Properties

Label 728.2.c.a.365.6
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.6
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.a.365.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14018 + 0.836660i) q^{2} -2.38465i q^{3} +(0.600001 - 1.90788i) q^{4} -1.59665i q^{5} +(1.99514 + 2.71892i) q^{6} -1.00000 q^{7} +(0.912139 + 2.67731i) q^{8} -2.68654 q^{9} +(1.33585 + 1.82046i) q^{10} -4.18960i q^{11} +(-4.54962 - 1.43079i) q^{12} -1.00000i q^{13} +(1.14018 - 0.836660i) q^{14} -3.80744 q^{15} +(-3.28000 - 2.28946i) q^{16} +0.570087 q^{17} +(3.06313 - 2.24772i) q^{18} -2.53707i q^{19} +(-3.04621 - 0.957990i) q^{20} +2.38465i q^{21} +(3.50527 + 4.77688i) q^{22} +0.0190668 q^{23} +(6.38445 - 2.17513i) q^{24} +2.45072 q^{25} +(0.836660 + 1.14018i) q^{26} -0.747485i q^{27} +(-0.600001 + 1.90788i) q^{28} +0.742125i q^{29} +(4.34115 - 3.18553i) q^{30} -3.88210 q^{31} +(5.65527 - 0.133860i) q^{32} -9.99073 q^{33} +(-0.649999 + 0.476969i) q^{34} +1.59665i q^{35} +(-1.61193 + 5.12560i) q^{36} +1.77977i q^{37} +(2.12266 + 2.89270i) q^{38} -2.38465 q^{39} +(4.27473 - 1.45636i) q^{40} -8.08770 q^{41} +(-1.99514 - 2.71892i) q^{42} +11.7998i q^{43} +(-7.99326 - 2.51377i) q^{44} +4.28946i q^{45} +(-0.0217395 + 0.0159524i) q^{46} -5.33750 q^{47} +(-5.45955 + 7.82164i) q^{48} +1.00000 q^{49} +(-2.79425 + 2.05042i) q^{50} -1.35946i q^{51} +(-1.90788 - 0.600001i) q^{52} +4.60925i q^{53} +(0.625390 + 0.852264i) q^{54} -6.68932 q^{55} +(-0.912139 - 2.67731i) q^{56} -6.05001 q^{57} +(-0.620906 - 0.846153i) q^{58} -7.12700i q^{59} +(-2.28447 + 7.26414i) q^{60} +10.6962i q^{61} +(4.42627 - 3.24799i) q^{62} +2.68654 q^{63} +(-6.33601 + 4.88416i) q^{64} -1.59665 q^{65} +(11.3912 - 8.35884i) q^{66} -8.45532i q^{67} +(0.342052 - 1.08766i) q^{68} -0.0454676i q^{69} +(-1.33585 - 1.82046i) q^{70} -0.425314 q^{71} +(-2.45050 - 7.19272i) q^{72} +8.18795 q^{73} +(-1.48906 - 2.02925i) q^{74} -5.84409i q^{75} +(-4.84042 - 1.52224i) q^{76} +4.18960i q^{77} +(2.71892 - 1.99514i) q^{78} +1.30570 q^{79} +(-3.65546 + 5.23700i) q^{80} -9.84212 q^{81} +(9.22140 - 6.76665i) q^{82} -11.3255i q^{83} +(4.54962 + 1.43079i) q^{84} -0.910228i q^{85} +(-9.87244 - 13.4539i) q^{86} +1.76971 q^{87} +(11.2169 - 3.82150i) q^{88} -1.64900 q^{89} +(-3.58882 - 4.89074i) q^{90} +1.00000i q^{91} +(0.0114401 - 0.0363771i) q^{92} +9.25743i q^{93} +(6.08569 - 4.46567i) q^{94} -4.05081 q^{95} +(-0.319209 - 13.4858i) q^{96} -4.79975 q^{97} +(-1.14018 + 0.836660i) q^{98} +11.2556i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 2 q^{2} - 2 q^{4} - 6 q^{6} - 34 q^{7} + 8 q^{8} - 26 q^{9} - 4 q^{12} - 2 q^{14} - 8 q^{15} - 6 q^{16} - 20 q^{17} + 14 q^{18} - 4 q^{20} - 10 q^{22} - 20 q^{23} + 10 q^{24} - 22 q^{25} + 2 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14018 + 0.836660i −0.806226 + 0.591608i
\(3\) 2.38465i 1.37678i −0.725342 0.688388i \(-0.758318\pi\)
0.725342 0.688388i \(-0.241682\pi\)
\(4\) 0.600001 1.90788i 0.300000 0.953939i
\(5\) 1.59665i 0.714043i −0.934096 0.357021i \(-0.883792\pi\)
0.934096 0.357021i \(-0.116208\pi\)
\(6\) 1.99514 + 2.71892i 0.814512 + 1.10999i
\(7\) −1.00000 −0.377964
\(8\) 0.912139 + 2.67731i 0.322490 + 0.946573i
\(9\) −2.68654 −0.895514
\(10\) 1.33585 + 1.82046i 0.422433 + 0.575680i
\(11\) 4.18960i 1.26321i −0.775289 0.631607i \(-0.782396\pi\)
0.775289 0.631607i \(-0.217604\pi\)
\(12\) −4.54962 1.43079i −1.31336 0.413034i
\(13\) 1.00000i 0.277350i
\(14\) 1.14018 0.836660i 0.304725 0.223607i
\(15\) −3.80744 −0.983077
\(16\) −3.28000 2.28946i −0.820000 0.572364i
\(17\) 0.570087 0.138266 0.0691332 0.997607i \(-0.477977\pi\)
0.0691332 + 0.997607i \(0.477977\pi\)
\(18\) 3.06313 2.24772i 0.721987 0.529793i
\(19\) 2.53707i 0.582043i −0.956716 0.291022i \(-0.906005\pi\)
0.956716 0.291022i \(-0.0939952\pi\)
\(20\) −3.04621 0.957990i −0.681153 0.214213i
\(21\) 2.38465i 0.520373i
\(22\) 3.50527 + 4.77688i 0.747327 + 1.01844i
\(23\) 0.0190668 0.00397570 0.00198785 0.999998i \(-0.499367\pi\)
0.00198785 + 0.999998i \(0.499367\pi\)
\(24\) 6.38445 2.17513i 1.30322 0.443996i
\(25\) 2.45072 0.490143
\(26\) 0.836660 + 1.14018i 0.164082 + 0.223607i
\(27\) 0.747485i 0.143854i
\(28\) −0.600001 + 1.90788i −0.113389 + 0.360555i
\(29\) 0.742125i 0.137809i 0.997623 + 0.0689046i \(0.0219504\pi\)
−0.997623 + 0.0689046i \(0.978050\pi\)
\(30\) 4.34115 3.18553i 0.792582 0.581596i
\(31\) −3.88210 −0.697245 −0.348623 0.937263i \(-0.613350\pi\)
−0.348623 + 0.937263i \(0.613350\pi\)
\(32\) 5.65527 0.133860i 0.999720 0.0236634i
\(33\) −9.99073 −1.73916
\(34\) −0.649999 + 0.476969i −0.111474 + 0.0817995i
\(35\) 1.59665i 0.269883i
\(36\) −1.61193 + 5.12560i −0.268655 + 0.854266i
\(37\) 1.77977i 0.292593i 0.989241 + 0.146296i \(0.0467353\pi\)
−0.989241 + 0.146296i \(0.953265\pi\)
\(38\) 2.12266 + 2.89270i 0.344341 + 0.469259i
\(39\) −2.38465 −0.381849
\(40\) 4.27473 1.45636i 0.675893 0.230271i
\(41\) −8.08770 −1.26309 −0.631543 0.775341i \(-0.717578\pi\)
−0.631543 + 0.775341i \(0.717578\pi\)
\(42\) −1.99514 2.71892i −0.307857 0.419538i
\(43\) 11.7998i 1.79946i 0.436450 + 0.899729i \(0.356236\pi\)
−0.436450 + 0.899729i \(0.643764\pi\)
\(44\) −7.99326 2.51377i −1.20503 0.378964i
\(45\) 4.28946i 0.639435i
\(46\) −0.0217395 + 0.0159524i −0.00320531 + 0.00235206i
\(47\) −5.33750 −0.778555 −0.389277 0.921121i \(-0.627275\pi\)
−0.389277 + 0.921121i \(0.627275\pi\)
\(48\) −5.45955 + 7.82164i −0.788018 + 1.12896i
\(49\) 1.00000 0.142857
\(50\) −2.79425 + 2.05042i −0.395166 + 0.289972i
\(51\) 1.35946i 0.190362i
\(52\) −1.90788 0.600001i −0.264575 0.0832051i
\(53\) 4.60925i 0.633130i 0.948571 + 0.316565i \(0.102530\pi\)
−0.948571 + 0.316565i \(0.897470\pi\)
\(54\) 0.625390 + 0.852264i 0.0851049 + 0.115978i
\(55\) −6.68932 −0.901988
\(56\) −0.912139 2.67731i −0.121890 0.357771i
\(57\) −6.05001 −0.801344
\(58\) −0.620906 0.846153i −0.0815290 0.111105i
\(59\) 7.12700i 0.927857i −0.885873 0.463928i \(-0.846439\pi\)
0.885873 0.463928i \(-0.153561\pi\)
\(60\) −2.28447 + 7.26414i −0.294924 + 0.937796i
\(61\) 10.6962i 1.36950i 0.728777 + 0.684751i \(0.240089\pi\)
−0.728777 + 0.684751i \(0.759911\pi\)
\(62\) 4.42627 3.24799i 0.562137 0.412496i
\(63\) 2.68654 0.338473
\(64\) −6.33601 + 4.88416i −0.792001 + 0.610520i
\(65\) −1.59665 −0.198040
\(66\) 11.3912 8.35884i 1.40216 1.02890i
\(67\) 8.45532i 1.03298i −0.856293 0.516491i \(-0.827238\pi\)
0.856293 0.516491i \(-0.172762\pi\)
\(68\) 0.342052 1.08766i 0.0414800 0.131898i
\(69\) 0.0454676i 0.00547365i
\(70\) −1.33585 1.82046i −0.159665 0.217586i
\(71\) −0.425314 −0.0504754 −0.0252377 0.999681i \(-0.508034\pi\)
−0.0252377 + 0.999681i \(0.508034\pi\)
\(72\) −2.45050 7.19272i −0.288794 0.847670i
\(73\) 8.18795 0.958327 0.479164 0.877726i \(-0.340940\pi\)
0.479164 + 0.877726i \(0.340940\pi\)
\(74\) −1.48906 2.02925i −0.173100 0.235896i
\(75\) 5.84409i 0.674818i
\(76\) −4.84042 1.52224i −0.555234 0.174613i
\(77\) 4.18960i 0.477450i
\(78\) 2.71892 1.99514i 0.307857 0.225905i
\(79\) 1.30570 0.146902 0.0734512 0.997299i \(-0.476599\pi\)
0.0734512 + 0.997299i \(0.476599\pi\)
\(80\) −3.65546 + 5.23700i −0.408692 + 0.585515i
\(81\) −9.84212 −1.09357
\(82\) 9.22140 6.76665i 1.01833 0.747252i
\(83\) 11.3255i 1.24313i −0.783361 0.621567i \(-0.786496\pi\)
0.783361 0.621567i \(-0.213504\pi\)
\(84\) 4.54962 + 1.43079i 0.496404 + 0.156112i
\(85\) 0.910228i 0.0987281i
\(86\) −9.87244 13.4539i −1.06457 1.45077i
\(87\) 1.76971 0.189733
\(88\) 11.2169 3.82150i 1.19572 0.407373i
\(89\) −1.64900 −0.174794 −0.0873970 0.996174i \(-0.527855\pi\)
−0.0873970 + 0.996174i \(0.527855\pi\)
\(90\) −3.58882 4.89074i −0.378295 0.515529i
\(91\) 1.00000i 0.104828i
\(92\) 0.0114401 0.0363771i 0.00119271 0.00379258i
\(93\) 9.25743i 0.959951i
\(94\) 6.08569 4.46567i 0.627691 0.460599i
\(95\) −4.05081 −0.415604
\(96\) −0.319209 13.4858i −0.0325792 1.37639i
\(97\) −4.79975 −0.487341 −0.243670 0.969858i \(-0.578352\pi\)
−0.243670 + 0.969858i \(0.578352\pi\)
\(98\) −1.14018 + 0.836660i −0.115175 + 0.0845154i
\(99\) 11.2556i 1.13123i
\(100\) 1.47043 4.67567i 0.147043 0.467567i
\(101\) 7.48152i 0.744439i −0.928145 0.372220i \(-0.878597\pi\)
0.928145 0.372220i \(-0.121403\pi\)
\(102\) 1.13740 + 1.55002i 0.112620 + 0.153475i
\(103\) 11.8173 1.16439 0.582197 0.813048i \(-0.302193\pi\)
0.582197 + 0.813048i \(0.302193\pi\)
\(104\) 2.67731 0.912139i 0.262532 0.0894426i
\(105\) 3.80744 0.371568
\(106\) −3.85638 5.25536i −0.374565 0.510446i
\(107\) 16.5805i 1.60289i −0.598066 0.801447i \(-0.704064\pi\)
0.598066 0.801447i \(-0.295936\pi\)
\(108\) −1.42611 0.448491i −0.137227 0.0431561i
\(109\) 11.9418i 1.14381i 0.820318 + 0.571907i \(0.193796\pi\)
−0.820318 + 0.571907i \(0.806204\pi\)
\(110\) 7.62700 5.59669i 0.727206 0.533623i
\(111\) 4.24413 0.402835
\(112\) 3.28000 + 2.28946i 0.309931 + 0.216333i
\(113\) 5.32589 0.501017 0.250509 0.968114i \(-0.419402\pi\)
0.250509 + 0.968114i \(0.419402\pi\)
\(114\) 6.89808 5.06180i 0.646064 0.474081i
\(115\) 0.0304429i 0.00283882i
\(116\) 1.41588 + 0.445276i 0.131462 + 0.0413428i
\(117\) 2.68654i 0.248371i
\(118\) 5.96288 + 8.12603i 0.548927 + 0.748062i
\(119\) −0.570087 −0.0522598
\(120\) −3.47292 10.1937i −0.317032 0.930554i
\(121\) −6.55279 −0.595708
\(122\) −8.94905 12.1955i −0.810209 1.10413i
\(123\) 19.2863i 1.73899i
\(124\) −2.32926 + 7.40657i −0.209174 + 0.665129i
\(125\) 11.8962i 1.06403i
\(126\) −3.06313 + 2.24772i −0.272885 + 0.200243i
\(127\) 15.1726 1.34635 0.673176 0.739483i \(-0.264930\pi\)
0.673176 + 0.739483i \(0.264930\pi\)
\(128\) 3.13778 10.8699i 0.277343 0.960771i
\(129\) 28.1384 2.47745
\(130\) 1.82046 1.33585i 0.159665 0.117162i
\(131\) 1.62340i 0.141837i −0.997482 0.0709184i \(-0.977407\pi\)
0.997482 0.0709184i \(-0.0225930\pi\)
\(132\) −5.99444 + 19.0611i −0.521749 + 1.65906i
\(133\) 2.53707i 0.219992i
\(134\) 7.07423 + 9.64055i 0.611120 + 0.832817i
\(135\) −1.19347 −0.102718
\(136\) 0.519998 + 1.52630i 0.0445895 + 0.130879i
\(137\) −9.53449 −0.814587 −0.407293 0.913297i \(-0.633527\pi\)
−0.407293 + 0.913297i \(0.633527\pi\)
\(138\) 0.0380409 + 0.0518410i 0.00323826 + 0.00441300i
\(139\) 12.2351i 1.03776i −0.854846 0.518882i \(-0.826348\pi\)
0.854846 0.518882i \(-0.173652\pi\)
\(140\) 3.04621 + 0.957990i 0.257452 + 0.0809649i
\(141\) 12.7281i 1.07190i
\(142\) 0.484932 0.355843i 0.0406946 0.0298617i
\(143\) −4.18960 −0.350352
\(144\) 8.81186 + 6.15072i 0.734321 + 0.512560i
\(145\) 1.18491 0.0984017
\(146\) −9.33570 + 6.85053i −0.772628 + 0.566954i
\(147\) 2.38465i 0.196682i
\(148\) 3.39559 + 1.06786i 0.279116 + 0.0877780i
\(149\) 1.97177i 0.161534i 0.996733 + 0.0807669i \(0.0257369\pi\)
−0.996733 + 0.0807669i \(0.974263\pi\)
\(150\) 4.88952 + 6.66329i 0.399227 + 0.544055i
\(151\) −16.5785 −1.34914 −0.674571 0.738210i \(-0.735672\pi\)
−0.674571 + 0.738210i \(0.735672\pi\)
\(152\) 6.79253 2.31416i 0.550947 0.187703i
\(153\) −1.53156 −0.123819
\(154\) −3.50527 4.77688i −0.282463 0.384932i
\(155\) 6.19834i 0.497863i
\(156\) −1.43079 + 4.54962i −0.114555 + 0.364261i
\(157\) 7.21761i 0.576028i 0.957626 + 0.288014i \(0.0929950\pi\)
−0.957626 + 0.288014i \(0.907005\pi\)
\(158\) −1.48872 + 1.09242i −0.118436 + 0.0869086i
\(159\) 10.9914 0.871678
\(160\) −0.213728 9.02948i −0.0168967 0.713843i
\(161\) −0.0190668 −0.00150267
\(162\) 11.2217 8.23450i 0.881663 0.646964i
\(163\) 20.8322i 1.63170i 0.578260 + 0.815852i \(0.303732\pi\)
−0.578260 + 0.815852i \(0.696268\pi\)
\(164\) −4.85263 + 15.4303i −0.378926 + 1.20491i
\(165\) 15.9517i 1.24184i
\(166\) 9.47559 + 12.9131i 0.735448 + 1.00225i
\(167\) 16.5728 1.28245 0.641223 0.767355i \(-0.278428\pi\)
0.641223 + 0.767355i \(0.278428\pi\)
\(168\) −6.38445 + 2.17513i −0.492571 + 0.167815i
\(169\) −1.00000 −0.0769231
\(170\) 0.761551 + 1.03782i 0.0584083 + 0.0795971i
\(171\) 6.81594i 0.521228i
\(172\) 22.5126 + 7.07991i 1.71657 + 0.539838i
\(173\) 3.48473i 0.264939i −0.991187 0.132469i \(-0.957709\pi\)
0.991187 0.132469i \(-0.0422906\pi\)
\(174\) −2.01778 + 1.48064i −0.152967 + 0.112247i
\(175\) −2.45072 −0.185257
\(176\) −9.59192 + 13.7419i −0.723018 + 1.03583i
\(177\) −16.9954 −1.27745
\(178\) 1.88015 1.37965i 0.140923 0.103409i
\(179\) 22.1527i 1.65577i −0.560900 0.827884i \(-0.689545\pi\)
0.560900 0.827884i \(-0.310455\pi\)
\(180\) 8.18377 + 2.57368i 0.609982 + 0.191831i
\(181\) 16.9513i 1.25998i −0.776604 0.629989i \(-0.783059\pi\)
0.776604 0.629989i \(-0.216941\pi\)
\(182\) −0.836660 1.14018i −0.0620174 0.0845154i
\(183\) 25.5066 1.88550
\(184\) 0.0173916 + 0.0510478i 0.00128212 + 0.00376329i
\(185\) 2.84167 0.208924
\(186\) −7.74532 10.5551i −0.567914 0.773937i
\(187\) 2.38844i 0.174660i
\(188\) −3.20251 + 10.1833i −0.233567 + 0.742694i
\(189\) 0.747485i 0.0543715i
\(190\) 4.61863 3.38915i 0.335071 0.245874i
\(191\) −21.6345 −1.56542 −0.782708 0.622389i \(-0.786162\pi\)
−0.782708 + 0.622389i \(0.786162\pi\)
\(192\) 11.6470 + 15.1091i 0.840550 + 1.09041i
\(193\) 16.1797 1.16464 0.582319 0.812960i \(-0.302145\pi\)
0.582319 + 0.812960i \(0.302145\pi\)
\(194\) 5.47256 4.01576i 0.392907 0.288315i
\(195\) 3.80744i 0.272657i
\(196\) 0.600001 1.90788i 0.0428572 0.136277i
\(197\) 15.2317i 1.08521i −0.839987 0.542607i \(-0.817437\pi\)
0.839987 0.542607i \(-0.182563\pi\)
\(198\) −9.41707 12.8333i −0.669242 0.912023i
\(199\) 6.21008 0.440221 0.220110 0.975475i \(-0.429358\pi\)
0.220110 + 0.975475i \(0.429358\pi\)
\(200\) 2.23539 + 6.56133i 0.158066 + 0.463956i
\(201\) −20.1630 −1.42219
\(202\) 6.25949 + 8.53025i 0.440416 + 0.600186i
\(203\) 0.742125i 0.0520870i
\(204\) −2.59368 0.815675i −0.181594 0.0571086i
\(205\) 12.9132i 0.901898i
\(206\) −13.4738 + 9.88706i −0.938764 + 0.688864i
\(207\) −0.0512237 −0.00356030
\(208\) −2.28946 + 3.28000i −0.158745 + 0.227427i
\(209\) −10.6293 −0.735245
\(210\) −4.34115 + 3.18553i −0.299568 + 0.219823i
\(211\) 5.94685i 0.409398i 0.978825 + 0.204699i \(0.0656215\pi\)
−0.978825 + 0.204699i \(0.934378\pi\)
\(212\) 8.79390 + 2.76556i 0.603967 + 0.189939i
\(213\) 1.01422i 0.0694934i
\(214\) 13.8722 + 18.9046i 0.948284 + 1.29229i
\(215\) 18.8402 1.28489
\(216\) 2.00125 0.681810i 0.136168 0.0463913i
\(217\) 3.88210 0.263534
\(218\) −9.99120 13.6157i −0.676690 0.922173i
\(219\) 19.5254i 1.31940i
\(220\) −4.01360 + 12.7624i −0.270597 + 0.860442i
\(221\) 0.570087i 0.0383482i
\(222\) −4.83905 + 3.55089i −0.324776 + 0.238320i
\(223\) 9.96356 0.667209 0.333605 0.942713i \(-0.391735\pi\)
0.333605 + 0.942713i \(0.391735\pi\)
\(224\) −5.65527 + 0.133860i −0.377859 + 0.00894391i
\(225\) −6.58395 −0.438930
\(226\) −6.07244 + 4.45595i −0.403933 + 0.296406i
\(227\) 10.4441i 0.693198i 0.938013 + 0.346599i \(0.112663\pi\)
−0.938013 + 0.346599i \(0.887337\pi\)
\(228\) −3.63001 + 11.5427i −0.240403 + 0.764433i
\(229\) 26.5939i 1.75737i −0.477398 0.878687i \(-0.658420\pi\)
0.477398 0.878687i \(-0.341580\pi\)
\(230\) 0.0254704 + 0.0347103i 0.00167947 + 0.00228873i
\(231\) 9.99073 0.657342
\(232\) −1.98690 + 0.676921i −0.130446 + 0.0444421i
\(233\) 14.4199 0.944676 0.472338 0.881417i \(-0.343410\pi\)
0.472338 + 0.881417i \(0.343410\pi\)
\(234\) −2.24772 3.06313i −0.146938 0.200243i
\(235\) 8.52211i 0.555921i
\(236\) −13.5975 4.27621i −0.885119 0.278357i
\(237\) 3.11363i 0.202252i
\(238\) 0.649999 0.476969i 0.0421332 0.0309173i
\(239\) 1.16899 0.0756154 0.0378077 0.999285i \(-0.487963\pi\)
0.0378077 + 0.999285i \(0.487963\pi\)
\(240\) 12.4884 + 8.71697i 0.806123 + 0.562678i
\(241\) 17.6819 1.13899 0.569495 0.821995i \(-0.307139\pi\)
0.569495 + 0.821995i \(0.307139\pi\)
\(242\) 7.47133 5.48245i 0.480275 0.352425i
\(243\) 21.2275i 1.36175i
\(244\) 20.4070 + 6.41770i 1.30642 + 0.410851i
\(245\) 1.59665i 0.102006i
\(246\) −16.1361 21.9898i −1.02880 1.40202i
\(247\) −2.53707 −0.161430
\(248\) −3.54101 10.3936i −0.224854 0.659993i
\(249\) −27.0073 −1.71152
\(250\) 9.95305 + 13.5637i 0.629486 + 0.857845i
\(251\) 15.3853i 0.971109i −0.874206 0.485554i \(-0.838618\pi\)
0.874206 0.485554i \(-0.161382\pi\)
\(252\) 1.61193 5.12560i 0.101542 0.322882i
\(253\) 0.0798823i 0.00502216i
\(254\) −17.2994 + 12.6943i −1.08546 + 0.796512i
\(255\) −2.17057 −0.135927
\(256\) 5.51678 + 15.0188i 0.344799 + 0.938677i
\(257\) −3.88506 −0.242343 −0.121172 0.992632i \(-0.538665\pi\)
−0.121172 + 0.992632i \(0.538665\pi\)
\(258\) −32.0828 + 23.5423i −1.99739 + 1.46568i
\(259\) 1.77977i 0.110590i
\(260\) −0.957990 + 3.04621i −0.0594120 + 0.188918i
\(261\) 1.99375i 0.123410i
\(262\) 1.35823 + 1.85096i 0.0839117 + 0.114352i
\(263\) 21.8664 1.34834 0.674169 0.738577i \(-0.264502\pi\)
0.674169 + 0.738577i \(0.264502\pi\)
\(264\) −9.11293 26.7483i −0.560862 1.64624i
\(265\) 7.35936 0.452082
\(266\) −2.12266 2.89270i −0.130149 0.177363i
\(267\) 3.93229i 0.240652i
\(268\) −16.1317 5.07320i −0.985402 0.309895i
\(269\) 28.9652i 1.76604i 0.469338 + 0.883019i \(0.344493\pi\)
−0.469338 + 0.883019i \(0.655507\pi\)
\(270\) 1.36077 0.998528i 0.0828135 0.0607685i
\(271\) 16.7574 1.01794 0.508971 0.860784i \(-0.330026\pi\)
0.508971 + 0.860784i \(0.330026\pi\)
\(272\) −1.86988 1.30519i −0.113378 0.0791387i
\(273\) 2.38465 0.144325
\(274\) 10.8710 7.97713i 0.656741 0.481916i
\(275\) 10.2675i 0.619155i
\(276\) −0.0867466 0.0272806i −0.00522153 0.00164210i
\(277\) 19.3546i 1.16290i −0.813581 0.581451i \(-0.802485\pi\)
0.813581 0.581451i \(-0.197515\pi\)
\(278\) 10.2366 + 13.9501i 0.613950 + 0.836673i
\(279\) 10.4294 0.624393
\(280\) −4.27473 + 1.45636i −0.255464 + 0.0870344i
\(281\) 2.77097 0.165302 0.0826510 0.996579i \(-0.473661\pi\)
0.0826510 + 0.996579i \(0.473661\pi\)
\(282\) −10.6491 14.5122i −0.634142 0.864190i
\(283\) 27.6707i 1.64485i −0.568873 0.822426i \(-0.692620\pi\)
0.568873 0.822426i \(-0.307380\pi\)
\(284\) −0.255188 + 0.811447i −0.0151427 + 0.0481505i
\(285\) 9.65974i 0.572194i
\(286\) 4.77688 3.50527i 0.282463 0.207271i
\(287\) 8.08770 0.477402
\(288\) −15.1931 + 0.359621i −0.895264 + 0.0211909i
\(289\) −16.6750 −0.980882
\(290\) −1.35101 + 0.991369i −0.0793340 + 0.0582152i
\(291\) 11.4457i 0.670960i
\(292\) 4.91278 15.6216i 0.287499 0.914186i
\(293\) 4.72248i 0.275890i −0.990440 0.137945i \(-0.955950\pi\)
0.990440 0.137945i \(-0.0440498\pi\)
\(294\) 1.99514 + 2.71892i 0.116359 + 0.158570i
\(295\) −11.3793 −0.662529
\(296\) −4.76501 + 1.62340i −0.276960 + 0.0943582i
\(297\) −3.13167 −0.181718
\(298\) −1.64970 2.24817i −0.0955647 0.130233i
\(299\) 0.0190668i 0.00110266i
\(300\) −11.1498 3.50646i −0.643735 0.202446i
\(301\) 11.7998i 0.680131i
\(302\) 18.9024 13.8706i 1.08771 0.798163i
\(303\) −17.8408 −1.02493
\(304\) −5.80851 + 8.32158i −0.333141 + 0.477275i
\(305\) 17.0780 0.977883
\(306\) 1.74625 1.28140i 0.0998265 0.0732526i
\(307\) 20.2156i 1.15376i −0.816827 0.576882i \(-0.804269\pi\)
0.816827 0.576882i \(-0.195731\pi\)
\(308\) 7.99326 + 2.51377i 0.455458 + 0.143235i
\(309\) 28.1801i 1.60311i
\(310\) −5.18590 7.06720i −0.294539 0.401390i
\(311\) 33.4197 1.89505 0.947527 0.319675i \(-0.103574\pi\)
0.947527 + 0.319675i \(0.103574\pi\)
\(312\) −2.17513 6.38445i −0.123142 0.361448i
\(313\) −29.8694 −1.68832 −0.844159 0.536093i \(-0.819900\pi\)
−0.844159 + 0.536093i \(0.819900\pi\)
\(314\) −6.03869 8.22934i −0.340783 0.464409i
\(315\) 4.28946i 0.241684i
\(316\) 0.783419 2.49111i 0.0440708 0.140136i
\(317\) 2.84875i 0.160002i −0.996795 0.0800009i \(-0.974508\pi\)
0.996795 0.0800009i \(-0.0254923\pi\)
\(318\) −12.5322 + 9.19610i −0.702770 + 0.515692i
\(319\) 3.10921 0.174082
\(320\) 7.79829 + 10.1164i 0.435937 + 0.565522i
\(321\) −39.5385 −2.20683
\(322\) 0.0217395 0.0159524i 0.00121149 0.000888993i
\(323\) 1.44635i 0.0804770i
\(324\) −5.90528 + 18.7776i −0.328071 + 1.04320i
\(325\) 2.45072i 0.135941i
\(326\) −17.4295 23.7524i −0.965329 1.31552i
\(327\) 28.4769 1.57478
\(328\) −7.37710 21.6533i −0.407332 1.19560i
\(329\) 5.33750 0.294266
\(330\) −13.3461 18.1877i −0.734680 1.00120i
\(331\) 17.6436i 0.969778i 0.874576 + 0.484889i \(0.161140\pi\)
−0.874576 + 0.484889i \(0.838860\pi\)
\(332\) −21.6077 6.79531i −1.18587 0.372941i
\(333\) 4.78144i 0.262021i
\(334\) −18.8960 + 13.8658i −1.03394 + 0.758705i
\(335\) −13.5002 −0.737593
\(336\) 5.45955 7.82164i 0.297843 0.426705i
\(337\) 21.7156 1.18292 0.591462 0.806333i \(-0.298551\pi\)
0.591462 + 0.806333i \(0.298551\pi\)
\(338\) 1.14018 0.836660i 0.0620174 0.0455083i
\(339\) 12.7004i 0.689789i
\(340\) −1.73660 0.546137i −0.0941806 0.0296185i
\(341\) 16.2644i 0.880769i
\(342\) −5.70263 7.77137i −0.308363 0.420228i
\(343\) −1.00000 −0.0539949
\(344\) −31.5918 + 10.7631i −1.70332 + 0.580307i
\(345\) −0.0725957 −0.00390842
\(346\) 2.91553 + 3.97320i 0.156740 + 0.213601i
\(347\) 1.68632i 0.0905264i −0.998975 0.0452632i \(-0.985587\pi\)
0.998975 0.0452632i \(-0.0144127\pi\)
\(348\) 1.06183 3.37639i 0.0569198 0.180993i
\(349\) 5.49984i 0.294400i −0.989107 0.147200i \(-0.952974\pi\)
0.989107 0.147200i \(-0.0470260\pi\)
\(350\) 2.79425 2.05042i 0.149359 0.109599i
\(351\) −0.747485 −0.0398978
\(352\) −0.560821 23.6933i −0.0298919 1.26286i
\(353\) 5.12477 0.272764 0.136382 0.990656i \(-0.456453\pi\)
0.136382 + 0.990656i \(0.456453\pi\)
\(354\) 19.3777 14.2194i 1.02991 0.755750i
\(355\) 0.679076i 0.0360416i
\(356\) −0.989403 + 3.14610i −0.0524382 + 0.166743i
\(357\) 1.35946i 0.0719500i
\(358\) 18.5342 + 25.2579i 0.979565 + 1.33492i
\(359\) −28.3506 −1.49629 −0.748144 0.663537i \(-0.769055\pi\)
−0.748144 + 0.663537i \(0.769055\pi\)
\(360\) −11.4842 + 3.91259i −0.605272 + 0.206211i
\(361\) 12.5633 0.661225
\(362\) 14.1825 + 19.3274i 0.745413 + 1.01583i
\(363\) 15.6261i 0.820157i
\(364\) 1.90788 + 0.600001i 0.100000 + 0.0314486i
\(365\) 13.0733i 0.684287i
\(366\) −29.0820 + 21.3403i −1.52014 + 1.11548i
\(367\) −24.8090 −1.29502 −0.647509 0.762058i \(-0.724189\pi\)
−0.647509 + 0.762058i \(0.724189\pi\)
\(368\) −0.0625390 0.0436526i −0.00326007 0.00227555i
\(369\) 21.7279 1.13111
\(370\) −3.24000 + 2.37751i −0.168440 + 0.123601i
\(371\) 4.60925i 0.239301i
\(372\) 17.6620 + 5.55446i 0.915735 + 0.287986i
\(373\) 34.3736i 1.77980i 0.456159 + 0.889898i \(0.349225\pi\)
−0.456159 + 0.889898i \(0.650775\pi\)
\(374\) 1.99831 + 2.72324i 0.103330 + 0.140815i
\(375\) −28.3682 −1.46493
\(376\) −4.86854 14.2902i −0.251076 0.736959i
\(377\) 0.742125 0.0382214
\(378\) −0.625390 0.852264i −0.0321666 0.0438357i
\(379\) 3.46978i 0.178231i 0.996021 + 0.0891153i \(0.0284039\pi\)
−0.996021 + 0.0891153i \(0.971596\pi\)
\(380\) −2.43049 + 7.72844i −0.124681 + 0.396461i
\(381\) 36.1813i 1.85362i
\(382\) 24.6671 18.1007i 1.26208 0.926113i
\(383\) −30.3382 −1.55021 −0.775104 0.631834i \(-0.782302\pi\)
−0.775104 + 0.631834i \(0.782302\pi\)
\(384\) −25.9208 7.48249i −1.32277 0.381839i
\(385\) 6.68932 0.340919
\(386\) −18.4477 + 13.5369i −0.938962 + 0.689010i
\(387\) 31.7007i 1.61144i
\(388\) −2.87985 + 9.15734i −0.146202 + 0.464893i
\(389\) 6.57349i 0.333289i −0.986017 0.166645i \(-0.946707\pi\)
0.986017 0.166645i \(-0.0532933\pi\)
\(390\) −3.18553 4.34115i −0.161306 0.219823i
\(391\) 0.0108697 0.000549706
\(392\) 0.912139 + 2.67731i 0.0460700 + 0.135225i
\(393\) −3.87123 −0.195278
\(394\) 12.7438 + 17.3668i 0.642021 + 0.874928i
\(395\) 2.08474i 0.104895i
\(396\) 21.4742 + 6.75334i 1.07912 + 0.339368i
\(397\) 17.5876i 0.882698i −0.897336 0.441349i \(-0.854500\pi\)
0.897336 0.441349i \(-0.145500\pi\)
\(398\) −7.08058 + 5.19572i −0.354917 + 0.260438i
\(399\) 6.05001 0.302880
\(400\) −8.03834 5.61081i −0.401917 0.280540i
\(401\) 13.1238 0.655370 0.327685 0.944787i \(-0.393732\pi\)
0.327685 + 0.944787i \(0.393732\pi\)
\(402\) 22.9893 16.8695i 1.14660 0.841376i
\(403\) 3.88210i 0.193381i
\(404\) −14.2738 4.48892i −0.710150 0.223332i
\(405\) 15.7144i 0.780855i
\(406\) 0.620906 + 0.846153i 0.0308151 + 0.0419939i
\(407\) 7.45654 0.369607
\(408\) 3.63969 1.24001i 0.180191 0.0613898i
\(409\) −8.55038 −0.422789 −0.211394 0.977401i \(-0.567800\pi\)
−0.211394 + 0.977401i \(0.567800\pi\)
\(410\) −10.8040 14.7233i −0.533570 0.727133i
\(411\) 22.7364i 1.12150i
\(412\) 7.09039 22.5460i 0.349318 1.11076i
\(413\) 7.12700i 0.350697i
\(414\) 0.0584041 0.0428568i 0.00287040 0.00210630i
\(415\) −18.0828 −0.887651
\(416\) −0.133860 5.65527i −0.00656304 0.277272i
\(417\) −29.1763 −1.42877
\(418\) 12.1193 8.89312i 0.592774 0.434977i
\(419\) 0.544846i 0.0266175i 0.999911 + 0.0133087i \(0.00423643\pi\)
−0.999911 + 0.0133087i \(0.995764\pi\)
\(420\) 2.28447 7.26414i 0.111471 0.354454i
\(421\) 34.7806i 1.69510i −0.530715 0.847550i \(-0.678077\pi\)
0.530715 0.847550i \(-0.321923\pi\)
\(422\) −4.97549 6.78045i −0.242203 0.330067i
\(423\) 14.3394 0.697207
\(424\) −12.3404 + 4.20428i −0.599304 + 0.204178i
\(425\) 1.39712 0.0677703
\(426\) −0.848560 1.15639i −0.0411128 0.0560274i
\(427\) 10.6962i 0.517623i
\(428\) −31.6335 9.94829i −1.52906 0.480869i
\(429\) 9.99073i 0.482357i
\(430\) −21.4811 + 15.7628i −1.03591 + 0.760150i
\(431\) −40.6679 −1.95890 −0.979451 0.201682i \(-0.935359\pi\)
−0.979451 + 0.201682i \(0.935359\pi\)
\(432\) −1.71133 + 2.45175i −0.0823366 + 0.117960i
\(433\) 39.7133 1.90850 0.954251 0.299008i \(-0.0966556\pi\)
0.954251 + 0.299008i \(0.0966556\pi\)
\(434\) −4.42627 + 3.24799i −0.212468 + 0.155909i
\(435\) 2.82560i 0.135477i
\(436\) 22.7835 + 7.16507i 1.09113 + 0.343145i
\(437\) 0.0483737i 0.00231403i
\(438\) 16.3361 + 22.2624i 0.780569 + 1.06374i
\(439\) −14.2217 −0.678766 −0.339383 0.940648i \(-0.610218\pi\)
−0.339383 + 0.940648i \(0.610218\pi\)
\(440\) −6.10159 17.9094i −0.290882 0.853798i
\(441\) −2.68654 −0.127931
\(442\) 0.476969 + 0.649999i 0.0226871 + 0.0309173i
\(443\) 19.4745i 0.925262i −0.886551 0.462631i \(-0.846906\pi\)
0.886551 0.462631i \(-0.153094\pi\)
\(444\) 2.54648 8.09728i 0.120851 0.384280i
\(445\) 2.63288i 0.124810i
\(446\) −11.3602 + 8.33611i −0.537921 + 0.394726i
\(447\) 4.70198 0.222396
\(448\) 6.33601 4.88416i 0.299348 0.230755i
\(449\) 13.7969 0.651114 0.325557 0.945522i \(-0.394448\pi\)
0.325557 + 0.945522i \(0.394448\pi\)
\(450\) 7.50686 5.50853i 0.353877 0.259675i
\(451\) 33.8843i 1.59555i
\(452\) 3.19553 10.1611i 0.150305 0.477940i
\(453\) 39.5340i 1.85747i
\(454\) −8.73814 11.9081i −0.410101 0.558874i
\(455\) 1.59665 0.0748520
\(456\) −5.51845 16.1978i −0.258425 0.758530i
\(457\) 41.3406 1.93383 0.966915 0.255100i \(-0.0821084\pi\)
0.966915 + 0.255100i \(0.0821084\pi\)
\(458\) 22.2500 + 30.3217i 1.03968 + 1.41684i
\(459\) 0.426131i 0.0198901i
\(460\) −0.0580814 0.0182658i −0.00270806 0.000851647i
\(461\) 3.00550i 0.139980i 0.997548 + 0.0699900i \(0.0222967\pi\)
−0.997548 + 0.0699900i \(0.977703\pi\)
\(462\) −11.3912 + 8.35884i −0.529966 + 0.388889i
\(463\) −33.4122 −1.55280 −0.776399 0.630241i \(-0.782956\pi\)
−0.776399 + 0.630241i \(0.782956\pi\)
\(464\) 1.69906 2.43417i 0.0788771 0.113003i
\(465\) 14.7809 0.685446
\(466\) −16.4412 + 12.0645i −0.761622 + 0.558878i
\(467\) 35.0509i 1.62196i 0.585071 + 0.810982i \(0.301066\pi\)
−0.585071 + 0.810982i \(0.698934\pi\)
\(468\) 5.12560 + 1.61193i 0.236931 + 0.0745114i
\(469\) 8.45532i 0.390431i
\(470\) −7.13011 9.71670i −0.328887 0.448198i
\(471\) 17.2115 0.793062
\(472\) 19.0812 6.50082i 0.878284 0.299224i
\(473\) 49.4366 2.27310
\(474\) 2.60505 + 3.55008i 0.119654 + 0.163061i
\(475\) 6.21763i 0.285285i
\(476\) −0.342052 + 1.08766i −0.0156779 + 0.0498526i
\(477\) 12.3830i 0.566977i
\(478\) −1.33285 + 0.978043i −0.0609631 + 0.0447346i
\(479\) 16.9518 0.774550 0.387275 0.921964i \(-0.373416\pi\)
0.387275 + 0.921964i \(0.373416\pi\)
\(480\) −21.5321 + 0.509665i −0.982802 + 0.0232629i
\(481\) 1.77977 0.0811507
\(482\) −20.1604 + 14.7937i −0.918283 + 0.673835i
\(483\) 0.0454676i 0.00206885i
\(484\) −3.93168 + 12.5019i −0.178713 + 0.568269i
\(485\) 7.66351i 0.347982i
\(486\) −17.7602 24.2031i −0.805620 1.09787i
\(487\) −5.22200 −0.236631 −0.118316 0.992976i \(-0.537749\pi\)
−0.118316 + 0.992976i \(0.537749\pi\)
\(488\) −28.6370 + 9.75638i −1.29633 + 0.441651i
\(489\) 49.6775 2.24649
\(490\) 1.33585 + 1.82046i 0.0603476 + 0.0822400i
\(491\) 9.41493i 0.424890i −0.977173 0.212445i \(-0.931857\pi\)
0.977173 0.212445i \(-0.0681426\pi\)
\(492\) 36.7959 + 11.5718i 1.65889 + 0.521697i
\(493\) 0.423076i 0.0190544i
\(494\) 2.89270 2.12266i 0.130149 0.0955031i
\(495\) 17.9712 0.807743
\(496\) 12.7333 + 8.88789i 0.571741 + 0.399078i
\(497\) 0.425314 0.0190779
\(498\) 30.7931 22.5959i 1.37987 1.01255i
\(499\) 26.2053i 1.17311i 0.809910 + 0.586555i \(0.199516\pi\)
−0.809910 + 0.586555i \(0.800484\pi\)
\(500\) −22.6964 7.13771i −1.01502 0.319208i
\(501\) 39.5204i 1.76564i
\(502\) 12.8722 + 17.5419i 0.574516 + 0.782933i
\(503\) 16.3145 0.727427 0.363713 0.931511i \(-0.381509\pi\)
0.363713 + 0.931511i \(0.381509\pi\)
\(504\) 2.45050 + 7.19272i 0.109154 + 0.320389i
\(505\) −11.9454 −0.531561
\(506\) 0.0668343 + 0.0910798i 0.00297115 + 0.00404899i
\(507\) 2.38465i 0.105906i
\(508\) 9.10357 28.9475i 0.403906 1.28434i
\(509\) 28.9494i 1.28316i 0.767056 + 0.641580i \(0.221721\pi\)
−0.767056 + 0.641580i \(0.778279\pi\)
\(510\) 2.47483 1.81603i 0.109587 0.0804152i
\(511\) −8.18795 −0.362214
\(512\) −18.8557 12.5084i −0.833314 0.552800i
\(513\) −1.89642 −0.0837290
\(514\) 4.42965 3.25047i 0.195384 0.143372i
\(515\) 18.8681i 0.831426i
\(516\) 16.8831 53.6847i 0.743236 2.36334i
\(517\) 22.3620i 0.983481i
\(518\) 1.48906 + 2.02925i 0.0654257 + 0.0891603i
\(519\) −8.30985 −0.364762
\(520\) −1.45636 4.27473i −0.0638658 0.187459i
\(521\) 4.82104 0.211213 0.105607 0.994408i \(-0.466322\pi\)
0.105607 + 0.994408i \(0.466322\pi\)
\(522\) 1.66809 + 2.27323i 0.0730104 + 0.0994964i
\(523\) 41.0621i 1.79552i 0.440483 + 0.897761i \(0.354807\pi\)
−0.440483 + 0.897761i \(0.645193\pi\)
\(524\) −3.09724 0.974038i −0.135304 0.0425511i
\(525\) 5.84409i 0.255057i
\(526\) −24.9315 + 18.2947i −1.08706 + 0.797687i
\(527\) −2.21313 −0.0964055
\(528\) 32.7696 + 22.8733i 1.42611 + 0.995434i
\(529\) −22.9996 −0.999984
\(530\) −8.39096 + 6.15728i −0.364480 + 0.267455i
\(531\) 19.1470i 0.830909i
\(532\) 4.84042 + 1.52224i 0.209859 + 0.0659976i
\(533\) 8.08770i 0.350317i
\(534\) −3.28999 4.48350i −0.142372 0.194020i
\(535\) −26.4732 −1.14453
\(536\) 22.6375 7.71243i 0.977793 0.333126i
\(537\) −52.8263 −2.27962
\(538\) −24.2340 33.0254i −1.04480 1.42383i
\(539\) 4.18960i 0.180459i
\(540\) −0.716083 + 2.27700i −0.0308153 + 0.0979863i
\(541\) 21.6909i 0.932563i −0.884636 0.466281i \(-0.845593\pi\)
0.884636 0.466281i \(-0.154407\pi\)
\(542\) −19.1064 + 14.0203i −0.820691 + 0.602222i
\(543\) −40.4228 −1.73471
\(544\) 3.22399 0.0763119i 0.138228 0.00327185i
\(545\) 19.0668 0.816732
\(546\) −2.71892 + 1.99514i −0.116359 + 0.0853840i
\(547\) 1.00864i 0.0431261i 0.999767 + 0.0215631i \(0.00686427\pi\)
−0.999767 + 0.0215631i \(0.993136\pi\)
\(548\) −5.72070 + 18.1906i −0.244376 + 0.777066i
\(549\) 28.7357i 1.22641i
\(550\) 8.59043 + 11.7068i 0.366297 + 0.499179i
\(551\) 1.88282 0.0802110
\(552\) 0.121731 0.0414727i 0.00518121 0.00176520i
\(553\) −1.30570 −0.0555239
\(554\) 16.1932 + 22.0676i 0.687982 + 0.937562i
\(555\) 6.77638i 0.287641i
\(556\) −23.3430 7.34105i −0.989964 0.311330i
\(557\) 36.2601i 1.53639i 0.640215 + 0.768196i \(0.278845\pi\)
−0.640215 + 0.768196i \(0.721155\pi\)
\(558\) −11.8914 + 8.72587i −0.503402 + 0.369396i
\(559\) 11.7998 0.499080
\(560\) 3.65546 5.23700i 0.154471 0.221304i
\(561\) −5.69558 −0.240468
\(562\) −3.15939 + 2.31836i −0.133271 + 0.0977940i
\(563\) 6.62119i 0.279050i 0.990219 + 0.139525i \(0.0445576\pi\)
−0.990219 + 0.139525i \(0.955442\pi\)
\(564\) 24.2836 + 7.63685i 1.02252 + 0.321569i
\(565\) 8.50356i 0.357748i
\(566\) 23.1509 + 31.5494i 0.973107 + 1.32612i
\(567\) 9.84212 0.413330
\(568\) −0.387945 1.13870i −0.0162778 0.0477787i
\(569\) −7.93150 −0.332506 −0.166253 0.986083i \(-0.553167\pi\)
−0.166253 + 0.986083i \(0.553167\pi\)
\(570\) −8.08192 11.0138i −0.338514 0.461317i
\(571\) 12.5240i 0.524113i 0.965053 + 0.262056i \(0.0844006\pi\)
−0.965053 + 0.262056i \(0.915599\pi\)
\(572\) −2.51377 + 7.99326i −0.105106 + 0.334215i
\(573\) 51.5906i 2.15523i
\(574\) −9.22140 + 6.76665i −0.384894 + 0.282435i
\(575\) 0.0467273 0.00194866
\(576\) 17.0220 13.1215i 0.709248 0.546730i
\(577\) 0.359975 0.0149860 0.00749298 0.999972i \(-0.497615\pi\)
0.00749298 + 0.999972i \(0.497615\pi\)
\(578\) 19.0124 13.9513i 0.790813 0.580298i
\(579\) 38.5828i 1.60345i
\(580\) 0.710949 2.26067i 0.0295205 0.0938692i
\(581\) 11.3255i 0.469861i
\(582\) −9.57617 13.0501i −0.396945 0.540945i
\(583\) 19.3110 0.799778
\(584\) 7.46855 + 21.9217i 0.309051 + 0.907127i
\(585\) 4.28946 0.177347
\(586\) 3.95111 + 5.38446i 0.163219 + 0.222430i
\(587\) 5.69179i 0.234925i 0.993077 + 0.117463i \(0.0374760\pi\)
−0.993077 + 0.117463i \(0.962524\pi\)
\(588\) −4.54962 1.43079i −0.187623 0.0590048i
\(589\) 9.84914i 0.405827i
\(590\) 12.9744 9.52061i 0.534148 0.391958i
\(591\) −36.3222 −1.49410
\(592\) 4.07471 5.83765i 0.167470 0.239926i
\(593\) 7.86945 0.323160 0.161580 0.986860i \(-0.448341\pi\)
0.161580 + 0.986860i \(0.448341\pi\)
\(594\) 3.57065 2.62014i 0.146505 0.107506i
\(595\) 0.910228i 0.0373157i
\(596\) 3.76190 + 1.18306i 0.154093 + 0.0484602i
\(597\) 14.8088i 0.606085i
\(598\) 0.0159524 + 0.0217395i 0.000652343 + 0.000888994i
\(599\) −19.6972 −0.804804 −0.402402 0.915463i \(-0.631825\pi\)
−0.402402 + 0.915463i \(0.631825\pi\)
\(600\) 15.6465 5.33062i 0.638764 0.217622i
\(601\) −12.1355 −0.495018 −0.247509 0.968886i \(-0.579612\pi\)
−0.247509 + 0.968886i \(0.579612\pi\)
\(602\) 9.87244 + 13.4539i 0.402371 + 0.548339i
\(603\) 22.7156i 0.925050i
\(604\) −9.94714 + 31.6298i −0.404743 + 1.28700i
\(605\) 10.4625i 0.425361i
\(606\) 20.3416 14.9267i 0.826323 0.606355i
\(607\) −4.16567 −0.169080 −0.0845398 0.996420i \(-0.526942\pi\)
−0.0845398 + 0.996420i \(0.526942\pi\)
\(608\) −0.339613 14.3478i −0.0137731 0.581880i
\(609\) −1.76971 −0.0717122
\(610\) −19.4719 + 14.2885i −0.788395 + 0.578524i
\(611\) 5.33750i 0.215932i
\(612\) −0.918939 + 2.92203i −0.0371459 + 0.118116i
\(613\) 10.8143i 0.436785i 0.975861 + 0.218392i \(0.0700813\pi\)
−0.975861 + 0.218392i \(0.929919\pi\)
\(614\) 16.9136 + 23.0493i 0.682576 + 0.930195i
\(615\) 30.7934 1.24171
\(616\) −11.2169 + 3.82150i −0.451941 + 0.153973i
\(617\) 39.6347 1.59563 0.797817 0.602899i \(-0.205988\pi\)
0.797817 + 0.602899i \(0.205988\pi\)
\(618\) 23.5772 + 32.1303i 0.948412 + 1.29247i
\(619\) 29.0915i 1.16928i 0.811291 + 0.584642i \(0.198765\pi\)
−0.811291 + 0.584642i \(0.801235\pi\)
\(620\) 11.8257 + 3.71901i 0.474931 + 0.149359i
\(621\) 0.0142521i 0.000571918i
\(622\) −38.1043 + 27.9609i −1.52784 + 1.12113i
\(623\) 1.64900 0.0660659
\(624\) 7.82164 + 5.45955i 0.313116 + 0.218557i
\(625\) −6.74042 −0.269617
\(626\) 34.0563 24.9905i 1.36117 0.998822i
\(627\) 25.3472i 1.01227i
\(628\) 13.7703 + 4.33057i 0.549496 + 0.172809i
\(629\) 1.01462i 0.0404557i
\(630\) 3.58882 + 4.89074i 0.142982 + 0.194852i
\(631\) −8.48512 −0.337787 −0.168894 0.985634i \(-0.554019\pi\)
−0.168894 + 0.985634i \(0.554019\pi\)
\(632\) 1.19098 + 3.49576i 0.0473745 + 0.139054i
\(633\) 14.1811 0.563650
\(634\) 2.38344 + 3.24808i 0.0946583 + 0.128998i
\(635\) 24.2253i 0.961352i
\(636\) 6.59488 20.9703i 0.261504 0.831528i
\(637\) 1.00000i 0.0396214i
\(638\) −3.54505 + 2.60135i −0.140350 + 0.102989i
\(639\) 1.14262 0.0452015
\(640\) −17.3554 5.00993i −0.686031 0.198035i
\(641\) 7.62094 0.301009 0.150504 0.988609i \(-0.451910\pi\)
0.150504 + 0.988609i \(0.451910\pi\)
\(642\) 45.0809 33.0803i 1.77920 1.30558i
\(643\) 6.34543i 0.250239i 0.992142 + 0.125120i \(0.0399314\pi\)
−0.992142 + 0.125120i \(0.960069\pi\)
\(644\) −0.0114401 + 0.0363771i −0.000450803 + 0.00143346i
\(645\) 44.9272i 1.76901i
\(646\) 1.21010 + 1.64909i 0.0476108 + 0.0648827i
\(647\) −8.51589 −0.334794 −0.167397 0.985890i \(-0.553536\pi\)
−0.167397 + 0.985890i \(0.553536\pi\)
\(648\) −8.97738 26.3504i −0.352665 1.03514i
\(649\) −29.8593 −1.17208
\(650\) 2.05042 + 2.79425i 0.0804239 + 0.109599i
\(651\) 9.25743i 0.362827i
\(652\) 39.7453 + 12.4993i 1.55655 + 0.489512i
\(653\) 13.5010i 0.528334i −0.964477 0.264167i \(-0.914903\pi\)
0.964477 0.264167i \(-0.0850971\pi\)
\(654\) −32.4687 + 23.8255i −1.26963 + 0.931651i
\(655\) −2.59199 −0.101277
\(656\) 26.5276 + 18.5164i 1.03573 + 0.722945i
\(657\) −21.9973 −0.858196
\(658\) −6.08569 + 4.46567i −0.237245 + 0.174090i
\(659\) 17.4197i 0.678574i −0.940683 0.339287i \(-0.889814\pi\)
0.940683 0.339287i \(-0.110186\pi\)
\(660\) 30.4339 + 9.57102i 1.18464 + 0.372551i
\(661\) 13.2692i 0.516112i −0.966130 0.258056i \(-0.916918\pi\)
0.966130 0.258056i \(-0.0830819\pi\)
\(662\) −14.7617 20.1168i −0.573728 0.781860i
\(663\) −1.35946 −0.0527969
\(664\) 30.3219 10.3304i 1.17672 0.400898i
\(665\) 4.05081 0.157083
\(666\) 4.00044 + 5.45168i 0.155014 + 0.211248i
\(667\) 0.0141499i 0.000547888i
\(668\) 9.94372 31.6190i 0.384734 1.22337i
\(669\) 23.7596i 0.918598i
\(670\) 15.3926 11.2951i 0.594667 0.436366i
\(671\) 44.8127 1.72997
\(672\) 0.319209 + 13.4858i 0.0123138 + 0.520227i
\(673\) −2.84846 −0.109800 −0.0549001 0.998492i \(-0.517484\pi\)
−0.0549001 + 0.998492i \(0.517484\pi\)
\(674\) −24.7596 + 18.1686i −0.953704 + 0.699827i
\(675\) 1.83187i 0.0705088i
\(676\) −0.600001 + 1.90788i −0.0230770 + 0.0733799i
\(677\) 10.2692i 0.394677i −0.980335 0.197338i \(-0.936770\pi\)
0.980335 0.197338i \(-0.0632297\pi\)
\(678\) 10.6259 + 14.4806i 0.408084 + 0.556126i
\(679\) 4.79975 0.184198
\(680\) 2.43696 0.830254i 0.0934533 0.0318388i
\(681\) 24.9054 0.954379
\(682\) −13.6078 18.5443i −0.521070 0.710099i
\(683\) 32.8742i 1.25790i 0.777447 + 0.628949i \(0.216515\pi\)
−0.777447 + 0.628949i \(0.783485\pi\)
\(684\) 13.0040 + 4.08957i 0.497220 + 0.156369i
\(685\) 15.2232i 0.581650i
\(686\) 1.14018 0.836660i 0.0435321 0.0319438i
\(687\) −63.4171 −2.41951
\(688\) 27.0152 38.7034i 1.02994 1.47555i
\(689\) 4.60925 0.175599
\(690\) 0.0827718 0.0607379i 0.00315107 0.00231225i
\(691\) 27.5365i 1.04754i −0.851860 0.523769i \(-0.824526\pi\)
0.851860 0.523769i \(-0.175474\pi\)
\(692\) −6.64844 2.09084i −0.252736 0.0794818i
\(693\) 11.2556i 0.427563i
\(694\) 1.41088 + 1.92270i 0.0535562 + 0.0729848i
\(695\) −19.5351 −0.741008
\(696\) 1.61422 + 4.73806i 0.0611868 + 0.179596i
\(697\) −4.61069 −0.174642
\(698\) 4.60149 + 6.27078i 0.174169 + 0.237353i
\(699\) 34.3863i 1.30061i
\(700\) −1.47043 + 4.67567i −0.0555771 + 0.176724i
\(701\) 12.0330i 0.454480i −0.973839 0.227240i \(-0.927030\pi\)
0.973839 0.227240i \(-0.0729701\pi\)
\(702\) 0.852264 0.625390i 0.0321666 0.0236038i
\(703\) 4.51541 0.170302
\(704\) 20.4627 + 26.5454i 0.771217 + 1.00047i
\(705\) 20.3222 0.765379
\(706\) −5.84314 + 4.28769i −0.219910 + 0.161369i
\(707\) 7.48152i 0.281372i
\(708\) −10.1972 + 32.4251i −0.383236 + 1.21861i
\(709\) 13.3957i 0.503085i −0.967846 0.251543i \(-0.919062\pi\)
0.967846 0.251543i \(-0.0809379\pi\)
\(710\) −0.568156 0.774266i −0.0213225 0.0290577i
\(711\) −3.50781 −0.131553
\(712\) −1.50412 4.41489i −0.0563692 0.165455i
\(713\) −0.0740191 −0.00277204
\(714\) −1.13740 1.55002i −0.0425662 0.0580080i
\(715\) 6.68932i 0.250167i
\(716\) −42.2646 13.2916i −1.57950 0.496731i
\(717\) 2.78762i 0.104105i
\(718\) 32.3247 23.7198i 1.20635 0.885215i
\(719\) 19.5596 0.729452 0.364726 0.931115i \(-0.381163\pi\)
0.364726 + 0.931115i \(0.381163\pi\)
\(720\) 9.82054 14.0694i 0.365990 0.524337i
\(721\) −11.8173 −0.440099
\(722\) −14.3243 + 10.5112i −0.533097 + 0.391186i
\(723\) 42.1650i 1.56813i
\(724\) −32.3410 10.1708i −1.20194 0.377994i
\(725\) 1.81874i 0.0675462i
\(726\) −13.0737 17.8165i −0.485211 0.661232i
\(727\) −1.11125 −0.0412139 −0.0206069 0.999788i \(-0.506560\pi\)
−0.0206069 + 0.999788i \(0.506560\pi\)
\(728\) −2.67731 + 0.912139i −0.0992278 + 0.0338061i
\(729\) 21.0938 0.781252
\(730\) 10.9379 + 14.9058i 0.404829 + 0.551690i
\(731\) 6.72693i 0.248804i
\(732\) 15.3040 48.6634i 0.565651 1.79865i
\(733\) 9.82787i 0.363001i −0.983391 0.181500i \(-0.941905\pi\)
0.983391 0.181500i \(-0.0580954\pi\)
\(734\) 28.2866 20.7567i 1.04408 0.766143i
\(735\) −3.80744 −0.140440
\(736\) 0.107828 0.00255228i 0.00397459 9.40784e-5i
\(737\) −35.4245 −1.30488
\(738\) −24.7737 + 18.1789i −0.911932 + 0.669175i
\(739\) 14.9997i 0.551773i −0.961190 0.275887i \(-0.911029\pi\)
0.961190 0.275887i \(-0.0889714\pi\)
\(740\) 1.70500 5.42156i 0.0626772 0.199301i
\(741\) 6.05001i 0.222253i
\(742\) 3.85638 + 5.25536i 0.141572 + 0.192930i
\(743\) −9.74460 −0.357495 −0.178747 0.983895i \(-0.557204\pi\)
−0.178747 + 0.983895i \(0.557204\pi\)
\(744\) −24.7850 + 8.44406i −0.908663 + 0.309574i
\(745\) 3.14823 0.115342
\(746\) −28.7590 39.1919i −1.05294 1.43492i
\(747\) 30.4264i 1.11325i
\(748\) −4.55685 1.43306i −0.166615 0.0523980i
\(749\) 16.5805i 0.605837i
\(750\) 32.3447 23.7345i 1.18106 0.866662i
\(751\) −8.70157 −0.317525 −0.158762 0.987317i \(-0.550750\pi\)
−0.158762 + 0.987317i \(0.550750\pi\)
\(752\) 17.5070 + 12.2200i 0.638415 + 0.445617i
\(753\) −36.6884 −1.33700
\(754\) −0.846153 + 0.620906i −0.0308151 + 0.0226121i
\(755\) 26.4701i 0.963345i
\(756\) 1.42611 + 0.448491i 0.0518671 + 0.0163115i
\(757\) 15.2448i 0.554082i −0.960858 0.277041i \(-0.910646\pi\)
0.960858 0.277041i \(-0.0893539\pi\)
\(758\) −2.90302 3.95616i −0.105443 0.143694i
\(759\) −0.190491 −0.00691439
\(760\) −3.69490 10.8453i −0.134028 0.393399i
\(761\) −43.2546 −1.56798 −0.783990 0.620774i \(-0.786819\pi\)
−0.783990 + 0.620774i \(0.786819\pi\)
\(762\) 30.2715 + 41.2531i 1.09662 + 1.49444i
\(763\) 11.9418i 0.432321i
\(764\) −12.9807 + 41.2760i −0.469625 + 1.49331i
\(765\) 2.44537i 0.0884124i
\(766\) 34.5908 25.3827i 1.24982 0.917115i
\(767\) −7.12700 −0.257341
\(768\) 35.8146 13.1556i 1.29235 0.474711i
\(769\) 39.5036 1.42454 0.712269 0.701907i \(-0.247668\pi\)
0.712269 + 0.701907i \(0.247668\pi\)
\(770\) −7.62700 + 5.59669i −0.274858 + 0.201691i
\(771\) 9.26450i 0.333653i
\(772\) 9.70782 30.8689i 0.349392 1.11099i
\(773\) 42.8504i 1.54122i −0.637306 0.770611i \(-0.719951\pi\)
0.637306 0.770611i \(-0.280049\pi\)
\(774\) 26.5227 + 36.1444i 0.953340 + 1.29918i
\(775\) −9.51391 −0.341750
\(776\) −4.37804 12.8504i −0.157162 0.461304i
\(777\) −4.24413 −0.152257
\(778\) 5.49978 + 7.49494i 0.197177 + 0.268707i
\(779\) 20.5190i 0.735171i
\(780\) 7.26414 + 2.28447i 0.260098 + 0.0817971i
\(781\) 1.78190i 0.0637612i
\(782\) −0.0123934 + 0.00909426i −0.000443187 + 0.000325210i
\(783\) 0.554727 0.0198243
\(784\) −3.28000 2.28946i −0.117143 0.0817663i
\(785\) 11.5240 0.411309
\(786\) 4.41388 3.23890i 0.157438 0.115528i
\(787\) 21.9628i 0.782891i 0.920201 + 0.391446i \(0.128025\pi\)
−0.920201 + 0.391446i \(0.871975\pi\)
\(788\) −29.0602 9.13903i −1.03523 0.325565i
\(789\) 52.1436i 1.85636i
\(790\) 1.74422 + 2.37697i 0.0620564 + 0.0845687i
\(791\) −5.32589 −0.189367
\(792\) −30.1346 + 10.2666i −1.07079 + 0.364809i
\(793\) 10.6962 0.379832
\(794\) 14.7149 + 20.0530i 0.522211 + 0.711654i
\(795\) 17.5495i 0.622416i
\(796\) 3.72605 11.8481i 0.132066 0.419944i
\(797\) 43.1481i 1.52838i 0.644990 + 0.764191i \(0.276862\pi\)
−0.644990 + 0.764191i \(0.723138\pi\)
\(798\) −6.89808 + 5.06180i −0.244189 + 0.179186i
\(799\) −3.04284 −0.107648
\(800\) 13.8595 0.328053i 0.490006 0.0115984i
\(801\) 4.43012 0.156530
\(802\) −14.9634 + 10.9801i −0.528376 + 0.387722i
\(803\) 34.3043i 1.21057i
\(804\) −12.0978 + 38.4685i −0.426656 + 1.35668i
\(805\) 0.0304429i 0.00107297i
\(806\) −3.24799 4.42627i −0.114406 0.155909i
\(807\) 69.0717 2.43144
\(808\) 20.0304 6.82419i 0.704666 0.240074i
\(809\) 17.1306 0.602280 0.301140 0.953580i \(-0.402633\pi\)
0.301140 + 0.953580i \(0.402633\pi\)
\(810\) −13.1476 17.9172i −0.461960 0.629545i
\(811\) 13.1707i 0.462486i −0.972896 0.231243i \(-0.925721\pi\)
0.972896 0.231243i \(-0.0742793\pi\)
\(812\) −1.41588 0.445276i −0.0496878 0.0156261i
\(813\) 39.9606i 1.40148i
\(814\) −8.50177 + 6.23859i −0.297987 + 0.218662i
\(815\) 33.2617 1.16511
\(816\) −3.11242 + 4.45901i −0.108956 + 0.156097i
\(817\) 29.9370 1.04736
\(818\) 9.74893 7.15376i 0.340863 0.250125i
\(819\) 2.68654i 0.0938754i
\(820\) 24.6368 + 7.74793i 0.860355 + 0.270570i
\(821\) 9.58055i 0.334364i −0.985926 0.167182i \(-0.946533\pi\)
0.985926 0.167182i \(-0.0534667\pi\)
\(822\) −19.0226 25.9235i −0.663490 0.904185i
\(823\) −36.0229 −1.25568 −0.627839 0.778343i \(-0.716060\pi\)
−0.627839 + 0.778343i \(0.716060\pi\)
\(824\) 10.7790 + 31.6386i 0.375505 + 1.10218i
\(825\) −24.4844 −0.852439
\(826\) −5.96288 8.12603i −0.207475 0.282741i
\(827\) 20.6959i 0.719668i 0.933016 + 0.359834i \(0.117167\pi\)
−0.933016 + 0.359834i \(0.882833\pi\)
\(828\) −0.0307343 + 0.0977287i −0.00106809 + 0.00339631i
\(829\) 6.63330i 0.230384i −0.993343 0.115192i \(-0.963252\pi\)
0.993343 0.115192i \(-0.0367483\pi\)
\(830\) 20.6176 15.1292i 0.715647 0.525141i
\(831\) −46.1538 −1.60106
\(832\) 4.88416 + 6.33601i 0.169328 + 0.219661i
\(833\) 0.570087 0.0197523
\(834\) 33.2661 24.4106i 1.15191 0.845272i
\(835\) 26.4610i 0.915721i
\(836\) −6.37760 + 20.2794i −0.220574 + 0.701379i
\(837\) 2.90181i 0.100301i
\(838\) −0.455851 0.621220i −0.0157471 0.0214597i
\(839\) −2.63463 −0.0909576 −0.0454788 0.998965i \(-0.514481\pi\)
−0.0454788 + 0.998965i \(0.514481\pi\)
\(840\) 3.47292 + 10.1937i 0.119827 + 0.351717i
\(841\) 28.4493 0.981009
\(842\) 29.0995 + 39.6559i 1.00283 + 1.36663i
\(843\) 6.60778i 0.227584i
\(844\) 11.3459 + 3.56811i 0.390541 + 0.122820i
\(845\) 1.59665i 0.0549264i
\(846\) −16.3495 + 11.9972i −0.562106 + 0.412473i
\(847\) 6.55279 0.225156
\(848\) 10.5527 15.1183i 0.362381 0.519166i
\(849\) −65.9848 −2.26459
\(850\) −1.59296 + 1.16891i −0.0546382 + 0.0400934i
\(851\) 0.0339345i 0.00116326i
\(852\) 1.93501 + 0.608535i 0.0662925 + 0.0208481i
\(853\) 17.6477i 0.604247i −0.953269 0.302123i \(-0.902305\pi\)
0.953269 0.302123i \(-0.0976955\pi\)
\(854\) 8.94905 + 12.1955i 0.306230 + 0.417321i
\(855\) 10.8827 0.372179
\(856\) 44.3911 15.1237i 1.51726 0.516917i
\(857\) 5.05243 0.172588 0.0862939 0.996270i \(-0.472498\pi\)
0.0862939 + 0.996270i \(0.472498\pi\)
\(858\) −8.35884 11.3912i −0.285366 0.388889i
\(859\) 39.4750i 1.34687i −0.739247 0.673434i \(-0.764818\pi\)
0.739247 0.673434i \(-0.235182\pi\)
\(860\) 11.3041 35.9448i 0.385467 1.22571i
\(861\) 19.2863i 0.657276i
\(862\) 46.3685 34.0252i 1.57932 1.15890i
\(863\) 2.70602 0.0921141 0.0460571 0.998939i \(-0.485334\pi\)
0.0460571 + 0.998939i \(0.485334\pi\)
\(864\) −0.100058 4.22723i −0.00340406 0.143813i
\(865\) −5.56388 −0.189178
\(866\) −45.2802 + 33.2266i −1.53868 + 1.12908i
\(867\) 39.7640i 1.35046i
\(868\) 2.32926 7.40657i 0.0790602 0.251395i
\(869\) 5.47035i 0.185569i
\(870\) 2.36407 + 3.22168i 0.0801493 + 0.109225i
\(871\) −8.45532 −0.286498
\(872\) −31.9719 + 10.8926i −1.08270 + 0.368868i
\(873\) 12.8947 0.436421
\(874\) 0.0404724 + 0.0551546i 0.00136900 + 0.00186563i
\(875\) 11.8962i 0.402164i
\(876\) −37.2520 11.7152i −1.25863 0.395821i
\(877\) 39.6508i 1.33891i 0.742852 + 0.669456i \(0.233473\pi\)
−0.742852 + 0.669456i \(0.766527\pi\)
\(878\) 16.2153 11.8987i 0.547239 0.401563i
\(879\) −11.2614 −0.379839
\(880\) 21.9410 + 15.3149i 0.739630 + 0.516266i
\(881\) −43.1406 −1.45344 −0.726721 0.686932i \(-0.758957\pi\)
−0.726721 + 0.686932i \(0.758957\pi\)
\(882\) 3.06313 2.24772i 0.103141 0.0756848i
\(883\) 56.2653i 1.89348i 0.322001 + 0.946739i \(0.395644\pi\)
−0.322001 + 0.946739i \(0.604356\pi\)
\(884\) −1.08766 0.342052i −0.0365818 0.0115045i
\(885\) 27.1357i 0.912155i
\(886\) 16.2935 + 22.2044i 0.547392 + 0.745970i
\(887\) 11.6364 0.390712 0.195356 0.980732i \(-0.437414\pi\)
0.195356 + 0.980732i \(0.437414\pi\)
\(888\) 3.87124 + 11.3629i 0.129910 + 0.381313i
\(889\) −15.1726 −0.508873
\(890\) −2.20282 3.00194i −0.0738387 0.100625i
\(891\) 41.2346i 1.38141i
\(892\) 5.97814 19.0093i 0.200163 0.636477i
\(893\) 13.5416i 0.453153i
\(894\) −5.36108 + 3.93396i −0.179301 + 0.131571i
\(895\) −35.3700 −1.18229
\(896\) −3.13778 + 10.8699i −0.104826 + 0.363137i
\(897\) −0.0454676 −0.00151812
\(898\) −15.7308 + 11.5433i −0.524945 + 0.385204i
\(899\) 2.88100i 0.0960868i
\(900\) −3.95038 + 12.5614i −0.131679 + 0.418713i
\(901\) 2.62768i 0.0875406i
\(902\) −28.3496 38.6340i −0.943938 1.28637i
\(903\) −28.1384 −0.936388
\(904\) 4.85795 + 14.2591i 0.161573 + 0.474249i
\(905\) −27.0652 −0.899678
\(906\) −33.0765 45.0757i −1.09889 1.49754i
\(907\) 36.5641i 1.21409i 0.794667 + 0.607046i \(0.207645\pi\)
−0.794667 + 0.607046i \(0.792355\pi\)
\(908\) 19.9260 + 6.26645i 0.661268 + 0.207960i
\(909\) 20.0994i 0.666656i
\(910\) −1.82046 + 1.33585i −0.0603476 + 0.0442830i
\(911\) 40.3066 1.33542 0.667709 0.744423i \(-0.267275\pi\)
0.667709 + 0.744423i \(0.267275\pi\)
\(912\) 19.8440 + 13.8512i 0.657102 + 0.458661i
\(913\) −47.4494 −1.57034
\(914\) −47.1355 + 34.5880i −1.55910 + 1.14407i
\(915\) 40.7250i 1.34633i
\(916\) −50.7379 15.9564i −1.67643 0.527213i
\(917\) 1.62340i 0.0536092i
\(918\) 0.356527 + 0.485864i 0.0117671 + 0.0160359i
\(919\) 34.0077 1.12181 0.560905 0.827880i \(-0.310453\pi\)
0.560905 + 0.827880i \(0.310453\pi\)
\(920\) 0.0815053 0.0277682i 0.00268715 0.000915490i
\(921\) −48.2070 −1.58848
\(922\) −2.51458 3.42680i −0.0828133 0.112856i
\(923\) 0.425314i 0.0139994i
\(924\) 5.99444 19.0611i 0.197203 0.627064i
\(925\) 4.36172i 0.143412i
\(926\) 38.0958 27.9547i 1.25191 0.918648i
\(927\) −31.7477 −1.04273
\(928\) 0.0993411 + 4.19692i 0.00326103 + 0.137771i
\(929\) −23.9803 −0.786769 −0.393385 0.919374i \(-0.628696\pi\)
−0.393385 + 0.919374i \(0.628696\pi\)
\(930\) −16.8528 + 12.3665i −0.552624 + 0.405515i
\(931\) 2.53707i 0.0831491i
\(932\) 8.65192 27.5113i 0.283403 0.901163i
\(933\) 79.6941i 2.60907i
\(934\) −29.3257 39.9642i −0.959566 1.30767i
\(935\) −3.81349 −0.124715
\(936\) −7.19272 + 2.45050i −0.235101 + 0.0800971i
\(937\) −33.4215 −1.09183 −0.545917 0.837840i \(-0.683818\pi\)
−0.545917 + 0.837840i \(0.683818\pi\)
\(938\) −7.07423 9.64055i −0.230982 0.314775i
\(939\) 71.2280i 2.32444i
\(940\) 16.2592 + 5.11327i 0.530315 + 0.166777i
\(941\) 24.8842i 0.811201i −0.914050 0.405600i \(-0.867062\pi\)
0.914050 0.405600i \(-0.132938\pi\)
\(942\) −19.6241 + 14.4001i −0.639387 + 0.469182i
\(943\) −0.154206 −0.00502165
\(944\) −16.3170 + 23.3766i −0.531072 + 0.760842i
\(945\) 1.19347 0.0388236
\(946\) −56.3664 + 41.3616i −1.83263 + 1.34478i
\(947\) 40.0196i 1.30046i 0.759737 + 0.650231i \(0.225328\pi\)
−0.759737 + 0.650231i \(0.774672\pi\)
\(948\) −5.94042 1.86818i −0.192936 0.0606756i
\(949\) 8.18795i 0.265792i
\(950\) 5.20204 + 7.08919i 0.168777 + 0.230004i
\(951\) −6.79327 −0.220287
\(952\) −0.519998 1.52630i −0.0168532 0.0494677i
\(953\) 45.4900 1.47356 0.736782 0.676130i \(-0.236344\pi\)
0.736782 + 0.676130i \(0.236344\pi\)
\(954\) 10.3603 + 14.1187i 0.335428 + 0.457111i
\(955\) 34.5427i 1.11777i
\(956\) 0.701392 2.23028i 0.0226846 0.0721325i
\(957\) 7.41437i 0.239673i
\(958\) −19.3281 + 14.1829i −0.624462 + 0.458230i
\(959\) 9.53449 0.307885
\(960\) 24.1240 18.5962i 0.778598 0.600189i
\(961\) −15.9293 −0.513849
\(962\) −2.02925 + 1.48906i −0.0654258 + 0.0480094i
\(963\) 44.5441i 1.43541i
\(964\) 10.6091 33.7349i 0.341697 1.08653i
\(965\) 25.8333i 0.831602i
\(966\) −0.0380409 0.0518410i −0.00122395 0.00166796i
\(967\) −60.9357 −1.95956 −0.979779 0.200081i \(-0.935879\pi\)
−0.979779 + 0.200081i \(0.935879\pi\)
\(968\) −5.97705 17.5439i −0.192110 0.563881i
\(969\) −3.44903 −0.110799
\(970\) −6.41175 8.73775i −0.205869 0.280552i
\(971\) 40.4125i 1.29690i −0.761257 0.648450i \(-0.775418\pi\)
0.761257 0.648450i \(-0.224582\pi\)
\(972\) 40.4995 + 12.7365i 1.29902 + 0.408524i
\(973\) 12.2351i 0.392238i
\(974\) 5.95399 4.36903i 0.190778 0.139993i
\(975\) −5.84409 −0.187161
\(976\) 24.4884 35.0834i 0.783854 1.12299i
\(977\) −19.0379 −0.609076 −0.304538 0.952500i \(-0.598502\pi\)
−0.304538 + 0.952500i \(0.598502\pi\)
\(978\) −56.6410 + 41.5631i −1.81118 + 1.32904i
\(979\) 6.90867i 0.220802i
\(980\) −3.04621 0.957990i −0.0973076 0.0306019i
\(981\) 32.0821i 1.02430i
\(982\) 7.87709 + 10.7347i 0.251368 + 0.342557i
\(983\) 29.8442 0.951883 0.475942 0.879477i \(-0.342107\pi\)
0.475942 + 0.879477i \(0.342107\pi\)
\(984\) −51.6355 + 17.5918i −1.64608 + 0.560806i
\(985\) −24.3197 −0.774889
\(986\) −0.353971 0.482381i −0.0112727 0.0153621i
\(987\) 12.7281i 0.405139i
\(988\) −1.52224 + 4.84042i −0.0484290 + 0.153994i
\(989\) 0.224985i 0.00715410i
\(990\) −20.4903 + 15.0357i −0.651224 + 0.477867i
\(991\) 49.4336 1.57031 0.785154 0.619300i \(-0.212584\pi\)
0.785154 + 0.619300i \(0.212584\pi\)
\(992\) −21.9543 + 0.519658i −0.697050 + 0.0164992i
\(993\) 42.0737 1.33517
\(994\) −0.484932 + 0.355843i −0.0153811 + 0.0112866i
\(995\) 9.91530i 0.314336i
\(996\) −16.2044 + 51.5267i −0.513456 + 1.63269i
\(997\) 9.50971i 0.301176i 0.988597 + 0.150588i \(0.0481166\pi\)
−0.988597 + 0.150588i \(0.951883\pi\)
\(998\) −21.9249 29.8786i −0.694021 0.945791i
\(999\) 1.33035 0.0420905
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.a.365.6 yes 34
4.3 odd 2 2912.2.c.a.1457.29 34
8.3 odd 2 2912.2.c.a.1457.6 34
8.5 even 2 inner 728.2.c.a.365.5 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.5 34 8.5 even 2 inner
728.2.c.a.365.6 yes 34 1.1 even 1 trivial
2912.2.c.a.1457.6 34 8.3 odd 2
2912.2.c.a.1457.29 34 4.3 odd 2