L(s) = 1 | + (−1.40 − 0.122i)2-s + 0.192i·3-s + (1.96 + 0.346i)4-s + 2.98i·5-s + (0.0236 − 0.271i)6-s + 7-s + (−2.73 − 0.729i)8-s + 2.96·9-s + (0.366 − 4.20i)10-s + 1.00i·11-s + (−0.0666 + 0.379i)12-s + i·13-s + (−1.40 − 0.122i)14-s − 0.574·15-s + (3.76 + 1.36i)16-s + 5.01·17-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0868i)2-s + 0.111i·3-s + (0.984 + 0.173i)4-s + 1.33i·5-s + (0.00965 − 0.110i)6-s + 0.377·7-s + (−0.966 − 0.257i)8-s + 0.987·9-s + (0.115 − 1.32i)10-s + 0.302i·11-s + (−0.0192 + 0.109i)12-s + 0.277i·13-s + (−0.376 − 0.0328i)14-s − 0.148·15-s + (0.940 + 0.340i)16-s + 1.21·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.257 - 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.257 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.868483 + 0.667087i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.868483 + 0.667087i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 + 0.122i)T \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 - iT \) |
good | 3 | \( 1 - 0.192iT - 3T^{2} \) |
| 5 | \( 1 - 2.98iT - 5T^{2} \) |
| 11 | \( 1 - 1.00iT - 11T^{2} \) |
| 17 | \( 1 - 5.01T + 17T^{2} \) |
| 19 | \( 1 + 3.05iT - 19T^{2} \) |
| 23 | \( 1 - 1.46T + 23T^{2} \) |
| 29 | \( 1 - 7.00iT - 29T^{2} \) |
| 31 | \( 1 + 5.32T + 31T^{2} \) |
| 37 | \( 1 + 5.29iT - 37T^{2} \) |
| 41 | \( 1 + 2.79T + 41T^{2} \) |
| 43 | \( 1 - 1.27iT - 43T^{2} \) |
| 47 | \( 1 + 3.77T + 47T^{2} \) |
| 53 | \( 1 - 3.46iT - 53T^{2} \) |
| 59 | \( 1 - 14.0iT - 59T^{2} \) |
| 61 | \( 1 - 6.82iT - 61T^{2} \) |
| 67 | \( 1 + 11.1iT - 67T^{2} \) |
| 71 | \( 1 - 7.60T + 71T^{2} \) |
| 73 | \( 1 - 9.74T + 73T^{2} \) |
| 79 | \( 1 - 1.42T + 79T^{2} \) |
| 83 | \( 1 - 4.59iT - 83T^{2} \) |
| 89 | \( 1 - 1.30T + 89T^{2} \) |
| 97 | \( 1 + 16.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65627557145270522551074378861, −9.771528271337828858499253374134, −9.060519281926982972751068134121, −7.81182463296602682588484583901, −7.17320112460257315235836634774, −6.64832396157558539851803819699, −5.33698213410301098954121249694, −3.79011774080424536365603791165, −2.76319395087627903803517147381, −1.50370640547492253154923536983,
0.881104589508133649517125513225, 1.82233798120479565534716230783, 3.59599481995497758488463943475, 4.94434932797933462137862198035, 5.77987133892329820490398685753, 6.94675379828268884313511003564, 8.070044004401310697437544992225, 8.227502858214908502497596490108, 9.503252003444826057232924507457, 9.875150882786280165269037838230