i 0.135240i
\(838\) 40.7539 18.3845i 1.40782 0.635081i
\(839\) 16.0522 0.554184 0.277092 0.960843i \(-0.410629\pi\)
0.277092 + 0.960843i \(0.410629\pi\)
\(840\) 4.47802 + 1.38261i 0.154506 + 0.0477045i
\(841\) 9.13630 0.315045
\(842\) 1.65672 0.747361i 0.0570943 0.0257558i
\(843\) 55.2645i 1.90341i
\(844\) −14.5674 12.8604i −0.501429 0.442674i
\(845\) 0.687773i 0.0236601i
\(846\) 12.8948 + 28.5845i 0.443331 + 0.982757i
\(847\) 0.656411 0.0225546
\(848\) 39.7949 4.97245i 1.36656 0.170754i
\(849\) −3.79396 −0.130209
\(850\) −17.7234 39.2885i −0.607907 1.34758i
\(851\) 55.0848i 1.88828i
\(852\) −42.8422 37.8221i −1.46775 1.29576i
\(853\) 32.9867i 1.12944i −0.825282 0.564721i \(-0.808984\pi\)
0.825282 0.564721i \(-0.191016\pi\)
\(854\) −2.67922 + 1.20862i −0.0916809 + 0.0413581i
\(855\) −7.97985 −0.272905
\(856\) 13.4524 43.5701i 0.459795 1.48920i
\(857\) 8.97007 0.306412 0.153206 0.988194i \(-0.451040\pi\)
0.153206 + 0.988194i \(0.451040\pi\)
\(858\) 9.98841 4.50586i 0.340999 0.153828i
\(859\) 7.46952i 0.254857i 0.991848 + 0.127428i \(0.0406723\pi\)
−0.991848 + 0.127428i \(0.959328\pi\)
\(860\) −11.5632 + 13.0979i −0.394301 + 0.446635i
\(861\) 11.6095i 0.395652i
\(862\) −8.13437 18.0319i −0.277058 0.614170i
\(863\) −4.42663 −0.150684 −0.0753421 0.997158i \(-0.524005\pi\)
−0.0753421 + 0.997158i \(0.524005\pi\)
\(864\) −1.39087 2.27836i −0.0473184 0.0775113i
\(865\) −6.09371 −0.207192
\(866\) 7.23320 + 16.0342i 0.245794 + 0.544866i
\(867\) 68.2382i 2.31749i
\(868\) 10.9751 12.4318i 0.372518 0.421962i
\(869\) 2.89586i 0.0982352i
\(870\) −9.51997 + 4.29455i −0.322757 + 0.145599i
\(871\) −11.4528 −0.388064
\(872\) 9.29396 30.1015i 0.314733 1.01937i
\(873\) 22.6515 0.766636
\(874\) −37.5597 + 16.9435i −1.27047 + 0.573123i
\(875\) 6.55239i 0.221511i
\(876\) 60.9645 + 53.8209i 2.05980 + 1.81844i
\(877\) 27.9884i 0.945100i 0.881304 + 0.472550i \(0.156666\pi\)
−0.881304 + 0.472550i \(0.843334\pi\)
\(878\) 16.9616 + 37.5998i 0.572426 + 1.26893i
\(879\) 67.1218 2.26396
\(880\) −1.09703 8.77963i −0.0369809 0.295961i
\(881\) −13.3354 −0.449280 −0.224640 0.974442i \(-0.572121\pi\)
−0.224640 + 0.974442i \(0.572121\pi\)
\(882\) 1.63069 + 3.61485i 0.0549083 + 0.121718i
\(883\) 2.41618i 0.0813110i −0.999173 0.0406555i \(-0.987055\pi\)
0.999173 0.0406555i \(-0.0129446\pi\)
\(884\) 10.0940 + 8.91119i 0.339496 + 0.299716i
\(885\) 6.58455i 0.221337i
\(886\) −9.52568 + 4.29712i −0.320021 + 0.144365i
\(887\) −40.2075 −1.35004 −0.675018 0.737801i \(-0.735864\pi\)
−0.675018 + 0.737801i \(0.735864\pi\)
\(888\) −50.9326 15.7256i −1.70918 0.527717i
\(889\) 12.8222 0.430042
\(890\) −10.5462 + 4.75750i −0.353510 + 0.159472i
\(891\) 30.7117i 1.02888i
\(892\) 25.7849 29.2073i 0.863343 0.977933i
\(893\) 32.7184i 1.09488i
\(894\) 3.09486 + 6.86055i 0.103507 + 0.229451i
\(895\) −3.78581 −0.126546
\(896\) 1.97160 11.1406i 0.0658665 0.372181i
\(897\) −16.9647 −0.566436
\(898\) 10.7045 + 23.7293i 0.357214 + 0.791858i
\(899\) 36.9545i 1.23250i
\(900\) 16.8026 19.0328i 0.560086 0.634425i
\(901\) 67.4989i 2.24871i
\(902\) −19.9790 + 9.01271i −0.665228 + 0.300091i
\(903\) −30.6006 −1.01833
\(904\) 52.1317 + 16.0959i 1.73388 + 0.535341i
\(905\) 9.97889 0.331710
\(906\) −15.3661 + 6.93180i −0.510505 + 0.230294i
\(907\) 27.7295i 0.920742i −0.887727 0.460371i \(-0.847716\pi\)
0.887727 0.460371i \(-0.152284\pi\)
\(908\) −8.62845 7.61741i −0.286345 0.252793i
\(909\) 21.3685i 0.708748i
\(910\) 0.399962 + 0.886619i 0.0132586 + 0.0293911i
\(911\) 14.4713 0.479456 0.239728 0.970840i \(-0.422942\pi\)
0.239728 + 0.970840i \(0.422942\pi\)
\(912\) 4.94378 + 39.5654i 0.163705 + 1.31014i
\(913\) −6.63721 −0.219660
\(914\) −12.2876 27.2386i −0.406437 0.900973i
\(915\) 3.44373i 0.113846i
\(916\) −6.77610 5.98210i −0.223888 0.197654i
\(917\) 3.98575i 0.131621i
\(918\) 4.09532 1.84744i 0.135166 0.0609746i
\(919\) −31.3587 −1.03443 −0.517214 0.855856i \(-0.673031\pi\)
−0.517214 + 0.855856i \(0.673031\pi\)
\(920\) −4.04118 + 13.0887i −0.133234 + 0.431521i
\(921\) 52.1193 1.71739
\(922\) −12.9650 + 5.84864i −0.426980 + 0.192615i
\(923\) 11.8606i 0.390397i
\(924\) 10.2559 11.6172i 0.337395 0.382177i
\(925\) 35.4129i 1.16437i
\(926\) 20.3764 + 45.1694i 0.669608 + 1.48436i
\(927\) 14.1468 0.464643
\(928\) 13.1367 + 21.5190i 0.431234 + 0.706394i
\(929\) −48.9015 −1.60441 −0.802203 0.597052i \(-0.796339\pi\)
−0.802203 + 0.597052i \(0.796339\pi\)
\(930\) 7.98959 + 17.7110i 0.261989 + 0.580766i
\(931\) 4.13763i 0.135605i
\(932\) −2.69942 + 3.05771i −0.0884225 + 0.100159i
\(933\) 30.5904i 1.00148i
\(934\) 28.6378 12.9188i 0.937059 0.422716i
\(935\) 14.8918 0.487013
\(936\) −2.33983 + 7.57829i −0.0764796 + 0.247704i
\(937\) 16.8418 0.550198 0.275099 0.961416i \(-0.411289\pi\)
0.275099 + 0.961416i \(0.411289\pi\)
\(938\) −14.7640 + 6.66017i −0.482062 + 0.217462i
\(939\) 57.4025i 1.87326i
\(940\) 8.15420 + 7.19873i 0.265961 + 0.234797i
\(941\) 25.4756i 0.830480i 0.909712 + 0.415240i \(0.136302\pi\)
−0.909712 + 0.415240i \(0.863698\pi\)
\(942\) −29.2424 64.8233i −0.952768 2.11206i
\(943\) 33.9332 1.10502
\(944\) 15.7728 1.97084i 0.513360 0.0641453i
\(945\) 0.324546 0.0105575
\(946\) 23.7559 + 52.6610i 0.772370 + 1.71216i
\(947\) 48.9591i 1.59096i −0.605981 0.795479i \(-0.707219\pi\)
0.605981 0.795479i \(-0.292781\pi\)
\(948\) −3.25242 2.87131i −0.105634 0.0932559i
\(949\) 16.8777i 0.547872i
\(950\) 24.1463 10.8926i 0.783410 0.353404i
\(951\) −2.30965 −0.0748955
\(952\) 18.1944 + 5.61760i 0.589684 + 0.182067i
\(953\) −53.9832 −1.74869 −0.874344 0.485307i \(-0.838708\pi\)
−0.874344 + 0.485307i \(0.838708\pi\)
\(954\) −36.2428 + 16.3495i −1.17340 + 0.529333i
\(955\) 12.0177i 0.388884i
\(956\) −10.6105 + 12.0188i −0.343168 + 0.388717i
\(957\) 34.5330i 1.11629i
\(958\) 15.6948 + 34.7917i 0.507077 + 1.12407i
\(959\) 5.92401 0.191296
\(960\) 10.9484 + 7.47311i 0.353357 + 0.241194i
\(961\) 37.7502 1.21775
\(962\) −4.54912 10.0843i −0.146670 0.325131i
\(963\) 45.2079i 1.45680i
\(964\) −4.64747 + 5.26432i −0.149685 + 0.169552i
\(965\) 3.57734i 0.115159i
\(966\) −21.8695 + 9.86553i −0.703640 + 0.317418i
\(967\) −4.69531 −0.150991 −0.0754955 0.997146i \(-0.524054\pi\)
−0.0754955 + 0.997146i \(0.524054\pi\)
\(968\) 1.77398 + 0.547723i 0.0570179 + 0.0176045i
\(969\) −67.1097 −2.15588
\(970\) 7.16201 3.23085i 0.229958 0.103736i
\(971\) 43.6293i 1.40013i −0.714079 0.700065i \(-0.753154\pi\)
0.714079 0.700065i \(-0.246846\pi\)
\(972\) 32.3707 + 28.5776i 1.03829 + 0.916628i
\(973\) 3.12806i 0.100281i
\(974\) −2.61504 5.79691i −0.0837913 0.185745i
\(975\) 10.9063 0.349280
\(976\) −8.24919 + 1.03075i −0.264050 + 0.0329936i
\(977\) −24.1270 −0.771892 −0.385946 0.922521i \(-0.626125\pi\)
−0.385946 + 0.922521i \(0.626125\pi\)
\(978\) −15.5862 34.5509i −0.498392 1.10482i
\(979\) 38.2556i 1.22266i
\(980\) 1.03119 + 0.910364i 0.0329403 + 0.0290805i
\(981\) 31.2330i 0.997195i
\(982\) −53.3181 + 24.0523i −1.70145 + 0.767539i
\(983\) −53.7433 −1.71415 −0.857073 0.515196i \(-0.827719\pi\)
−0.857073 + 0.515196i \(0.827719\pi\)
\(984\) 9.68724 31.3753i 0.308818 1.00021i
\(985\) −4.09842 −0.130586
\(986\) −38.6801 + 17.4490i −1.23183 + 0.555688i
\(987\) 19.0506i 0.606388i
\(988\) −5.47673 + 6.20365i −0.174238 + 0.197364i
\(989\) 89.4416i 2.84408i
\(990\) 3.60706 + 7.99597i 0.114640 + 0.254129i
\(991\) −43.0179 −1.36651 −0.683255 0.730180i \(-0.739436\pi\)
−0.683255 + 0.730180i \(0.739436\pi\)
\(992\) 40.0339 24.4396i 1.27108 0.775957i
\(993\) 14.8779 0.472135
\(994\) −6.89732 15.2897i −0.218770 0.484960i
\(995\) 8.32719i 0.263990i
\(996\) 6.58096 7.45443i 0.208526 0.236203i
\(997\) 47.1795i 1.49419i 0.664717 + 0.747095i \(0.268552\pi\)
−0.664717 + 0.747095i \(0.731448\pi\)
\(998\) 2.60958 1.17721i 0.0826049 0.0372638i
\(999\) −3.69135 −0.116789
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.b.365.15 38
4.3 odd 2 2912.2.c.b.1457.6 38
8.3 odd 2 2912.2.c.b.1457.33 38
8.5 even 2 inner 728.2.c.b.365.16 yes 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.b.365.15 38 1.1 even 1 trivial
728.2.c.b.365.16 yes 38 8.5 even 2 inner
2912.2.c.b.1457.6 38 4.3 odd 2
2912.2.c.b.1457.33 38 8.3 odd 2