Properties

Label 728.2.c.b.365.1
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.1
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.b.365.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40887 - 0.122797i) q^{2} +0.192506i q^{3} +(1.96984 + 0.346010i) q^{4} +2.98429i q^{5} +(0.0236391 - 0.271216i) q^{6} +1.00000 q^{7} +(-2.73277 - 0.729373i) q^{8} +2.96294 q^{9} +(0.366461 - 4.20449i) q^{10} +1.00336i q^{11} +(-0.0666089 + 0.379206i) q^{12} +1.00000i q^{13} +(-1.40887 - 0.122797i) q^{14} -0.574494 q^{15} +(3.76055 + 1.36317i) q^{16} +5.01819 q^{17} +(-4.17441 - 0.363839i) q^{18} -3.05501i q^{19} +(-1.03259 + 5.87859i) q^{20} +0.192506i q^{21} +(0.123209 - 1.41360i) q^{22} +1.46785 q^{23} +(0.140409 - 0.526074i) q^{24} -3.90601 q^{25} +(0.122797 - 1.40887i) q^{26} +1.14790i q^{27} +(1.96984 + 0.346010i) q^{28} +7.00104i q^{29} +(0.809389 + 0.0705460i) q^{30} -5.32922 q^{31} +(-5.13075 - 2.38231i) q^{32} -0.193152 q^{33} +(-7.06998 - 0.616216i) q^{34} +2.98429i q^{35} +(5.83653 + 1.02521i) q^{36} -5.29400i q^{37} +(-0.375145 + 4.30412i) q^{38} -0.192506 q^{39} +(2.17666 - 8.15538i) q^{40} -2.79082 q^{41} +(0.0236391 - 0.271216i) q^{42} +1.27667i q^{43} +(-0.347171 + 1.97645i) q^{44} +8.84229i q^{45} +(-2.06801 - 0.180247i) q^{46} -3.77337 q^{47} +(-0.262418 + 0.723929i) q^{48} +1.00000 q^{49} +(5.50307 + 0.479645i) q^{50} +0.966031i q^{51} +(-0.346010 + 1.96984i) q^{52} +3.46579i q^{53} +(0.140958 - 1.61725i) q^{54} -2.99431 q^{55} +(-2.73277 - 0.729373i) q^{56} +0.588108 q^{57} +(0.859704 - 9.86357i) q^{58} +14.0940i q^{59} +(-1.13166 - 0.198781i) q^{60} +6.82042i q^{61} +(7.50819 + 0.654410i) q^{62} +2.96294 q^{63} +(6.93603 + 3.98641i) q^{64} -2.98429 q^{65} +(0.272127 + 0.0237184i) q^{66} -11.1751i q^{67} +(9.88503 + 1.73634i) q^{68} +0.282569i q^{69} +(0.366461 - 4.20449i) q^{70} +7.60183 q^{71} +(-8.09703 - 2.16109i) q^{72} +9.74653 q^{73} +(-0.650085 + 7.45857i) q^{74} -0.751930i q^{75} +(1.05706 - 6.01789i) q^{76} +1.00336i q^{77} +(0.271216 + 0.0236391i) q^{78} +1.42324 q^{79} +(-4.06809 + 11.2226i) q^{80} +8.66785 q^{81} +(3.93191 + 0.342704i) q^{82} +4.59820i q^{83} +(-0.0666089 + 0.379206i) q^{84} +14.9757i q^{85} +(0.156770 - 1.79866i) q^{86} -1.34774 q^{87} +(0.731821 - 2.74194i) q^{88} +1.30979 q^{89} +(1.08580 - 12.4577i) q^{90} +1.00000i q^{91} +(2.89142 + 0.507889i) q^{92} -1.02591i q^{93} +(5.31620 + 0.463357i) q^{94} +9.11705 q^{95} +(0.458610 - 0.987700i) q^{96} -16.6675 q^{97} +(-1.40887 - 0.122797i) q^{98} +2.97289i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 8 q^{4} + 14 q^{6} + 38 q^{7} - 6 q^{8} - 46 q^{9} - 4 q^{12} - 8 q^{15} - 4 q^{16} + 20 q^{17} + 4 q^{18} - 24 q^{20} + 10 q^{22} + 12 q^{23} + 10 q^{24} - 50 q^{25} + 8 q^{28} + 4 q^{30} + 16 q^{31}+ \cdots + 82 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40887 0.122797i −0.996223 0.0868304i
\(3\) 0.192506i 0.111143i 0.998455 + 0.0555717i \(0.0176981\pi\)
−0.998455 + 0.0555717i \(0.982302\pi\)
\(4\) 1.96984 + 0.346010i 0.984921 + 0.173005i
\(5\) 2.98429i 1.33462i 0.744782 + 0.667308i \(0.232554\pi\)
−0.744782 + 0.667308i \(0.767446\pi\)
\(6\) 0.0236391 0.271216i 0.00965062 0.110724i
\(7\) 1.00000 0.377964
\(8\) −2.73277 0.729373i −0.966179 0.257872i
\(9\) 2.96294 0.987647
\(10\) 0.366461 4.20449i 0.115885 1.32958i
\(11\) 1.00336i 0.302523i 0.988494 + 0.151262i \(0.0483336\pi\)
−0.988494 + 0.151262i \(0.951666\pi\)
\(12\) −0.0666089 + 0.379206i −0.0192283 + 0.109467i
\(13\) 1.00000i 0.277350i
\(14\) −1.40887 0.122797i −0.376537 0.0328188i
\(15\) −0.574494 −0.148334
\(16\) 3.76055 + 1.36317i 0.940139 + 0.340792i
\(17\) 5.01819 1.21709 0.608544 0.793520i \(-0.291754\pi\)
0.608544 + 0.793520i \(0.291754\pi\)
\(18\) −4.17441 0.363839i −0.983917 0.0857577i
\(19\) 3.05501i 0.700868i −0.936588 0.350434i \(-0.886034\pi\)
0.936588 0.350434i \(-0.113966\pi\)
\(20\) −1.03259 + 5.87859i −0.230895 + 1.31449i
\(21\) 0.192506i 0.0420082i
\(22\) 0.123209 1.41360i 0.0262682 0.301381i
\(23\) 1.46785 0.306067 0.153033 0.988221i \(-0.451096\pi\)
0.153033 + 0.988221i \(0.451096\pi\)
\(24\) 0.140409 0.526074i 0.0286608 0.107384i
\(25\) −3.90601 −0.781202
\(26\) 0.122797 1.40887i 0.0240824 0.276303i
\(27\) 1.14790i 0.220914i
\(28\) 1.96984 + 0.346010i 0.372265 + 0.0653897i
\(29\) 7.00104i 1.30006i 0.759908 + 0.650030i \(0.225244\pi\)
−0.759908 + 0.650030i \(0.774756\pi\)
\(30\) 0.809389 + 0.0705460i 0.147774 + 0.0128799i
\(31\) −5.32922 −0.957156 −0.478578 0.878045i \(-0.658848\pi\)
−0.478578 + 0.878045i \(0.658848\pi\)
\(32\) −5.13075 2.38231i −0.906997 0.421138i
\(33\) −0.193152 −0.0336235
\(34\) −7.06998 0.616216i −1.21249 0.105680i
\(35\) 2.98429i 0.504438i
\(36\) 5.83653 + 1.02521i 0.972754 + 0.170868i
\(37\) 5.29400i 0.870328i −0.900351 0.435164i \(-0.856690\pi\)
0.900351 0.435164i \(-0.143310\pi\)
\(38\) −0.375145 + 4.30412i −0.0608566 + 0.698220i
\(39\) −0.192506 −0.0308256
\(40\) 2.17666 8.15538i 0.344161 1.28948i
\(41\) −2.79082 −0.435853 −0.217927 0.975965i \(-0.569929\pi\)
−0.217927 + 0.975965i \(0.569929\pi\)
\(42\) 0.0236391 0.271216i 0.00364759 0.0418496i
\(43\) 1.27667i 0.194690i 0.995251 + 0.0973448i \(0.0310350\pi\)
−0.995251 + 0.0973448i \(0.968965\pi\)
\(44\) −0.347171 + 1.97645i −0.0523380 + 0.297962i
\(45\) 8.84229i 1.31813i
\(46\) −2.06801 0.180247i −0.304911 0.0265759i
\(47\) −3.77337 −0.550403 −0.275201 0.961387i \(-0.588745\pi\)
−0.275201 + 0.961387i \(0.588745\pi\)
\(48\) −0.262418 + 0.723929i −0.0378768 + 0.104490i
\(49\) 1.00000 0.142857
\(50\) 5.50307 + 0.479645i 0.778251 + 0.0678320i
\(51\) 0.966031i 0.135271i
\(52\) −0.346010 + 1.96984i −0.0479829 + 0.273168i
\(53\) 3.46579i 0.476062i 0.971258 + 0.238031i \(0.0765020\pi\)
−0.971258 + 0.238031i \(0.923498\pi\)
\(54\) 0.140958 1.61725i 0.0191820 0.220079i
\(55\) −2.99431 −0.403753
\(56\) −2.73277 0.729373i −0.365181 0.0974666i
\(57\) 0.588108 0.0778968
\(58\) 0.859704 9.86357i 0.112885 1.29515i
\(59\) 14.0940i 1.83488i 0.397878 + 0.917438i \(0.369747\pi\)
−0.397878 + 0.917438i \(0.630253\pi\)
\(60\) −1.13166 0.198781i −0.146097 0.0256625i
\(61\) 6.82042i 0.873265i 0.899640 + 0.436632i \(0.143829\pi\)
−0.899640 + 0.436632i \(0.856171\pi\)
\(62\) 7.50819 + 0.654410i 0.953541 + 0.0831102i
\(63\) 2.96294 0.373296
\(64\) 6.93603 + 3.98641i 0.867004 + 0.498302i
\(65\) −2.98429 −0.370156
\(66\) 0.272127 + 0.0237184i 0.0334965 + 0.00291954i
\(67\) 11.1751i 1.36525i −0.730767 0.682627i \(-0.760837\pi\)
0.730767 0.682627i \(-0.239163\pi\)
\(68\) 9.88503 + 1.73634i 1.19874 + 0.210562i
\(69\) 0.282569i 0.0340173i
\(70\) 0.366461 4.20449i 0.0438005 0.502532i
\(71\) 7.60183 0.902171 0.451086 0.892481i \(-0.351037\pi\)
0.451086 + 0.892481i \(0.351037\pi\)
\(72\) −8.09703 2.16109i −0.954244 0.254687i
\(73\) 9.74653 1.14075 0.570373 0.821386i \(-0.306799\pi\)
0.570373 + 0.821386i \(0.306799\pi\)
\(74\) −0.650085 + 7.45857i −0.0755709 + 0.867041i
\(75\) 0.751930i 0.0868254i
\(76\) 1.05706 6.01789i 0.121253 0.690299i
\(77\) 1.00336i 0.114343i
\(78\) 0.271216 + 0.0236391i 0.0307092 + 0.00267660i
\(79\) 1.42324 0.160127 0.0800635 0.996790i \(-0.474488\pi\)
0.0800635 + 0.996790i \(0.474488\pi\)
\(80\) −4.06809 + 11.2226i −0.454827 + 1.25472i
\(81\) 8.66785 0.963094
\(82\) 3.93191 + 0.342704i 0.434207 + 0.0378453i
\(83\) 4.59820i 0.504718i 0.967634 + 0.252359i \(0.0812063\pi\)
−0.967634 + 0.252359i \(0.918794\pi\)
\(84\) −0.0666089 + 0.379206i −0.00726763 + 0.0413748i
\(85\) 14.9757i 1.62435i
\(86\) 0.156770 1.79866i 0.0169050 0.193954i
\(87\) −1.34774 −0.144493
\(88\) 0.731821 2.74194i 0.0780124 0.292292i
\(89\) 1.30979 0.138838 0.0694188 0.997588i \(-0.477886\pi\)
0.0694188 + 0.997588i \(0.477886\pi\)
\(90\) 1.08580 12.4577i 0.114454 1.31315i
\(91\) 1.00000i 0.104828i
\(92\) 2.89142 + 0.507889i 0.301452 + 0.0529510i
\(93\) 1.02591i 0.106382i
\(94\) 5.31620 + 0.463357i 0.548324 + 0.0477917i
\(95\) 9.11705 0.935389
\(96\) 0.458610 0.987700i 0.0468066 0.100807i
\(97\) −16.6675 −1.69233 −0.846165 0.532921i \(-0.821094\pi\)
−0.846165 + 0.532921i \(0.821094\pi\)
\(98\) −1.40887 0.122797i −0.142318 0.0124043i
\(99\) 2.97289i 0.298786i
\(100\) −7.69422 1.35152i −0.769422 0.135152i
\(101\) 15.5451i 1.54680i 0.633920 + 0.773398i \(0.281445\pi\)
−0.633920 + 0.773398i \(0.718555\pi\)
\(102\) 0.118625 1.36101i 0.0117457 0.134760i
\(103\) −9.35343 −0.921620 −0.460810 0.887499i \(-0.652441\pi\)
−0.460810 + 0.887499i \(0.652441\pi\)
\(104\) 0.729373 2.73277i 0.0715209 0.267970i
\(105\) −0.574494 −0.0560649
\(106\) 0.425587 4.88285i 0.0413367 0.474264i
\(107\) 20.1201i 1.94509i −0.232719 0.972544i \(-0.574762\pi\)
0.232719 0.972544i \(-0.425238\pi\)
\(108\) −0.397185 + 2.26118i −0.0382191 + 0.217583i
\(109\) 9.27587i 0.888467i 0.895911 + 0.444234i \(0.146524\pi\)
−0.895911 + 0.444234i \(0.853476\pi\)
\(110\) 4.21860 + 0.367691i 0.402228 + 0.0350580i
\(111\) 1.01913 0.0967312
\(112\) 3.76055 + 1.36317i 0.355339 + 0.128807i
\(113\) −15.7978 −1.48613 −0.743066 0.669219i \(-0.766629\pi\)
−0.743066 + 0.669219i \(0.766629\pi\)
\(114\) −0.828569 0.0722177i −0.0776026 0.00676380i
\(115\) 4.38048i 0.408482i
\(116\) −2.42243 + 13.7909i −0.224917 + 1.28046i
\(117\) 2.96294i 0.273924i
\(118\) 1.73069 19.8566i 0.159323 1.82795i
\(119\) 5.01819 0.460016
\(120\) 1.56996 + 0.419021i 0.143317 + 0.0382512i
\(121\) 9.99328 0.908480
\(122\) 0.837524 9.60909i 0.0758259 0.869967i
\(123\) 0.537250i 0.0484422i
\(124\) −10.4977 1.84396i −0.942723 0.165593i
\(125\) 3.26479i 0.292012i
\(126\) −4.17441 0.363839i −0.371886 0.0324134i
\(127\) 8.10472 0.719178 0.359589 0.933111i \(-0.382917\pi\)
0.359589 + 0.933111i \(0.382917\pi\)
\(128\) −9.28246 6.46807i −0.820461 0.571702i
\(129\) −0.245766 −0.0216385
\(130\) 4.20449 + 0.366461i 0.368758 + 0.0321408i
\(131\) 6.30484i 0.550857i −0.961322 0.275428i \(-0.911180\pi\)
0.961322 0.275428i \(-0.0888197\pi\)
\(132\) −0.380479 0.0668325i −0.0331165 0.00581702i
\(133\) 3.05501i 0.264903i
\(134\) −1.37226 + 15.7443i −0.118545 + 1.36010i
\(135\) −3.42568 −0.294835
\(136\) −13.7135 3.66013i −1.17593 0.313854i
\(137\) −1.54638 −0.132117 −0.0660583 0.997816i \(-0.521042\pi\)
−0.0660583 + 0.997816i \(0.521042\pi\)
\(138\) 0.0346985 0.398104i 0.00295373 0.0338888i
\(139\) 6.77925i 0.575008i −0.957779 0.287504i \(-0.907175\pi\)
0.957779 0.287504i \(-0.0928255\pi\)
\(140\) −1.03259 + 5.87859i −0.0872701 + 0.496831i
\(141\) 0.726396i 0.0611736i
\(142\) −10.7100 0.933479i −0.898764 0.0783359i
\(143\) −1.00336 −0.0839049
\(144\) 11.1423 + 4.03899i 0.928525 + 0.336582i
\(145\) −20.8932 −1.73508
\(146\) −13.7316 1.19684i −1.13644 0.0990513i
\(147\) 0.192506i 0.0158776i
\(148\) 1.83177 10.4283i 0.150571 0.857204i
\(149\) 13.3703i 1.09534i −0.836695 0.547669i \(-0.815515\pi\)
0.836695 0.547669i \(-0.184485\pi\)
\(150\) −0.0923345 + 1.05937i −0.00753908 + 0.0864974i
\(151\) 3.67367 0.298959 0.149479 0.988765i \(-0.452240\pi\)
0.149479 + 0.988765i \(0.452240\pi\)
\(152\) −2.22824 + 8.34863i −0.180734 + 0.677163i
\(153\) 14.8686 1.20205
\(154\) 0.123209 1.41360i 0.00992845 0.113911i
\(155\) 15.9040i 1.27744i
\(156\) −0.379206 0.0666089i −0.0303608 0.00533298i
\(157\) 2.33182i 0.186099i −0.995661 0.0930496i \(-0.970338\pi\)
0.995661 0.0930496i \(-0.0296615\pi\)
\(158\) −2.00516 0.174769i −0.159522 0.0139039i
\(159\) −0.667184 −0.0529112
\(160\) 7.10952 15.3117i 0.562057 1.21049i
\(161\) 1.46785 0.115682
\(162\) −12.2119 1.06438i −0.959457 0.0836258i
\(163\) 20.5746i 1.61152i −0.592239 0.805762i \(-0.701756\pi\)
0.592239 0.805762i \(-0.298244\pi\)
\(164\) −5.49748 0.965651i −0.429281 0.0754047i
\(165\) 0.576422i 0.0448744i
\(166\) 0.564643 6.47827i 0.0438248 0.502811i
\(167\) 17.9718 1.39070 0.695350 0.718671i \(-0.255249\pi\)
0.695350 + 0.718671i \(0.255249\pi\)
\(168\) 0.140409 0.526074i 0.0108328 0.0405875i
\(169\) −1.00000 −0.0769231
\(170\) 1.83897 21.0989i 0.141043 1.61821i
\(171\) 9.05182i 0.692210i
\(172\) −0.441738 + 2.51483i −0.0336822 + 0.191754i
\(173\) 22.1185i 1.68164i −0.541314 0.840821i \(-0.682073\pi\)
0.541314 0.840821i \(-0.317927\pi\)
\(174\) 1.89880 + 0.165498i 0.143947 + 0.0125464i
\(175\) −3.90601 −0.295266
\(176\) −1.36774 + 3.77318i −0.103098 + 0.284414i
\(177\) −2.71317 −0.203934
\(178\) −1.84533 0.160838i −0.138313 0.0120553i
\(179\) 22.1673i 1.65686i −0.560093 0.828429i \(-0.689235\pi\)
0.560093 0.828429i \(-0.310765\pi\)
\(180\) −3.05952 + 17.4179i −0.228043 + 1.29825i
\(181\) 10.9406i 0.813210i −0.913604 0.406605i \(-0.866713\pi\)
0.913604 0.406605i \(-0.133287\pi\)
\(182\) 0.122797 1.40887i 0.00910229 0.104433i
\(183\) −1.31297 −0.0970576
\(184\) −4.01128 1.07061i −0.295715 0.0789262i
\(185\) 15.7988 1.16155
\(186\) −0.125978 + 1.44537i −0.00923715 + 0.105980i
\(187\) 5.03503i 0.368198i
\(188\) −7.43294 1.30562i −0.542103 0.0952223i
\(189\) 1.14790i 0.0834976i
\(190\) −12.8448 1.11954i −0.931857 0.0812202i
\(191\) −23.1767 −1.67701 −0.838503 0.544897i \(-0.816569\pi\)
−0.838503 + 0.544897i \(0.816569\pi\)
\(192\) −0.767408 + 1.33523i −0.0553829 + 0.0963617i
\(193\) −4.80618 −0.345956 −0.172978 0.984926i \(-0.555339\pi\)
−0.172978 + 0.984926i \(0.555339\pi\)
\(194\) 23.4824 + 2.04671i 1.68594 + 0.146946i
\(195\) 0.574494i 0.0411404i
\(196\) 1.96984 + 0.346010i 0.140703 + 0.0247150i
\(197\) 10.2280i 0.728716i 0.931259 + 0.364358i \(0.118712\pi\)
−0.931259 + 0.364358i \(0.881288\pi\)
\(198\) 0.365061 4.18842i 0.0259437 0.297658i
\(199\) 1.69234 0.119967 0.0599833 0.998199i \(-0.480895\pi\)
0.0599833 + 0.998199i \(0.480895\pi\)
\(200\) 10.6742 + 2.84894i 0.754781 + 0.201450i
\(201\) 2.15127 0.151739
\(202\) 1.90889 21.9011i 0.134309 1.54095i
\(203\) 7.00104i 0.491377i
\(204\) −0.334256 + 1.90293i −0.0234026 + 0.133232i
\(205\) 8.32863i 0.581697i
\(206\) 13.1778 + 1.14857i 0.918140 + 0.0800246i
\(207\) 4.34914 0.302286
\(208\) −1.36317 + 3.76055i −0.0945187 + 0.260748i
\(209\) 3.06526 0.212029
\(210\) 0.809389 + 0.0705460i 0.0558531 + 0.00486813i
\(211\) 3.70828i 0.255288i 0.991820 + 0.127644i \(0.0407415\pi\)
−0.991820 + 0.127644i \(0.959258\pi\)
\(212\) −1.19920 + 6.82705i −0.0823611 + 0.468884i
\(213\) 1.46340i 0.100270i
\(214\) −2.47069 + 28.3467i −0.168893 + 1.93774i
\(215\) −3.80994 −0.259836
\(216\) 0.837249 3.13695i 0.0569676 0.213442i
\(217\) −5.32922 −0.361771
\(218\) 1.13905 13.0685i 0.0771459 0.885112i
\(219\) 1.87626i 0.126786i
\(220\) −5.89832 1.03606i −0.397665 0.0698512i
\(221\) 5.01819i 0.337560i
\(222\) −1.43582 0.125145i −0.0963658 0.00839920i
\(223\) −15.9566 −1.06853 −0.534266 0.845316i \(-0.679412\pi\)
−0.534266 + 0.845316i \(0.679412\pi\)
\(224\) −5.13075 2.38231i −0.342813 0.159175i
\(225\) −11.5733 −0.771551
\(226\) 22.2571 + 1.93992i 1.48052 + 0.129041i
\(227\) 1.84030i 0.122145i 0.998133 + 0.0610724i \(0.0194521\pi\)
−0.998133 + 0.0610724i \(0.980548\pi\)
\(228\) 1.15848 + 0.203491i 0.0767222 + 0.0134765i
\(229\) 9.57637i 0.632825i −0.948622 0.316412i \(-0.897522\pi\)
0.948622 0.316412i \(-0.102478\pi\)
\(230\) 0.537909 6.17154i 0.0354686 0.406939i
\(231\) −0.193152 −0.0127085
\(232\) 5.10637 19.1322i 0.335250 1.25609i
\(233\) −8.11239 −0.531460 −0.265730 0.964047i \(-0.585613\pi\)
−0.265730 + 0.964047i \(0.585613\pi\)
\(234\) 0.363839 4.17441i 0.0237849 0.272889i
\(235\) 11.2608i 0.734577i
\(236\) −4.87664 + 27.7629i −0.317442 + 1.80721i
\(237\) 0.273982i 0.0177971i
\(238\) −7.06998 0.616216i −0.458279 0.0399434i
\(239\) 16.8998 1.09316 0.546578 0.837408i \(-0.315930\pi\)
0.546578 + 0.837408i \(0.315930\pi\)
\(240\) −2.16042 0.783132i −0.139454 0.0505510i
\(241\) 11.4349 0.736584 0.368292 0.929710i \(-0.379943\pi\)
0.368292 + 0.929710i \(0.379943\pi\)
\(242\) −14.0792 1.22714i −0.905048 0.0788836i
\(243\) 5.11232i 0.327955i
\(244\) −2.35993 + 13.4351i −0.151079 + 0.860097i
\(245\) 2.98429i 0.190660i
\(246\) −0.0659725 + 0.756916i −0.00420625 + 0.0482592i
\(247\) 3.05501 0.194386
\(248\) 14.5635 + 3.88699i 0.924784 + 0.246824i
\(249\) −0.885180 −0.0560960
\(250\) 0.400906 4.59968i 0.0253555 0.290909i
\(251\) 5.94790i 0.375428i −0.982224 0.187714i \(-0.939892\pi\)
0.982224 0.187714i \(-0.0601078\pi\)
\(252\) 5.83653 + 1.02521i 0.367667 + 0.0645819i
\(253\) 1.47277i 0.0925924i
\(254\) −11.4185 0.995233i −0.716462 0.0624465i
\(255\) −2.88292 −0.180535
\(256\) 12.2835 + 10.2525i 0.767721 + 0.640784i
\(257\) 21.2037 1.32265 0.661325 0.750100i \(-0.269995\pi\)
0.661325 + 0.750100i \(0.269995\pi\)
\(258\) 0.346252 + 0.0301792i 0.0215567 + 0.00187887i
\(259\) 5.29400i 0.328953i
\(260\) −5.87859 1.03259i −0.364574 0.0640388i
\(261\) 20.7437i 1.28400i
\(262\) −0.774214 + 8.88272i −0.0478311 + 0.548776i
\(263\) −8.45169 −0.521154 −0.260577 0.965453i \(-0.583913\pi\)
−0.260577 + 0.965453i \(0.583913\pi\)
\(264\) 0.527840 + 0.140880i 0.0324863 + 0.00867056i
\(265\) −10.3429 −0.635361
\(266\) −0.375145 + 4.30412i −0.0230016 + 0.263903i
\(267\) 0.252142i 0.0154309i
\(268\) 3.86669 22.0132i 0.236195 1.34467i
\(269\) 19.7776i 1.20586i 0.797794 + 0.602930i \(0.206000\pi\)
−0.797794 + 0.602930i \(0.794000\pi\)
\(270\) 4.82634 + 0.420661i 0.293722 + 0.0256006i
\(271\) 4.60443 0.279699 0.139850 0.990173i \(-0.455338\pi\)
0.139850 + 0.990173i \(0.455338\pi\)
\(272\) 18.8712 + 6.84063i 1.14423 + 0.414774i
\(273\) −0.192506 −0.0116510
\(274\) 2.17866 + 0.189891i 0.131618 + 0.0114717i
\(275\) 3.91912i 0.236332i
\(276\) −0.0977716 + 0.556616i −0.00588516 + 0.0335044i
\(277\) 7.51131i 0.451311i −0.974207 0.225656i \(-0.927548\pi\)
0.974207 0.225656i \(-0.0724524\pi\)
\(278\) −0.832469 + 9.55109i −0.0499282 + 0.572836i
\(279\) −15.7902 −0.945333
\(280\) 2.17666 8.15538i 0.130081 0.487377i
\(281\) 11.6161 0.692959 0.346480 0.938057i \(-0.387377\pi\)
0.346480 + 0.938057i \(0.387377\pi\)
\(282\) −0.0891990 + 1.02340i −0.00531172 + 0.0609425i
\(283\) 9.43050i 0.560585i −0.959915 0.280292i \(-0.909569\pi\)
0.959915 0.280292i \(-0.0904315\pi\)
\(284\) 14.9744 + 2.63031i 0.888567 + 0.156080i
\(285\) 1.75509i 0.103962i
\(286\) 1.41360 + 0.123209i 0.0835880 + 0.00728549i
\(287\) −2.79082 −0.164737
\(288\) −15.2021 7.05866i −0.895793 0.415935i
\(289\) 8.18219 0.481305
\(290\) 29.4358 + 2.56561i 1.72853 + 0.150658i
\(291\) 3.20860i 0.188091i
\(292\) 19.1991 + 3.37239i 1.12354 + 0.197354i
\(293\) 17.4997i 1.02234i −0.859479 0.511171i \(-0.829212\pi\)
0.859479 0.511171i \(-0.170788\pi\)
\(294\) 0.0236391 0.271216i 0.00137866 0.0158177i
\(295\) −42.0605 −2.44886
\(296\) −3.86130 + 14.4673i −0.224434 + 0.840893i
\(297\) −1.15175 −0.0668316
\(298\) −1.64183 + 18.8370i −0.0951086 + 1.09120i
\(299\) 1.46785i 0.0848877i
\(300\) 0.260175 1.48118i 0.0150212 0.0855161i
\(301\) 1.27667i 0.0735858i
\(302\) −5.17573 0.451114i −0.297830 0.0259587i
\(303\) −2.99253 −0.171916
\(304\) 4.16449 11.4885i 0.238850 0.658913i
\(305\) −20.3541 −1.16547
\(306\) −20.9479 1.82581i −1.19751 0.104375i
\(307\) 30.6469i 1.74911i 0.484925 + 0.874556i \(0.338847\pi\)
−0.484925 + 0.874556i \(0.661153\pi\)
\(308\) −0.347171 + 1.97645i −0.0197819 + 0.112619i
\(309\) 1.80059i 0.102432i
\(310\) −1.95295 + 22.4066i −0.110920 + 1.27261i
\(311\) −12.5674 −0.712634 −0.356317 0.934365i \(-0.615968\pi\)
−0.356317 + 0.934365i \(0.615968\pi\)
\(312\) 0.526074 + 0.140409i 0.0297831 + 0.00794908i
\(313\) 20.1689 1.14002 0.570008 0.821639i \(-0.306940\pi\)
0.570008 + 0.821639i \(0.306940\pi\)
\(314\) −0.286339 + 3.28523i −0.0161591 + 0.185396i
\(315\) 8.84229i 0.498206i
\(316\) 2.80356 + 0.492455i 0.157712 + 0.0277027i
\(317\) 3.46083i 0.194380i −0.995266 0.0971898i \(-0.969015\pi\)
0.995266 0.0971898i \(-0.0309854\pi\)
\(318\) 0.939977 + 0.0819280i 0.0527113 + 0.00459429i
\(319\) −7.02454 −0.393299
\(320\) −11.8966 + 20.6991i −0.665042 + 1.15712i
\(321\) 3.87325 0.216184
\(322\) −2.06801 0.180247i −0.115246 0.0100447i
\(323\) 15.3306i 0.853018i
\(324\) 17.0743 + 2.99916i 0.948572 + 0.166620i
\(325\) 3.90601i 0.216666i
\(326\) −2.52649 + 28.9869i −0.139929 + 1.60544i
\(327\) −1.78566 −0.0987472
\(328\) 7.62667 + 2.03555i 0.421112 + 0.112395i
\(329\) −3.77337 −0.208033
\(330\) −0.0707828 + 0.812106i −0.00389646 + 0.0447049i
\(331\) 27.9694i 1.53734i 0.639648 + 0.768668i \(0.279080\pi\)
−0.639648 + 0.768668i \(0.720920\pi\)
\(332\) −1.59102 + 9.05772i −0.0873186 + 0.497107i
\(333\) 15.6858i 0.859577i
\(334\) −25.3200 2.20688i −1.38545 0.120755i
\(335\) 33.3497 1.82209
\(336\) −0.262418 + 0.723929i −0.0143161 + 0.0394936i
\(337\) 20.7057 1.12791 0.563957 0.825804i \(-0.309278\pi\)
0.563957 + 0.825804i \(0.309278\pi\)
\(338\) 1.40887 + 0.122797i 0.0766325 + 0.00667926i
\(339\) 3.04117i 0.165174i
\(340\) −5.18175 + 29.4998i −0.281020 + 1.59985i
\(341\) 5.34711i 0.289562i
\(342\) −1.11153 + 12.7529i −0.0601048 + 0.689595i
\(343\) 1.00000 0.0539949
\(344\) 0.931166 3.48883i 0.0502051 0.188105i
\(345\) −0.843269 −0.0454001
\(346\) −2.71608 + 31.1622i −0.146018 + 1.67529i
\(347\) 7.14734i 0.383689i 0.981425 + 0.191845i \(0.0614470\pi\)
−0.981425 + 0.191845i \(0.938553\pi\)
\(348\) −2.65484 0.466332i −0.142314 0.0249980i
\(349\) 10.9558i 0.586451i −0.956043 0.293225i \(-0.905271\pi\)
0.956043 0.293225i \(-0.0947286\pi\)
\(350\) 5.50307 + 0.479645i 0.294151 + 0.0256381i
\(351\) −1.14790 −0.0612705
\(352\) 2.39031 5.14797i 0.127404 0.274388i
\(353\) −18.4422 −0.981577 −0.490788 0.871279i \(-0.663291\pi\)
−0.490788 + 0.871279i \(0.663291\pi\)
\(354\) 3.82251 + 0.333168i 0.203164 + 0.0177077i
\(355\) 22.6861i 1.20405i
\(356\) 2.58008 + 0.453200i 0.136744 + 0.0240196i
\(357\) 0.966031i 0.0511278i
\(358\) −2.72207 + 31.2308i −0.143866 + 1.65060i
\(359\) 11.8687 0.626405 0.313202 0.949686i \(-0.398598\pi\)
0.313202 + 0.949686i \(0.398598\pi\)
\(360\) 6.44933 24.1639i 0.339909 1.27355i
\(361\) 9.66691 0.508785
\(362\) −1.34347 + 15.4139i −0.0706113 + 0.810138i
\(363\) 1.92376i 0.100971i
\(364\) −0.346010 + 1.96984i −0.0181358 + 0.103248i
\(365\) 29.0865i 1.52246i
\(366\) 1.84981 + 0.161228i 0.0966910 + 0.00842754i
\(367\) −2.19123 −0.114381 −0.0571905 0.998363i \(-0.518214\pi\)
−0.0571905 + 0.998363i \(0.518214\pi\)
\(368\) 5.51991 + 2.00092i 0.287745 + 0.104305i
\(369\) −8.26904 −0.430469
\(370\) −22.2586 1.94005i −1.15717 0.100858i
\(371\) 3.46579i 0.179935i
\(372\) 0.354974 2.02087i 0.0184045 0.104777i
\(373\) 28.2440i 1.46242i −0.682152 0.731211i \(-0.738956\pi\)
0.682152 0.731211i \(-0.261044\pi\)
\(374\) 0.618285 7.09371i 0.0319707 0.366807i
\(375\) −0.628492 −0.0324552
\(376\) 10.3117 + 2.75220i 0.531787 + 0.141934i
\(377\) −7.00104 −0.360572
\(378\) 0.140958 1.61725i 0.00725012 0.0831822i
\(379\) 18.7465i 0.962942i −0.876462 0.481471i \(-0.840103\pi\)
0.876462 0.481471i \(-0.159897\pi\)
\(380\) 17.9591 + 3.15459i 0.921285 + 0.161827i
\(381\) 1.56021i 0.0799319i
\(382\) 32.6530 + 2.84602i 1.67067 + 0.145615i
\(383\) 20.5013 1.04757 0.523785 0.851851i \(-0.324520\pi\)
0.523785 + 0.851851i \(0.324520\pi\)
\(384\) 1.24514 1.78693i 0.0635409 0.0911888i
\(385\) −2.99431 −0.152604
\(386\) 6.77129 + 0.590183i 0.344650 + 0.0300395i
\(387\) 3.78268i 0.192285i
\(388\) −32.8324 5.76712i −1.66681 0.292781i
\(389\) 28.1868i 1.42913i −0.699572 0.714563i \(-0.746626\pi\)
0.699572 0.714563i \(-0.253374\pi\)
\(390\) −0.0705460 + 0.809389i −0.00357223 + 0.0409850i
\(391\) 7.36592 0.372511
\(392\) −2.73277 0.729373i −0.138026 0.0368389i
\(393\) 1.21372 0.0612241
\(394\) 1.25597 14.4100i 0.0632747 0.725964i
\(395\) 4.24737i 0.213708i
\(396\) −1.02865 + 5.85612i −0.0516915 + 0.294281i
\(397\) 13.0095i 0.652927i −0.945210 0.326464i \(-0.894143\pi\)
0.945210 0.326464i \(-0.105857\pi\)
\(398\) −2.38428 0.207813i −0.119513 0.0104167i
\(399\) 0.588108 0.0294422
\(400\) −14.6888 5.32455i −0.734438 0.266227i
\(401\) −21.1050 −1.05393 −0.526967 0.849885i \(-0.676671\pi\)
−0.526967 + 0.849885i \(0.676671\pi\)
\(402\) −3.03086 0.264169i −0.151166 0.0131755i
\(403\) 5.32922i 0.265467i
\(404\) −5.37876 + 30.6214i −0.267603 + 1.52347i
\(405\) 25.8674i 1.28536i
\(406\) 0.859704 9.86357i 0.0426664 0.489521i
\(407\) 5.31177 0.263295
\(408\) 0.704597 2.63994i 0.0348827 0.130696i
\(409\) 15.8968 0.786047 0.393024 0.919528i \(-0.371429\pi\)
0.393024 + 0.919528i \(0.371429\pi\)
\(410\) −1.02273 + 11.7340i −0.0505089 + 0.579500i
\(411\) 0.297688i 0.0146839i
\(412\) −18.4248 3.23638i −0.907723 0.159445i
\(413\) 14.0940i 0.693518i
\(414\) −6.12738 0.534060i −0.301144 0.0262476i
\(415\) −13.7224 −0.673605
\(416\) 2.38231 5.13075i 0.116803 0.251556i
\(417\) 1.30504 0.0639083
\(418\) −4.31857 0.376404i −0.211228 0.0184105i
\(419\) 17.9388i 0.876367i −0.898886 0.438183i \(-0.855622\pi\)
0.898886 0.438183i \(-0.144378\pi\)
\(420\) −1.13166 0.198781i −0.0552195 0.00969950i
\(421\) 13.0158i 0.634349i −0.948367 0.317174i \(-0.897266\pi\)
0.948367 0.317174i \(-0.102734\pi\)
\(422\) 0.455364 5.22449i 0.0221668 0.254324i
\(423\) −11.1803 −0.543604
\(424\) 2.52785 9.47118i 0.122763 0.459961i
\(425\) −19.6011 −0.950792
\(426\) 0.179700 2.06174i 0.00870651 0.0998916i
\(427\) 6.82042i 0.330063i
\(428\) 6.96176 39.6335i 0.336510 1.91576i
\(429\) 0.193152i 0.00932547i
\(430\) 5.36772 + 0.467848i 0.258855 + 0.0225616i
\(431\) 17.8703 0.860781 0.430390 0.902643i \(-0.358376\pi\)
0.430390 + 0.902643i \(0.358376\pi\)
\(432\) −1.56478 + 4.31675i −0.0752857 + 0.207690i
\(433\) 8.67996 0.417132 0.208566 0.978008i \(-0.433120\pi\)
0.208566 + 0.978008i \(0.433120\pi\)
\(434\) 7.50819 + 0.654410i 0.360405 + 0.0314127i
\(435\) 4.02206i 0.192843i
\(436\) −3.20954 + 18.2720i −0.153709 + 0.875070i
\(437\) 4.48428i 0.214512i
\(438\) 0.230399 2.64342i 0.0110089 0.126307i
\(439\) 40.1155 1.91461 0.957305 0.289079i \(-0.0933491\pi\)
0.957305 + 0.289079i \(0.0933491\pi\)
\(440\) 8.18275 + 2.18397i 0.390097 + 0.104117i
\(441\) 2.96294 0.141092
\(442\) 0.616216 7.06998i 0.0293104 0.336285i
\(443\) 10.0772i 0.478784i 0.970923 + 0.239392i \(0.0769481\pi\)
−0.970923 + 0.239392i \(0.923052\pi\)
\(444\) 2.00752 + 0.352628i 0.0952726 + 0.0167350i
\(445\) 3.90880i 0.185295i
\(446\) 22.4808 + 1.95942i 1.06450 + 0.0927810i
\(447\) 2.57386 0.121740
\(448\) 6.93603 + 3.98641i 0.327697 + 0.188340i
\(449\) 22.9511 1.08313 0.541565 0.840659i \(-0.317832\pi\)
0.541565 + 0.840659i \(0.317832\pi\)
\(450\) 16.3053 + 1.42116i 0.768637 + 0.0669941i
\(451\) 2.80019i 0.131856i
\(452\) −31.1192 5.46619i −1.46372 0.257108i
\(453\) 0.707202i 0.0332273i
\(454\) 0.225982 2.59274i 0.0106059 0.121684i
\(455\) −2.98429 −0.139906
\(456\) −1.60716 0.428950i −0.0752622 0.0200874i
\(457\) 39.5146 1.84842 0.924208 0.381890i \(-0.124727\pi\)
0.924208 + 0.381890i \(0.124727\pi\)
\(458\) −1.17595 + 13.4919i −0.0549484 + 0.630434i
\(459\) 5.76038i 0.268872i
\(460\) −1.51569 + 8.62886i −0.0706694 + 0.402323i
\(461\) 28.6519i 1.33445i 0.744856 + 0.667225i \(0.232518\pi\)
−0.744856 + 0.667225i \(0.767482\pi\)
\(462\) 0.272127 + 0.0237184i 0.0126605 + 0.00110348i
\(463\) 35.3773 1.64412 0.822062 0.569398i \(-0.192824\pi\)
0.822062 + 0.569398i \(0.192824\pi\)
\(464\) −9.54360 + 26.3278i −0.443050 + 1.22224i
\(465\) 3.06161 0.141979
\(466\) 11.4293 + 0.996174i 0.529453 + 0.0461469i
\(467\) 1.25168i 0.0579208i −0.999581 0.0289604i \(-0.990780\pi\)
0.999581 0.0289604i \(-0.00921967\pi\)
\(468\) −1.02521 + 5.83653i −0.0473902 + 0.269794i
\(469\) 11.1751i 0.516017i
\(470\) −1.38279 + 15.8651i −0.0637835 + 0.731802i
\(471\) 0.448889 0.0206837
\(472\) 10.2798 38.5155i 0.473164 1.77282i
\(473\) −1.28095 −0.0588982
\(474\) 0.0336441 0.386006i 0.00154532 0.0177298i
\(475\) 11.9329i 0.547519i
\(476\) 9.88503 + 1.73634i 0.453080 + 0.0795850i
\(477\) 10.2689i 0.470182i
\(478\) −23.8096 2.07524i −1.08903 0.0949190i
\(479\) −36.3649 −1.66155 −0.830777 0.556605i \(-0.812104\pi\)
−0.830777 + 0.556605i \(0.812104\pi\)
\(480\) 2.94759 + 1.36863i 0.134538 + 0.0624689i
\(481\) 5.29400 0.241386
\(482\) −16.1103 1.40416i −0.733802 0.0639578i
\(483\) 0.282569i 0.0128573i
\(484\) 19.6852 + 3.45777i 0.894781 + 0.157171i
\(485\) 49.7408i 2.25861i
\(486\) 0.627775 7.20260i 0.0284765 0.326717i
\(487\) −31.8906 −1.44510 −0.722551 0.691317i \(-0.757031\pi\)
−0.722551 + 0.691317i \(0.757031\pi\)
\(488\) 4.97463 18.6386i 0.225191 0.843730i
\(489\) 3.96073 0.179110
\(490\) 0.366461 4.20449i 0.0165550 0.189939i
\(491\) 39.2263i 1.77026i −0.465346 0.885129i \(-0.654070\pi\)
0.465346 0.885129i \(-0.345930\pi\)
\(492\) 0.185894 1.05830i 0.00838073 0.0477117i
\(493\) 35.1325i 1.58229i
\(494\) −4.30412 0.375145i −0.193652 0.0168786i
\(495\) −8.87197 −0.398765
\(496\) −20.0408 7.26463i −0.899860 0.326191i
\(497\) 7.60183 0.340989
\(498\) 1.24711 + 0.108697i 0.0558841 + 0.00487084i
\(499\) 7.62400i 0.341297i −0.985332 0.170649i \(-0.945414\pi\)
0.985332 0.170649i \(-0.0545863\pi\)
\(500\) −1.12965 + 6.43113i −0.0505195 + 0.287609i
\(501\) 3.45968i 0.154567i
\(502\) −0.730382 + 8.37983i −0.0325986 + 0.374010i
\(503\) −1.85374 −0.0826540 −0.0413270 0.999146i \(-0.513159\pi\)
−0.0413270 + 0.999146i \(0.513159\pi\)
\(504\) −8.09703 2.16109i −0.360670 0.0962626i
\(505\) −46.3912 −2.06438
\(506\) 0.180852 2.07495i 0.00803983 0.0922427i
\(507\) 0.192506i 0.00854949i
\(508\) 15.9650 + 2.80431i 0.708334 + 0.124421i
\(509\) 1.69436i 0.0751011i −0.999295 0.0375505i \(-0.988044\pi\)
0.999295 0.0375505i \(-0.0119555\pi\)
\(510\) 4.06166 + 0.354013i 0.179854 + 0.0156760i
\(511\) 9.74653 0.431161
\(512\) −16.0470 15.9529i −0.709182 0.705025i
\(513\) 3.50685 0.154831
\(514\) −29.8733 2.60374i −1.31765 0.114846i
\(515\) 27.9134i 1.23001i
\(516\) −0.484119 0.0850373i −0.0213122 0.00374356i
\(517\) 3.78604i 0.166510i
\(518\) −0.650085 + 7.45857i −0.0285631 + 0.327711i
\(519\) 4.25795 0.186903
\(520\) 8.15538 + 2.17666i 0.357637 + 0.0954530i
\(521\) −23.6564 −1.03641 −0.518203 0.855258i \(-0.673399\pi\)
−0.518203 + 0.855258i \(0.673399\pi\)
\(522\) 2.54725 29.2252i 0.111490 1.27915i
\(523\) 1.75108i 0.0765693i 0.999267 + 0.0382847i \(0.0121894\pi\)
−0.999267 + 0.0382847i \(0.987811\pi\)
\(524\) 2.18154 12.4195i 0.0953009 0.542550i
\(525\) 0.751930i 0.0328169i
\(526\) 11.9074 + 1.03784i 0.519185 + 0.0452519i
\(527\) −26.7430 −1.16494
\(528\) −0.726359 0.263299i −0.0316107 0.0114586i
\(529\) −20.8454 −0.906323
\(530\) 14.5719 + 1.27008i 0.632961 + 0.0551686i
\(531\) 41.7596i 1.81221i
\(532\) 1.05706 6.01789i 0.0458295 0.260909i
\(533\) 2.79082i 0.120884i
\(534\) 0.0309623 0.355237i 0.00133987 0.0153726i
\(535\) 60.0444 2.59595
\(536\) −8.15081 + 30.5389i −0.352061 + 1.31908i
\(537\) 4.26733 0.184149
\(538\) 2.42862 27.8641i 0.104705 1.20131i
\(539\) 1.00336i 0.0432176i
\(540\) −6.74804 1.18532i −0.290389 0.0510079i
\(541\) 4.77614i 0.205342i −0.994715 0.102671i \(-0.967261\pi\)
0.994715 0.102671i \(-0.0327389\pi\)
\(542\) −6.48705 0.565409i −0.278643 0.0242864i
\(543\) 2.10613 0.0903829
\(544\) −25.7471 11.9549i −1.10390 0.512562i
\(545\) −27.6819 −1.18576
\(546\) 0.271216 + 0.0236391i 0.0116070 + 0.00101166i
\(547\) 22.4810i 0.961216i 0.876936 + 0.480608i \(0.159584\pi\)
−0.876936 + 0.480608i \(0.840416\pi\)
\(548\) −3.04613 0.535064i −0.130124 0.0228568i
\(549\) 20.2085i 0.862477i
\(550\) −0.481255 + 5.52154i −0.0205208 + 0.235439i
\(551\) 21.3883 0.911170
\(552\) 0.206098 0.772195i 0.00877212 0.0328668i
\(553\) 1.42324 0.0605223
\(554\) −0.922364 + 10.5825i −0.0391875 + 0.449607i
\(555\) 3.04137i 0.129099i
\(556\) 2.34568 13.3540i 0.0994792 0.566338i
\(557\) 23.4582i 0.993956i −0.867763 0.496978i \(-0.834443\pi\)
0.867763 0.496978i \(-0.165557\pi\)
\(558\) 22.2463 + 1.93898i 0.941762 + 0.0820836i
\(559\) −1.27667 −0.0539972
\(560\) −4.06809 + 11.2226i −0.171908 + 0.474241i
\(561\) −0.969273 −0.0409227
\(562\) −16.3656 1.42642i −0.690342 0.0601699i
\(563\) 15.3821i 0.648278i 0.946009 + 0.324139i \(0.105075\pi\)
−0.946009 + 0.324139i \(0.894925\pi\)
\(564\) 0.251340 1.43089i 0.0105833 0.0602512i
\(565\) 47.1452i 1.98342i
\(566\) −1.15803 + 13.2864i −0.0486758 + 0.558468i
\(567\) 8.66785 0.364015
\(568\) −20.7740 5.54457i −0.871659 0.232645i
\(569\) −34.5507 −1.44844 −0.724221 0.689568i \(-0.757800\pi\)
−0.724221 + 0.689568i \(0.757800\pi\)
\(570\) 0.215519 2.47269i 0.00902708 0.103570i
\(571\) 39.3464i 1.64660i 0.567608 + 0.823299i \(0.307869\pi\)
−0.567608 + 0.823299i \(0.692131\pi\)
\(572\) −1.97645 0.347171i −0.0826397 0.0145159i
\(573\) 4.46165i 0.186388i
\(574\) 3.93191 + 0.342704i 0.164115 + 0.0143042i
\(575\) −5.73342 −0.239100
\(576\) 20.5510 + 11.8115i 0.856294 + 0.492146i
\(577\) −29.2664 −1.21838 −0.609189 0.793025i \(-0.708505\pi\)
−0.609189 + 0.793025i \(0.708505\pi\)
\(578\) −11.5277 1.00475i −0.479487 0.0417919i
\(579\) 0.925218i 0.0384508i
\(580\) −41.1562 7.22923i −1.70892 0.300178i
\(581\) 4.59820i 0.190765i
\(582\) −0.394005 + 4.52050i −0.0163320 + 0.187381i
\(583\) −3.47742 −0.144020
\(584\) −26.6350 7.10886i −1.10216 0.294167i
\(585\) −8.84229 −0.365584
\(586\) −2.14890 + 24.6548i −0.0887703 + 1.01848i
\(587\) 20.2321i 0.835067i 0.908662 + 0.417533i \(0.137105\pi\)
−0.908662 + 0.417533i \(0.862895\pi\)
\(588\) −0.0666089 + 0.379206i −0.00274690 + 0.0156382i
\(589\) 16.2808i 0.670840i
\(590\) 59.2579 + 5.16489i 2.43961 + 0.212635i
\(591\) −1.96895 −0.0809919
\(592\) 7.21661 19.9084i 0.296601 0.818229i
\(593\) 20.3894 0.837291 0.418646 0.908150i \(-0.362505\pi\)
0.418646 + 0.908150i \(0.362505\pi\)
\(594\) 1.62267 + 0.141432i 0.0665792 + 0.00580301i
\(595\) 14.9757i 0.613945i
\(596\) 4.62625 26.3374i 0.189499 1.07882i
\(597\) 0.325785i 0.0133335i
\(598\) 0.180247 2.06801i 0.00737083 0.0845671i
\(599\) −36.8376 −1.50514 −0.752571 0.658511i \(-0.771186\pi\)
−0.752571 + 0.658511i \(0.771186\pi\)
\(600\) −0.548437 + 2.05485i −0.0223899 + 0.0838888i
\(601\) 4.24761 0.173264 0.0866318 0.996240i \(-0.472390\pi\)
0.0866318 + 0.996240i \(0.472390\pi\)
\(602\) 0.156770 1.79866i 0.00638948 0.0733078i
\(603\) 33.1111i 1.34839i
\(604\) 7.23654 + 1.27112i 0.294451 + 0.0517213i
\(605\) 29.8229i 1.21247i
\(606\) 4.21609 + 0.367472i 0.171267 + 0.0149275i
\(607\) −22.9363 −0.930955 −0.465477 0.885060i \(-0.654117\pi\)
−0.465477 + 0.885060i \(0.654117\pi\)
\(608\) −7.27799 + 15.6745i −0.295162 + 0.635685i
\(609\) −1.34774 −0.0546133
\(610\) 28.6764 + 2.49942i 1.16107 + 0.101198i
\(611\) 3.77337i 0.152654i
\(612\) 29.2888 + 5.14468i 1.18393 + 0.207961i
\(613\) 37.1446i 1.50026i −0.661292 0.750129i \(-0.729992\pi\)
0.661292 0.750129i \(-0.270008\pi\)
\(614\) 3.76334 43.1776i 0.151876 1.74251i
\(615\) 1.60331 0.0646517
\(616\) 0.731821 2.74194i 0.0294859 0.110476i
\(617\) 7.62484 0.306965 0.153482 0.988151i \(-0.450951\pi\)
0.153482 + 0.988151i \(0.450951\pi\)
\(618\) −0.221106 + 2.53680i −0.00889421 + 0.102045i
\(619\) 5.36732i 0.215731i 0.994166 + 0.107865i \(0.0344015\pi\)
−0.994166 + 0.107865i \(0.965598\pi\)
\(620\) 5.50292 31.3283i 0.221003 1.25817i
\(621\) 1.68494i 0.0676144i
\(622\) 17.7059 + 1.54324i 0.709943 + 0.0618783i
\(623\) 1.30979 0.0524757
\(624\) −0.723929 0.262418i −0.0289804 0.0105051i
\(625\) −29.2731 −1.17093
\(626\) −28.4154 2.47668i −1.13571 0.0989879i
\(627\) 0.590082i 0.0235656i
\(628\) 0.806831 4.59331i 0.0321961 0.183293i
\(629\) 26.5663i 1.05927i
\(630\) 1.08580 12.4577i 0.0432594 0.496325i
\(631\) 1.69179 0.0673491 0.0336745 0.999433i \(-0.489279\pi\)
0.0336745 + 0.999433i \(0.489279\pi\)
\(632\) −3.88938 1.03807i −0.154711 0.0412923i
\(633\) −0.713865 −0.0283736
\(634\) −0.424978 + 4.87587i −0.0168780 + 0.193645i
\(635\) 24.1869i 0.959827i
\(636\) −1.31425 0.230852i −0.0521133 0.00915388i
\(637\) 1.00000i 0.0396214i
\(638\) 9.89668 + 0.862590i 0.391813 + 0.0341503i
\(639\) 22.5238 0.891027
\(640\) 19.3026 27.7016i 0.763003 1.09500i
\(641\) −1.81368 −0.0716359 −0.0358180 0.999358i \(-0.511404\pi\)
−0.0358180 + 0.999358i \(0.511404\pi\)
\(642\) −5.45691 0.475622i −0.215367 0.0187713i
\(643\) 26.1858i 1.03267i 0.856387 + 0.516334i \(0.172704\pi\)
−0.856387 + 0.516334i \(0.827296\pi\)
\(644\) 2.89142 + 0.507889i 0.113938 + 0.0200136i
\(645\) 0.733437i 0.0288790i
\(646\) −1.88255 + 21.5989i −0.0740679 + 0.849796i
\(647\) 28.6859 1.12776 0.563879 0.825857i \(-0.309308\pi\)
0.563879 + 0.825857i \(0.309308\pi\)
\(648\) −23.6872 6.32210i −0.930521 0.248355i
\(649\) −14.1413 −0.555093
\(650\) −0.479645 + 5.50307i −0.0188132 + 0.215848i
\(651\) 1.02591i 0.0402084i
\(652\) 7.11900 40.5286i 0.278801 1.58722i
\(653\) 30.4022i 1.18973i −0.803825 0.594866i \(-0.797205\pi\)
0.803825 0.594866i \(-0.202795\pi\)
\(654\) 2.51577 + 0.219273i 0.0983743 + 0.00857426i
\(655\) 18.8155 0.735183
\(656\) −10.4950 3.80436i −0.409762 0.148535i
\(657\) 28.8784 1.12665
\(658\) 5.31620 + 0.463357i 0.207247 + 0.0180635i
\(659\) 3.86352i 0.150501i 0.997165 + 0.0752507i \(0.0239757\pi\)
−0.997165 + 0.0752507i \(0.976024\pi\)
\(660\) 0.199448 1.13546i 0.00776349 0.0441978i
\(661\) 13.0419i 0.507270i −0.967300 0.253635i \(-0.918374\pi\)
0.967300 0.253635i \(-0.0816262\pi\)
\(662\) 3.43455 39.4053i 0.133487 1.53153i
\(663\) −0.966031 −0.0375175
\(664\) 3.35380 12.5658i 0.130153 0.487648i
\(665\) 9.11705 0.353544
\(666\) −1.92617 + 22.0993i −0.0746374 + 0.856331i
\(667\) 10.2764i 0.397906i
\(668\) 35.4016 + 6.21842i 1.36973 + 0.240598i
\(669\) 3.07174i 0.118760i
\(670\) −46.9855 4.09524i −1.81521 0.158213i
\(671\) −6.84331 −0.264183
\(672\) 0.458610 0.987700i 0.0176912 0.0381013i
\(673\) 10.5564 0.406918 0.203459 0.979083i \(-0.434782\pi\)
0.203459 + 0.979083i \(0.434782\pi\)
\(674\) −29.1717 2.54260i −1.12365 0.0979371i
\(675\) 4.48371i 0.172578i
\(676\) −1.96984 0.346010i −0.0757632 0.0133081i
\(677\) 41.5579i 1.59720i −0.601863 0.798599i \(-0.705575\pi\)
0.601863 0.798599i \(-0.294425\pi\)
\(678\) −0.373445 + 4.28462i −0.0143421 + 0.164550i
\(679\) −16.6675 −0.639640
\(680\) 10.9229 40.9252i 0.418874 1.56941i
\(681\) −0.354268 −0.0135756
\(682\) −0.656607 + 7.53339i −0.0251428 + 0.288468i
\(683\) 32.5216i 1.24440i −0.782857 0.622202i \(-0.786238\pi\)
0.782857 0.622202i \(-0.213762\pi\)
\(684\) 3.13202 17.8307i 0.119756 0.681772i
\(685\) 4.61487i 0.176325i
\(686\) −1.40887 0.122797i −0.0537910 0.00468840i
\(687\) 1.84351 0.0703342
\(688\) −1.74031 + 4.80097i −0.0663487 + 0.183035i
\(689\) −3.46579 −0.132036
\(690\) 1.18806 + 0.103551i 0.0452286 + 0.00394210i
\(691\) 28.3095i 1.07694i 0.842643 + 0.538472i \(0.180998\pi\)
−0.842643 + 0.538472i \(0.819002\pi\)
\(692\) 7.65323 43.5700i 0.290932 1.65628i
\(693\) 2.97289i 0.112931i
\(694\) 0.877670 10.0697i 0.0333159 0.382240i
\(695\) 20.2313 0.767415
\(696\) 3.68306 + 0.983007i 0.139606 + 0.0372608i
\(697\) −14.0049 −0.530472
\(698\) −1.34534 + 15.4353i −0.0509217 + 0.584236i
\(699\) 1.56168i 0.0590683i
\(700\) −7.69422 1.35152i −0.290814 0.0510825i
\(701\) 32.9514i 1.24456i 0.782796 + 0.622278i \(0.213793\pi\)
−0.782796 + 0.622278i \(0.786207\pi\)
\(702\) 1.61725 + 0.140958i 0.0610390 + 0.00532014i
\(703\) −16.1732 −0.609985
\(704\) −3.99979 + 6.95931i −0.150748 + 0.262289i
\(705\) 2.16778 0.0816433
\(706\) 25.9826 + 2.26464i 0.977870 + 0.0852307i
\(707\) 15.5451i 0.584634i
\(708\) −5.34452 0.938783i −0.200859 0.0352816i
\(709\) 33.9034i 1.27327i −0.771166 0.636634i \(-0.780326\pi\)
0.771166 0.636634i \(-0.219674\pi\)
\(710\) 2.78578 31.9618i 0.104548 1.19951i
\(711\) 4.21698 0.158149
\(712\) −3.57935 0.955326i −0.134142 0.0358024i
\(713\) −7.82247 −0.292954
\(714\) 0.118625 1.36101i 0.00443944 0.0509347i
\(715\) 2.99431i 0.111981i
\(716\) 7.67009 43.6660i 0.286645 1.63188i
\(717\) 3.25331i 0.121497i
\(718\) −16.7214 1.45743i −0.624039 0.0543909i
\(719\) −32.4362 −1.20967 −0.604833 0.796352i \(-0.706760\pi\)
−0.604833 + 0.796352i \(0.706760\pi\)
\(720\) −12.0535 + 33.2519i −0.449208 + 1.23923i
\(721\) −9.35343 −0.348340
\(722\) −13.6194 1.18706i −0.506863 0.0441780i
\(723\) 2.20128i 0.0818664i
\(724\) 3.78556 21.5513i 0.140689 0.800947i
\(725\) 27.3461i 1.01561i
\(726\) 0.236232 2.71034i 0.00876739 0.100590i
\(727\) −27.4351 −1.01751 −0.508756 0.860911i \(-0.669894\pi\)
−0.508756 + 0.860911i \(0.669894\pi\)
\(728\) 0.729373 2.73277i 0.0270324 0.101283i
\(729\) 25.0194 0.926644
\(730\) 3.57173 40.9792i 0.132196 1.51671i
\(731\) 6.40654i 0.236955i
\(732\) −2.58634 0.454300i −0.0955940 0.0167914i
\(733\) 17.5680i 0.648888i 0.945905 + 0.324444i \(0.105177\pi\)
−0.945905 + 0.324444i \(0.894823\pi\)
\(734\) 3.08716 + 0.269075i 0.113949 + 0.00993175i
\(735\) −0.574494 −0.0211905
\(736\) −7.53115 3.49687i −0.277602 0.128896i
\(737\) 11.2126 0.413021
\(738\) 11.6500 + 1.01541i 0.428843 + 0.0373778i
\(739\) 17.4117i 0.640500i −0.947333 0.320250i \(-0.896233\pi\)
0.947333 0.320250i \(-0.103767\pi\)
\(740\) 31.1212 + 5.46655i 1.14404 + 0.200954i
\(741\) 0.588108i 0.0216047i
\(742\) 0.425587 4.88285i 0.0156238 0.179255i
\(743\) −43.3041 −1.58867 −0.794336 0.607478i \(-0.792181\pi\)
−0.794336 + 0.607478i \(0.792181\pi\)
\(744\) −0.748269 + 2.80356i −0.0274329 + 0.102784i
\(745\) 39.9009 1.46186
\(746\) −3.46827 + 39.7923i −0.126983 + 1.45690i
\(747\) 13.6242i 0.498483i
\(748\) −1.74217 + 9.91821i −0.0637000 + 0.362646i
\(749\) 20.1201i 0.735174i
\(750\) 0.885465 + 0.0771767i 0.0323326 + 0.00281810i
\(751\) 54.1254 1.97506 0.987531 0.157422i \(-0.0503184\pi\)
0.987531 + 0.157422i \(0.0503184\pi\)
\(752\) −14.1900 5.14374i −0.517455 0.187573i
\(753\) 1.14501 0.0417263
\(754\) 9.86357 + 0.859704i 0.359210 + 0.0313086i
\(755\) 10.9633i 0.398995i
\(756\) −0.397185 + 2.26118i −0.0144455 + 0.0822385i
\(757\) 24.1649i 0.878287i 0.898417 + 0.439143i \(0.144718\pi\)
−0.898417 + 0.439143i \(0.855282\pi\)
\(758\) −2.30201 + 26.4114i −0.0836126 + 0.959305i
\(759\) −0.283517 −0.0102910
\(760\) −24.9148 6.64973i −0.903754 0.241211i
\(761\) 11.9453 0.433016 0.216508 0.976281i \(-0.430533\pi\)
0.216508 + 0.976281i \(0.430533\pi\)
\(762\) 0.191588 2.19813i 0.00694051 0.0796300i
\(763\) 9.27587i 0.335809i
\(764\) −45.6544 8.01936i −1.65172 0.290130i
\(765\) 44.3722i 1.60428i
\(766\) −28.8838 2.51750i −1.04361 0.0909608i
\(767\) −14.0940 −0.508903
\(768\) −1.97367 + 2.36465i −0.0712189 + 0.0853271i
\(769\) 22.2885 0.803745 0.401872 0.915696i \(-0.368360\pi\)
0.401872 + 0.915696i \(0.368360\pi\)
\(770\) 4.21860 + 0.367691i 0.152028 + 0.0132507i
\(771\) 4.08183i 0.147004i
\(772\) −9.46742 1.66298i −0.340740 0.0598521i
\(773\) 34.3914i 1.23697i −0.785796 0.618486i \(-0.787746\pi\)
0.785796 0.618486i \(-0.212254\pi\)
\(774\) 0.464501 5.32932i 0.0166961 0.191558i
\(775\) 20.8160 0.747732
\(776\) 45.5484 + 12.1568i 1.63509 + 0.436405i
\(777\) 1.01913 0.0365610
\(778\) −3.46124 + 39.7115i −0.124091 + 1.42373i
\(779\) 8.52599i 0.305475i
\(780\) 0.198781 1.13166i 0.00711748 0.0405200i
\(781\) 7.62735i 0.272928i
\(782\) −10.3776 0.904511i −0.371104 0.0323452i
\(783\) −8.03651 −0.287201
\(784\) 3.76055 + 1.36317i 0.134306 + 0.0486846i
\(785\) 6.95883 0.248371
\(786\) −1.70998 0.149041i −0.0609928 0.00531611i
\(787\) 20.2618i 0.722253i 0.932517 + 0.361127i \(0.117608\pi\)
−0.932517 + 0.361127i \(0.882392\pi\)
\(788\) −3.53899 + 20.1476i −0.126071 + 0.717728i
\(789\) 1.62700i 0.0579228i
\(790\) 0.521562 5.98400i 0.0185564 0.212901i
\(791\) −15.7978 −0.561705
\(792\) 2.16834 8.12421i 0.0770488 0.288681i
\(793\) −6.82042 −0.242200
\(794\) −1.59752 + 18.3287i −0.0566939 + 0.650461i
\(795\) 1.99107i 0.0706161i
\(796\) 3.33363 + 0.585564i 0.118158 + 0.0207548i
\(797\) 15.6850i 0.555593i 0.960640 + 0.277796i \(0.0896040\pi\)
−0.960640 + 0.277796i \(0.910396\pi\)
\(798\) −0.828569 0.0722177i −0.0293310 0.00255648i
\(799\) −18.9355 −0.669889
\(800\) 20.0407 + 9.30534i 0.708547 + 0.328993i
\(801\) 3.88083 0.137122
\(802\) 29.7343 + 2.59163i 1.04995 + 0.0915135i
\(803\) 9.77924i 0.345102i
\(804\) 4.23766 + 0.744360i 0.149451 + 0.0262516i
\(805\) 4.38048i 0.154392i
\(806\) −0.654410 + 7.50819i −0.0230506 + 0.264465i
\(807\) −3.80730 −0.134023
\(808\) 11.3382 42.4812i 0.398876 1.49448i
\(809\) 17.6658 0.621096 0.310548 0.950558i \(-0.399488\pi\)
0.310548 + 0.950558i \(0.399488\pi\)
\(810\) 3.17643 36.4439i 0.111608 1.28051i
\(811\) 43.2600i 1.51906i 0.650471 + 0.759531i \(0.274572\pi\)
−0.650471 + 0.759531i \(0.725428\pi\)
\(812\) −2.42243 + 13.7909i −0.0850105 + 0.483967i
\(813\) 0.886380i 0.0310867i
\(814\) −7.48360 0.652267i −0.262300 0.0228620i
\(815\) 61.4005 2.15077
\(816\) −1.31686 + 3.63281i −0.0460994 + 0.127174i
\(817\) 3.90023 0.136452
\(818\) −22.3966 1.95208i −0.783078 0.0682527i
\(819\) 2.96294i 0.103534i
\(820\) 2.88179 16.4061i 0.100636 0.572925i
\(821\) 42.8024i 1.49381i 0.664928 + 0.746907i \(0.268462\pi\)
−0.664928 + 0.746907i \(0.731538\pi\)
\(822\) −0.0365551 + 0.419405i −0.00127501 + 0.0146284i
\(823\) 14.1848 0.494452 0.247226 0.968958i \(-0.420481\pi\)
0.247226 + 0.968958i \(0.420481\pi\)
\(824\) 25.5607 + 6.82214i 0.890450 + 0.237661i
\(825\) 0.754454 0.0262667
\(826\) 1.73069 19.8566i 0.0602184 0.690899i
\(827\) 17.5635i 0.610741i −0.952234 0.305371i \(-0.901220\pi\)
0.952234 0.305371i \(-0.0987804\pi\)
\(828\) 8.56712 + 1.50484i 0.297728 + 0.0522970i
\(829\) 7.94783i 0.276040i 0.990429 + 0.138020i \(0.0440738\pi\)
−0.990429 + 0.138020i \(0.955926\pi\)
\(830\) 19.3331 + 1.68506i 0.671060 + 0.0584893i
\(831\) 1.44597 0.0501602
\(832\) −3.98641 + 6.93603i −0.138204 + 0.240464i
\(833\) 5.01819 0.173870
\(834\) −1.83864 0.160255i −0.0636669 0.00554918i
\(835\) 53.6331i 1.85605i
\(836\) 6.03809 + 1.06061i 0.208832 + 0.0366820i
\(837\) 6.11742i 0.211449i
\(838\) −2.20282 + 25.2734i −0.0760952 + 0.873057i
\(839\) −24.3769 −0.841584 −0.420792 0.907157i \(-0.638248\pi\)
−0.420792 + 0.907157i \(0.638248\pi\)
\(840\) 1.56996 + 0.419021i 0.0541687 + 0.0144576i
\(841\) −20.0146 −0.690158
\(842\) −1.59829 + 18.3375i −0.0550807 + 0.631953i
\(843\) 2.23617i 0.0770178i
\(844\) −1.28310 + 7.30472i −0.0441661 + 0.251439i
\(845\) 2.98429i 0.102663i
\(846\) 15.7516 + 1.37290i 0.541550 + 0.0472013i
\(847\) 9.99328 0.343373
\(848\) −4.72445 + 13.0333i −0.162238 + 0.447565i
\(849\) 1.81543 0.0623053
\(850\) 27.6154 + 2.40695i 0.947201 + 0.0825576i
\(851\) 7.77077i 0.266379i
\(852\) −0.506350 + 2.88266i −0.0173473 + 0.0987584i
\(853\) 11.9274i 0.408385i −0.978931 0.204193i \(-0.934543\pi\)
0.978931 0.204193i \(-0.0654569\pi\)
\(854\) 0.837524 9.60909i 0.0286595 0.328816i
\(855\) 27.0133 0.923835
\(856\) −14.6751 + 54.9837i −0.501585 + 1.87930i
\(857\) −58.4117 −1.99531 −0.997654 0.0684640i \(-0.978190\pi\)
−0.997654 + 0.0684640i \(0.978190\pi\)
\(858\) −0.0237184 + 0.272127i −0.000809734 + 0.00929025i
\(859\) 42.6940i 1.45670i −0.685206 0.728350i \(-0.740288\pi\)
0.685206 0.728350i \(-0.259712\pi\)
\(860\) −7.50499 1.31828i −0.255918 0.0449529i
\(861\) 0.537250i 0.0183094i
\(862\) −25.1769 2.19441i −0.857530 0.0747419i
\(863\) −26.5317 −0.903149 −0.451574 0.892233i \(-0.649137\pi\)
−0.451574 + 0.892233i \(0.649137\pi\)
\(864\) 2.73466 5.88959i 0.0930351 0.200368i
\(865\) 66.0082 2.24435
\(866\) −12.2290 1.06587i −0.415557 0.0362197i
\(867\) 1.57512i 0.0534939i
\(868\) −10.4977 1.84396i −0.356316 0.0625881i
\(869\) 1.42802i 0.0484422i
\(870\) −0.493895 + 5.66657i −0.0167446 + 0.192115i
\(871\) 11.1751 0.378653
\(872\) 6.76557 25.3488i 0.229111 0.858418i
\(873\) −49.3849 −1.67142
\(874\) −0.550655 + 6.31778i −0.0186262 + 0.213702i
\(875\) 3.26479i 0.110370i
\(876\) −0.649206 + 3.69595i −0.0219346 + 0.124874i
\(877\) 43.2917i 1.46186i 0.682454 + 0.730929i \(0.260913\pi\)
−0.682454 + 0.730929i \(0.739087\pi\)
\(878\) −56.5177 4.92605i −1.90738 0.166246i
\(879\) 3.36879 0.113626
\(880\) −11.2603 4.08175i −0.379584 0.137596i
\(881\) 35.7110 1.20313 0.601567 0.798822i \(-0.294543\pi\)
0.601567 + 0.798822i \(0.294543\pi\)
\(882\) −4.17441 0.363839i −0.140560 0.0122511i
\(883\) 2.31339i 0.0778519i 0.999242 + 0.0389259i \(0.0123936\pi\)
−0.999242 + 0.0389259i \(0.987606\pi\)
\(884\) −1.73634 + 9.88503i −0.0583995 + 0.332470i
\(885\) 8.09689i 0.272174i
\(886\) 1.23745 14.1975i 0.0415730 0.476976i
\(887\) −13.5959 −0.456507 −0.228253 0.973602i \(-0.573301\pi\)
−0.228253 + 0.973602i \(0.573301\pi\)
\(888\) −2.78503 0.743324i −0.0934596 0.0249443i
\(889\) 8.10472 0.271824
\(890\) 0.479988 5.50700i 0.0160892 0.184595i
\(891\) 8.69694i 0.291358i
\(892\) −31.4320 5.52113i −1.05242 0.184861i
\(893\) 11.5277i 0.385759i
\(894\) −3.62624 0.316062i −0.121280 0.0105707i
\(895\) 66.1536 2.21127
\(896\) −9.28246 6.46807i −0.310105 0.216083i
\(897\) −0.282569 −0.00943470
\(898\) −32.3352 2.81832i −1.07904 0.0940485i
\(899\) 37.3101i 1.24436i
\(900\) −22.7975 4.00446i −0.759917 0.133482i
\(901\) 17.3920i 0.579410i
\(902\) −0.343854 + 3.94511i −0.0114491 + 0.131358i
\(903\) −0.245766 −0.00817857
\(904\) 43.1717 + 11.5225i 1.43587 + 0.383232i
\(905\) 32.6500 1.08532
\(906\) 0.0868421 0.996358i 0.00288514 0.0331018i
\(907\) 53.1606i 1.76517i 0.470153 + 0.882585i \(0.344199\pi\)
−0.470153 + 0.882585i \(0.655801\pi\)
\(908\) −0.636761 + 3.62510i −0.0211317 + 0.120303i
\(909\) 46.0593i 1.52769i
\(910\) 4.20449 + 0.366461i 0.139377 + 0.0121481i
\(911\) −51.9490 −1.72115 −0.860573 0.509326i \(-0.829895\pi\)
−0.860573 + 0.509326i \(0.829895\pi\)
\(912\) 2.21161 + 0.801690i 0.0732338 + 0.0265466i
\(913\) −4.61363 −0.152689
\(914\) −55.6710 4.85226i −1.84143 0.160499i
\(915\) 3.91829i 0.129535i
\(916\) 3.31352 18.8639i 0.109482 0.623282i
\(917\) 6.30484i 0.208204i
\(918\) 0.707356 8.11564i 0.0233462 0.267856i
\(919\) 15.9201 0.525156 0.262578 0.964911i \(-0.415427\pi\)
0.262578 + 0.964911i \(0.415427\pi\)
\(920\) 3.19501 11.9708i 0.105336 0.394667i
\(921\) −5.89971 −0.194402
\(922\) 3.51835 40.3668i 0.115871 1.32941i
\(923\) 7.60183i 0.250217i
\(924\) −0.380479 0.0668325i −0.0125168 0.00219863i
\(925\) 20.6784i 0.679902i
\(926\) −49.8421 4.34422i −1.63791 0.142760i
\(927\) −27.7137 −0.910236
\(928\) 16.6787 35.9206i 0.547504 1.17915i
\(929\) −3.61460 −0.118591 −0.0592956 0.998240i \(-0.518885\pi\)
−0.0592956 + 0.998240i \(0.518885\pi\)
\(930\) −4.31341 0.375955i −0.141442 0.0123281i
\(931\) 3.05501i 0.100124i
\(932\) −15.9801 2.80696i −0.523446 0.0919451i
\(933\) 2.41931i 0.0792046i
\(934\) −0.153702 + 1.76345i −0.00502928 + 0.0577020i
\(935\) −15.0260 −0.491403
\(936\) 2.16109 8.09703i 0.0706375 0.264660i
\(937\) 38.7807 1.26691 0.633456 0.773779i \(-0.281636\pi\)
0.633456 + 0.773779i \(0.281636\pi\)
\(938\) −1.37226 + 15.7443i −0.0448060 + 0.514069i
\(939\) 3.88264i 0.126705i
\(940\) 3.89636 22.1821i 0.127085 0.723500i
\(941\) 27.0826i 0.882869i −0.897294 0.441434i \(-0.854470\pi\)
0.897294 0.441434i \(-0.145530\pi\)
\(942\) −0.632427 0.0551220i −0.0206056 0.00179597i
\(943\) −4.09650 −0.133400
\(944\) −19.2124 + 53.0011i −0.625311 + 1.72504i
\(945\) −3.42568 −0.111437
\(946\) 1.80470 + 0.157296i 0.0586757 + 0.00511415i
\(947\) 4.94904i 0.160822i 0.996762 + 0.0804110i \(0.0256233\pi\)
−0.996762 + 0.0804110i \(0.974377\pi\)
\(948\) −0.0948005 + 0.539702i −0.00307898 + 0.0175287i
\(949\) 9.74653i 0.316386i
\(950\) 1.46532 16.8119i 0.0475412 0.545451i
\(951\) 0.666230 0.0216040
\(952\) −13.7135 3.66013i −0.444458 0.118626i
\(953\) 27.9839 0.906487 0.453244 0.891387i \(-0.350267\pi\)
0.453244 + 0.891387i \(0.350267\pi\)
\(954\) 1.26099 14.4676i 0.0408260 0.468406i
\(955\) 69.1660i 2.23816i
\(956\) 33.2899 + 5.84748i 1.07667 + 0.189121i
\(957\) 1.35227i 0.0437125i
\(958\) 51.2335 + 4.46549i 1.65528 + 0.144273i
\(959\) −1.54638 −0.0499354
\(960\) −3.98471 2.29017i −0.128606 0.0739150i
\(961\) −2.59941 −0.0838520
\(962\) −7.45857 0.650085i −0.240474 0.0209596i
\(963\) 59.6148i 1.92106i
\(964\) 22.5249 + 3.95657i 0.725477 + 0.127433i
\(965\) 14.3431i 0.461719i
\(966\) 0.0346985 0.398104i 0.00111641 0.0128088i
\(967\) −7.90194 −0.254109 −0.127055 0.991896i \(-0.540552\pi\)
−0.127055 + 0.991896i \(0.540552\pi\)
\(968\) −27.3093 7.28883i −0.877754 0.234272i
\(969\) 2.95123 0.0948073
\(970\) −6.10800 + 70.0784i −0.196116 + 2.25008i
\(971\) 32.3464i 1.03805i 0.854760 + 0.519023i \(0.173704\pi\)
−0.854760 + 0.519023i \(0.826296\pi\)
\(972\) −1.76891 + 10.0705i −0.0567378 + 0.323010i
\(973\) 6.77925i 0.217333i
\(974\) 44.9298 + 3.91606i 1.43964 + 0.125479i
\(975\) 0.751930 0.0240810
\(976\) −9.29738 + 25.6485i −0.297602 + 0.820990i
\(977\) 33.6243 1.07574 0.537868 0.843029i \(-0.319230\pi\)
0.537868 + 0.843029i \(0.319230\pi\)
\(978\) −5.58016 0.486364i −0.178434 0.0155522i
\(979\) 1.31419i 0.0420016i
\(980\) −1.03259 + 5.87859i −0.0329850 + 0.187785i
\(981\) 27.4839i 0.877492i
\(982\) −4.81686 + 55.2648i −0.153712 + 1.76357i
\(983\) 24.6726 0.786934 0.393467 0.919339i \(-0.371276\pi\)
0.393467 + 0.919339i \(0.371276\pi\)
\(984\) −0.391856 + 1.46818i −0.0124919 + 0.0468038i
\(985\) −30.5234 −0.972556
\(986\) 4.31416 49.4972i 0.137391 1.57631i
\(987\) 0.726396i 0.0231214i
\(988\) 6.01789 + 1.05706i 0.191455 + 0.0336297i
\(989\) 1.87395i 0.0595880i
\(990\) 12.4995 + 1.08945i 0.397259 + 0.0346249i
\(991\) −44.3738 −1.40958 −0.704791 0.709415i \(-0.748959\pi\)
−0.704791 + 0.709415i \(0.748959\pi\)
\(992\) 27.3429 + 12.6959i 0.868138 + 0.403094i
\(993\) −5.38427 −0.170865
\(994\) −10.7100 0.933479i −0.339701 0.0296082i
\(995\) 5.05043i 0.160109i
\(996\) −1.74366 0.306281i −0.0552501 0.00970488i
\(997\) 6.74589i 0.213644i −0.994278 0.106822i \(-0.965932\pi\)
0.994278 0.106822i \(-0.0340676\pi\)
\(998\) −0.936202 + 10.7412i −0.0296349 + 0.340008i
\(999\) 6.07699 0.192267
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.b.365.1 38
4.3 odd 2 2912.2.c.b.1457.19 38
8.3 odd 2 2912.2.c.b.1457.20 38
8.5 even 2 inner 728.2.c.b.365.2 yes 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.b.365.1 38 1.1 even 1 trivial
728.2.c.b.365.2 yes 38 8.5 even 2 inner
2912.2.c.b.1457.19 38 4.3 odd 2
2912.2.c.b.1457.20 38 8.3 odd 2