Properties

Label 2912.2.c.a.1457.29
Level $2912$
Weight $2$
Character 2912.1457
Analytic conductor $23.252$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1457,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.29
Character \(\chi\) \(=\) 2912.1457
Dual form 2912.2.c.a.1457.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38465i q^{3} -1.59665i q^{5} +1.00000 q^{7} -2.68654 q^{9} +4.18960i q^{11} -1.00000i q^{13} +3.80744 q^{15} +0.570087 q^{17} +2.53707i q^{19} +2.38465i q^{21} -0.0190668 q^{23} +2.45072 q^{25} +0.747485i q^{27} +0.742125i q^{29} +3.88210 q^{31} -9.99073 q^{33} -1.59665i q^{35} +1.77977i q^{37} +2.38465 q^{39} -8.08770 q^{41} -11.7998i q^{43} +4.28946i q^{45} +5.33750 q^{47} +1.00000 q^{49} +1.35946i q^{51} +4.60925i q^{53} +6.68932 q^{55} -6.05001 q^{57} +7.12700i q^{59} +10.6962i q^{61} -2.68654 q^{63} -1.59665 q^{65} +8.45532i q^{67} -0.0454676i q^{69} +0.425314 q^{71} +8.18795 q^{73} +5.84409i q^{75} +4.18960i q^{77} -1.30570 q^{79} -9.84212 q^{81} +11.3255i q^{83} -0.910228i q^{85} -1.76971 q^{87} -1.64900 q^{89} -1.00000i q^{91} +9.25743i q^{93} +4.05081 q^{95} -4.79975 q^{97} -11.2556i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 34 q^{7} - 26 q^{9} + 8 q^{15} - 20 q^{17} + 20 q^{23} - 22 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 34 q^{49} + 32 q^{55} + 8 q^{57} - 26 q^{63} - 20 q^{65} - 64 q^{71} - 20 q^{79}+ \cdots + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.38465i 1.37678i 0.725342 + 0.688388i \(0.241682\pi\)
−0.725342 + 0.688388i \(0.758318\pi\)
\(4\) 0 0
\(5\) − 1.59665i − 0.714043i −0.934096 0.357021i \(-0.883792\pi\)
0.934096 0.357021i \(-0.116208\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.68654 −0.895514
\(10\) 0 0
\(11\) 4.18960i 1.26321i 0.775289 + 0.631607i \(0.217604\pi\)
−0.775289 + 0.631607i \(0.782396\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 3.80744 0.983077
\(16\) 0 0
\(17\) 0.570087 0.138266 0.0691332 0.997607i \(-0.477977\pi\)
0.0691332 + 0.997607i \(0.477977\pi\)
\(18\) 0 0
\(19\) 2.53707i 0.582043i 0.956716 + 0.291022i \(0.0939952\pi\)
−0.956716 + 0.291022i \(0.906005\pi\)
\(20\) 0 0
\(21\) 2.38465i 0.520373i
\(22\) 0 0
\(23\) −0.0190668 −0.00397570 −0.00198785 0.999998i \(-0.500633\pi\)
−0.00198785 + 0.999998i \(0.500633\pi\)
\(24\) 0 0
\(25\) 2.45072 0.490143
\(26\) 0 0
\(27\) 0.747485i 0.143854i
\(28\) 0 0
\(29\) 0.742125i 0.137809i 0.997623 + 0.0689046i \(0.0219504\pi\)
−0.997623 + 0.0689046i \(0.978050\pi\)
\(30\) 0 0
\(31\) 3.88210 0.697245 0.348623 0.937263i \(-0.386650\pi\)
0.348623 + 0.937263i \(0.386650\pi\)
\(32\) 0 0
\(33\) −9.99073 −1.73916
\(34\) 0 0
\(35\) − 1.59665i − 0.269883i
\(36\) 0 0
\(37\) 1.77977i 0.292593i 0.989241 + 0.146296i \(0.0467353\pi\)
−0.989241 + 0.146296i \(0.953265\pi\)
\(38\) 0 0
\(39\) 2.38465 0.381849
\(40\) 0 0
\(41\) −8.08770 −1.26309 −0.631543 0.775341i \(-0.717578\pi\)
−0.631543 + 0.775341i \(0.717578\pi\)
\(42\) 0 0
\(43\) − 11.7998i − 1.79946i −0.436450 0.899729i \(-0.643764\pi\)
0.436450 0.899729i \(-0.356236\pi\)
\(44\) 0 0
\(45\) 4.28946i 0.639435i
\(46\) 0 0
\(47\) 5.33750 0.778555 0.389277 0.921121i \(-0.372725\pi\)
0.389277 + 0.921121i \(0.372725\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.35946i 0.190362i
\(52\) 0 0
\(53\) 4.60925i 0.633130i 0.948571 + 0.316565i \(0.102530\pi\)
−0.948571 + 0.316565i \(0.897470\pi\)
\(54\) 0 0
\(55\) 6.68932 0.901988
\(56\) 0 0
\(57\) −6.05001 −0.801344
\(58\) 0 0
\(59\) 7.12700i 0.927857i 0.885873 + 0.463928i \(0.153561\pi\)
−0.885873 + 0.463928i \(0.846439\pi\)
\(60\) 0 0
\(61\) 10.6962i 1.36950i 0.728777 + 0.684751i \(0.240089\pi\)
−0.728777 + 0.684751i \(0.759911\pi\)
\(62\) 0 0
\(63\) −2.68654 −0.338473
\(64\) 0 0
\(65\) −1.59665 −0.198040
\(66\) 0 0
\(67\) 8.45532i 1.03298i 0.856293 + 0.516491i \(0.172762\pi\)
−0.856293 + 0.516491i \(0.827238\pi\)
\(68\) 0 0
\(69\) − 0.0454676i − 0.00547365i
\(70\) 0 0
\(71\) 0.425314 0.0504754 0.0252377 0.999681i \(-0.491966\pi\)
0.0252377 + 0.999681i \(0.491966\pi\)
\(72\) 0 0
\(73\) 8.18795 0.958327 0.479164 0.877726i \(-0.340940\pi\)
0.479164 + 0.877726i \(0.340940\pi\)
\(74\) 0 0
\(75\) 5.84409i 0.674818i
\(76\) 0 0
\(77\) 4.18960i 0.477450i
\(78\) 0 0
\(79\) −1.30570 −0.146902 −0.0734512 0.997299i \(-0.523401\pi\)
−0.0734512 + 0.997299i \(0.523401\pi\)
\(80\) 0 0
\(81\) −9.84212 −1.09357
\(82\) 0 0
\(83\) 11.3255i 1.24313i 0.783361 + 0.621567i \(0.213504\pi\)
−0.783361 + 0.621567i \(0.786496\pi\)
\(84\) 0 0
\(85\) − 0.910228i − 0.0987281i
\(86\) 0 0
\(87\) −1.76971 −0.189733
\(88\) 0 0
\(89\) −1.64900 −0.174794 −0.0873970 0.996174i \(-0.527855\pi\)
−0.0873970 + 0.996174i \(0.527855\pi\)
\(90\) 0 0
\(91\) − 1.00000i − 0.104828i
\(92\) 0 0
\(93\) 9.25743i 0.959951i
\(94\) 0 0
\(95\) 4.05081 0.415604
\(96\) 0 0
\(97\) −4.79975 −0.487341 −0.243670 0.969858i \(-0.578352\pi\)
−0.243670 + 0.969858i \(0.578352\pi\)
\(98\) 0 0
\(99\) − 11.2556i − 1.13123i
\(100\) 0 0
\(101\) − 7.48152i − 0.744439i −0.928145 0.372220i \(-0.878597\pi\)
0.928145 0.372220i \(-0.121403\pi\)
\(102\) 0 0
\(103\) −11.8173 −1.16439 −0.582197 0.813048i \(-0.697807\pi\)
−0.582197 + 0.813048i \(0.697807\pi\)
\(104\) 0 0
\(105\) 3.80744 0.371568
\(106\) 0 0
\(107\) 16.5805i 1.60289i 0.598066 + 0.801447i \(0.295936\pi\)
−0.598066 + 0.801447i \(0.704064\pi\)
\(108\) 0 0
\(109\) 11.9418i 1.14381i 0.820318 + 0.571907i \(0.193796\pi\)
−0.820318 + 0.571907i \(0.806204\pi\)
\(110\) 0 0
\(111\) −4.24413 −0.402835
\(112\) 0 0
\(113\) 5.32589 0.501017 0.250509 0.968114i \(-0.419402\pi\)
0.250509 + 0.968114i \(0.419402\pi\)
\(114\) 0 0
\(115\) 0.0304429i 0.00283882i
\(116\) 0 0
\(117\) 2.68654i 0.248371i
\(118\) 0 0
\(119\) 0.570087 0.0522598
\(120\) 0 0
\(121\) −6.55279 −0.595708
\(122\) 0 0
\(123\) − 19.2863i − 1.73899i
\(124\) 0 0
\(125\) − 11.8962i − 1.06403i
\(126\) 0 0
\(127\) −15.1726 −1.34635 −0.673176 0.739483i \(-0.735070\pi\)
−0.673176 + 0.739483i \(0.735070\pi\)
\(128\) 0 0
\(129\) 28.1384 2.47745
\(130\) 0 0
\(131\) 1.62340i 0.141837i 0.997482 + 0.0709184i \(0.0225930\pi\)
−0.997482 + 0.0709184i \(0.977407\pi\)
\(132\) 0 0
\(133\) 2.53707i 0.219992i
\(134\) 0 0
\(135\) 1.19347 0.102718
\(136\) 0 0
\(137\) −9.53449 −0.814587 −0.407293 0.913297i \(-0.633527\pi\)
−0.407293 + 0.913297i \(0.633527\pi\)
\(138\) 0 0
\(139\) 12.2351i 1.03776i 0.854846 + 0.518882i \(0.173652\pi\)
−0.854846 + 0.518882i \(0.826348\pi\)
\(140\) 0 0
\(141\) 12.7281i 1.07190i
\(142\) 0 0
\(143\) 4.18960 0.350352
\(144\) 0 0
\(145\) 1.18491 0.0984017
\(146\) 0 0
\(147\) 2.38465i 0.196682i
\(148\) 0 0
\(149\) 1.97177i 0.161534i 0.996733 + 0.0807669i \(0.0257369\pi\)
−0.996733 + 0.0807669i \(0.974263\pi\)
\(150\) 0 0
\(151\) 16.5785 1.34914 0.674571 0.738210i \(-0.264328\pi\)
0.674571 + 0.738210i \(0.264328\pi\)
\(152\) 0 0
\(153\) −1.53156 −0.123819
\(154\) 0 0
\(155\) − 6.19834i − 0.497863i
\(156\) 0 0
\(157\) 7.21761i 0.576028i 0.957626 + 0.288014i \(0.0929950\pi\)
−0.957626 + 0.288014i \(0.907005\pi\)
\(158\) 0 0
\(159\) −10.9914 −0.871678
\(160\) 0 0
\(161\) −0.0190668 −0.00150267
\(162\) 0 0
\(163\) − 20.8322i − 1.63170i −0.578260 0.815852i \(-0.696268\pi\)
0.578260 0.815852i \(-0.303732\pi\)
\(164\) 0 0
\(165\) 15.9517i 1.24184i
\(166\) 0 0
\(167\) −16.5728 −1.28245 −0.641223 0.767355i \(-0.721572\pi\)
−0.641223 + 0.767355i \(0.721572\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 6.81594i − 0.521228i
\(172\) 0 0
\(173\) − 3.48473i − 0.264939i −0.991187 0.132469i \(-0.957709\pi\)
0.991187 0.132469i \(-0.0422906\pi\)
\(174\) 0 0
\(175\) 2.45072 0.185257
\(176\) 0 0
\(177\) −16.9954 −1.27745
\(178\) 0 0
\(179\) 22.1527i 1.65577i 0.560900 + 0.827884i \(0.310455\pi\)
−0.560900 + 0.827884i \(0.689545\pi\)
\(180\) 0 0
\(181\) − 16.9513i − 1.25998i −0.776604 0.629989i \(-0.783059\pi\)
0.776604 0.629989i \(-0.216941\pi\)
\(182\) 0 0
\(183\) −25.5066 −1.88550
\(184\) 0 0
\(185\) 2.84167 0.208924
\(186\) 0 0
\(187\) 2.38844i 0.174660i
\(188\) 0 0
\(189\) 0.747485i 0.0543715i
\(190\) 0 0
\(191\) 21.6345 1.56542 0.782708 0.622389i \(-0.213838\pi\)
0.782708 + 0.622389i \(0.213838\pi\)
\(192\) 0 0
\(193\) 16.1797 1.16464 0.582319 0.812960i \(-0.302145\pi\)
0.582319 + 0.812960i \(0.302145\pi\)
\(194\) 0 0
\(195\) − 3.80744i − 0.272657i
\(196\) 0 0
\(197\) − 15.2317i − 1.08521i −0.839987 0.542607i \(-0.817437\pi\)
0.839987 0.542607i \(-0.182563\pi\)
\(198\) 0 0
\(199\) −6.21008 −0.440221 −0.220110 0.975475i \(-0.570642\pi\)
−0.220110 + 0.975475i \(0.570642\pi\)
\(200\) 0 0
\(201\) −20.1630 −1.42219
\(202\) 0 0
\(203\) 0.742125i 0.0520870i
\(204\) 0 0
\(205\) 12.9132i 0.901898i
\(206\) 0 0
\(207\) 0.0512237 0.00356030
\(208\) 0 0
\(209\) −10.6293 −0.735245
\(210\) 0 0
\(211\) − 5.94685i − 0.409398i −0.978825 0.204699i \(-0.934378\pi\)
0.978825 0.204699i \(-0.0656215\pi\)
\(212\) 0 0
\(213\) 1.01422i 0.0694934i
\(214\) 0 0
\(215\) −18.8402 −1.28489
\(216\) 0 0
\(217\) 3.88210 0.263534
\(218\) 0 0
\(219\) 19.5254i 1.31940i
\(220\) 0 0
\(221\) − 0.570087i − 0.0383482i
\(222\) 0 0
\(223\) −9.96356 −0.667209 −0.333605 0.942713i \(-0.608265\pi\)
−0.333605 + 0.942713i \(0.608265\pi\)
\(224\) 0 0
\(225\) −6.58395 −0.438930
\(226\) 0 0
\(227\) − 10.4441i − 0.693198i −0.938013 0.346599i \(-0.887337\pi\)
0.938013 0.346599i \(-0.112663\pi\)
\(228\) 0 0
\(229\) − 26.5939i − 1.75737i −0.477398 0.878687i \(-0.658420\pi\)
0.477398 0.878687i \(-0.341580\pi\)
\(230\) 0 0
\(231\) −9.99073 −0.657342
\(232\) 0 0
\(233\) 14.4199 0.944676 0.472338 0.881417i \(-0.343410\pi\)
0.472338 + 0.881417i \(0.343410\pi\)
\(234\) 0 0
\(235\) − 8.52211i − 0.555921i
\(236\) 0 0
\(237\) − 3.11363i − 0.202252i
\(238\) 0 0
\(239\) −1.16899 −0.0756154 −0.0378077 0.999285i \(-0.512037\pi\)
−0.0378077 + 0.999285i \(0.512037\pi\)
\(240\) 0 0
\(241\) 17.6819 1.13899 0.569495 0.821995i \(-0.307139\pi\)
0.569495 + 0.821995i \(0.307139\pi\)
\(242\) 0 0
\(243\) − 21.2275i − 1.36175i
\(244\) 0 0
\(245\) − 1.59665i − 0.102006i
\(246\) 0 0
\(247\) 2.53707 0.161430
\(248\) 0 0
\(249\) −27.0073 −1.71152
\(250\) 0 0
\(251\) 15.3853i 0.971109i 0.874206 + 0.485554i \(0.161382\pi\)
−0.874206 + 0.485554i \(0.838618\pi\)
\(252\) 0 0
\(253\) − 0.0798823i − 0.00502216i
\(254\) 0 0
\(255\) 2.17057 0.135927
\(256\) 0 0
\(257\) −3.88506 −0.242343 −0.121172 0.992632i \(-0.538665\pi\)
−0.121172 + 0.992632i \(0.538665\pi\)
\(258\) 0 0
\(259\) 1.77977i 0.110590i
\(260\) 0 0
\(261\) − 1.99375i − 0.123410i
\(262\) 0 0
\(263\) −21.8664 −1.34834 −0.674169 0.738577i \(-0.735498\pi\)
−0.674169 + 0.738577i \(0.735498\pi\)
\(264\) 0 0
\(265\) 7.35936 0.452082
\(266\) 0 0
\(267\) − 3.93229i − 0.240652i
\(268\) 0 0
\(269\) 28.9652i 1.76604i 0.469338 + 0.883019i \(0.344493\pi\)
−0.469338 + 0.883019i \(0.655507\pi\)
\(270\) 0 0
\(271\) −16.7574 −1.01794 −0.508971 0.860784i \(-0.669974\pi\)
−0.508971 + 0.860784i \(0.669974\pi\)
\(272\) 0 0
\(273\) 2.38465 0.144325
\(274\) 0 0
\(275\) 10.2675i 0.619155i
\(276\) 0 0
\(277\) − 19.3546i − 1.16290i −0.813581 0.581451i \(-0.802485\pi\)
0.813581 0.581451i \(-0.197515\pi\)
\(278\) 0 0
\(279\) −10.4294 −0.624393
\(280\) 0 0
\(281\) 2.77097 0.165302 0.0826510 0.996579i \(-0.473661\pi\)
0.0826510 + 0.996579i \(0.473661\pi\)
\(282\) 0 0
\(283\) 27.6707i 1.64485i 0.568873 + 0.822426i \(0.307380\pi\)
−0.568873 + 0.822426i \(0.692620\pi\)
\(284\) 0 0
\(285\) 9.65974i 0.572194i
\(286\) 0 0
\(287\) −8.08770 −0.477402
\(288\) 0 0
\(289\) −16.6750 −0.980882
\(290\) 0 0
\(291\) − 11.4457i − 0.670960i
\(292\) 0 0
\(293\) − 4.72248i − 0.275890i −0.990440 0.137945i \(-0.955950\pi\)
0.990440 0.137945i \(-0.0440498\pi\)
\(294\) 0 0
\(295\) 11.3793 0.662529
\(296\) 0 0
\(297\) −3.13167 −0.181718
\(298\) 0 0
\(299\) 0.0190668i 0.00110266i
\(300\) 0 0
\(301\) − 11.7998i − 0.680131i
\(302\) 0 0
\(303\) 17.8408 1.02493
\(304\) 0 0
\(305\) 17.0780 0.977883
\(306\) 0 0
\(307\) 20.2156i 1.15376i 0.816827 + 0.576882i \(0.195731\pi\)
−0.816827 + 0.576882i \(0.804269\pi\)
\(308\) 0 0
\(309\) − 28.1801i − 1.60311i
\(310\) 0 0
\(311\) −33.4197 −1.89505 −0.947527 0.319675i \(-0.896426\pi\)
−0.947527 + 0.319675i \(0.896426\pi\)
\(312\) 0 0
\(313\) −29.8694 −1.68832 −0.844159 0.536093i \(-0.819900\pi\)
−0.844159 + 0.536093i \(0.819900\pi\)
\(314\) 0 0
\(315\) 4.28946i 0.241684i
\(316\) 0 0
\(317\) − 2.84875i − 0.160002i −0.996795 0.0800009i \(-0.974508\pi\)
0.996795 0.0800009i \(-0.0254923\pi\)
\(318\) 0 0
\(319\) −3.10921 −0.174082
\(320\) 0 0
\(321\) −39.5385 −2.20683
\(322\) 0 0
\(323\) 1.44635i 0.0804770i
\(324\) 0 0
\(325\) − 2.45072i − 0.135941i
\(326\) 0 0
\(327\) −28.4769 −1.57478
\(328\) 0 0
\(329\) 5.33750 0.294266
\(330\) 0 0
\(331\) − 17.6436i − 0.969778i −0.874576 0.484889i \(-0.838860\pi\)
0.874576 0.484889i \(-0.161140\pi\)
\(332\) 0 0
\(333\) − 4.78144i − 0.262021i
\(334\) 0 0
\(335\) 13.5002 0.737593
\(336\) 0 0
\(337\) 21.7156 1.18292 0.591462 0.806333i \(-0.298551\pi\)
0.591462 + 0.806333i \(0.298551\pi\)
\(338\) 0 0
\(339\) 12.7004i 0.689789i
\(340\) 0 0
\(341\) 16.2644i 0.880769i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −0.0725957 −0.00390842
\(346\) 0 0
\(347\) 1.68632i 0.0905264i 0.998975 + 0.0452632i \(0.0144127\pi\)
−0.998975 + 0.0452632i \(0.985587\pi\)
\(348\) 0 0
\(349\) − 5.49984i − 0.294400i −0.989107 0.147200i \(-0.952974\pi\)
0.989107 0.147200i \(-0.0470260\pi\)
\(350\) 0 0
\(351\) 0.747485 0.0398978
\(352\) 0 0
\(353\) 5.12477 0.272764 0.136382 0.990656i \(-0.456453\pi\)
0.136382 + 0.990656i \(0.456453\pi\)
\(354\) 0 0
\(355\) − 0.679076i − 0.0360416i
\(356\) 0 0
\(357\) 1.35946i 0.0719500i
\(358\) 0 0
\(359\) 28.3506 1.49629 0.748144 0.663537i \(-0.230945\pi\)
0.748144 + 0.663537i \(0.230945\pi\)
\(360\) 0 0
\(361\) 12.5633 0.661225
\(362\) 0 0
\(363\) − 15.6261i − 0.820157i
\(364\) 0 0
\(365\) − 13.0733i − 0.684287i
\(366\) 0 0
\(367\) 24.8090 1.29502 0.647509 0.762058i \(-0.275811\pi\)
0.647509 + 0.762058i \(0.275811\pi\)
\(368\) 0 0
\(369\) 21.7279 1.13111
\(370\) 0 0
\(371\) 4.60925i 0.239301i
\(372\) 0 0
\(373\) 34.3736i 1.77980i 0.456159 + 0.889898i \(0.349225\pi\)
−0.456159 + 0.889898i \(0.650775\pi\)
\(374\) 0 0
\(375\) 28.3682 1.46493
\(376\) 0 0
\(377\) 0.742125 0.0382214
\(378\) 0 0
\(379\) − 3.46978i − 0.178231i −0.996021 0.0891153i \(-0.971596\pi\)
0.996021 0.0891153i \(-0.0284039\pi\)
\(380\) 0 0
\(381\) − 36.1813i − 1.85362i
\(382\) 0 0
\(383\) 30.3382 1.55021 0.775104 0.631834i \(-0.217698\pi\)
0.775104 + 0.631834i \(0.217698\pi\)
\(384\) 0 0
\(385\) 6.68932 0.340919
\(386\) 0 0
\(387\) 31.7007i 1.61144i
\(388\) 0 0
\(389\) − 6.57349i − 0.333289i −0.986017 0.166645i \(-0.946707\pi\)
0.986017 0.166645i \(-0.0532933\pi\)
\(390\) 0 0
\(391\) −0.0108697 −0.000549706 0
\(392\) 0 0
\(393\) −3.87123 −0.195278
\(394\) 0 0
\(395\) 2.08474i 0.104895i
\(396\) 0 0
\(397\) − 17.5876i − 0.882698i −0.897336 0.441349i \(-0.854500\pi\)
0.897336 0.441349i \(-0.145500\pi\)
\(398\) 0 0
\(399\) −6.05001 −0.302880
\(400\) 0 0
\(401\) 13.1238 0.655370 0.327685 0.944787i \(-0.393732\pi\)
0.327685 + 0.944787i \(0.393732\pi\)
\(402\) 0 0
\(403\) − 3.88210i − 0.193381i
\(404\) 0 0
\(405\) 15.7144i 0.780855i
\(406\) 0 0
\(407\) −7.45654 −0.369607
\(408\) 0 0
\(409\) −8.55038 −0.422789 −0.211394 0.977401i \(-0.567800\pi\)
−0.211394 + 0.977401i \(0.567800\pi\)
\(410\) 0 0
\(411\) − 22.7364i − 1.12150i
\(412\) 0 0
\(413\) 7.12700i 0.350697i
\(414\) 0 0
\(415\) 18.0828 0.887651
\(416\) 0 0
\(417\) −29.1763 −1.42877
\(418\) 0 0
\(419\) − 0.544846i − 0.0266175i −0.999911 0.0133087i \(-0.995764\pi\)
0.999911 0.0133087i \(-0.00423643\pi\)
\(420\) 0 0
\(421\) − 34.7806i − 1.69510i −0.530715 0.847550i \(-0.678077\pi\)
0.530715 0.847550i \(-0.321923\pi\)
\(422\) 0 0
\(423\) −14.3394 −0.697207
\(424\) 0 0
\(425\) 1.39712 0.0677703
\(426\) 0 0
\(427\) 10.6962i 0.517623i
\(428\) 0 0
\(429\) 9.99073i 0.482357i
\(430\) 0 0
\(431\) 40.6679 1.95890 0.979451 0.201682i \(-0.0646408\pi\)
0.979451 + 0.201682i \(0.0646408\pi\)
\(432\) 0 0
\(433\) 39.7133 1.90850 0.954251 0.299008i \(-0.0966556\pi\)
0.954251 + 0.299008i \(0.0966556\pi\)
\(434\) 0 0
\(435\) 2.82560i 0.135477i
\(436\) 0 0
\(437\) − 0.0483737i − 0.00231403i
\(438\) 0 0
\(439\) 14.2217 0.678766 0.339383 0.940648i \(-0.389782\pi\)
0.339383 + 0.940648i \(0.389782\pi\)
\(440\) 0 0
\(441\) −2.68654 −0.127931
\(442\) 0 0
\(443\) 19.4745i 0.925262i 0.886551 + 0.462631i \(0.153094\pi\)
−0.886551 + 0.462631i \(0.846906\pi\)
\(444\) 0 0
\(445\) 2.63288i 0.124810i
\(446\) 0 0
\(447\) −4.70198 −0.222396
\(448\) 0 0
\(449\) 13.7969 0.651114 0.325557 0.945522i \(-0.394448\pi\)
0.325557 + 0.945522i \(0.394448\pi\)
\(450\) 0 0
\(451\) − 33.8843i − 1.59555i
\(452\) 0 0
\(453\) 39.5340i 1.85747i
\(454\) 0 0
\(455\) −1.59665 −0.0748520
\(456\) 0 0
\(457\) 41.3406 1.93383 0.966915 0.255100i \(-0.0821084\pi\)
0.966915 + 0.255100i \(0.0821084\pi\)
\(458\) 0 0
\(459\) 0.426131i 0.0198901i
\(460\) 0 0
\(461\) 3.00550i 0.139980i 0.997548 + 0.0699900i \(0.0222967\pi\)
−0.997548 + 0.0699900i \(0.977703\pi\)
\(462\) 0 0
\(463\) 33.4122 1.55280 0.776399 0.630241i \(-0.217044\pi\)
0.776399 + 0.630241i \(0.217044\pi\)
\(464\) 0 0
\(465\) 14.7809 0.685446
\(466\) 0 0
\(467\) − 35.0509i − 1.62196i −0.585071 0.810982i \(-0.698934\pi\)
0.585071 0.810982i \(-0.301066\pi\)
\(468\) 0 0
\(469\) 8.45532i 0.390431i
\(470\) 0 0
\(471\) −17.2115 −0.793062
\(472\) 0 0
\(473\) 49.4366 2.27310
\(474\) 0 0
\(475\) 6.21763i 0.285285i
\(476\) 0 0
\(477\) − 12.3830i − 0.566977i
\(478\) 0 0
\(479\) −16.9518 −0.774550 −0.387275 0.921964i \(-0.626584\pi\)
−0.387275 + 0.921964i \(0.626584\pi\)
\(480\) 0 0
\(481\) 1.77977 0.0811507
\(482\) 0 0
\(483\) − 0.0454676i − 0.00206885i
\(484\) 0 0
\(485\) 7.66351i 0.347982i
\(486\) 0 0
\(487\) 5.22200 0.236631 0.118316 0.992976i \(-0.462251\pi\)
0.118316 + 0.992976i \(0.462251\pi\)
\(488\) 0 0
\(489\) 49.6775 2.24649
\(490\) 0 0
\(491\) 9.41493i 0.424890i 0.977173 + 0.212445i \(0.0681426\pi\)
−0.977173 + 0.212445i \(0.931857\pi\)
\(492\) 0 0
\(493\) 0.423076i 0.0190544i
\(494\) 0 0
\(495\) −17.9712 −0.807743
\(496\) 0 0
\(497\) 0.425314 0.0190779
\(498\) 0 0
\(499\) − 26.2053i − 1.17311i −0.809910 0.586555i \(-0.800484\pi\)
0.809910 0.586555i \(-0.199516\pi\)
\(500\) 0 0
\(501\) − 39.5204i − 1.76564i
\(502\) 0 0
\(503\) −16.3145 −0.727427 −0.363713 0.931511i \(-0.618491\pi\)
−0.363713 + 0.931511i \(0.618491\pi\)
\(504\) 0 0
\(505\) −11.9454 −0.531561
\(506\) 0 0
\(507\) − 2.38465i − 0.105906i
\(508\) 0 0
\(509\) 28.9494i 1.28316i 0.767056 + 0.641580i \(0.221721\pi\)
−0.767056 + 0.641580i \(0.778279\pi\)
\(510\) 0 0
\(511\) 8.18795 0.362214
\(512\) 0 0
\(513\) −1.89642 −0.0837290
\(514\) 0 0
\(515\) 18.8681i 0.831426i
\(516\) 0 0
\(517\) 22.3620i 0.983481i
\(518\) 0 0
\(519\) 8.30985 0.364762
\(520\) 0 0
\(521\) 4.82104 0.211213 0.105607 0.994408i \(-0.466322\pi\)
0.105607 + 0.994408i \(0.466322\pi\)
\(522\) 0 0
\(523\) − 41.0621i − 1.79552i −0.440483 0.897761i \(-0.645193\pi\)
0.440483 0.897761i \(-0.354807\pi\)
\(524\) 0 0
\(525\) 5.84409i 0.255057i
\(526\) 0 0
\(527\) 2.21313 0.0964055
\(528\) 0 0
\(529\) −22.9996 −0.999984
\(530\) 0 0
\(531\) − 19.1470i − 0.830909i
\(532\) 0 0
\(533\) 8.08770i 0.350317i
\(534\) 0 0
\(535\) 26.4732 1.14453
\(536\) 0 0
\(537\) −52.8263 −2.27962
\(538\) 0 0
\(539\) 4.18960i 0.180459i
\(540\) 0 0
\(541\) − 21.6909i − 0.932563i −0.884636 0.466281i \(-0.845593\pi\)
0.884636 0.466281i \(-0.154407\pi\)
\(542\) 0 0
\(543\) 40.4228 1.73471
\(544\) 0 0
\(545\) 19.0668 0.816732
\(546\) 0 0
\(547\) − 1.00864i − 0.0431261i −0.999767 0.0215631i \(-0.993136\pi\)
0.999767 0.0215631i \(-0.00686427\pi\)
\(548\) 0 0
\(549\) − 28.7357i − 1.22641i
\(550\) 0 0
\(551\) −1.88282 −0.0802110
\(552\) 0 0
\(553\) −1.30570 −0.0555239
\(554\) 0 0
\(555\) 6.77638i 0.287641i
\(556\) 0 0
\(557\) 36.2601i 1.53639i 0.640215 + 0.768196i \(0.278845\pi\)
−0.640215 + 0.768196i \(0.721155\pi\)
\(558\) 0 0
\(559\) −11.7998 −0.499080
\(560\) 0 0
\(561\) −5.69558 −0.240468
\(562\) 0 0
\(563\) − 6.62119i − 0.279050i −0.990219 0.139525i \(-0.955442\pi\)
0.990219 0.139525i \(-0.0445576\pi\)
\(564\) 0 0
\(565\) − 8.50356i − 0.357748i
\(566\) 0 0
\(567\) −9.84212 −0.413330
\(568\) 0 0
\(569\) −7.93150 −0.332506 −0.166253 0.986083i \(-0.553167\pi\)
−0.166253 + 0.986083i \(0.553167\pi\)
\(570\) 0 0
\(571\) − 12.5240i − 0.524113i −0.965053 0.262056i \(-0.915599\pi\)
0.965053 0.262056i \(-0.0844006\pi\)
\(572\) 0 0
\(573\) 51.5906i 2.15523i
\(574\) 0 0
\(575\) −0.0467273 −0.00194866
\(576\) 0 0
\(577\) 0.359975 0.0149860 0.00749298 0.999972i \(-0.497615\pi\)
0.00749298 + 0.999972i \(0.497615\pi\)
\(578\) 0 0
\(579\) 38.5828i 1.60345i
\(580\) 0 0
\(581\) 11.3255i 0.469861i
\(582\) 0 0
\(583\) −19.3110 −0.799778
\(584\) 0 0
\(585\) 4.28946 0.177347
\(586\) 0 0
\(587\) − 5.69179i − 0.234925i −0.993077 0.117463i \(-0.962524\pi\)
0.993077 0.117463i \(-0.0374760\pi\)
\(588\) 0 0
\(589\) 9.84914i 0.405827i
\(590\) 0 0
\(591\) 36.3222 1.49410
\(592\) 0 0
\(593\) 7.86945 0.323160 0.161580 0.986860i \(-0.448341\pi\)
0.161580 + 0.986860i \(0.448341\pi\)
\(594\) 0 0
\(595\) − 0.910228i − 0.0373157i
\(596\) 0 0
\(597\) − 14.8088i − 0.606085i
\(598\) 0 0
\(599\) 19.6972 0.804804 0.402402 0.915463i \(-0.368175\pi\)
0.402402 + 0.915463i \(0.368175\pi\)
\(600\) 0 0
\(601\) −12.1355 −0.495018 −0.247509 0.968886i \(-0.579612\pi\)
−0.247509 + 0.968886i \(0.579612\pi\)
\(602\) 0 0
\(603\) − 22.7156i − 0.925050i
\(604\) 0 0
\(605\) 10.4625i 0.425361i
\(606\) 0 0
\(607\) 4.16567 0.169080 0.0845398 0.996420i \(-0.473058\pi\)
0.0845398 + 0.996420i \(0.473058\pi\)
\(608\) 0 0
\(609\) −1.76971 −0.0717122
\(610\) 0 0
\(611\) − 5.33750i − 0.215932i
\(612\) 0 0
\(613\) 10.8143i 0.436785i 0.975861 + 0.218392i \(0.0700813\pi\)
−0.975861 + 0.218392i \(0.929919\pi\)
\(614\) 0 0
\(615\) −30.7934 −1.24171
\(616\) 0 0
\(617\) 39.6347 1.59563 0.797817 0.602899i \(-0.205988\pi\)
0.797817 + 0.602899i \(0.205988\pi\)
\(618\) 0 0
\(619\) − 29.0915i − 1.16928i −0.811291 0.584642i \(-0.801235\pi\)
0.811291 0.584642i \(-0.198765\pi\)
\(620\) 0 0
\(621\) − 0.0142521i 0 0.000571918i
\(622\) 0 0
\(623\) −1.64900 −0.0660659
\(624\) 0 0
\(625\) −6.74042 −0.269617
\(626\) 0 0
\(627\) − 25.3472i − 1.01227i
\(628\) 0 0
\(629\) 1.01462i 0.0404557i
\(630\) 0 0
\(631\) 8.48512 0.337787 0.168894 0.985634i \(-0.445981\pi\)
0.168894 + 0.985634i \(0.445981\pi\)
\(632\) 0 0
\(633\) 14.1811 0.563650
\(634\) 0 0
\(635\) 24.2253i 0.961352i
\(636\) 0 0
\(637\) − 1.00000i − 0.0396214i
\(638\) 0 0
\(639\) −1.14262 −0.0452015
\(640\) 0 0
\(641\) 7.62094 0.301009 0.150504 0.988609i \(-0.451910\pi\)
0.150504 + 0.988609i \(0.451910\pi\)
\(642\) 0 0
\(643\) − 6.34543i − 0.250239i −0.992142 0.125120i \(-0.960069\pi\)
0.992142 0.125120i \(-0.0399314\pi\)
\(644\) 0 0
\(645\) − 44.9272i − 1.76901i
\(646\) 0 0
\(647\) 8.51589 0.334794 0.167397 0.985890i \(-0.446464\pi\)
0.167397 + 0.985890i \(0.446464\pi\)
\(648\) 0 0
\(649\) −29.8593 −1.17208
\(650\) 0 0
\(651\) 9.25743i 0.362827i
\(652\) 0 0
\(653\) − 13.5010i − 0.528334i −0.964477 0.264167i \(-0.914903\pi\)
0.964477 0.264167i \(-0.0850971\pi\)
\(654\) 0 0
\(655\) 2.59199 0.101277
\(656\) 0 0
\(657\) −21.9973 −0.858196
\(658\) 0 0
\(659\) 17.4197i 0.678574i 0.940683 + 0.339287i \(0.110186\pi\)
−0.940683 + 0.339287i \(0.889814\pi\)
\(660\) 0 0
\(661\) − 13.2692i − 0.516112i −0.966130 0.258056i \(-0.916918\pi\)
0.966130 0.258056i \(-0.0830819\pi\)
\(662\) 0 0
\(663\) 1.35946 0.0527969
\(664\) 0 0
\(665\) 4.05081 0.157083
\(666\) 0 0
\(667\) − 0.0141499i 0 0.000547888i
\(668\) 0 0
\(669\) − 23.7596i − 0.918598i
\(670\) 0 0
\(671\) −44.8127 −1.72997
\(672\) 0 0
\(673\) −2.84846 −0.109800 −0.0549001 0.998492i \(-0.517484\pi\)
−0.0549001 + 0.998492i \(0.517484\pi\)
\(674\) 0 0
\(675\) 1.83187i 0.0705088i
\(676\) 0 0
\(677\) − 10.2692i − 0.394677i −0.980335 0.197338i \(-0.936770\pi\)
0.980335 0.197338i \(-0.0632297\pi\)
\(678\) 0 0
\(679\) −4.79975 −0.184198
\(680\) 0 0
\(681\) 24.9054 0.954379
\(682\) 0 0
\(683\) − 32.8742i − 1.25790i −0.777447 0.628949i \(-0.783485\pi\)
0.777447 0.628949i \(-0.216515\pi\)
\(684\) 0 0
\(685\) 15.2232i 0.581650i
\(686\) 0 0
\(687\) 63.4171 2.41951
\(688\) 0 0
\(689\) 4.60925 0.175599
\(690\) 0 0
\(691\) 27.5365i 1.04754i 0.851860 + 0.523769i \(0.175474\pi\)
−0.851860 + 0.523769i \(0.824526\pi\)
\(692\) 0 0
\(693\) − 11.2556i − 0.427563i
\(694\) 0 0
\(695\) 19.5351 0.741008
\(696\) 0 0
\(697\) −4.61069 −0.174642
\(698\) 0 0
\(699\) 34.3863i 1.30061i
\(700\) 0 0
\(701\) − 12.0330i − 0.454480i −0.973839 0.227240i \(-0.927030\pi\)
0.973839 0.227240i \(-0.0729701\pi\)
\(702\) 0 0
\(703\) −4.51541 −0.170302
\(704\) 0 0
\(705\) 20.3222 0.765379
\(706\) 0 0
\(707\) − 7.48152i − 0.281372i
\(708\) 0 0
\(709\) − 13.3957i − 0.503085i −0.967846 0.251543i \(-0.919062\pi\)
0.967846 0.251543i \(-0.0809379\pi\)
\(710\) 0 0
\(711\) 3.50781 0.131553
\(712\) 0 0
\(713\) −0.0740191 −0.00277204
\(714\) 0 0
\(715\) − 6.68932i − 0.250167i
\(716\) 0 0
\(717\) − 2.78762i − 0.104105i
\(718\) 0 0
\(719\) −19.5596 −0.729452 −0.364726 0.931115i \(-0.618837\pi\)
−0.364726 + 0.931115i \(0.618837\pi\)
\(720\) 0 0
\(721\) −11.8173 −0.440099
\(722\) 0 0
\(723\) 42.1650i 1.56813i
\(724\) 0 0
\(725\) 1.81874i 0.0675462i
\(726\) 0 0
\(727\) 1.11125 0.0412139 0.0206069 0.999788i \(-0.493440\pi\)
0.0206069 + 0.999788i \(0.493440\pi\)
\(728\) 0 0
\(729\) 21.0938 0.781252
\(730\) 0 0
\(731\) − 6.72693i − 0.248804i
\(732\) 0 0
\(733\) − 9.82787i − 0.363001i −0.983391 0.181500i \(-0.941905\pi\)
0.983391 0.181500i \(-0.0580954\pi\)
\(734\) 0 0
\(735\) 3.80744 0.140440
\(736\) 0 0
\(737\) −35.4245 −1.30488
\(738\) 0 0
\(739\) 14.9997i 0.551773i 0.961190 + 0.275887i \(0.0889714\pi\)
−0.961190 + 0.275887i \(0.911029\pi\)
\(740\) 0 0
\(741\) 6.05001i 0.222253i
\(742\) 0 0
\(743\) 9.74460 0.357495 0.178747 0.983895i \(-0.442796\pi\)
0.178747 + 0.983895i \(0.442796\pi\)
\(744\) 0 0
\(745\) 3.14823 0.115342
\(746\) 0 0
\(747\) − 30.4264i − 1.11325i
\(748\) 0 0
\(749\) 16.5805i 0.605837i
\(750\) 0 0
\(751\) 8.70157 0.317525 0.158762 0.987317i \(-0.449250\pi\)
0.158762 + 0.987317i \(0.449250\pi\)
\(752\) 0 0
\(753\) −36.6884 −1.33700
\(754\) 0 0
\(755\) − 26.4701i − 0.963345i
\(756\) 0 0
\(757\) − 15.2448i − 0.554082i −0.960858 0.277041i \(-0.910646\pi\)
0.960858 0.277041i \(-0.0893539\pi\)
\(758\) 0 0
\(759\) 0.190491 0.00691439
\(760\) 0 0
\(761\) −43.2546 −1.56798 −0.783990 0.620774i \(-0.786819\pi\)
−0.783990 + 0.620774i \(0.786819\pi\)
\(762\) 0 0
\(763\) 11.9418i 0.432321i
\(764\) 0 0
\(765\) 2.44537i 0.0884124i
\(766\) 0 0
\(767\) 7.12700 0.257341
\(768\) 0 0
\(769\) 39.5036 1.42454 0.712269 0.701907i \(-0.247668\pi\)
0.712269 + 0.701907i \(0.247668\pi\)
\(770\) 0 0
\(771\) − 9.26450i − 0.333653i
\(772\) 0 0
\(773\) − 42.8504i − 1.54122i −0.637306 0.770611i \(-0.719951\pi\)
0.637306 0.770611i \(-0.280049\pi\)
\(774\) 0 0
\(775\) 9.51391 0.341750
\(776\) 0 0
\(777\) −4.24413 −0.152257
\(778\) 0 0
\(779\) − 20.5190i − 0.735171i
\(780\) 0 0
\(781\) 1.78190i 0.0637612i
\(782\) 0 0
\(783\) −0.554727 −0.0198243
\(784\) 0 0
\(785\) 11.5240 0.411309
\(786\) 0 0
\(787\) − 21.9628i − 0.782891i −0.920201 0.391446i \(-0.871975\pi\)
0.920201 0.391446i \(-0.128025\pi\)
\(788\) 0 0
\(789\) − 52.1436i − 1.85636i
\(790\) 0 0
\(791\) 5.32589 0.189367
\(792\) 0 0
\(793\) 10.6962 0.379832
\(794\) 0 0
\(795\) 17.5495i 0.622416i
\(796\) 0 0
\(797\) 43.1481i 1.52838i 0.644990 + 0.764191i \(0.276862\pi\)
−0.644990 + 0.764191i \(0.723138\pi\)
\(798\) 0 0
\(799\) 3.04284 0.107648
\(800\) 0 0
\(801\) 4.43012 0.156530
\(802\) 0 0
\(803\) 34.3043i 1.21057i
\(804\) 0 0
\(805\) 0.0304429i 0.00107297i
\(806\) 0 0
\(807\) −69.0717 −2.43144
\(808\) 0 0
\(809\) 17.1306 0.602280 0.301140 0.953580i \(-0.402633\pi\)
0.301140 + 0.953580i \(0.402633\pi\)
\(810\) 0 0
\(811\) 13.1707i 0.462486i 0.972896 + 0.231243i \(0.0742793\pi\)
−0.972896 + 0.231243i \(0.925721\pi\)
\(812\) 0 0
\(813\) − 39.9606i − 1.40148i
\(814\) 0 0
\(815\) −33.2617 −1.16511
\(816\) 0 0
\(817\) 29.9370 1.04736
\(818\) 0 0
\(819\) 2.68654i 0.0938754i
\(820\) 0 0
\(821\) − 9.58055i − 0.334364i −0.985926 0.167182i \(-0.946533\pi\)
0.985926 0.167182i \(-0.0534667\pi\)
\(822\) 0 0
\(823\) 36.0229 1.25568 0.627839 0.778343i \(-0.283940\pi\)
0.627839 + 0.778343i \(0.283940\pi\)
\(824\) 0 0
\(825\) −24.4844 −0.852439
\(826\) 0 0
\(827\) − 20.6959i − 0.719668i −0.933016 0.359834i \(-0.882833\pi\)
0.933016 0.359834i \(-0.117167\pi\)
\(828\) 0 0
\(829\) − 6.63330i − 0.230384i −0.993343 0.115192i \(-0.963252\pi\)
0.993343 0.115192i \(-0.0367483\pi\)
\(830\) 0 0
\(831\) 46.1538 1.60106
\(832\) 0 0
\(833\) 0.570087 0.0197523
\(834\) 0 0
\(835\) 26.4610i 0.915721i
\(836\) 0 0
\(837\) 2.90181i 0.100301i
\(838\) 0 0
\(839\) 2.63463 0.0909576 0.0454788 0.998965i \(-0.485519\pi\)
0.0454788 + 0.998965i \(0.485519\pi\)
\(840\) 0 0
\(841\) 28.4493 0.981009
\(842\) 0 0
\(843\) 6.60778i 0.227584i
\(844\) 0 0
\(845\) 1.59665i 0.0549264i
\(846\) 0 0
\(847\) −6.55279 −0.225156
\(848\) 0 0
\(849\) −65.9848 −2.26459
\(850\) 0 0
\(851\) − 0.0339345i − 0.00116326i
\(852\) 0 0
\(853\) − 17.6477i − 0.604247i −0.953269 0.302123i \(-0.902305\pi\)
0.953269 0.302123i \(-0.0976955\pi\)
\(854\) 0 0
\(855\) −10.8827 −0.372179
\(856\) 0 0
\(857\) 5.05243 0.172588 0.0862939 0.996270i \(-0.472498\pi\)
0.0862939 + 0.996270i \(0.472498\pi\)
\(858\) 0 0
\(859\) 39.4750i 1.34687i 0.739247 + 0.673434i \(0.235182\pi\)
−0.739247 + 0.673434i \(0.764818\pi\)
\(860\) 0 0
\(861\) − 19.2863i − 0.657276i
\(862\) 0 0
\(863\) −2.70602 −0.0921141 −0.0460571 0.998939i \(-0.514666\pi\)
−0.0460571 + 0.998939i \(0.514666\pi\)
\(864\) 0 0
\(865\) −5.56388 −0.189178
\(866\) 0 0
\(867\) − 39.7640i − 1.35046i
\(868\) 0 0
\(869\) − 5.47035i − 0.185569i
\(870\) 0 0
\(871\) 8.45532 0.286498
\(872\) 0 0
\(873\) 12.8947 0.436421
\(874\) 0 0
\(875\) − 11.8962i − 0.402164i
\(876\) 0 0
\(877\) 39.6508i 1.33891i 0.742852 + 0.669456i \(0.233473\pi\)
−0.742852 + 0.669456i \(0.766527\pi\)
\(878\) 0 0
\(879\) 11.2614 0.379839
\(880\) 0 0
\(881\) −43.1406 −1.45344 −0.726721 0.686932i \(-0.758957\pi\)
−0.726721 + 0.686932i \(0.758957\pi\)
\(882\) 0 0
\(883\) − 56.2653i − 1.89348i −0.322001 0.946739i \(-0.604356\pi\)
0.322001 0.946739i \(-0.395644\pi\)
\(884\) 0 0
\(885\) 27.1357i 0.912155i
\(886\) 0 0
\(887\) −11.6364 −0.390712 −0.195356 0.980732i \(-0.562586\pi\)
−0.195356 + 0.980732i \(0.562586\pi\)
\(888\) 0 0
\(889\) −15.1726 −0.508873
\(890\) 0 0
\(891\) − 41.2346i − 1.38141i
\(892\) 0 0
\(893\) 13.5416i 0.453153i
\(894\) 0 0
\(895\) 35.3700 1.18229
\(896\) 0 0
\(897\) −0.0454676 −0.00151812
\(898\) 0 0
\(899\) 2.88100i 0.0960868i
\(900\) 0 0
\(901\) 2.62768i 0.0875406i
\(902\) 0 0
\(903\) 28.1384 0.936388
\(904\) 0 0
\(905\) −27.0652 −0.899678
\(906\) 0 0
\(907\) − 36.5641i − 1.21409i −0.794667 0.607046i \(-0.792355\pi\)
0.794667 0.607046i \(-0.207645\pi\)
\(908\) 0 0
\(909\) 20.0994i 0.666656i
\(910\) 0 0
\(911\) −40.3066 −1.33542 −0.667709 0.744423i \(-0.732725\pi\)
−0.667709 + 0.744423i \(0.732725\pi\)
\(912\) 0 0
\(913\) −47.4494 −1.57034
\(914\) 0 0
\(915\) 40.7250i 1.34633i
\(916\) 0 0
\(917\) 1.62340i 0.0536092i
\(918\) 0 0
\(919\) −34.0077 −1.12181 −0.560905 0.827880i \(-0.689547\pi\)
−0.560905 + 0.827880i \(0.689547\pi\)
\(920\) 0 0
\(921\) −48.2070 −1.58848
\(922\) 0 0
\(923\) − 0.425314i − 0.0139994i
\(924\) 0 0
\(925\) 4.36172i 0.143412i
\(926\) 0 0
\(927\) 31.7477 1.04273
\(928\) 0 0
\(929\) −23.9803 −0.786769 −0.393385 0.919374i \(-0.628696\pi\)
−0.393385 + 0.919374i \(0.628696\pi\)
\(930\) 0 0
\(931\) 2.53707i 0.0831491i
\(932\) 0 0
\(933\) − 79.6941i − 2.60907i
\(934\) 0 0
\(935\) 3.81349 0.124715
\(936\) 0 0
\(937\) −33.4215 −1.09183 −0.545917 0.837840i \(-0.683818\pi\)
−0.545917 + 0.837840i \(0.683818\pi\)
\(938\) 0 0
\(939\) − 71.2280i − 2.32444i
\(940\) 0 0
\(941\) − 24.8842i − 0.811201i −0.914050 0.405600i \(-0.867062\pi\)
0.914050 0.405600i \(-0.132938\pi\)
\(942\) 0 0
\(943\) 0.154206 0.00502165
\(944\) 0 0
\(945\) 1.19347 0.0388236
\(946\) 0 0
\(947\) − 40.0196i − 1.30046i −0.759737 0.650231i \(-0.774672\pi\)
0.759737 0.650231i \(-0.225328\pi\)
\(948\) 0 0
\(949\) − 8.18795i − 0.265792i
\(950\) 0 0
\(951\) 6.79327 0.220287
\(952\) 0 0
\(953\) 45.4900 1.47356 0.736782 0.676130i \(-0.236344\pi\)
0.736782 + 0.676130i \(0.236344\pi\)
\(954\) 0 0
\(955\) − 34.5427i − 1.11777i
\(956\) 0 0
\(957\) − 7.41437i − 0.239673i
\(958\) 0 0
\(959\) −9.53449 −0.307885
\(960\) 0 0
\(961\) −15.9293 −0.513849
\(962\) 0 0
\(963\) − 44.5441i − 1.43541i
\(964\) 0 0
\(965\) − 25.8333i − 0.831602i
\(966\) 0 0
\(967\) 60.9357 1.95956 0.979779 0.200081i \(-0.0641205\pi\)
0.979779 + 0.200081i \(0.0641205\pi\)
\(968\) 0 0
\(969\) −3.44903 −0.110799
\(970\) 0 0
\(971\) 40.4125i 1.29690i 0.761257 + 0.648450i \(0.224582\pi\)
−0.761257 + 0.648450i \(0.775418\pi\)
\(972\) 0 0
\(973\) 12.2351i 0.392238i
\(974\) 0 0
\(975\) 5.84409 0.187161
\(976\) 0 0
\(977\) −19.0379 −0.609076 −0.304538 0.952500i \(-0.598502\pi\)
−0.304538 + 0.952500i \(0.598502\pi\)
\(978\) 0 0
\(979\) − 6.90867i − 0.220802i
\(980\) 0 0
\(981\) − 32.0821i − 1.02430i
\(982\) 0 0
\(983\) −29.8442 −0.951883 −0.475942 0.879477i \(-0.657893\pi\)
−0.475942 + 0.879477i \(0.657893\pi\)
\(984\) 0 0
\(985\) −24.3197 −0.774889
\(986\) 0 0
\(987\) 12.7281i 0.405139i
\(988\) 0 0
\(989\) 0.224985i 0.00715410i
\(990\) 0 0
\(991\) −49.4336 −1.57031 −0.785154 0.619300i \(-0.787416\pi\)
−0.785154 + 0.619300i \(0.787416\pi\)
\(992\) 0 0
\(993\) 42.0737 1.33517
\(994\) 0 0
\(995\) 9.91530i 0.314336i
\(996\) 0 0
\(997\) 9.50971i 0.301176i 0.988597 + 0.150588i \(0.0481166\pi\)
−0.988597 + 0.150588i \(0.951883\pi\)
\(998\) 0 0
\(999\) −1.33035 −0.0420905
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.c.a.1457.29 34
4.3 odd 2 728.2.c.a.365.6 yes 34
8.3 odd 2 728.2.c.a.365.5 34
8.5 even 2 inner 2912.2.c.a.1457.6 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.5 34 8.3 odd 2
728.2.c.a.365.6 yes 34 4.3 odd 2
2912.2.c.a.1457.6 34 8.5 even 2 inner
2912.2.c.a.1457.29 34 1.1 even 1 trivial