Properties

Label 2912.2.c.b.1457.6
Level $2912$
Weight $2$
Character 2912.1457
Analytic conductor $23.252$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1457,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.6
Character \(\chi\) \(=\) 2912.1457
Dual form 2912.2.c.b.1457.33

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.40918i q^{3} -0.687773i q^{5} -1.00000 q^{7} -2.80413 q^{9} -3.21615i q^{11} -1.00000i q^{13} -1.65697 q^{15} +6.73233 q^{17} -4.13763i q^{19} +2.40918i q^{21} +7.04171 q^{23} +4.52697 q^{25} -0.471879i q^{27} -4.45687i q^{29} +8.29157 q^{31} -7.74826 q^{33} +0.687773i q^{35} +7.82265i q^{37} -2.40918 q^{39} -4.81888 q^{41} -12.7017i q^{43} +1.92861i q^{45} -7.90753 q^{47} +1.00000 q^{49} -16.2194i q^{51} +10.0261i q^{53} -2.21198 q^{55} -9.96828 q^{57} -3.97386i q^{59} -2.07834i q^{61} +2.80413 q^{63} -0.687773 q^{65} +11.4528i q^{67} -16.9647i q^{69} -11.8606 q^{71} -16.8777 q^{73} -10.9063i q^{75} +3.21615i q^{77} -0.900413 q^{79} -9.54924 q^{81} -2.06372i q^{83} -4.63031i q^{85} -10.7374 q^{87} +11.8949 q^{89} +1.00000i q^{91} -19.9759i q^{93} -2.84575 q^{95} -8.07789 q^{97} +9.01850i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 38 q^{7} - 46 q^{9} + 8 q^{15} + 20 q^{17} - 12 q^{23} - 50 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 38 q^{49} + 8 q^{57} + 46 q^{63} + 20 q^{65} + 12 q^{79} + 62 q^{81} + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.40918i − 1.39094i −0.718556 0.695469i \(-0.755196\pi\)
0.718556 0.695469i \(-0.244804\pi\)
\(4\) 0 0
\(5\) − 0.687773i − 0.307581i −0.988103 0.153791i \(-0.950852\pi\)
0.988103 0.153791i \(-0.0491481\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.80413 −0.934711
\(10\) 0 0
\(11\) − 3.21615i − 0.969704i −0.874596 0.484852i \(-0.838873\pi\)
0.874596 0.484852i \(-0.161127\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) −1.65697 −0.427827
\(16\) 0 0
\(17\) 6.73233 1.63283 0.816415 0.577466i \(-0.195958\pi\)
0.816415 + 0.577466i \(0.195958\pi\)
\(18\) 0 0
\(19\) − 4.13763i − 0.949237i −0.880192 0.474618i \(-0.842586\pi\)
0.880192 0.474618i \(-0.157414\pi\)
\(20\) 0 0
\(21\) 2.40918i 0.525725i
\(22\) 0 0
\(23\) 7.04171 1.46830 0.734149 0.678988i \(-0.237581\pi\)
0.734149 + 0.678988i \(0.237581\pi\)
\(24\) 0 0
\(25\) 4.52697 0.905394
\(26\) 0 0
\(27\) − 0.471879i − 0.0908132i
\(28\) 0 0
\(29\) − 4.45687i − 0.827620i −0.910363 0.413810i \(-0.864198\pi\)
0.910363 0.413810i \(-0.135802\pi\)
\(30\) 0 0
\(31\) 8.29157 1.48921 0.744605 0.667505i \(-0.232638\pi\)
0.744605 + 0.667505i \(0.232638\pi\)
\(32\) 0 0
\(33\) −7.74826 −1.34880
\(34\) 0 0
\(35\) 0.687773i 0.116255i
\(36\) 0 0
\(37\) 7.82265i 1.28604i 0.765851 + 0.643018i \(0.222318\pi\)
−0.765851 + 0.643018i \(0.777682\pi\)
\(38\) 0 0
\(39\) −2.40918 −0.385777
\(40\) 0 0
\(41\) −4.81888 −0.752583 −0.376291 0.926501i \(-0.622801\pi\)
−0.376291 + 0.926501i \(0.622801\pi\)
\(42\) 0 0
\(43\) − 12.7017i − 1.93699i −0.249032 0.968495i \(-0.580113\pi\)
0.249032 0.968495i \(-0.419887\pi\)
\(44\) 0 0
\(45\) 1.92861i 0.287500i
\(46\) 0 0
\(47\) −7.90753 −1.15343 −0.576716 0.816945i \(-0.695666\pi\)
−0.576716 + 0.816945i \(0.695666\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) − 16.2194i − 2.27117i
\(52\) 0 0
\(53\) 10.0261i 1.37719i 0.725147 + 0.688594i \(0.241772\pi\)
−0.725147 + 0.688594i \(0.758228\pi\)
\(54\) 0 0
\(55\) −2.21198 −0.298263
\(56\) 0 0
\(57\) −9.96828 −1.32033
\(58\) 0 0
\(59\) − 3.97386i − 0.517352i −0.965964 0.258676i \(-0.916714\pi\)
0.965964 0.258676i \(-0.0832862\pi\)
\(60\) 0 0
\(61\) − 2.07834i − 0.266104i −0.991109 0.133052i \(-0.957522\pi\)
0.991109 0.133052i \(-0.0424777\pi\)
\(62\) 0 0
\(63\) 2.80413 0.353287
\(64\) 0 0
\(65\) −0.687773 −0.0853077
\(66\) 0 0
\(67\) 11.4528i 1.39918i 0.714543 + 0.699591i \(0.246635\pi\)
−0.714543 + 0.699591i \(0.753365\pi\)
\(68\) 0 0
\(69\) − 16.9647i − 2.04231i
\(70\) 0 0
\(71\) −11.8606 −1.40759 −0.703797 0.710401i \(-0.748514\pi\)
−0.703797 + 0.710401i \(0.748514\pi\)
\(72\) 0 0
\(73\) −16.8777 −1.97538 −0.987691 0.156420i \(-0.950005\pi\)
−0.987691 + 0.156420i \(0.950005\pi\)
\(74\) 0 0
\(75\) − 10.9063i − 1.25935i
\(76\) 0 0
\(77\) 3.21615i 0.366514i
\(78\) 0 0
\(79\) −0.900413 −0.101304 −0.0506522 0.998716i \(-0.516130\pi\)
−0.0506522 + 0.998716i \(0.516130\pi\)
\(80\) 0 0
\(81\) −9.54924 −1.06103
\(82\) 0 0
\(83\) − 2.06372i − 0.226522i −0.993565 0.113261i \(-0.963870\pi\)
0.993565 0.113261i \(-0.0361297\pi\)
\(84\) 0 0
\(85\) − 4.63031i − 0.502228i
\(86\) 0 0
\(87\) −10.7374 −1.15117
\(88\) 0 0
\(89\) 11.8949 1.26085 0.630427 0.776249i \(-0.282880\pi\)
0.630427 + 0.776249i \(0.282880\pi\)
\(90\) 0 0
\(91\) 1.00000i 0.104828i
\(92\) 0 0
\(93\) − 19.9759i − 2.07140i
\(94\) 0 0
\(95\) −2.84575 −0.291968
\(96\) 0 0
\(97\) −8.07789 −0.820185 −0.410093 0.912044i \(-0.634504\pi\)
−0.410093 + 0.912044i \(0.634504\pi\)
\(98\) 0 0
\(99\) 9.01850i 0.906393i
\(100\) 0 0
\(101\) 7.62035i 0.758254i 0.925345 + 0.379127i \(0.123776\pi\)
−0.925345 + 0.379127i \(0.876224\pi\)
\(102\) 0 0
\(103\) 5.04500 0.497098 0.248549 0.968619i \(-0.420046\pi\)
0.248549 + 0.968619i \(0.420046\pi\)
\(104\) 0 0
\(105\) 1.65697 0.161703
\(106\) 0 0
\(107\) 16.1219i 1.55856i 0.626675 + 0.779281i \(0.284415\pi\)
−0.626675 + 0.779281i \(0.715585\pi\)
\(108\) 0 0
\(109\) − 11.1382i − 1.06685i −0.845848 0.533424i \(-0.820905\pi\)
0.845848 0.533424i \(-0.179095\pi\)
\(110\) 0 0
\(111\) 18.8462 1.78880
\(112\) 0 0
\(113\) 19.2899 1.81464 0.907320 0.420442i \(-0.138125\pi\)
0.907320 + 0.420442i \(0.138125\pi\)
\(114\) 0 0
\(115\) − 4.84309i − 0.451621i
\(116\) 0 0
\(117\) 2.80413i 0.259242i
\(118\) 0 0
\(119\) −6.73233 −0.617152
\(120\) 0 0
\(121\) 0.656411 0.0596738
\(122\) 0 0
\(123\) 11.6095i 1.04680i
\(124\) 0 0
\(125\) − 6.55239i − 0.586063i
\(126\) 0 0
\(127\) −12.8222 −1.13778 −0.568892 0.822412i \(-0.692628\pi\)
−0.568892 + 0.822412i \(0.692628\pi\)
\(128\) 0 0
\(129\) −30.6006 −2.69424
\(130\) 0 0
\(131\) − 3.98575i − 0.348237i −0.984725 0.174118i \(-0.944292\pi\)
0.984725 0.174118i \(-0.0557075\pi\)
\(132\) 0 0
\(133\) 4.13763i 0.358778i
\(134\) 0 0
\(135\) −0.324546 −0.0279324
\(136\) 0 0
\(137\) 5.92401 0.506122 0.253061 0.967450i \(-0.418563\pi\)
0.253061 + 0.967450i \(0.418563\pi\)
\(138\) 0 0
\(139\) 3.12806i 0.265318i 0.991162 + 0.132659i \(0.0423516\pi\)
−0.991162 + 0.132659i \(0.957648\pi\)
\(140\) 0 0
\(141\) 19.0506i 1.60435i
\(142\) 0 0
\(143\) −3.21615 −0.268948
\(144\) 0 0
\(145\) −3.06531 −0.254560
\(146\) 0 0
\(147\) − 2.40918i − 0.198706i
\(148\) 0 0
\(149\) 2.20901i 0.180969i 0.995898 + 0.0904846i \(0.0288416\pi\)
−0.995898 + 0.0904846i \(0.971158\pi\)
\(150\) 0 0
\(151\) 4.94770 0.402638 0.201319 0.979526i \(-0.435477\pi\)
0.201319 + 0.979526i \(0.435477\pi\)
\(152\) 0 0
\(153\) −18.8783 −1.52622
\(154\) 0 0
\(155\) − 5.70272i − 0.458053i
\(156\) 0 0
\(157\) − 20.8723i − 1.66579i −0.553430 0.832895i \(-0.686681\pi\)
0.553430 0.832895i \(-0.313319\pi\)
\(158\) 0 0
\(159\) 24.1546 1.91558
\(160\) 0 0
\(161\) −7.04171 −0.554964
\(162\) 0 0
\(163\) 11.1250i 0.871374i 0.900098 + 0.435687i \(0.143495\pi\)
−0.900098 + 0.435687i \(0.856505\pi\)
\(164\) 0 0
\(165\) 5.32904i 0.414865i
\(166\) 0 0
\(167\) 5.73008 0.443407 0.221703 0.975114i \(-0.428838\pi\)
0.221703 + 0.975114i \(0.428838\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 11.6025i 0.887262i
\(172\) 0 0
\(173\) − 8.86006i − 0.673618i −0.941573 0.336809i \(-0.890652\pi\)
0.941573 0.336809i \(-0.109348\pi\)
\(174\) 0 0
\(175\) −4.52697 −0.342207
\(176\) 0 0
\(177\) −9.57373 −0.719605
\(178\) 0 0
\(179\) 5.50445i 0.411422i 0.978613 + 0.205711i \(0.0659507\pi\)
−0.978613 + 0.205711i \(0.934049\pi\)
\(180\) 0 0
\(181\) 14.5090i 1.07845i 0.842163 + 0.539223i \(0.181282\pi\)
−0.842163 + 0.539223i \(0.818718\pi\)
\(182\) 0 0
\(183\) −5.00708 −0.370134
\(184\) 0 0
\(185\) 5.38021 0.395561
\(186\) 0 0
\(187\) − 21.6522i − 1.58336i
\(188\) 0 0
\(189\) 0.471879i 0.0343242i
\(190\) 0 0
\(191\) −17.4734 −1.26433 −0.632165 0.774834i \(-0.717834\pi\)
−0.632165 + 0.774834i \(0.717834\pi\)
\(192\) 0 0
\(193\) 5.20134 0.374401 0.187200 0.982322i \(-0.440059\pi\)
0.187200 + 0.982322i \(0.440059\pi\)
\(194\) 0 0
\(195\) 1.65697i 0.118658i
\(196\) 0 0
\(197\) − 5.95897i − 0.424559i −0.977209 0.212279i \(-0.931911\pi\)
0.977209 0.212279i \(-0.0680887\pi\)
\(198\) 0 0
\(199\) −12.1075 −0.858276 −0.429138 0.903239i \(-0.641183\pi\)
−0.429138 + 0.903239i \(0.641183\pi\)
\(200\) 0 0
\(201\) 27.5918 1.94618
\(202\) 0 0
\(203\) 4.45687i 0.312811i
\(204\) 0 0
\(205\) 3.31429i 0.231480i
\(206\) 0 0
\(207\) −19.7459 −1.37243
\(208\) 0 0
\(209\) −13.3072 −0.920479
\(210\) 0 0
\(211\) − 9.71594i − 0.668873i −0.942418 0.334437i \(-0.891454\pi\)
0.942418 0.334437i \(-0.108546\pi\)
\(212\) 0 0
\(213\) 28.5743i 1.95788i
\(214\) 0 0
\(215\) −8.73588 −0.595782
\(216\) 0 0
\(217\) −8.29157 −0.562869
\(218\) 0 0
\(219\) 40.6613i 2.74763i
\(220\) 0 0
\(221\) − 6.73233i − 0.452866i
\(222\) 0 0
\(223\) 19.4803 1.30450 0.652249 0.758005i \(-0.273826\pi\)
0.652249 + 0.758005i \(0.273826\pi\)
\(224\) 0 0
\(225\) −12.6942 −0.846281
\(226\) 0 0
\(227\) − 5.75489i − 0.381966i −0.981593 0.190983i \(-0.938833\pi\)
0.981593 0.190983i \(-0.0611675\pi\)
\(228\) 0 0
\(229\) 4.51943i 0.298652i 0.988788 + 0.149326i \(0.0477104\pi\)
−0.988788 + 0.149326i \(0.952290\pi\)
\(230\) 0 0
\(231\) 7.74826 0.509798
\(232\) 0 0
\(233\) 2.03939 0.133605 0.0668025 0.997766i \(-0.478720\pi\)
0.0668025 + 0.997766i \(0.478720\pi\)
\(234\) 0 0
\(235\) 5.43858i 0.354774i
\(236\) 0 0
\(237\) 2.16925i 0.140908i
\(238\) 0 0
\(239\) −8.01616 −0.518522 −0.259261 0.965807i \(-0.583479\pi\)
−0.259261 + 0.965807i \(0.583479\pi\)
\(240\) 0 0
\(241\) 3.51113 0.226172 0.113086 0.993585i \(-0.463927\pi\)
0.113086 + 0.993585i \(0.463927\pi\)
\(242\) 0 0
\(243\) 21.5902i 1.38501i
\(244\) 0 0
\(245\) − 0.687773i − 0.0439402i
\(246\) 0 0
\(247\) −4.13763 −0.263271
\(248\) 0 0
\(249\) −4.97186 −0.315079
\(250\) 0 0
\(251\) 12.4594i 0.786430i 0.919447 + 0.393215i \(0.128637\pi\)
−0.919447 + 0.393215i \(0.871363\pi\)
\(252\) 0 0
\(253\) − 22.6472i − 1.42381i
\(254\) 0 0
\(255\) −11.1552 −0.698568
\(256\) 0 0
\(257\) 1.98847 0.124037 0.0620186 0.998075i \(-0.480246\pi\)
0.0620186 + 0.998075i \(0.480246\pi\)
\(258\) 0 0
\(259\) − 7.82265i − 0.486076i
\(260\) 0 0
\(261\) 12.4977i 0.773586i
\(262\) 0 0
\(263\) −25.0187 −1.54272 −0.771360 0.636399i \(-0.780423\pi\)
−0.771360 + 0.636399i \(0.780423\pi\)
\(264\) 0 0
\(265\) 6.89566 0.423597
\(266\) 0 0
\(267\) − 28.6569i − 1.75377i
\(268\) 0 0
\(269\) 16.1113i 0.982326i 0.871068 + 0.491163i \(0.163428\pi\)
−0.871068 + 0.491163i \(0.836572\pi\)
\(270\) 0 0
\(271\) 16.8822 1.02552 0.512759 0.858532i \(-0.328623\pi\)
0.512759 + 0.858532i \(0.328623\pi\)
\(272\) 0 0
\(273\) 2.40918 0.145810
\(274\) 0 0
\(275\) − 14.5594i − 0.877964i
\(276\) 0 0
\(277\) 6.69730i 0.402402i 0.979550 + 0.201201i \(0.0644844\pi\)
−0.979550 + 0.201201i \(0.935516\pi\)
\(278\) 0 0
\(279\) −23.2507 −1.39198
\(280\) 0 0
\(281\) −22.9392 −1.36844 −0.684218 0.729278i \(-0.739856\pi\)
−0.684218 + 0.729278i \(0.739856\pi\)
\(282\) 0 0
\(283\) − 1.57480i − 0.0936120i −0.998904 0.0468060i \(-0.985096\pi\)
0.998904 0.0468060i \(-0.0149043\pi\)
\(284\) 0 0
\(285\) 6.85591i 0.406109i
\(286\) 0 0
\(287\) 4.81888 0.284450
\(288\) 0 0
\(289\) 28.3243 1.66613
\(290\) 0 0
\(291\) 19.4611i 1.14083i
\(292\) 0 0
\(293\) − 27.8609i − 1.62765i −0.581111 0.813825i \(-0.697382\pi\)
0.581111 0.813825i \(-0.302618\pi\)
\(294\) 0 0
\(295\) −2.73311 −0.159128
\(296\) 0 0
\(297\) −1.51763 −0.0880619
\(298\) 0 0
\(299\) − 7.04171i − 0.407233i
\(300\) 0 0
\(301\) 12.7017i 0.732114i
\(302\) 0 0
\(303\) 18.3588 1.05468
\(304\) 0 0
\(305\) −1.42942 −0.0818485
\(306\) 0 0
\(307\) 21.6337i 1.23470i 0.786689 + 0.617349i \(0.211793\pi\)
−0.786689 + 0.617349i \(0.788207\pi\)
\(308\) 0 0
\(309\) − 12.1543i − 0.691433i
\(310\) 0 0
\(311\) −12.6974 −0.720006 −0.360003 0.932951i \(-0.617224\pi\)
−0.360003 + 0.932951i \(0.617224\pi\)
\(312\) 0 0
\(313\) 23.8266 1.34676 0.673380 0.739297i \(-0.264842\pi\)
0.673380 + 0.739297i \(0.264842\pi\)
\(314\) 0 0
\(315\) − 1.92861i − 0.108665i
\(316\) 0 0
\(317\) 0.958688i 0.0538453i 0.999638 + 0.0269226i \(0.00857078\pi\)
−0.999638 + 0.0269226i \(0.991429\pi\)
\(318\) 0 0
\(319\) −14.3339 −0.802547
\(320\) 0 0
\(321\) 38.8405 2.16786
\(322\) 0 0
\(323\) − 27.8559i − 1.54994i
\(324\) 0 0
\(325\) − 4.52697i − 0.251111i
\(326\) 0 0
\(327\) −26.8339 −1.48392
\(328\) 0 0
\(329\) 7.90753 0.435956
\(330\) 0 0
\(331\) 6.17550i 0.339436i 0.985493 + 0.169718i \(0.0542857\pi\)
−0.985493 + 0.169718i \(0.945714\pi\)
\(332\) 0 0
\(333\) − 21.9358i − 1.20207i
\(334\) 0 0
\(335\) 7.87693 0.430362
\(336\) 0 0
\(337\) −6.59480 −0.359242 −0.179621 0.983736i \(-0.557487\pi\)
−0.179621 + 0.983736i \(0.557487\pi\)
\(338\) 0 0
\(339\) − 46.4727i − 2.52405i
\(340\) 0 0
\(341\) − 26.6669i − 1.44409i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −11.6679 −0.628177
\(346\) 0 0
\(347\) 10.6595i 0.572233i 0.958195 + 0.286117i \(0.0923645\pi\)
−0.958195 + 0.286117i \(0.907636\pi\)
\(348\) 0 0
\(349\) 20.7465i 1.11053i 0.831673 + 0.555266i \(0.187384\pi\)
−0.831673 + 0.555266i \(0.812616\pi\)
\(350\) 0 0
\(351\) −0.471879 −0.0251871
\(352\) 0 0
\(353\) 5.86613 0.312223 0.156111 0.987739i \(-0.450104\pi\)
0.156111 + 0.987739i \(0.450104\pi\)
\(354\) 0 0
\(355\) 8.15740i 0.432950i
\(356\) 0 0
\(357\) 16.2194i 0.858420i
\(358\) 0 0
\(359\) −32.1557 −1.69711 −0.848556 0.529105i \(-0.822528\pi\)
−0.848556 + 0.529105i \(0.822528\pi\)
\(360\) 0 0
\(361\) 1.88004 0.0989492
\(362\) 0 0
\(363\) − 1.58141i − 0.0830025i
\(364\) 0 0
\(365\) 11.6080i 0.607590i
\(366\) 0 0
\(367\) 0.00587334 0.000306586 0 0.000153293 1.00000i \(-0.499951\pi\)
0.000153293 1.00000i \(0.499951\pi\)
\(368\) 0 0
\(369\) 13.5128 0.703447
\(370\) 0 0
\(371\) − 10.0261i − 0.520528i
\(372\) 0 0
\(373\) − 22.2332i − 1.15119i −0.817734 0.575596i \(-0.804770\pi\)
0.817734 0.575596i \(-0.195230\pi\)
\(374\) 0 0
\(375\) −15.7859 −0.815178
\(376\) 0 0
\(377\) −4.45687 −0.229541
\(378\) 0 0
\(379\) 4.20029i 0.215754i 0.994164 + 0.107877i \(0.0344053\pi\)
−0.994164 + 0.107877i \(0.965595\pi\)
\(380\) 0 0
\(381\) 30.8909i 1.58259i
\(382\) 0 0
\(383\) −3.25784 −0.166468 −0.0832339 0.996530i \(-0.526525\pi\)
−0.0832339 + 0.996530i \(0.526525\pi\)
\(384\) 0 0
\(385\) 2.21198 0.112733
\(386\) 0 0
\(387\) 35.6172i 1.81053i
\(388\) 0 0
\(389\) 20.0798i 1.01809i 0.860741 + 0.509043i \(0.170001\pi\)
−0.860741 + 0.509043i \(0.829999\pi\)
\(390\) 0 0
\(391\) 47.4071 2.39748
\(392\) 0 0
\(393\) −9.60238 −0.484376
\(394\) 0 0
\(395\) 0.619279i 0.0311593i
\(396\) 0 0
\(397\) − 23.0645i − 1.15758i −0.815478 0.578788i \(-0.803526\pi\)
0.815478 0.578788i \(-0.196474\pi\)
\(398\) 0 0
\(399\) 9.96828 0.499038
\(400\) 0 0
\(401\) 6.25670 0.312445 0.156222 0.987722i \(-0.450068\pi\)
0.156222 + 0.987722i \(0.450068\pi\)
\(402\) 0 0
\(403\) − 8.29157i − 0.413033i
\(404\) 0 0
\(405\) 6.56770i 0.326352i
\(406\) 0 0
\(407\) 25.1588 1.24707
\(408\) 0 0
\(409\) 20.2811 1.00284 0.501418 0.865205i \(-0.332812\pi\)
0.501418 + 0.865205i \(0.332812\pi\)
\(410\) 0 0
\(411\) − 14.2720i − 0.703985i
\(412\) 0 0
\(413\) 3.97386i 0.195541i
\(414\) 0 0
\(415\) −1.41937 −0.0696740
\(416\) 0 0
\(417\) 7.53604 0.369042
\(418\) 0 0
\(419\) − 31.6138i − 1.54444i −0.635357 0.772219i \(-0.719147\pi\)
0.635357 0.772219i \(-0.280853\pi\)
\(420\) 0 0
\(421\) 1.28516i 0.0626348i 0.999509 + 0.0313174i \(0.00997027\pi\)
−0.999509 + 0.0313174i \(0.990030\pi\)
\(422\) 0 0
\(423\) 22.1738 1.07812
\(424\) 0 0
\(425\) 30.4771 1.47835
\(426\) 0 0
\(427\) 2.07834i 0.100578i
\(428\) 0 0
\(429\) 7.74826i 0.374090i
\(430\) 0 0
\(431\) −13.9878 −0.673770 −0.336885 0.941546i \(-0.609373\pi\)
−0.336885 + 0.941546i \(0.609373\pi\)
\(432\) 0 0
\(433\) −12.4382 −0.597740 −0.298870 0.954294i \(-0.596610\pi\)
−0.298870 + 0.954294i \(0.596610\pi\)
\(434\) 0 0
\(435\) 7.38488i 0.354078i
\(436\) 0 0
\(437\) − 29.1360i − 1.39376i
\(438\) 0 0
\(439\) 29.1671 1.39207 0.696034 0.718008i \(-0.254946\pi\)
0.696034 + 0.718008i \(0.254946\pi\)
\(440\) 0 0
\(441\) −2.80413 −0.133530
\(442\) 0 0
\(443\) 7.38931i 0.351077i 0.984473 + 0.175538i \(0.0561666\pi\)
−0.984473 + 0.175538i \(0.943833\pi\)
\(444\) 0 0
\(445\) − 8.18097i − 0.387815i
\(446\) 0 0
\(447\) 5.32190 0.251717
\(448\) 0 0
\(449\) −18.4074 −0.868700 −0.434350 0.900744i \(-0.643022\pi\)
−0.434350 + 0.900744i \(0.643022\pi\)
\(450\) 0 0
\(451\) 15.4982i 0.729783i
\(452\) 0 0
\(453\) − 11.9199i − 0.560045i
\(454\) 0 0
\(455\) 0.687773 0.0322433
\(456\) 0 0
\(457\) 21.1297 0.988405 0.494202 0.869347i \(-0.335460\pi\)
0.494202 + 0.869347i \(0.335460\pi\)
\(458\) 0 0
\(459\) − 3.17685i − 0.148283i
\(460\) 0 0
\(461\) − 10.0573i − 0.468415i −0.972187 0.234207i \(-0.924751\pi\)
0.972187 0.234207i \(-0.0752494\pi\)
\(462\) 0 0
\(463\) 35.0391 1.62840 0.814202 0.580582i \(-0.197175\pi\)
0.814202 + 0.580582i \(0.197175\pi\)
\(464\) 0 0
\(465\) −13.7389 −0.637124
\(466\) 0 0
\(467\) − 22.2151i − 1.02799i −0.857792 0.513996i \(-0.828165\pi\)
0.857792 0.513996i \(-0.171835\pi\)
\(468\) 0 0
\(469\) − 11.4528i − 0.528841i
\(470\) 0 0
\(471\) −50.2851 −2.31701
\(472\) 0 0
\(473\) −40.8505 −1.87831
\(474\) 0 0
\(475\) − 18.7309i − 0.859433i
\(476\) 0 0
\(477\) − 28.1145i − 1.28727i
\(478\) 0 0
\(479\) 26.9888 1.23315 0.616574 0.787297i \(-0.288520\pi\)
0.616574 + 0.787297i \(0.288520\pi\)
\(480\) 0 0
\(481\) 7.82265 0.356682
\(482\) 0 0
\(483\) 16.9647i 0.771922i
\(484\) 0 0
\(485\) 5.55575i 0.252274i
\(486\) 0 0
\(487\) −4.49681 −0.203770 −0.101885 0.994796i \(-0.532487\pi\)
−0.101885 + 0.994796i \(0.532487\pi\)
\(488\) 0 0
\(489\) 26.8020 1.21203
\(490\) 0 0
\(491\) 41.3602i 1.86656i 0.359152 + 0.933279i \(0.383066\pi\)
−0.359152 + 0.933279i \(0.616934\pi\)
\(492\) 0 0
\(493\) − 30.0051i − 1.35136i
\(494\) 0 0
\(495\) 6.20268 0.278790
\(496\) 0 0
\(497\) 11.8606 0.532021
\(498\) 0 0
\(499\) − 2.02432i − 0.0906210i −0.998973 0.0453105i \(-0.985572\pi\)
0.998973 0.0453105i \(-0.0144277\pi\)
\(500\) 0 0
\(501\) − 13.8048i − 0.616752i
\(502\) 0 0
\(503\) 13.6836 0.610123 0.305062 0.952333i \(-0.401323\pi\)
0.305062 + 0.952333i \(0.401323\pi\)
\(504\) 0 0
\(505\) 5.24107 0.233225
\(506\) 0 0
\(507\) 2.40918i 0.106995i
\(508\) 0 0
\(509\) − 15.2121i − 0.674265i −0.941457 0.337133i \(-0.890543\pi\)
0.941457 0.337133i \(-0.109457\pi\)
\(510\) 0 0
\(511\) 16.8777 0.746624
\(512\) 0 0
\(513\) −1.95246 −0.0862032
\(514\) 0 0
\(515\) − 3.46981i − 0.152898i
\(516\) 0 0
\(517\) 25.4318i 1.11849i
\(518\) 0 0
\(519\) −21.3455 −0.936961
\(520\) 0 0
\(521\) 26.9487 1.18064 0.590322 0.807168i \(-0.299001\pi\)
0.590322 + 0.807168i \(0.299001\pi\)
\(522\) 0 0
\(523\) 0.627284i 0.0274292i 0.999906 + 0.0137146i \(0.00436563\pi\)
−0.999906 + 0.0137146i \(0.995634\pi\)
\(524\) 0 0
\(525\) 10.9063i 0.475989i
\(526\) 0 0
\(527\) 55.8216 2.43163
\(528\) 0 0
\(529\) 26.5857 1.15590
\(530\) 0 0
\(531\) 11.1432i 0.483575i
\(532\) 0 0
\(533\) 4.81888i 0.208729i
\(534\) 0 0
\(535\) 11.0882 0.479384
\(536\) 0 0
\(537\) 13.2612 0.572263
\(538\) 0 0
\(539\) − 3.21615i − 0.138529i
\(540\) 0 0
\(541\) 7.91671i 0.340366i 0.985412 + 0.170183i \(0.0544359\pi\)
−0.985412 + 0.170183i \(0.945564\pi\)
\(542\) 0 0
\(543\) 34.9547 1.50005
\(544\) 0 0
\(545\) −7.66056 −0.328142
\(546\) 0 0
\(547\) 29.4627i 1.25973i 0.776704 + 0.629866i \(0.216890\pi\)
−0.776704 + 0.629866i \(0.783110\pi\)
\(548\) 0 0
\(549\) 5.82793i 0.248730i
\(550\) 0 0
\(551\) −18.4409 −0.785608
\(552\) 0 0
\(553\) 0.900413 0.0382894
\(554\) 0 0
\(555\) − 12.9619i − 0.550201i
\(556\) 0 0
\(557\) − 6.15890i − 0.260961i −0.991451 0.130480i \(-0.958348\pi\)
0.991451 0.130480i \(-0.0416520\pi\)
\(558\) 0 0
\(559\) −12.7017 −0.537224
\(560\) 0 0
\(561\) −52.1639 −2.20236
\(562\) 0 0
\(563\) 27.4626i 1.15741i 0.815536 + 0.578706i \(0.196442\pi\)
−0.815536 + 0.578706i \(0.803558\pi\)
\(564\) 0 0
\(565\) − 13.2671i − 0.558149i
\(566\) 0 0
\(567\) 9.54924 0.401030
\(568\) 0 0
\(569\) −25.1770 −1.05547 −0.527737 0.849408i \(-0.676959\pi\)
−0.527737 + 0.849408i \(0.676959\pi\)
\(570\) 0 0
\(571\) − 34.0974i − 1.42693i −0.700689 0.713467i \(-0.747124\pi\)
0.700689 0.713467i \(-0.252876\pi\)
\(572\) 0 0
\(573\) 42.0965i 1.75861i
\(574\) 0 0
\(575\) 31.8776 1.32939
\(576\) 0 0
\(577\) −34.3580 −1.43034 −0.715170 0.698950i \(-0.753651\pi\)
−0.715170 + 0.698950i \(0.753651\pi\)
\(578\) 0 0
\(579\) − 12.5310i − 0.520769i
\(580\) 0 0
\(581\) 2.06372i 0.0856174i
\(582\) 0 0
\(583\) 32.2453 1.33547
\(584\) 0 0
\(585\) 1.92861 0.0797380
\(586\) 0 0
\(587\) 4.39822i 0.181534i 0.995872 + 0.0907669i \(0.0289318\pi\)
−0.995872 + 0.0907669i \(0.971068\pi\)
\(588\) 0 0
\(589\) − 34.3074i − 1.41361i
\(590\) 0 0
\(591\) −14.3562 −0.590536
\(592\) 0 0
\(593\) −1.50359 −0.0617451 −0.0308725 0.999523i \(-0.509829\pi\)
−0.0308725 + 0.999523i \(0.509829\pi\)
\(594\) 0 0
\(595\) 4.63031i 0.189824i
\(596\) 0 0
\(597\) 29.1691i 1.19381i
\(598\) 0 0
\(599\) −13.7500 −0.561809 −0.280904 0.959736i \(-0.590634\pi\)
−0.280904 + 0.959736i \(0.590634\pi\)
\(600\) 0 0
\(601\) 7.31520 0.298393 0.149197 0.988808i \(-0.452331\pi\)
0.149197 + 0.988808i \(0.452331\pi\)
\(602\) 0 0
\(603\) − 32.1152i − 1.30783i
\(604\) 0 0
\(605\) − 0.451462i − 0.0183545i
\(606\) 0 0
\(607\) 19.5840 0.794889 0.397445 0.917626i \(-0.369897\pi\)
0.397445 + 0.917626i \(0.369897\pi\)
\(608\) 0 0
\(609\) 10.7374 0.435101
\(610\) 0 0
\(611\) 7.90753i 0.319904i
\(612\) 0 0
\(613\) 44.5486i 1.79930i 0.436610 + 0.899651i \(0.356179\pi\)
−0.436610 + 0.899651i \(0.643821\pi\)
\(614\) 0 0
\(615\) 7.98472 0.321975
\(616\) 0 0
\(617\) −17.9533 −0.722772 −0.361386 0.932416i \(-0.617696\pi\)
−0.361386 + 0.932416i \(0.617696\pi\)
\(618\) 0 0
\(619\) 14.7130i 0.591365i 0.955286 + 0.295683i \(0.0955471\pi\)
−0.955286 + 0.295683i \(0.904453\pi\)
\(620\) 0 0
\(621\) − 3.32284i − 0.133341i
\(622\) 0 0
\(623\) −11.8949 −0.476558
\(624\) 0 0
\(625\) 18.1283 0.725132
\(626\) 0 0
\(627\) 32.0594i 1.28033i
\(628\) 0 0
\(629\) 52.6647i 2.09988i
\(630\) 0 0
\(631\) −17.9131 −0.713110 −0.356555 0.934274i \(-0.616049\pi\)
−0.356555 + 0.934274i \(0.616049\pi\)
\(632\) 0 0
\(633\) −23.4074 −0.930362
\(634\) 0 0
\(635\) 8.81874i 0.349961i
\(636\) 0 0
\(637\) − 1.00000i − 0.0396214i
\(638\) 0 0
\(639\) 33.2587 1.31569
\(640\) 0 0
\(641\) 46.0544 1.81904 0.909520 0.415660i \(-0.136449\pi\)
0.909520 + 0.415660i \(0.136449\pi\)
\(642\) 0 0
\(643\) − 20.1393i − 0.794215i −0.917772 0.397107i \(-0.870014\pi\)
0.917772 0.397107i \(-0.129986\pi\)
\(644\) 0 0
\(645\) 21.0463i 0.828696i
\(646\) 0 0
\(647\) −3.30439 −0.129909 −0.0649544 0.997888i \(-0.520690\pi\)
−0.0649544 + 0.997888i \(0.520690\pi\)
\(648\) 0 0
\(649\) −12.7805 −0.501679
\(650\) 0 0
\(651\) 19.9759i 0.782916i
\(652\) 0 0
\(653\) − 13.9169i − 0.544610i −0.962211 0.272305i \(-0.912214\pi\)
0.962211 0.272305i \(-0.0877860\pi\)
\(654\) 0 0
\(655\) −2.74129 −0.107111
\(656\) 0 0
\(657\) 47.3272 1.84641
\(658\) 0 0
\(659\) − 23.5824i − 0.918638i −0.888271 0.459319i \(-0.848093\pi\)
0.888271 0.459319i \(-0.151907\pi\)
\(660\) 0 0
\(661\) 47.2373i 1.83732i 0.395050 + 0.918660i \(0.370727\pi\)
−0.395050 + 0.918660i \(0.629273\pi\)
\(662\) 0 0
\(663\) −16.2194 −0.629908
\(664\) 0 0
\(665\) 2.84575 0.110353
\(666\) 0 0
\(667\) − 31.3840i − 1.21519i
\(668\) 0 0
\(669\) − 46.9315i − 1.81448i
\(670\) 0 0
\(671\) −6.68423 −0.258042
\(672\) 0 0
\(673\) −8.68063 −0.334614 −0.167307 0.985905i \(-0.553507\pi\)
−0.167307 + 0.985905i \(0.553507\pi\)
\(674\) 0 0
\(675\) − 2.13618i − 0.0822217i
\(676\) 0 0
\(677\) − 9.39355i − 0.361024i −0.983573 0.180512i \(-0.942225\pi\)
0.983573 0.180512i \(-0.0577754\pi\)
\(678\) 0 0
\(679\) 8.07789 0.310001
\(680\) 0 0
\(681\) −13.8646 −0.531291
\(682\) 0 0
\(683\) − 7.64309i − 0.292455i −0.989251 0.146227i \(-0.953287\pi\)
0.989251 0.146227i \(-0.0467131\pi\)
\(684\) 0 0
\(685\) − 4.07437i − 0.155674i
\(686\) 0 0
\(687\) 10.8881 0.415407
\(688\) 0 0
\(689\) 10.0261 0.381963
\(690\) 0 0
\(691\) 38.5172i 1.46526i 0.680626 + 0.732631i \(0.261708\pi\)
−0.680626 + 0.732631i \(0.738292\pi\)
\(692\) 0 0
\(693\) − 9.01850i − 0.342584i
\(694\) 0 0
\(695\) 2.15139 0.0816070
\(696\) 0 0
\(697\) −32.4423 −1.22884
\(698\) 0 0
\(699\) − 4.91326i − 0.185836i
\(700\) 0 0
\(701\) − 18.4756i − 0.697814i −0.937157 0.348907i \(-0.886553\pi\)
0.937157 0.348907i \(-0.113447\pi\)
\(702\) 0 0
\(703\) 32.3672 1.22075
\(704\) 0 0
\(705\) 13.1025 0.493469
\(706\) 0 0
\(707\) − 7.62035i − 0.286593i
\(708\) 0 0
\(709\) 2.94207i 0.110492i 0.998473 + 0.0552459i \(0.0175943\pi\)
−0.998473 + 0.0552459i \(0.982406\pi\)
\(710\) 0 0
\(711\) 2.52488 0.0946903
\(712\) 0 0
\(713\) 58.3868 2.18660
\(714\) 0 0
\(715\) 2.21198i 0.0827232i
\(716\) 0 0
\(717\) 19.3123i 0.721233i
\(718\) 0 0
\(719\) 4.53648 0.169182 0.0845911 0.996416i \(-0.473042\pi\)
0.0845911 + 0.996416i \(0.473042\pi\)
\(720\) 0 0
\(721\) −5.04500 −0.187885
\(722\) 0 0
\(723\) − 8.45892i − 0.314591i
\(724\) 0 0
\(725\) − 20.1761i − 0.749322i
\(726\) 0 0
\(727\) 0.575488 0.0213437 0.0106718 0.999943i \(-0.496603\pi\)
0.0106718 + 0.999943i \(0.496603\pi\)
\(728\) 0 0
\(729\) 23.3668 0.865437
\(730\) 0 0
\(731\) − 85.5120i − 3.16278i
\(732\) 0 0
\(733\) 4.34048i 0.160319i 0.996782 + 0.0801597i \(0.0255430\pi\)
−0.996782 + 0.0801597i \(0.974457\pi\)
\(734\) 0 0
\(735\) −1.65697 −0.0611181
\(736\) 0 0
\(737\) 36.8339 1.35679
\(738\) 0 0
\(739\) 5.99047i 0.220363i 0.993911 + 0.110181i \(0.0351432\pi\)
−0.993911 + 0.110181i \(0.964857\pi\)
\(740\) 0 0
\(741\) 9.96828i 0.366194i
\(742\) 0 0
\(743\) −14.2196 −0.521665 −0.260833 0.965384i \(-0.583997\pi\)
−0.260833 + 0.965384i \(0.583997\pi\)
\(744\) 0 0
\(745\) 1.51930 0.0556628
\(746\) 0 0
\(747\) 5.78694i 0.211733i
\(748\) 0 0
\(749\) − 16.1219i − 0.589081i
\(750\) 0 0
\(751\) −4.72032 −0.172247 −0.0861234 0.996284i \(-0.527448\pi\)
−0.0861234 + 0.996284i \(0.527448\pi\)
\(752\) 0 0
\(753\) 30.0169 1.09388
\(754\) 0 0
\(755\) − 3.40289i − 0.123844i
\(756\) 0 0
\(757\) 34.5160i 1.25451i 0.778816 + 0.627253i \(0.215821\pi\)
−0.778816 + 0.627253i \(0.784179\pi\)
\(758\) 0 0
\(759\) −54.5610 −1.98044
\(760\) 0 0
\(761\) 13.0455 0.472900 0.236450 0.971644i \(-0.424016\pi\)
0.236450 + 0.971644i \(0.424016\pi\)
\(762\) 0 0
\(763\) 11.1382i 0.403231i
\(764\) 0 0
\(765\) 12.9840i 0.469438i
\(766\) 0 0
\(767\) −3.97386 −0.143488
\(768\) 0 0
\(769\) 15.5443 0.560541 0.280271 0.959921i \(-0.409576\pi\)
0.280271 + 0.959921i \(0.409576\pi\)
\(770\) 0 0
\(771\) − 4.79057i − 0.172528i
\(772\) 0 0
\(773\) − 36.8531i − 1.32551i −0.748834 0.662757i \(-0.769386\pi\)
0.748834 0.662757i \(-0.230614\pi\)
\(774\) 0 0
\(775\) 37.5357 1.34832
\(776\) 0 0
\(777\) −18.8462 −0.676102
\(778\) 0 0
\(779\) 19.9387i 0.714379i
\(780\) 0 0
\(781\) 38.1454i 1.36495i
\(782\) 0 0
\(783\) −2.10311 −0.0751588
\(784\) 0 0
\(785\) −14.3554 −0.512366
\(786\) 0 0
\(787\) 19.8020i 0.705866i 0.935649 + 0.352933i \(0.114816\pi\)
−0.935649 + 0.352933i \(0.885184\pi\)
\(788\) 0 0
\(789\) 60.2745i 2.14583i
\(790\) 0 0
\(791\) −19.2899 −0.685869
\(792\) 0 0
\(793\) −2.07834 −0.0738039
\(794\) 0 0
\(795\) − 16.6129i − 0.589198i
\(796\) 0 0
\(797\) − 14.0956i − 0.499292i −0.968337 0.249646i \(-0.919686\pi\)
0.968337 0.249646i \(-0.0803143\pi\)
\(798\) 0 0
\(799\) −53.2361 −1.88336
\(800\) 0 0
\(801\) −33.3548 −1.17853
\(802\) 0 0
\(803\) 54.2810i 1.91554i
\(804\) 0 0
\(805\) 4.84309i 0.170697i
\(806\) 0 0
\(807\) 38.8151 1.36636
\(808\) 0 0
\(809\) −13.6176 −0.478770 −0.239385 0.970925i \(-0.576946\pi\)
−0.239385 + 0.970925i \(0.576946\pi\)
\(810\) 0 0
\(811\) 18.9691i 0.666095i 0.942910 + 0.333047i \(0.108077\pi\)
−0.942910 + 0.333047i \(0.891923\pi\)
\(812\) 0 0
\(813\) − 40.6721i − 1.42643i
\(814\) 0 0
\(815\) 7.65144 0.268018
\(816\) 0 0
\(817\) −52.5549 −1.83866
\(818\) 0 0
\(819\) − 2.80413i − 0.0979843i
\(820\) 0 0
\(821\) − 6.42394i − 0.224197i −0.993697 0.112099i \(-0.964243\pi\)
0.993697 0.112099i \(-0.0357572\pi\)
\(822\) 0 0
\(823\) 9.99062 0.348251 0.174125 0.984723i \(-0.444290\pi\)
0.174125 + 0.984723i \(0.444290\pi\)
\(824\) 0 0
\(825\) −35.0761 −1.22119
\(826\) 0 0
\(827\) − 36.5643i − 1.27147i −0.771909 0.635733i \(-0.780698\pi\)
0.771909 0.635733i \(-0.219302\pi\)
\(828\) 0 0
\(829\) − 45.0922i − 1.56612i −0.621948 0.783059i \(-0.713658\pi\)
0.621948 0.783059i \(-0.286342\pi\)
\(830\) 0 0
\(831\) 16.1350 0.559716
\(832\) 0 0
\(833\) 6.73233 0.233261
\(834\) 0 0
\(835\) − 3.94099i − 0.136384i
\(836\) 0 0
\(837\) − 3.91262i − 0.135240i
\(838\) 0 0
\(839\) −16.0522 −0.554184 −0.277092 0.960843i \(-0.589371\pi\)
−0.277092 + 0.960843i \(0.589371\pi\)
\(840\) 0 0
\(841\) 9.13630 0.315045
\(842\) 0 0
\(843\) 55.2645i 1.90341i
\(844\) 0 0
\(845\) 0.687773i 0.0236601i
\(846\) 0 0
\(847\) −0.656411 −0.0225546
\(848\) 0 0
\(849\) −3.79396 −0.130209
\(850\) 0 0
\(851\) 55.0848i 1.88828i
\(852\) 0 0
\(853\) − 32.9867i − 1.12944i −0.825282 0.564721i \(-0.808984\pi\)
0.825282 0.564721i \(-0.191016\pi\)
\(854\) 0 0
\(855\) 7.97985 0.272905
\(856\) 0 0
\(857\) 8.97007 0.306412 0.153206 0.988194i \(-0.451040\pi\)
0.153206 + 0.988194i \(0.451040\pi\)
\(858\) 0 0
\(859\) − 7.46952i − 0.254857i −0.991848 0.127428i \(-0.959328\pi\)
0.991848 0.127428i \(-0.0406723\pi\)
\(860\) 0 0
\(861\) − 11.6095i − 0.395652i
\(862\) 0 0
\(863\) 4.42663 0.150684 0.0753421 0.997158i \(-0.475995\pi\)
0.0753421 + 0.997158i \(0.475995\pi\)
\(864\) 0 0
\(865\) −6.09371 −0.207192
\(866\) 0 0
\(867\) − 68.2382i − 2.31749i
\(868\) 0 0
\(869\) 2.89586i 0.0982352i
\(870\) 0 0
\(871\) 11.4528 0.388064
\(872\) 0 0
\(873\) 22.6515 0.766636
\(874\) 0 0
\(875\) 6.55239i 0.221511i
\(876\) 0 0
\(877\) 27.9884i 0.945100i 0.881304 + 0.472550i \(0.156666\pi\)
−0.881304 + 0.472550i \(0.843334\pi\)
\(878\) 0 0
\(879\) −67.1218 −2.26396
\(880\) 0 0
\(881\) −13.3354 −0.449280 −0.224640 0.974442i \(-0.572121\pi\)
−0.224640 + 0.974442i \(0.572121\pi\)
\(882\) 0 0
\(883\) 2.41618i 0.0813110i 0.999173 + 0.0406555i \(0.0129446\pi\)
−0.999173 + 0.0406555i \(0.987055\pi\)
\(884\) 0 0
\(885\) 6.58455i 0.221337i
\(886\) 0 0
\(887\) 40.2075 1.35004 0.675018 0.737801i \(-0.264136\pi\)
0.675018 + 0.737801i \(0.264136\pi\)
\(888\) 0 0
\(889\) 12.8222 0.430042
\(890\) 0 0
\(891\) 30.7117i 1.02888i
\(892\) 0 0
\(893\) 32.7184i 1.09488i
\(894\) 0 0
\(895\) 3.78581 0.126546
\(896\) 0 0
\(897\) −16.9647 −0.566436
\(898\) 0 0
\(899\) − 36.9545i − 1.23250i
\(900\) 0 0
\(901\) 67.4989i 2.24871i
\(902\) 0 0
\(903\) 30.6006 1.01833
\(904\) 0 0
\(905\) 9.97889 0.331710
\(906\) 0 0
\(907\) 27.7295i 0.920742i 0.887727 + 0.460371i \(0.152284\pi\)
−0.887727 + 0.460371i \(0.847716\pi\)
\(908\) 0 0
\(909\) − 21.3685i − 0.708748i
\(910\) 0 0
\(911\) −14.4713 −0.479456 −0.239728 0.970840i \(-0.577058\pi\)
−0.239728 + 0.970840i \(0.577058\pi\)
\(912\) 0 0
\(913\) −6.63721 −0.219660
\(914\) 0 0
\(915\) 3.44373i 0.113846i
\(916\) 0 0
\(917\) 3.98575i 0.131621i
\(918\) 0 0
\(919\) 31.3587 1.03443 0.517214 0.855856i \(-0.326969\pi\)
0.517214 + 0.855856i \(0.326969\pi\)
\(920\) 0 0
\(921\) 52.1193 1.71739
\(922\) 0 0
\(923\) 11.8606i 0.390397i
\(924\) 0 0
\(925\) 35.4129i 1.16437i
\(926\) 0 0
\(927\) −14.1468 −0.464643
\(928\) 0 0
\(929\) −48.9015 −1.60441 −0.802203 0.597052i \(-0.796339\pi\)
−0.802203 + 0.597052i \(0.796339\pi\)
\(930\) 0 0
\(931\) − 4.13763i − 0.135605i
\(932\) 0 0
\(933\) 30.5904i 1.00148i
\(934\) 0 0
\(935\) −14.8918 −0.487013
\(936\) 0 0
\(937\) 16.8418 0.550198 0.275099 0.961416i \(-0.411289\pi\)
0.275099 + 0.961416i \(0.411289\pi\)
\(938\) 0 0
\(939\) − 57.4025i − 1.87326i
\(940\) 0 0
\(941\) 25.4756i 0.830480i 0.909712 + 0.415240i \(0.136302\pi\)
−0.909712 + 0.415240i \(0.863698\pi\)
\(942\) 0 0
\(943\) −33.9332 −1.10502
\(944\) 0 0
\(945\) 0.324546 0.0105575
\(946\) 0 0
\(947\) 48.9591i 1.59096i 0.605981 + 0.795479i \(0.292781\pi\)
−0.605981 + 0.795479i \(0.707219\pi\)
\(948\) 0 0
\(949\) 16.8777i 0.547872i
\(950\) 0 0
\(951\) 2.30965 0.0748955
\(952\) 0 0
\(953\) −53.9832 −1.74869 −0.874344 0.485307i \(-0.838708\pi\)
−0.874344 + 0.485307i \(0.838708\pi\)
\(954\) 0 0
\(955\) 12.0177i 0.388884i
\(956\) 0 0
\(957\) 34.5330i 1.11629i
\(958\) 0 0
\(959\) −5.92401 −0.191296
\(960\) 0 0
\(961\) 37.7502 1.21775
\(962\) 0 0
\(963\) − 45.2079i − 1.45680i
\(964\) 0 0
\(965\) − 3.57734i − 0.115159i
\(966\) 0 0
\(967\) 4.69531 0.150991 0.0754955 0.997146i \(-0.475946\pi\)
0.0754955 + 0.997146i \(0.475946\pi\)
\(968\) 0 0
\(969\) −67.1097 −2.15588
\(970\) 0 0
\(971\) 43.6293i 1.40013i 0.714079 + 0.700065i \(0.246846\pi\)
−0.714079 + 0.700065i \(0.753154\pi\)
\(972\) 0 0
\(973\) − 3.12806i − 0.100281i
\(974\) 0 0
\(975\) −10.9063 −0.349280
\(976\) 0 0
\(977\) −24.1270 −0.771892 −0.385946 0.922521i \(-0.626125\pi\)
−0.385946 + 0.922521i \(0.626125\pi\)
\(978\) 0 0
\(979\) − 38.2556i − 1.22266i
\(980\) 0 0
\(981\) 31.2330i 0.997195i
\(982\) 0 0
\(983\) 53.7433 1.71415 0.857073 0.515196i \(-0.172281\pi\)
0.857073 + 0.515196i \(0.172281\pi\)
\(984\) 0 0
\(985\) −4.09842 −0.130586
\(986\) 0 0
\(987\) − 19.0506i − 0.606388i
\(988\) 0 0
\(989\) − 89.4416i − 2.84408i
\(990\) 0 0
\(991\) 43.0179 1.36651 0.683255 0.730180i \(-0.260564\pi\)
0.683255 + 0.730180i \(0.260564\pi\)
\(992\) 0 0
\(993\) 14.8779 0.472135
\(994\) 0 0
\(995\) 8.32719i 0.263990i
\(996\) 0 0
\(997\) 47.1795i 1.49419i 0.664717 + 0.747095i \(0.268552\pi\)
−0.664717 + 0.747095i \(0.731448\pi\)
\(998\) 0 0
\(999\) 3.69135 0.116789
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.c.b.1457.6 38
4.3 odd 2 728.2.c.b.365.15 38
8.3 odd 2 728.2.c.b.365.16 yes 38
8.5 even 2 inner 2912.2.c.b.1457.33 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.b.365.15 38 4.3 odd 2
728.2.c.b.365.16 yes 38 8.3 odd 2
2912.2.c.b.1457.6 38 1.1 even 1 trivial
2912.2.c.b.1457.33 38 8.5 even 2 inner