Newspace parameters
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.81310926715\) |
Analytic rank: | \(0\) |
Dimension: | \(38\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
365.1 | −1.40887 | − | 0.122797i | 0.192506i | 1.96984 | + | 0.346010i | 2.98429i | 0.0236391 | − | 0.271216i | 1.00000 | −2.73277 | − | 0.729373i | 2.96294 | 0.366461 | − | 4.20449i | ||||||||
365.2 | −1.40887 | + | 0.122797i | − | 0.192506i | 1.96984 | − | 0.346010i | − | 2.98429i | 0.0236391 | + | 0.271216i | 1.00000 | −2.73277 | + | 0.729373i | 2.96294 | 0.366461 | + | 4.20449i | ||||||
365.3 | −1.36059 | − | 0.385756i | 3.17321i | 1.70238 | + | 1.04971i | 3.62722i | 1.22409 | − | 4.31743i | 1.00000 | −1.91131 | − | 2.08492i | −7.06928 | 1.39923 | − | 4.93515i | ||||||||
365.4 | −1.36059 | + | 0.385756i | − | 3.17321i | 1.70238 | − | 1.04971i | − | 3.62722i | 1.22409 | + | 4.31743i | 1.00000 | −1.91131 | + | 2.08492i | −7.06928 | 1.39923 | + | 4.93515i | ||||||
365.5 | −1.34174 | − | 0.446901i | − | 2.10063i | 1.60056 | + | 1.19925i | 0.418613i | −0.938772 | + | 2.81851i | 1.00000 | −1.61159 | − | 2.32438i | −1.41263 | 0.187079 | − | 0.561672i | |||||||
365.6 | −1.34174 | + | 0.446901i | 2.10063i | 1.60056 | − | 1.19925i | − | 0.418613i | −0.938772 | − | 2.81851i | 1.00000 | −1.61159 | + | 2.32438i | −1.41263 | 0.187079 | + | 0.561672i | |||||||
365.7 | −1.31212 | − | 0.527569i | 3.05148i | 1.44334 | + | 1.38447i | − | 3.70659i | 1.60986 | − | 4.00392i | 1.00000 | −1.16344 | − | 2.57806i | −6.31151 | −1.95548 | + | 4.86350i | |||||||
365.8 | −1.31212 | + | 0.527569i | − | 3.05148i | 1.44334 | − | 1.38447i | 3.70659i | 1.60986 | + | 4.00392i | 1.00000 | −1.16344 | + | 2.57806i | −6.31151 | −1.95548 | − | 4.86350i | |||||||
365.9 | −1.08735 | − | 0.904247i | 0.560000i | 0.364676 | + | 1.96647i | 0.293198i | 0.506378 | − | 0.608918i | 1.00000 | 1.38164 | − | 2.46801i | 2.68640 | 0.265123 | − | 0.318810i | ||||||||
365.10 | −1.08735 | + | 0.904247i | − | 0.560000i | 0.364676 | − | 1.96647i | − | 0.293198i | 0.506378 | + | 0.608918i | 1.00000 | 1.38164 | + | 2.46801i | 2.68640 | 0.265123 | + | 0.318810i | ||||||
365.11 | −1.06885 | − | 0.926043i | − | 2.33171i | 0.284890 | + | 1.97961i | 0.889625i | −2.15926 | + | 2.49225i | 1.00000 | 1.52869 | − | 2.37973i | −2.43685 | 0.823831 | − | 0.950878i | |||||||
365.12 | −1.06885 | + | 0.926043i | 2.33171i | 0.284890 | − | 1.97961i | − | 0.889625i | −2.15926 | − | 2.49225i | 1.00000 | 1.52869 | + | 2.37973i | −2.43685 | 0.823831 | + | 0.950878i | |||||||
365.13 | −0.716045 | − | 1.21954i | 0.472093i | −0.974560 | + | 1.74649i | 4.35100i | 0.575736 | − | 0.338039i | 1.00000 | 2.82775 | − | 0.0620491i | 2.77713 | 5.30622 | − | 3.11551i | ||||||||
365.14 | −0.716045 | + | 1.21954i | − | 0.472093i | −0.974560 | − | 1.74649i | − | 4.35100i | 0.575736 | + | 0.338039i | 1.00000 | 2.82775 | + | 0.0620491i | 2.77713 | 5.30622 | + | 3.11551i | ||||||
365.15 | −0.581532 | − | 1.28912i | 2.40918i | −1.32364 | + | 1.49933i | − | 0.687773i | 3.10571 | − | 1.40101i | 1.00000 | 2.70254 | + | 0.834421i | −2.80413 | −0.886619 | + | 0.399962i | |||||||
365.16 | −0.581532 | + | 1.28912i | − | 2.40918i | −1.32364 | − | 1.49933i | 0.687773i | 3.10571 | + | 1.40101i | 1.00000 | 2.70254 | − | 0.834421i | −2.80413 | −0.886619 | − | 0.399962i | |||||||
365.17 | −0.420523 | − | 1.35024i | − | 0.273626i | −1.64632 | + | 1.13562i | − | 2.12501i | −0.369462 | + | 0.115066i | 1.00000 | 2.22568 | + | 1.74538i | 2.92513 | −2.86928 | + | 0.893617i | ||||||
365.18 | −0.420523 | + | 1.35024i | 0.273626i | −1.64632 | − | 1.13562i | 2.12501i | −0.369462 | − | 0.115066i | 1.00000 | 2.22568 | − | 1.74538i | 2.92513 | −2.86928 | − | 0.893617i | ||||||||
365.19 | 0.242210 | − | 1.39332i | 1.67830i | −1.88267 | − | 0.674950i | 0.0254406i | 2.33840 | + | 0.406500i | 1.00000 | −1.39642 | + | 2.45968i | 0.183319 | 0.0354469 | + | 0.00616197i | ||||||||
365.20 | 0.242210 | + | 1.39332i | − | 1.67830i | −1.88267 | + | 0.674950i | − | 0.0254406i | 2.33840 | − | 0.406500i | 1.00000 | −1.39642 | − | 2.45968i | 0.183319 | 0.0354469 | − | 0.00616197i | ||||||
See all 38 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 728.2.c.b | ✓ | 38 |
4.b | odd | 2 | 1 | 2912.2.c.b | 38 | ||
8.b | even | 2 | 1 | inner | 728.2.c.b | ✓ | 38 |
8.d | odd | 2 | 1 | 2912.2.c.b | 38 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
728.2.c.b | ✓ | 38 | 1.a | even | 1 | 1 | trivial |
728.2.c.b | ✓ | 38 | 8.b | even | 2 | 1 | inner |
2912.2.c.b | 38 | 4.b | odd | 2 | 1 | ||
2912.2.c.b | 38 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{38} + 80 T_{3}^{36} + 2910 T_{3}^{34} + 63760 T_{3}^{32} + 939841 T_{3}^{30} + 9859520 T_{3}^{28} + \cdots + 262144 \)
acting on \(S_{2}^{\mathrm{new}}(728, [\chi])\).