Properties

Label 728.2.c.a.365.4
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.4
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.a.365.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.23674 + 0.685911i) q^{2} -0.302261i q^{3} +(1.05905 - 1.69659i) q^{4} -1.42871i q^{5} +(0.207324 + 0.373818i) q^{6} -1.00000 q^{7} +(-0.146067 + 2.82465i) q^{8} +2.90864 q^{9} +(0.979968 + 1.76694i) q^{10} +2.11205i q^{11} +(-0.512811 - 0.320110i) q^{12} +1.00000i q^{13} +(1.23674 - 0.685911i) q^{14} -0.431843 q^{15} +(-1.75681 - 3.59355i) q^{16} +1.07522 q^{17} +(-3.59723 + 1.99507i) q^{18} +3.52230i q^{19} +(-2.42393 - 1.51308i) q^{20} +0.302261i q^{21} +(-1.44868 - 2.61206i) q^{22} +5.47592 q^{23} +(0.853781 + 0.0441503i) q^{24} +2.95878 q^{25} +(-0.685911 - 1.23674i) q^{26} -1.78595i q^{27} +(-1.05905 + 1.69659i) q^{28} -3.52776i q^{29} +(0.534078 - 0.296206i) q^{30} -3.26031 q^{31} +(4.63758 + 3.23927i) q^{32} +0.638391 q^{33} +(-1.32977 + 0.737506i) q^{34} +1.42871i q^{35} +(3.08040 - 4.93476i) q^{36} -10.7444i q^{37} +(-2.41598 - 4.35617i) q^{38} +0.302261 q^{39} +(4.03561 + 0.208688i) q^{40} +9.67803 q^{41} +(-0.207324 - 0.373818i) q^{42} -9.02912i q^{43} +(3.58328 + 2.23678i) q^{44} -4.15560i q^{45} +(-6.77229 + 3.75599i) q^{46} +4.79483 q^{47} +(-1.08619 + 0.531015i) q^{48} +1.00000 q^{49} +(-3.65925 + 2.02946i) q^{50} -0.324997i q^{51} +(1.69659 + 1.05905i) q^{52} +0.906733i q^{53} +(1.22500 + 2.20875i) q^{54} +3.01752 q^{55} +(0.146067 - 2.82465i) q^{56} +1.06465 q^{57} +(2.41973 + 4.36293i) q^{58} +6.88024i q^{59} +(-0.457345 + 0.732659i) q^{60} +5.18552i q^{61} +(4.03216 - 2.23628i) q^{62} -2.90864 q^{63} +(-7.95733 - 0.825177i) q^{64} +1.42871 q^{65} +(-0.789524 + 0.437879i) q^{66} -5.46202i q^{67} +(1.13872 - 1.82421i) q^{68} -1.65516i q^{69} +(-0.979968 - 1.76694i) q^{70} +0.895683 q^{71} +(-0.424856 + 8.21589i) q^{72} -14.4466 q^{73} +(7.36973 + 13.2881i) q^{74} -0.894324i q^{75} +(5.97589 + 3.73030i) q^{76} -2.11205i q^{77} +(-0.373818 + 0.207324i) q^{78} +15.5041 q^{79} +(-5.13415 + 2.50998i) q^{80} +8.18609 q^{81} +(-11.9692 + 6.63826i) q^{82} +9.02943i q^{83} +(0.512811 + 0.320110i) q^{84} -1.53618i q^{85} +(6.19317 + 11.1667i) q^{86} -1.06630 q^{87} +(-5.96582 - 0.308502i) q^{88} +17.4324 q^{89} +(2.85037 + 5.13940i) q^{90} -1.00000i q^{91} +(5.79929 - 9.29037i) q^{92} +0.985464i q^{93} +(-5.92996 + 3.28883i) q^{94} +5.03235 q^{95} +(0.979105 - 1.40176i) q^{96} +4.26779 q^{97} +(-1.23674 + 0.685911i) q^{98} +6.14320i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 2 q^{2} - 2 q^{4} - 6 q^{6} - 34 q^{7} + 8 q^{8} - 26 q^{9} - 4 q^{12} - 2 q^{14} - 8 q^{15} - 6 q^{16} - 20 q^{17} + 14 q^{18} - 4 q^{20} - 10 q^{22} - 20 q^{23} + 10 q^{24} - 22 q^{25} + 2 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23674 + 0.685911i −0.874507 + 0.485012i
\(3\) 0.302261i 0.174510i −0.996186 0.0872551i \(-0.972190\pi\)
0.996186 0.0872551i \(-0.0278095\pi\)
\(4\) 1.05905 1.69659i 0.529527 0.848293i
\(5\) 1.42871i 0.638939i −0.947597 0.319470i \(-0.896495\pi\)
0.947597 0.319470i \(-0.103505\pi\)
\(6\) 0.207324 + 0.373818i 0.0846396 + 0.152611i
\(7\) −1.00000 −0.377964
\(8\) −0.146067 + 2.82465i −0.0516425 + 0.998666i
\(9\) 2.90864 0.969546
\(10\) 0.979968 + 1.76694i 0.309893 + 0.558757i
\(11\) 2.11205i 0.636808i 0.947955 + 0.318404i \(0.103147\pi\)
−0.947955 + 0.318404i \(0.896853\pi\)
\(12\) −0.512811 0.320110i −0.148036 0.0924078i
\(13\) 1.00000i 0.277350i
\(14\) 1.23674 0.685911i 0.330533 0.183317i
\(15\) −0.431843 −0.111501
\(16\) −1.75681 3.59355i −0.439203 0.898388i
\(17\) 1.07522 0.260780 0.130390 0.991463i \(-0.458377\pi\)
0.130390 + 0.991463i \(0.458377\pi\)
\(18\) −3.59723 + 1.99507i −0.847875 + 0.470242i
\(19\) 3.52230i 0.808071i 0.914743 + 0.404036i \(0.132393\pi\)
−0.914743 + 0.404036i \(0.867607\pi\)
\(20\) −2.42393 1.51308i −0.542008 0.338335i
\(21\) 0.302261i 0.0659587i
\(22\) −1.44868 2.61206i −0.308860 0.556894i
\(23\) 5.47592 1.14181 0.570904 0.821017i \(-0.306593\pi\)
0.570904 + 0.821017i \(0.306593\pi\)
\(24\) 0.853781 + 0.0441503i 0.174277 + 0.00901214i
\(25\) 2.95878 0.591757
\(26\) −0.685911 1.23674i −0.134518 0.242545i
\(27\) 1.78595i 0.343706i
\(28\) −1.05905 + 1.69659i −0.200142 + 0.320625i
\(29\) 3.52776i 0.655089i −0.944836 0.327545i \(-0.893779\pi\)
0.944836 0.327545i \(-0.106221\pi\)
\(30\) 0.534078 0.296206i 0.0975088 0.0540795i
\(31\) −3.26031 −0.585569 −0.292785 0.956178i \(-0.594582\pi\)
−0.292785 + 0.956178i \(0.594582\pi\)
\(32\) 4.63758 + 3.23927i 0.819815 + 0.572628i
\(33\) 0.638391 0.111130
\(34\) −1.32977 + 0.737506i −0.228054 + 0.126481i
\(35\) 1.42871i 0.241496i
\(36\) 3.08040 4.93476i 0.513401 0.822460i
\(37\) 10.7444i 1.76637i −0.469020 0.883187i \(-0.655393\pi\)
0.469020 0.883187i \(-0.344607\pi\)
\(38\) −2.41598 4.35617i −0.391924 0.706664i
\(39\) 0.302261 0.0484004
\(40\) 4.03561 + 0.208688i 0.638087 + 0.0329964i
\(41\) 9.67803 1.51145 0.755727 0.654887i \(-0.227284\pi\)
0.755727 + 0.654887i \(0.227284\pi\)
\(42\) −0.207324 0.373818i −0.0319907 0.0576813i
\(43\) 9.02912i 1.37693i −0.725271 0.688464i \(-0.758285\pi\)
0.725271 0.688464i \(-0.241715\pi\)
\(44\) 3.58328 + 2.23678i 0.540200 + 0.337207i
\(45\) 4.15560i 0.619481i
\(46\) −6.77229 + 3.75599i −0.998520 + 0.553791i
\(47\) 4.79483 0.699398 0.349699 0.936862i \(-0.386284\pi\)
0.349699 + 0.936862i \(0.386284\pi\)
\(48\) −1.08619 + 0.531015i −0.156778 + 0.0766454i
\(49\) 1.00000 0.142857
\(50\) −3.65925 + 2.02946i −0.517496 + 0.287009i
\(51\) 0.324997i 0.0455087i
\(52\) 1.69659 + 1.05905i 0.235274 + 0.146864i
\(53\) 0.906733i 0.124549i 0.998059 + 0.0622747i \(0.0198355\pi\)
−0.998059 + 0.0622747i \(0.980165\pi\)
\(54\) 1.22500 + 2.20875i 0.166702 + 0.300573i
\(55\) 3.01752 0.406882
\(56\) 0.146067 2.82465i 0.0195190 0.377460i
\(57\) 1.06465 0.141017
\(58\) 2.41973 + 4.36293i 0.317726 + 0.572880i
\(59\) 6.88024i 0.895731i 0.894101 + 0.447865i \(0.147816\pi\)
−0.894101 + 0.447865i \(0.852184\pi\)
\(60\) −0.457345 + 0.732659i −0.0590430 + 0.0945859i
\(61\) 5.18552i 0.663938i 0.943290 + 0.331969i \(0.107713\pi\)
−0.943290 + 0.331969i \(0.892287\pi\)
\(62\) 4.03216 2.23628i 0.512085 0.284008i
\(63\) −2.90864 −0.366454
\(64\) −7.95733 0.825177i −0.994666 0.103147i
\(65\) 1.42871 0.177210
\(66\) −0.789524 + 0.437879i −0.0971837 + 0.0538992i
\(67\) 5.46202i 0.667292i −0.942699 0.333646i \(-0.891721\pi\)
0.942699 0.333646i \(-0.108279\pi\)
\(68\) 1.13872 1.82421i 0.138090 0.221218i
\(69\) 1.65516i 0.199257i
\(70\) −0.979968 1.76694i −0.117129 0.211190i
\(71\) 0.895683 0.106298 0.0531490 0.998587i \(-0.483074\pi\)
0.0531490 + 0.998587i \(0.483074\pi\)
\(72\) −0.424856 + 8.21589i −0.0500698 + 0.968252i
\(73\) −14.4466 −1.69085 −0.845425 0.534094i \(-0.820653\pi\)
−0.845425 + 0.534094i \(0.820653\pi\)
\(74\) 7.36973 + 13.2881i 0.856713 + 1.54471i
\(75\) 0.894324i 0.103268i
\(76\) 5.97589 + 3.73030i 0.685481 + 0.427895i
\(77\) 2.11205i 0.240691i
\(78\) −0.373818 + 0.207324i −0.0423265 + 0.0234748i
\(79\) 15.5041 1.74435 0.872175 0.489195i \(-0.162709\pi\)
0.872175 + 0.489195i \(0.162709\pi\)
\(80\) −5.13415 + 2.50998i −0.574015 + 0.280624i
\(81\) 8.18609 0.909566
\(82\) −11.9692 + 6.63826i −1.32178 + 0.733073i
\(83\) 9.02943i 0.991109i 0.868577 + 0.495555i \(0.165035\pi\)
−0.868577 + 0.495555i \(0.834965\pi\)
\(84\) 0.512811 + 0.320110i 0.0559523 + 0.0349269i
\(85\) 1.53618i 0.166622i
\(86\) 6.19317 + 11.1667i 0.667827 + 1.20413i
\(87\) −1.06630 −0.114320
\(88\) −5.96582 0.308502i −0.635959 0.0328864i
\(89\) 17.4324 1.84783 0.923917 0.382592i \(-0.124968\pi\)
0.923917 + 0.382592i \(0.124968\pi\)
\(90\) 2.85037 + 5.13940i 0.300456 + 0.541741i
\(91\) 1.00000i 0.104828i
\(92\) 5.79929 9.29037i 0.604618 0.968589i
\(93\) 0.985464i 0.102188i
\(94\) −5.92996 + 3.28883i −0.611629 + 0.339216i
\(95\) 5.03235 0.516308
\(96\) 0.979105 1.40176i 0.0999294 0.143066i
\(97\) 4.26779 0.433328 0.216664 0.976246i \(-0.430482\pi\)
0.216664 + 0.976246i \(0.430482\pi\)
\(98\) −1.23674 + 0.685911i −0.124930 + 0.0692874i
\(99\) 6.14320i 0.617415i
\(100\) 3.13351 5.01983i 0.313351 0.501983i
\(101\) 7.48731i 0.745015i −0.928029 0.372508i \(-0.878498\pi\)
0.928029 0.372508i \(-0.121502\pi\)
\(102\) 0.222919 + 0.401937i 0.0220723 + 0.0397977i
\(103\) −2.54505 −0.250771 −0.125386 0.992108i \(-0.540017\pi\)
−0.125386 + 0.992108i \(0.540017\pi\)
\(104\) −2.82465 0.146067i −0.276980 0.0143230i
\(105\) 0.431843 0.0421436
\(106\) −0.621938 1.12139i −0.0604080 0.108919i
\(107\) 6.43975i 0.622554i 0.950319 + 0.311277i \(0.100757\pi\)
−0.950319 + 0.311277i \(0.899243\pi\)
\(108\) −3.03002 1.89141i −0.291563 0.182001i
\(109\) 4.08818i 0.391577i −0.980646 0.195788i \(-0.937273\pi\)
0.980646 0.195788i \(-0.0627266\pi\)
\(110\) −3.73188 + 2.06975i −0.355821 + 0.197343i
\(111\) −3.24762 −0.308251
\(112\) 1.75681 + 3.59355i 0.166003 + 0.339559i
\(113\) −10.4398 −0.982095 −0.491048 0.871133i \(-0.663386\pi\)
−0.491048 + 0.871133i \(0.663386\pi\)
\(114\) −1.31670 + 0.730257i −0.123320 + 0.0683948i
\(115\) 7.82351i 0.729546i
\(116\) −5.98516 3.73609i −0.555708 0.346887i
\(117\) 2.90864i 0.268904i
\(118\) −4.71923 8.50907i −0.434440 0.783323i
\(119\) −1.07522 −0.0985655
\(120\) 0.0630780 1.21981i 0.00575821 0.111353i
\(121\) 6.53923 0.594475
\(122\) −3.55681 6.41315i −0.322018 0.580619i
\(123\) 2.92529i 0.263764i
\(124\) −3.45284 + 5.53140i −0.310075 + 0.496735i
\(125\) 11.3708i 1.01704i
\(126\) 3.59723 1.99507i 0.320467 0.177735i
\(127\) −14.5900 −1.29466 −0.647328 0.762212i \(-0.724114\pi\)
−0.647328 + 0.762212i \(0.724114\pi\)
\(128\) 10.4071 4.43749i 0.919871 0.392222i
\(129\) −2.72915 −0.240288
\(130\) −1.76694 + 0.979968i −0.154971 + 0.0859489i
\(131\) 8.54709i 0.746763i 0.927678 + 0.373381i \(0.121802\pi\)
−0.927678 + 0.373381i \(0.878198\pi\)
\(132\) 0.676090 1.08309i 0.0588461 0.0942705i
\(133\) 3.52230i 0.305422i
\(134\) 3.74646 + 6.75510i 0.323644 + 0.583551i
\(135\) −2.55161 −0.219607
\(136\) −0.157055 + 3.03713i −0.0134673 + 0.260432i
\(137\) −4.83312 −0.412921 −0.206461 0.978455i \(-0.566195\pi\)
−0.206461 + 0.978455i \(0.566195\pi\)
\(138\) 1.13529 + 2.04700i 0.0966422 + 0.174252i
\(139\) 20.7091i 1.75652i 0.478180 + 0.878262i \(0.341297\pi\)
−0.478180 + 0.878262i \(0.658703\pi\)
\(140\) 2.42393 + 1.51308i 0.204860 + 0.127879i
\(141\) 1.44929i 0.122052i
\(142\) −1.10773 + 0.614359i −0.0929584 + 0.0515558i
\(143\) −2.11205 −0.176619
\(144\) −5.10993 10.4523i −0.425828 0.871028i
\(145\) −5.04016 −0.418562
\(146\) 17.8667 9.90910i 1.47866 0.820083i
\(147\) 0.302261i 0.0249300i
\(148\) −18.2289 11.3789i −1.49840 0.935343i
\(149\) 5.23881i 0.429180i 0.976704 + 0.214590i \(0.0688415\pi\)
−0.976704 + 0.214590i \(0.931159\pi\)
\(150\) 0.613426 + 1.10605i 0.0500860 + 0.0903083i
\(151\) −17.9190 −1.45823 −0.729113 0.684393i \(-0.760067\pi\)
−0.729113 + 0.684393i \(0.760067\pi\)
\(152\) −9.94928 0.514492i −0.806993 0.0417308i
\(153\) 3.12743 0.252838
\(154\) 1.44868 + 2.61206i 0.116738 + 0.210486i
\(155\) 4.65805i 0.374143i
\(156\) 0.320110 0.512811i 0.0256293 0.0410578i
\(157\) 0.00849787i 0.000678204i −1.00000 0.000339102i \(-0.999892\pi\)
1.00000 0.000339102i \(-0.000107939\pi\)
\(158\) −19.1746 + 10.6344i −1.52545 + 0.846030i
\(159\) 0.274070 0.0217351
\(160\) 4.62799 6.62576i 0.365874 0.523812i
\(161\) −5.47592 −0.431563
\(162\) −10.1241 + 5.61493i −0.795422 + 0.441150i
\(163\) 2.16450i 0.169537i 0.996401 + 0.0847684i \(0.0270150\pi\)
−0.996401 + 0.0847684i \(0.972985\pi\)
\(164\) 10.2495 16.4196i 0.800355 1.28216i
\(165\) 0.912076i 0.0710050i
\(166\) −6.19338 11.1671i −0.480700 0.866732i
\(167\) −3.67872 −0.284668 −0.142334 0.989819i \(-0.545461\pi\)
−0.142334 + 0.989819i \(0.545461\pi\)
\(168\) −0.853781 0.0441503i −0.0658707 0.00340627i
\(169\) −1.00000 −0.0769231
\(170\) 1.05368 + 1.89986i 0.0808139 + 0.145712i
\(171\) 10.2451i 0.783462i
\(172\) −15.3187 9.56232i −1.16804 0.729120i
\(173\) 22.9325i 1.74353i −0.489927 0.871763i \(-0.662977\pi\)
0.489927 0.871763i \(-0.337023\pi\)
\(174\) 1.31874 0.731389i 0.0999735 0.0554465i
\(175\) −2.95878 −0.223663
\(176\) 7.58978 3.71048i 0.572101 0.279688i
\(177\) 2.07962 0.156314
\(178\) −21.5594 + 11.9571i −1.61595 + 0.896222i
\(179\) 22.2311i 1.66163i −0.556546 0.830817i \(-0.687874\pi\)
0.556546 0.830817i \(-0.312126\pi\)
\(180\) −7.05034 4.40101i −0.525502 0.328032i
\(181\) 3.16747i 0.235437i −0.993047 0.117718i \(-0.962442\pi\)
0.993047 0.117718i \(-0.0375580\pi\)
\(182\) 0.685911 + 1.23674i 0.0508431 + 0.0916733i
\(183\) 1.56738 0.115864
\(184\) −0.799851 + 15.4676i −0.0589658 + 1.14028i
\(185\) −15.3507 −1.12861
\(186\) −0.675940 1.21876i −0.0495623 0.0893641i
\(187\) 2.27093i 0.166067i
\(188\) 5.07798 8.13485i 0.370350 0.593295i
\(189\) 1.78595i 0.129909i
\(190\) −6.22371 + 3.45174i −0.451515 + 0.250416i
\(191\) 3.10833 0.224911 0.112455 0.993657i \(-0.464128\pi\)
0.112455 + 0.993657i \(0.464128\pi\)
\(192\) −0.249419 + 2.40519i −0.0180002 + 0.173579i
\(193\) −8.51520 −0.612938 −0.306469 0.951881i \(-0.599148\pi\)
−0.306469 + 0.951881i \(0.599148\pi\)
\(194\) −5.27814 + 2.92732i −0.378949 + 0.210169i
\(195\) 0.431843i 0.0309249i
\(196\) 1.05905 1.69659i 0.0756467 0.121185i
\(197\) 14.2869i 1.01790i 0.860797 + 0.508948i \(0.169966\pi\)
−0.860797 + 0.508948i \(0.830034\pi\)
\(198\) −4.21369 7.59755i −0.299454 0.539934i
\(199\) −26.2298 −1.85938 −0.929689 0.368345i \(-0.879924\pi\)
−0.929689 + 0.368345i \(0.879924\pi\)
\(200\) −0.432181 + 8.35754i −0.0305598 + 0.590967i
\(201\) −1.65095 −0.116449
\(202\) 5.13563 + 9.25986i 0.361341 + 0.651521i
\(203\) 3.52776i 0.247600i
\(204\) −0.551386 0.344189i −0.0386047 0.0240981i
\(205\) 13.8271i 0.965727i
\(206\) 3.14757 1.74568i 0.219301 0.121627i
\(207\) 15.9275 1.10704
\(208\) 3.59355 1.75681i 0.249168 0.121813i
\(209\) −7.43929 −0.514586
\(210\) −0.534078 + 0.296206i −0.0368549 + 0.0204401i
\(211\) 5.07186i 0.349161i −0.984643 0.174580i \(-0.944143\pi\)
0.984643 0.174580i \(-0.0558569\pi\)
\(212\) 1.53835 + 0.960279i 0.105654 + 0.0659522i
\(213\) 0.270730i 0.0185501i
\(214\) −4.41709 7.96430i −0.301946 0.544428i
\(215\) −12.9000 −0.879773
\(216\) 5.04469 + 0.260868i 0.343247 + 0.0177498i
\(217\) 3.26031 0.221324
\(218\) 2.80413 + 5.05602i 0.189920 + 0.342437i
\(219\) 4.36665i 0.295071i
\(220\) 3.19571 5.11948i 0.215455 0.345155i
\(221\) 1.07522i 0.0723273i
\(222\) 4.01646 2.22758i 0.269567 0.149505i
\(223\) −8.10346 −0.542648 −0.271324 0.962488i \(-0.587461\pi\)
−0.271324 + 0.962488i \(0.587461\pi\)
\(224\) −4.63758 3.23927i −0.309861 0.216433i
\(225\) 8.60603 0.573736
\(226\) 12.9113 7.16078i 0.858850 0.476328i
\(227\) 22.2426i 1.47629i 0.674641 + 0.738146i \(0.264298\pi\)
−0.674641 + 0.738146i \(0.735702\pi\)
\(228\) 1.12752 1.80628i 0.0746721 0.119624i
\(229\) 0.687851i 0.0454545i 0.999742 + 0.0227272i \(0.00723493\pi\)
−0.999742 + 0.0227272i \(0.992765\pi\)
\(230\) 5.36623 + 9.67565i 0.353839 + 0.637994i
\(231\) −0.638391 −0.0420030
\(232\) 9.96471 + 0.515290i 0.654215 + 0.0338304i
\(233\) 21.7686 1.42611 0.713054 0.701109i \(-0.247311\pi\)
0.713054 + 0.701109i \(0.247311\pi\)
\(234\) −1.99507 3.59723i −0.130422 0.235158i
\(235\) 6.85043i 0.446873i
\(236\) 11.6729 + 7.28654i 0.759842 + 0.474313i
\(237\) 4.68628i 0.304407i
\(238\) 1.32977 0.737506i 0.0861962 0.0478054i
\(239\) −12.4111 −0.802810 −0.401405 0.915901i \(-0.631478\pi\)
−0.401405 + 0.915901i \(0.631478\pi\)
\(240\) 0.758667 + 1.55185i 0.0489718 + 0.100172i
\(241\) 9.86867 0.635697 0.317848 0.948142i \(-0.397040\pi\)
0.317848 + 0.948142i \(0.397040\pi\)
\(242\) −8.08732 + 4.48532i −0.519873 + 0.288328i
\(243\) 7.83218i 0.502435i
\(244\) 8.79769 + 5.49174i 0.563214 + 0.351573i
\(245\) 1.42871i 0.0912770i
\(246\) 2.00648 + 3.61782i 0.127929 + 0.230664i
\(247\) −3.52230 −0.224119
\(248\) 0.476224 9.20925i 0.0302403 0.584788i
\(249\) 2.72924 0.172959
\(250\) 7.79936 + 14.0627i 0.493275 + 0.889405i
\(251\) 12.2813i 0.775187i 0.921830 + 0.387593i \(0.126694\pi\)
−0.921830 + 0.387593i \(0.873306\pi\)
\(252\) −3.08040 + 4.93476i −0.194047 + 0.310860i
\(253\) 11.5654i 0.727113i
\(254\) 18.0441 10.0075i 1.13219 0.627924i
\(255\) −0.464327 −0.0290773
\(256\) −9.82722 + 12.6264i −0.614201 + 0.789149i
\(257\) −8.06646 −0.503172 −0.251586 0.967835i \(-0.580952\pi\)
−0.251586 + 0.967835i \(0.580952\pi\)
\(258\) 3.37525 1.87195i 0.210134 0.116543i
\(259\) 10.7444i 0.667627i
\(260\) 1.51308 2.42393i 0.0938373 0.150326i
\(261\) 10.2610i 0.635139i
\(262\) −5.86254 10.5705i −0.362189 0.653050i
\(263\) 16.3897 1.01063 0.505316 0.862934i \(-0.331376\pi\)
0.505316 + 0.862934i \(0.331376\pi\)
\(264\) −0.0932478 + 1.80323i −0.00573901 + 0.110981i
\(265\) 1.29546 0.0795795
\(266\) 2.41598 + 4.35617i 0.148133 + 0.267094i
\(267\) 5.26914i 0.322466i
\(268\) −9.26679 5.78457i −0.566059 0.353349i
\(269\) 25.7500i 1.57001i 0.619491 + 0.785004i \(0.287339\pi\)
−0.619491 + 0.785004i \(0.712661\pi\)
\(270\) 3.15567 1.75017i 0.192048 0.106512i
\(271\) 3.70858 0.225280 0.112640 0.993636i \(-0.464069\pi\)
0.112640 + 0.993636i \(0.464069\pi\)
\(272\) −1.88896 3.86387i −0.114535 0.234281i
\(273\) −0.302261 −0.0182936
\(274\) 5.97731 3.31509i 0.361103 0.200272i
\(275\) 6.24911i 0.376836i
\(276\) −2.80811 1.75290i −0.169029 0.105512i
\(277\) 3.54833i 0.213199i 0.994302 + 0.106599i \(0.0339962\pi\)
−0.994302 + 0.106599i \(0.966004\pi\)
\(278\) −14.2046 25.6118i −0.851935 1.53609i
\(279\) −9.48307 −0.567737
\(280\) −4.03561 0.208688i −0.241174 0.0124715i
\(281\) −0.0751627 −0.00448383 −0.00224192 0.999997i \(-0.500714\pi\)
−0.00224192 + 0.999997i \(0.500714\pi\)
\(282\) 0.994082 + 1.79239i 0.0591967 + 0.106735i
\(283\) 22.3137i 1.32641i −0.748437 0.663205i \(-0.769196\pi\)
0.748437 0.663205i \(-0.230804\pi\)
\(284\) 0.948576 1.51960i 0.0562876 0.0901719i
\(285\) 1.52108i 0.0901011i
\(286\) 2.61206 1.44868i 0.154455 0.0856623i
\(287\) −9.67803 −0.571276
\(288\) 13.4890 + 9.42187i 0.794849 + 0.555189i
\(289\) −15.8439 −0.931994
\(290\) 6.23336 3.45710i 0.366036 0.203008i
\(291\) 1.28998i 0.0756202i
\(292\) −15.2997 + 24.5100i −0.895350 + 1.43434i
\(293\) 15.1800i 0.886825i 0.896318 + 0.443412i \(0.146232\pi\)
−0.896318 + 0.443412i \(0.853768\pi\)
\(294\) 0.207324 + 0.373818i 0.0120914 + 0.0218015i
\(295\) 9.82987 0.572317
\(296\) 30.3493 + 1.56941i 1.76402 + 0.0912200i
\(297\) 3.77202 0.218875
\(298\) −3.59335 6.47904i −0.208157 0.375321i
\(299\) 5.47592i 0.316681i
\(300\) −1.51730 0.947136i −0.0876012 0.0546830i
\(301\) 9.02912i 0.520430i
\(302\) 22.1611 12.2908i 1.27523 0.707257i
\(303\) −2.26312 −0.130013
\(304\) 12.6576 6.18802i 0.725961 0.354907i
\(305\) 7.40862 0.424216
\(306\) −3.86782 + 2.14514i −0.221109 + 0.122629i
\(307\) 10.7178i 0.611699i −0.952080 0.305850i \(-0.901060\pi\)
0.952080 0.305850i \(-0.0989405\pi\)
\(308\) −3.58328 2.23678i −0.204177 0.127452i
\(309\) 0.769269i 0.0437622i
\(310\) −3.19500 5.76079i −0.181464 0.327191i
\(311\) 17.1663 0.973413 0.486707 0.873565i \(-0.338198\pi\)
0.486707 + 0.873565i \(0.338198\pi\)
\(312\) −0.0441503 + 0.853781i −0.00249952 + 0.0483358i
\(313\) −11.5995 −0.655645 −0.327823 0.944739i \(-0.606315\pi\)
−0.327823 + 0.944739i \(0.606315\pi\)
\(314\) 0.00582878 + 0.0105097i 0.000328937 + 0.000593094i
\(315\) 4.15560i 0.234142i
\(316\) 16.4197 26.3041i 0.923679 1.47972i
\(317\) 7.72578i 0.433923i −0.976180 0.216962i \(-0.930385\pi\)
0.976180 0.216962i \(-0.0696146\pi\)
\(318\) −0.338953 + 0.187987i −0.0190075 + 0.0105418i
\(319\) 7.45083 0.417166
\(320\) −1.17894 + 11.3687i −0.0659048 + 0.635531i
\(321\) 1.94648 0.108642
\(322\) 6.77229 3.75599i 0.377405 0.209313i
\(323\) 3.78726i 0.210729i
\(324\) 8.66951 13.8884i 0.481639 0.771579i
\(325\) 2.95878i 0.164124i
\(326\) −1.48465 2.67693i −0.0822274 0.148261i
\(327\) −1.23570 −0.0683342
\(328\) −1.41364 + 27.3371i −0.0780552 + 1.50944i
\(329\) −4.79483 −0.264348
\(330\) 0.625603 + 1.12800i 0.0344383 + 0.0620944i
\(331\) 7.83452i 0.430624i 0.976545 + 0.215312i \(0.0690769\pi\)
−0.976545 + 0.215312i \(0.930923\pi\)
\(332\) 15.3192 + 9.56265i 0.840751 + 0.524819i
\(333\) 31.2517i 1.71258i
\(334\) 4.54963 2.52328i 0.248944 0.138068i
\(335\) −7.80365 −0.426359
\(336\) 1.08619 0.531015i 0.0592565 0.0289693i
\(337\) −6.71021 −0.365528 −0.182764 0.983157i \(-0.558504\pi\)
−0.182764 + 0.983157i \(0.558504\pi\)
\(338\) 1.23674 0.685911i 0.0672698 0.0373086i
\(339\) 3.15554i 0.171386i
\(340\) −2.60627 1.62690i −0.141345 0.0882310i
\(341\) 6.88596i 0.372896i
\(342\) −7.02722 12.6705i −0.379989 0.685144i
\(343\) −1.00000 −0.0539949
\(344\) 25.5041 + 1.31886i 1.37509 + 0.0711080i
\(345\) −2.36474 −0.127313
\(346\) 15.7297 + 28.3616i 0.845632 + 1.52473i
\(347\) 28.7053i 1.54098i 0.637450 + 0.770492i \(0.279989\pi\)
−0.637450 + 0.770492i \(0.720011\pi\)
\(348\) −1.12927 + 1.80908i −0.0605354 + 0.0969767i
\(349\) 31.5592i 1.68933i 0.535298 + 0.844663i \(0.320199\pi\)
−0.535298 + 0.844663i \(0.679801\pi\)
\(350\) 3.65925 2.02946i 0.195595 0.108479i
\(351\) 1.78595 0.0953269
\(352\) −6.84152 + 9.79481i −0.364654 + 0.522065i
\(353\) −32.1482 −1.71108 −0.855538 0.517741i \(-0.826773\pi\)
−0.855538 + 0.517741i \(0.826773\pi\)
\(354\) −2.57196 + 1.42644i −0.136698 + 0.0758142i
\(355\) 1.27967i 0.0679180i
\(356\) 18.4619 29.5756i 0.978478 1.56751i
\(357\) 0.324997i 0.0172007i
\(358\) 15.2486 + 27.4941i 0.805912 + 1.45311i
\(359\) −0.201990 −0.0106606 −0.00533032 0.999986i \(-0.501697\pi\)
−0.00533032 + 0.999986i \(0.501697\pi\)
\(360\) 11.7381 + 0.606997i 0.618654 + 0.0319915i
\(361\) 6.59340 0.347021
\(362\) 2.17260 + 3.91734i 0.114190 + 0.205891i
\(363\) 1.97655i 0.103742i
\(364\) −1.69659 1.05905i −0.0889253 0.0555095i
\(365\) 20.6401i 1.08035i
\(366\) −1.93844 + 1.07508i −0.101324 + 0.0561954i
\(367\) 12.2350 0.638659 0.319330 0.947644i \(-0.396542\pi\)
0.319330 + 0.947644i \(0.396542\pi\)
\(368\) −9.62017 19.6780i −0.501486 1.02579i
\(369\) 28.1499 1.46542
\(370\) 18.9848 10.5292i 0.986974 0.547388i
\(371\) 0.906733i 0.0470753i
\(372\) 1.67193 + 1.04366i 0.0866853 + 0.0541112i
\(373\) 30.5414i 1.58138i 0.612220 + 0.790688i \(0.290277\pi\)
−0.612220 + 0.790688i \(0.709723\pi\)
\(374\) −1.55765 2.80855i −0.0805444 0.145227i
\(375\) −3.43695 −0.177483
\(376\) −0.700367 + 13.5437i −0.0361187 + 0.698465i
\(377\) 3.52776 0.181689
\(378\) −1.22500 2.20875i −0.0630073 0.113606i
\(379\) 23.3843i 1.20117i −0.799560 0.600586i \(-0.794934\pi\)
0.799560 0.600586i \(-0.205066\pi\)
\(380\) 5.32953 8.53782i 0.273399 0.437981i
\(381\) 4.40999i 0.225931i
\(382\) −3.84420 + 2.13204i −0.196686 + 0.109084i
\(383\) −25.5623 −1.30617 −0.653085 0.757285i \(-0.726526\pi\)
−0.653085 + 0.757285i \(0.726526\pi\)
\(384\) −1.34128 3.14567i −0.0684468 0.160527i
\(385\) −3.01752 −0.153787
\(386\) 10.5311 5.84067i 0.536019 0.297282i
\(387\) 26.2624i 1.33500i
\(388\) 4.51981 7.24067i 0.229459 0.367589i
\(389\) 18.4359i 0.934735i 0.884063 + 0.467367i \(0.154797\pi\)
−0.884063 + 0.467367i \(0.845203\pi\)
\(390\) 0.296206 + 0.534078i 0.0149990 + 0.0270441i
\(391\) 5.88783 0.297760
\(392\) −0.146067 + 2.82465i −0.00737750 + 0.142667i
\(393\) 2.58345 0.130318
\(394\) −9.79951 17.6691i −0.493692 0.890158i
\(395\) 22.1509i 1.11453i
\(396\) 10.4225 + 6.50598i 0.523749 + 0.326938i
\(397\) 24.1909i 1.21411i −0.794662 0.607053i \(-0.792352\pi\)
0.794662 0.607053i \(-0.207648\pi\)
\(398\) 32.4394 17.9913i 1.62604 0.901821i
\(399\) −1.06465 −0.0532993
\(400\) −5.19803 10.6325i −0.259901 0.531627i
\(401\) 27.3572 1.36615 0.683076 0.730347i \(-0.260642\pi\)
0.683076 + 0.730347i \(0.260642\pi\)
\(402\) 2.04180 1.13241i 0.101836 0.0564793i
\(403\) 3.26031i 0.162408i
\(404\) −12.7029 7.92946i −0.631991 0.394505i
\(405\) 11.6956i 0.581157i
\(406\) −2.41973 4.36293i −0.120089 0.216528i
\(407\) 22.6928 1.12484
\(408\) 0.918005 + 0.0474714i 0.0454480 + 0.00235018i
\(409\) −11.9361 −0.590204 −0.295102 0.955466i \(-0.595354\pi\)
−0.295102 + 0.955466i \(0.595354\pi\)
\(410\) 9.48416 + 17.1005i 0.468389 + 0.844535i
\(411\) 1.46086i 0.0720590i
\(412\) −2.69534 + 4.31790i −0.132790 + 0.212728i
\(413\) 6.88024i 0.338554i
\(414\) −19.6982 + 10.9248i −0.968111 + 0.536926i
\(415\) 12.9005 0.633258
\(416\) −3.23927 + 4.63758i −0.158818 + 0.227376i
\(417\) 6.25955 0.306531
\(418\) 9.20047 5.10269i 0.450010 0.249581i
\(419\) 2.55111i 0.124630i −0.998057 0.0623150i \(-0.980152\pi\)
0.998057 0.0623150i \(-0.0198484\pi\)
\(420\) 0.457345 0.732659i 0.0223161 0.0357501i
\(421\) 37.9289i 1.84854i 0.381740 + 0.924270i \(0.375325\pi\)
−0.381740 + 0.924270i \(0.624675\pi\)
\(422\) 3.47884 + 6.27257i 0.169347 + 0.305344i
\(423\) 13.9464 0.678099
\(424\) −2.56121 0.132444i −0.124383 0.00643204i
\(425\) 3.18135 0.154318
\(426\) 0.185696 + 0.334822i 0.00899702 + 0.0162222i
\(427\) 5.18552i 0.250945i
\(428\) 10.9256 + 6.82004i 0.528109 + 0.329659i
\(429\) 0.638391i 0.0308218i
\(430\) 15.9540 8.84825i 0.769368 0.426701i
\(431\) −3.23951 −0.156041 −0.0780207 0.996952i \(-0.524860\pi\)
−0.0780207 + 0.996952i \(0.524860\pi\)
\(432\) −6.41790 + 3.13758i −0.308781 + 0.150957i
\(433\) −10.6772 −0.513114 −0.256557 0.966529i \(-0.582588\pi\)
−0.256557 + 0.966529i \(0.582588\pi\)
\(434\) −4.03216 + 2.23628i −0.193550 + 0.107345i
\(435\) 1.52344i 0.0730434i
\(436\) −6.93596 4.32960i −0.332172 0.207350i
\(437\) 19.2878i 0.922662i
\(438\) −2.99513 5.40041i −0.143113 0.258041i
\(439\) −7.91420 −0.377724 −0.188862 0.982004i \(-0.560480\pi\)
−0.188862 + 0.982004i \(0.560480\pi\)
\(440\) −0.440760 + 8.52344i −0.0210124 + 0.406339i
\(441\) 2.90864 0.138507
\(442\) −0.737506 1.32977i −0.0350796 0.0632507i
\(443\) 0.488220i 0.0231960i 0.999933 + 0.0115980i \(0.00369185\pi\)
−0.999933 + 0.0115980i \(0.996308\pi\)
\(444\) −3.43940 + 5.50987i −0.163227 + 0.261487i
\(445\) 24.9059i 1.18065i
\(446\) 10.0219 5.55825i 0.474550 0.263191i
\(447\) 1.58348 0.0748962
\(448\) 7.95733 + 0.825177i 0.375948 + 0.0389860i
\(449\) −32.7761 −1.54680 −0.773399 0.633919i \(-0.781445\pi\)
−0.773399 + 0.633919i \(0.781445\pi\)
\(450\) −10.6434 + 5.90297i −0.501736 + 0.278269i
\(451\) 20.4405i 0.962506i
\(452\) −11.0563 + 17.7120i −0.520046 + 0.833105i
\(453\) 5.41620i 0.254475i
\(454\) −15.2564 27.5083i −0.716019 1.29103i
\(455\) −1.42871 −0.0669790
\(456\) −0.155511 + 3.00727i −0.00728245 + 0.140829i
\(457\) 10.4564 0.489131 0.244566 0.969633i \(-0.421355\pi\)
0.244566 + 0.969633i \(0.421355\pi\)
\(458\) −0.471804 0.850693i −0.0220460 0.0397503i
\(459\) 1.92029i 0.0896315i
\(460\) −13.2733 8.28551i −0.618869 0.386314i
\(461\) 18.2242i 0.848786i −0.905478 0.424393i \(-0.860487\pi\)
0.905478 0.424393i \(-0.139513\pi\)
\(462\) 0.789524 0.437879i 0.0367320 0.0203720i
\(463\) 12.6199 0.586498 0.293249 0.956036i \(-0.405264\pi\)
0.293249 + 0.956036i \(0.405264\pi\)
\(464\) −12.6772 + 6.19762i −0.588524 + 0.287717i
\(465\) 1.40794 0.0652918
\(466\) −26.9221 + 14.9313i −1.24714 + 0.691680i
\(467\) 4.87907i 0.225777i 0.993608 + 0.112888i \(0.0360102\pi\)
−0.993608 + 0.112888i \(0.963990\pi\)
\(468\) 4.93476 + 3.08040i 0.228109 + 0.142392i
\(469\) 5.46202i 0.252213i
\(470\) 4.69878 + 8.47220i 0.216739 + 0.390794i
\(471\) −0.00256857 −0.000118353
\(472\) −19.4343 1.00498i −0.894535 0.0462578i
\(473\) 19.0700 0.876839
\(474\) 3.21437 + 5.79571i 0.147641 + 0.266206i
\(475\) 10.4217i 0.478182i
\(476\) −1.13872 + 1.82421i −0.0521930 + 0.0836124i
\(477\) 2.63736i 0.120756i
\(478\) 15.3494 8.51293i 0.702063 0.389373i
\(479\) −18.0377 −0.824165 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(480\) −2.00271 1.39886i −0.0914106 0.0638488i
\(481\) 10.7444 0.489904
\(482\) −12.2050 + 6.76903i −0.555922 + 0.308321i
\(483\) 1.65516i 0.0753122i
\(484\) 6.92539 11.0944i 0.314790 0.504289i
\(485\) 6.09743i 0.276870i
\(486\) 5.37218 + 9.68637i 0.243687 + 0.439383i
\(487\) 22.7622 1.03145 0.515726 0.856753i \(-0.327522\pi\)
0.515726 + 0.856753i \(0.327522\pi\)
\(488\) −14.6473 0.757434i −0.663052 0.0342874i
\(489\) 0.654243 0.0295859
\(490\) 0.979968 + 1.76694i 0.0442705 + 0.0798224i
\(491\) 22.4017i 1.01098i −0.862833 0.505488i \(-0.831312\pi\)
0.862833 0.505488i \(-0.168688\pi\)
\(492\) −4.96300 3.09803i −0.223749 0.139670i
\(493\) 3.79313i 0.170834i
\(494\) 4.35617 2.41598i 0.195993 0.108700i
\(495\) 8.77686 0.394491
\(496\) 5.72776 + 11.7161i 0.257184 + 0.526068i
\(497\) −0.895683 −0.0401769
\(498\) −3.37536 + 1.87202i −0.151254 + 0.0838870i
\(499\) 6.56942i 0.294088i 0.989130 + 0.147044i \(0.0469758\pi\)
−0.989130 + 0.147044i \(0.953024\pi\)
\(500\) −19.2916 12.0423i −0.862745 0.538547i
\(501\) 1.11193i 0.0496775i
\(502\) −8.42385 15.1887i −0.375975 0.677907i
\(503\) −28.0909 −1.25251 −0.626256 0.779617i \(-0.715414\pi\)
−0.626256 + 0.779617i \(0.715414\pi\)
\(504\) 0.424856 8.21589i 0.0189246 0.365965i
\(505\) −10.6972 −0.476019
\(506\) −7.93286 14.3035i −0.352659 0.635866i
\(507\) 0.302261i 0.0134239i
\(508\) −15.4516 + 24.7532i −0.685555 + 1.09825i
\(509\) 30.4909i 1.35149i −0.737137 0.675744i \(-0.763823\pi\)
0.737137 0.675744i \(-0.236177\pi\)
\(510\) 0.574252 0.318487i 0.0254283 0.0141028i
\(511\) 14.4466 0.639081
\(512\) 3.49314 22.3562i 0.154377 0.988012i
\(513\) 6.29065 0.277739
\(514\) 9.97612 5.53287i 0.440028 0.244044i
\(515\) 3.63614i 0.160228i
\(516\) −2.89031 + 4.63023i −0.127239 + 0.203835i
\(517\) 10.1269i 0.445383i
\(518\) −7.36973 13.2881i −0.323807 0.583845i
\(519\) −6.93160 −0.304263
\(520\) −0.208688 + 4.03561i −0.00915156 + 0.176973i
\(521\) −45.5582 −1.99594 −0.997970 0.0636820i \(-0.979716\pi\)
−0.997970 + 0.0636820i \(0.979716\pi\)
\(522\) 7.03812 + 12.6902i 0.308050 + 0.555434i
\(523\) 6.33191i 0.276875i −0.990371 0.138438i \(-0.955792\pi\)
0.990371 0.138438i \(-0.0442080\pi\)
\(524\) 14.5009 + 9.05182i 0.633474 + 0.395431i
\(525\) 0.894324i 0.0390315i
\(526\) −20.2698 + 11.2419i −0.883806 + 0.490169i
\(527\) −3.50556 −0.152705
\(528\) −1.12153 2.29409i −0.0488085 0.0998375i
\(529\) 6.98571 0.303727
\(530\) −1.60215 + 0.888570i −0.0695929 + 0.0385970i
\(531\) 20.0121i 0.868452i
\(532\) −5.97589 3.73030i −0.259088 0.161729i
\(533\) 9.67803i 0.419202i
\(534\) 3.61416 + 6.51656i 0.156400 + 0.281999i
\(535\) 9.20055 0.397774
\(536\) 15.4283 + 0.797821i 0.666401 + 0.0344606i
\(537\) −6.71960 −0.289972
\(538\) −17.6622 31.8461i −0.761473 1.37298i
\(539\) 2.11205i 0.0909726i
\(540\) −2.70229 + 4.32902i −0.116288 + 0.186291i
\(541\) 22.2376i 0.956068i −0.878341 0.478034i \(-0.841350\pi\)
0.878341 0.478034i \(-0.158650\pi\)
\(542\) −4.58655 + 2.54376i −0.197009 + 0.109264i
\(543\) −0.957403 −0.0410861
\(544\) 4.98642 + 3.48294i 0.213791 + 0.149330i
\(545\) −5.84083 −0.250194
\(546\) 0.373818 0.207324i 0.0159979 0.00887264i
\(547\) 21.1582i 0.904658i −0.891851 0.452329i \(-0.850593\pi\)
0.891851 0.452329i \(-0.149407\pi\)
\(548\) −5.11853 + 8.19981i −0.218653 + 0.350278i
\(549\) 15.0828i 0.643719i
\(550\) −4.28633 7.72853i −0.182770 0.329546i
\(551\) 12.4258 0.529359
\(552\) 4.67524 + 0.241764i 0.198991 + 0.0102901i
\(553\) −15.5041 −0.659302
\(554\) −2.43384 4.38836i −0.103404 0.186444i
\(555\) 4.63991i 0.196953i
\(556\) 35.1348 + 21.9320i 1.49005 + 0.930126i
\(557\) 0.896820i 0.0379995i −0.999819 0.0189997i \(-0.993952\pi\)
0.999819 0.0189997i \(-0.00604817\pi\)
\(558\) 11.7281 6.50454i 0.496490 0.275359i
\(559\) 9.02912 0.381891
\(560\) 5.13415 2.50998i 0.216957 0.106066i
\(561\) 0.686412 0.0289803
\(562\) 0.0929568 0.0515549i 0.00392115 0.00217471i
\(563\) 5.18352i 0.218459i 0.994017 + 0.109230i \(0.0348384\pi\)
−0.994017 + 0.109230i \(0.965162\pi\)
\(564\) −2.45884 1.53487i −0.103536 0.0646298i
\(565\) 14.9155i 0.627499i
\(566\) 15.3052 + 27.5962i 0.643325 + 1.15996i
\(567\) −8.18609 −0.343784
\(568\) −0.130830 + 2.52999i −0.00548950 + 0.106156i
\(569\) −16.6719 −0.698924 −0.349462 0.936951i \(-0.613636\pi\)
−0.349462 + 0.936951i \(0.613636\pi\)
\(570\) 1.04333 + 1.88118i 0.0437001 + 0.0787941i
\(571\) 16.4548i 0.688611i −0.938858 0.344306i \(-0.888114\pi\)
0.938858 0.344306i \(-0.111886\pi\)
\(572\) −2.23678 + 3.58328i −0.0935244 + 0.149825i
\(573\) 0.939526i 0.0392492i
\(574\) 11.9692 6.63826i 0.499585 0.277076i
\(575\) 16.2021 0.675673
\(576\) −23.1450 2.40014i −0.964375 0.100006i
\(577\) 0.0663045 0.00276029 0.00138015 0.999999i \(-0.499561\pi\)
0.00138015 + 0.999999i \(0.499561\pi\)
\(578\) 19.5948 10.8675i 0.815036 0.452028i
\(579\) 2.57381i 0.106964i
\(580\) −5.33779 + 8.55106i −0.221640 + 0.355063i
\(581\) 9.02943i 0.374604i
\(582\) 0.884813 + 1.59537i 0.0366767 + 0.0661304i
\(583\) −1.91507 −0.0793141
\(584\) 2.11018 40.8067i 0.0873197 1.68859i
\(585\) 4.15560 0.171813
\(586\) −10.4121 18.7737i −0.430121 0.775535i
\(587\) 23.6255i 0.975127i −0.873087 0.487564i \(-0.837886\pi\)
0.873087 0.487564i \(-0.162114\pi\)
\(588\) −0.512811 0.320110i −0.0211480 0.0132011i
\(589\) 11.4838i 0.473182i
\(590\) −12.1570 + 6.74241i −0.500496 + 0.277581i
\(591\) 4.31836 0.177633
\(592\) −38.6107 + 18.8760i −1.58689 + 0.775797i
\(593\) −1.66405 −0.0683342 −0.0341671 0.999416i \(-0.510878\pi\)
−0.0341671 + 0.999416i \(0.510878\pi\)
\(594\) −4.66501 + 2.58727i −0.191408 + 0.106157i
\(595\) 1.53618i 0.0629773i
\(596\) 8.88809 + 5.54817i 0.364070 + 0.227262i
\(597\) 7.92822i 0.324481i
\(598\) −3.75599 6.77229i −0.153594 0.276940i
\(599\) −4.60064 −0.187977 −0.0939885 0.995573i \(-0.529962\pi\)
−0.0939885 + 0.995573i \(0.529962\pi\)
\(600\) 2.52615 + 0.130631i 0.103130 + 0.00533300i
\(601\) −13.2087 −0.538794 −0.269397 0.963029i \(-0.586824\pi\)
−0.269397 + 0.963029i \(0.586824\pi\)
\(602\) −6.19317 11.1667i −0.252415 0.455120i
\(603\) 15.8870i 0.646970i
\(604\) −18.9772 + 30.4011i −0.772170 + 1.23700i
\(605\) 9.34267i 0.379833i
\(606\) 2.79889 1.55230i 0.113697 0.0630578i
\(607\) 12.3140 0.499811 0.249905 0.968270i \(-0.419601\pi\)
0.249905 + 0.968270i \(0.419601\pi\)
\(608\) −11.4097 + 16.3349i −0.462724 + 0.662469i
\(609\) 1.06630 0.0432088
\(610\) −9.16253 + 5.08165i −0.370980 + 0.205750i
\(611\) 4.79483i 0.193978i
\(612\) 3.31212 5.30596i 0.133884 0.214481i
\(613\) 35.6977i 1.44182i 0.693030 + 0.720909i \(0.256276\pi\)
−0.693030 + 0.720909i \(0.743724\pi\)
\(614\) 7.35148 + 13.2552i 0.296682 + 0.534936i
\(615\) −4.17939 −0.168529
\(616\) 5.96582 + 0.308502i 0.240370 + 0.0124299i
\(617\) −11.9160 −0.479720 −0.239860 0.970808i \(-0.577102\pi\)
−0.239860 + 0.970808i \(0.577102\pi\)
\(618\) −0.527649 0.951385i −0.0212252 0.0382703i
\(619\) 36.8286i 1.48027i −0.672460 0.740134i \(-0.734762\pi\)
0.672460 0.740134i \(-0.265238\pi\)
\(620\) 7.90278 + 4.93312i 0.317383 + 0.198119i
\(621\) 9.77971i 0.392446i
\(622\) −21.2303 + 11.7746i −0.851257 + 0.472117i
\(623\) −17.4324 −0.698416
\(624\) −0.531015 1.08619i −0.0212576 0.0434824i
\(625\) −1.45168 −0.0580671
\(626\) 14.3456 7.95625i 0.573367 0.317996i
\(627\) 2.24860i 0.0898006i
\(628\) −0.0144174 0.00899970i −0.000575316 0.000359127i
\(629\) 11.5527i 0.460635i
\(630\) −2.85037 5.13940i −0.113562 0.204759i
\(631\) 37.1252 1.47793 0.738966 0.673743i \(-0.235314\pi\)
0.738966 + 0.673743i \(0.235314\pi\)
\(632\) −2.26464 + 43.7937i −0.0900825 + 1.74202i
\(633\) −1.53302 −0.0609322
\(634\) 5.29920 + 9.55479i 0.210458 + 0.379469i
\(635\) 20.8449i 0.827206i
\(636\) 0.290254 0.464983i 0.0115093 0.0184378i
\(637\) 1.00000i 0.0396214i
\(638\) −9.21474 + 5.11060i −0.364815 + 0.202331i
\(639\) 2.60522 0.103061
\(640\) −6.33989 14.8688i −0.250606 0.587741i
\(641\) 6.56797 0.259419 0.129710 0.991552i \(-0.458595\pi\)
0.129710 + 0.991552i \(0.458595\pi\)
\(642\) −2.40729 + 1.33511i −0.0950083 + 0.0526927i
\(643\) 1.39342i 0.0549511i 0.999622 + 0.0274755i \(0.00874684\pi\)
−0.999622 + 0.0274755i \(0.991253\pi\)
\(644\) −5.79929 + 9.29037i −0.228524 + 0.366092i
\(645\) 3.89916i 0.153529i
\(646\) −2.59772 4.68385i −0.102206 0.184284i
\(647\) −35.5340 −1.39699 −0.698493 0.715617i \(-0.746146\pi\)
−0.698493 + 0.715617i \(0.746146\pi\)
\(648\) −1.19572 + 23.1229i −0.0469723 + 0.908352i
\(649\) −14.5314 −0.570409
\(650\) −2.02946 3.65925i −0.0796020 0.143527i
\(651\) 0.985464i 0.0386234i
\(652\) 3.67226 + 2.29232i 0.143817 + 0.0897742i
\(653\) 13.3350i 0.521839i −0.965361 0.260920i \(-0.915974\pi\)
0.965361 0.260920i \(-0.0840258\pi\)
\(654\) 1.52824 0.847577i 0.0597588 0.0331429i
\(655\) 12.2113 0.477136
\(656\) −17.0025 34.7785i −0.663835 1.35787i
\(657\) −42.0200 −1.63936
\(658\) 5.92996 3.28883i 0.231174 0.128212i
\(659\) 32.7598i 1.27614i −0.769978 0.638070i \(-0.779733\pi\)
0.769978 0.638070i \(-0.220267\pi\)
\(660\) −1.54742 0.965937i −0.0602331 0.0375991i
\(661\) 42.2267i 1.64243i 0.570620 + 0.821214i \(0.306703\pi\)
−0.570620 + 0.821214i \(0.693297\pi\)
\(662\) −5.37378 9.68927i −0.208858 0.376584i
\(663\) 0.324997 0.0126218
\(664\) −25.5050 1.31890i −0.989787 0.0511833i
\(665\) −5.03235 −0.195146
\(666\) 21.4359 + 38.6502i 0.830623 + 1.49767i
\(667\) 19.3178i 0.747986i
\(668\) −3.89596 + 6.24127i −0.150739 + 0.241482i
\(669\) 2.44936i 0.0946976i
\(670\) 9.65108 5.35260i 0.372854 0.206789i
\(671\) −10.9521 −0.422801
\(672\) −0.979105 + 1.40176i −0.0377698 + 0.0540739i
\(673\) −9.96162 −0.383992 −0.191996 0.981396i \(-0.561496\pi\)
−0.191996 + 0.981396i \(0.561496\pi\)
\(674\) 8.29878 4.60260i 0.319657 0.177286i
\(675\) 5.28424i 0.203390i
\(676\) −1.05905 + 1.69659i −0.0407328 + 0.0652533i
\(677\) 5.80056i 0.222934i −0.993768 0.111467i \(-0.964445\pi\)
0.993768 0.111467i \(-0.0355549\pi\)
\(678\) −2.16442 3.90259i −0.0831241 0.149878i
\(679\) −4.26779 −0.163783
\(680\) 4.33918 + 0.224386i 0.166400 + 0.00860479i
\(681\) 6.72306 0.257628
\(682\) 4.72315 + 8.51614i 0.180859 + 0.326100i
\(683\) 11.3291i 0.433494i −0.976228 0.216747i \(-0.930455\pi\)
0.976228 0.216747i \(-0.0695447\pi\)
\(684\) 17.3817 + 10.8501i 0.664606 + 0.414864i
\(685\) 6.90513i 0.263832i
\(686\) 1.23674 0.685911i 0.0472190 0.0261882i
\(687\) 0.207910 0.00793227
\(688\) −32.4466 + 15.8625i −1.23702 + 0.604751i
\(689\) −0.906733 −0.0345438
\(690\) 2.92457 1.62200i 0.111336 0.0617485i
\(691\) 28.0266i 1.06618i −0.846058 0.533092i \(-0.821030\pi\)
0.846058 0.533092i \(-0.178970\pi\)
\(692\) −38.9070 24.2868i −1.47902 0.923244i
\(693\) 6.14320i 0.233361i
\(694\) −19.6893 35.5010i −0.747395 1.34760i
\(695\) 29.5873 1.12231
\(696\) 0.155752 3.01194i 0.00590376 0.114167i
\(697\) 10.4060 0.394156
\(698\) −21.6468 39.0306i −0.819344 1.47733i
\(699\) 6.57979i 0.248871i
\(700\) −3.13351 + 5.01983i −0.118436 + 0.189732i
\(701\) 36.2401i 1.36877i 0.729121 + 0.684384i \(0.239929\pi\)
−0.729121 + 0.684384i \(0.760071\pi\)
\(702\) −2.20875 + 1.22500i −0.0833641 + 0.0462347i
\(703\) 37.8451 1.42736
\(704\) 1.74282 16.8063i 0.0656850 0.633412i
\(705\) −2.07062 −0.0779839
\(706\) 39.7590 22.0508i 1.49635 0.829892i
\(707\) 7.48731i 0.281589i
\(708\) 2.20243 3.52826i 0.0827725 0.132600i
\(709\) 22.1194i 0.830710i −0.909659 0.415355i \(-0.863657\pi\)
0.909659 0.415355i \(-0.136343\pi\)
\(710\) 0.877741 + 1.58262i 0.0329410 + 0.0593948i
\(711\) 45.0959 1.69123
\(712\) −2.54630 + 49.2406i −0.0954268 + 1.84537i
\(713\) −17.8532 −0.668608
\(714\) −0.222919 0.401937i −0.00834254 0.0150421i
\(715\) 3.01752i 0.112849i
\(716\) −37.7171 23.5440i −1.40955 0.879879i
\(717\) 3.75140i 0.140099i
\(718\) 0.249810 0.138547i 0.00932281 0.00517054i
\(719\) −19.9640 −0.744531 −0.372265 0.928126i \(-0.621419\pi\)
−0.372265 + 0.928126i \(0.621419\pi\)
\(720\) −14.9334 + 7.30062i −0.556534 + 0.272078i
\(721\) 2.54505 0.0947826
\(722\) −8.15432 + 4.52248i −0.303472 + 0.168309i
\(723\) 2.98291i 0.110936i
\(724\) −5.37390 3.35452i −0.199719 0.124670i
\(725\) 10.4379i 0.387653i
\(726\) 1.35574 + 2.44448i 0.0503161 + 0.0907231i
\(727\) 4.84254 0.179600 0.0897999 0.995960i \(-0.471377\pi\)
0.0897999 + 0.995960i \(0.471377\pi\)
\(728\) 2.82465 + 0.146067i 0.104689 + 0.00541360i
\(729\) 22.1909 0.821886
\(730\) −14.1572 25.5264i −0.523983 0.944774i
\(731\) 9.70831i 0.359075i
\(732\) 1.65994 2.65919i 0.0613531 0.0982867i
\(733\) 8.88437i 0.328152i −0.986448 0.164076i \(-0.947536\pi\)
0.986448 0.164076i \(-0.0524642\pi\)
\(734\) −15.1315 + 8.39209i −0.558513 + 0.309758i
\(735\) −0.431843 −0.0159288
\(736\) 25.3950 + 17.7380i 0.936072 + 0.653832i
\(737\) 11.5361 0.424937
\(738\) −34.8141 + 19.3083i −1.28152 + 0.710748i
\(739\) 10.4639i 0.384922i −0.981305 0.192461i \(-0.938353\pi\)
0.981305 0.192461i \(-0.0616469\pi\)
\(740\) −16.2572 + 26.0438i −0.597627 + 0.957389i
\(741\) 1.06465i 0.0391110i
\(742\) 0.621938 + 1.12139i 0.0228321 + 0.0411677i
\(743\) −39.6855 −1.45592 −0.727960 0.685620i \(-0.759531\pi\)
−0.727960 + 0.685620i \(0.759531\pi\)
\(744\) −2.78359 0.143944i −0.102052 0.00527724i
\(745\) 7.48474 0.274220
\(746\) −20.9487 37.7718i −0.766986 1.38292i
\(747\) 26.2634i 0.960926i
\(748\) 3.85283 + 2.40503i 0.140873 + 0.0879367i
\(749\) 6.43975i 0.235303i
\(750\) 4.25061 2.35744i 0.155210 0.0860815i
\(751\) −33.4376 −1.22016 −0.610078 0.792342i \(-0.708862\pi\)
−0.610078 + 0.792342i \(0.708862\pi\)
\(752\) −8.42362 17.2305i −0.307178 0.628331i
\(753\) 3.71214 0.135278
\(754\) −4.36293 + 2.41973i −0.158888 + 0.0881214i
\(755\) 25.6011i 0.931718i
\(756\) 3.03002 + 1.89141i 0.110201 + 0.0687901i
\(757\) 45.0370i 1.63690i 0.574581 + 0.818448i \(0.305165\pi\)
−0.574581 + 0.818448i \(0.694835\pi\)
\(758\) 16.0396 + 28.9204i 0.582583 + 1.05043i
\(759\) 3.49578 0.126889
\(760\) −0.735060 + 14.2146i −0.0266634 + 0.515619i
\(761\) 13.7077 0.496905 0.248452 0.968644i \(-0.420078\pi\)
0.248452 + 0.968644i \(0.420078\pi\)
\(762\) −3.02486 5.45401i −0.109579 0.197578i
\(763\) 4.08818i 0.148002i
\(764\) 3.29189 5.27355i 0.119096 0.190790i
\(765\) 4.46820i 0.161548i
\(766\) 31.6139 17.5334i 1.14226 0.633508i
\(767\) −6.88024 −0.248431
\(768\) 3.81646 + 2.97038i 0.137715 + 0.107184i
\(769\) 23.3751 0.842929 0.421464 0.906845i \(-0.361516\pi\)
0.421464 + 0.906845i \(0.361516\pi\)
\(770\) 3.73188 2.06975i 0.134488 0.0745885i
\(771\) 2.43817i 0.0878087i
\(772\) −9.01805 + 14.4468i −0.324567 + 0.519951i
\(773\) 23.7114i 0.852838i 0.904526 + 0.426419i \(0.140225\pi\)
−0.904526 + 0.426419i \(0.859775\pi\)
\(774\) 18.0137 + 32.4798i 0.647489 + 1.16746i
\(775\) −9.64656 −0.346515
\(776\) −0.623383 + 12.0550i −0.0223781 + 0.432750i
\(777\) 3.24762 0.116508
\(778\) −12.6453 22.8004i −0.453358 0.817433i
\(779\) 34.0889i 1.22136i
\(780\) −0.732659 0.457345i −0.0262334 0.0163756i
\(781\) 1.89173i 0.0676915i
\(782\) −7.28172 + 4.03853i −0.260394 + 0.144417i
\(783\) −6.30040 −0.225158
\(784\) −1.75681 3.59355i −0.0627433 0.128341i
\(785\) −0.0121410 −0.000433331
\(786\) −3.19506 + 1.77201i −0.113964 + 0.0632057i
\(787\) 46.6267i 1.66206i −0.556227 0.831030i \(-0.687751\pi\)
0.556227 0.831030i \(-0.312249\pi\)
\(788\) 24.2389 + 15.1305i 0.863475 + 0.539003i
\(789\) 4.95396i 0.176366i
\(790\) 15.1935 + 27.3949i 0.540562 + 0.974667i
\(791\) 10.4398 0.371197
\(792\) −17.3524 0.897319i −0.616591 0.0318849i
\(793\) −5.18552 −0.184143
\(794\) 16.5928 + 29.9178i 0.588856 + 1.06174i
\(795\) 0.391567i 0.0138874i
\(796\) −27.7787 + 44.5011i −0.984590 + 1.57730i
\(797\) 25.0129i 0.886003i −0.896521 0.443001i \(-0.853914\pi\)
0.896521 0.443001i \(-0.146086\pi\)
\(798\) 1.31670 0.730257i 0.0466106 0.0258508i
\(799\) 5.15551 0.182389
\(800\) 13.7216 + 9.58431i 0.485131 + 0.338857i
\(801\) 50.7047 1.79156
\(802\) −33.8337 + 18.7646i −1.19471 + 0.662601i
\(803\) 30.5121i 1.07675i
\(804\) −1.74845 + 2.80098i −0.0616630 + 0.0987831i
\(805\) 7.82351i 0.275743i
\(806\) 2.23628 + 4.03216i 0.0787697 + 0.142027i
\(807\) 7.78322 0.273982
\(808\) 21.1491 + 1.09365i 0.744021 + 0.0384744i
\(809\) −6.23755 −0.219300 −0.109650 0.993970i \(-0.534973\pi\)
−0.109650 + 0.993970i \(0.534973\pi\)
\(810\) 8.02211 + 14.4644i 0.281868 + 0.508226i
\(811\) 30.5842i 1.07396i −0.843596 0.536978i \(-0.819566\pi\)
0.843596 0.536978i \(-0.180434\pi\)
\(812\) 5.98516 + 3.73609i 0.210038 + 0.131111i
\(813\) 1.12096i 0.0393137i
\(814\) −28.0652 + 15.5653i −0.983683 + 0.545562i
\(815\) 3.09245 0.108324
\(816\) −1.16789 + 0.570959i −0.0408845 + 0.0199876i
\(817\) 31.8033 1.11266
\(818\) 14.7619 8.18712i 0.516138 0.286256i
\(819\) 2.90864i 0.101636i
\(820\) −23.4589 14.6436i −0.819220 0.511378i
\(821\) 31.2474i 1.09054i 0.838260 + 0.545271i \(0.183573\pi\)
−0.838260 + 0.545271i \(0.816427\pi\)
\(822\) −1.00202 1.80671i −0.0349495 0.0630161i
\(823\) 57.0364 1.98816 0.994082 0.108628i \(-0.0346458\pi\)
0.994082 + 0.108628i \(0.0346458\pi\)
\(824\) 0.371748 7.18889i 0.0129505 0.250437i
\(825\) 1.88886 0.0657617
\(826\) 4.71923 + 8.50907i 0.164203 + 0.296068i
\(827\) 22.0341i 0.766200i −0.923707 0.383100i \(-0.874857\pi\)
0.923707 0.383100i \(-0.125143\pi\)
\(828\) 16.8680 27.0223i 0.586205 0.939091i
\(829\) 1.38481i 0.0480963i −0.999711 0.0240482i \(-0.992344\pi\)
0.999711 0.0240482i \(-0.00765551\pi\)
\(830\) −15.9545 + 8.84856i −0.553789 + 0.307138i
\(831\) 1.07252 0.0372053
\(832\) 0.825177 7.95733i 0.0286079 0.275871i
\(833\) 1.07522 0.0372542
\(834\) −7.74143 + 4.29349i −0.268064 + 0.148671i
\(835\) 5.25584i 0.181886i
\(836\) −7.87860 + 12.6214i −0.272487 + 0.436520i
\(837\) 5.82275i 0.201264i
\(838\) 1.74984 + 3.15507i 0.0604471 + 0.108990i
\(839\) 1.94568 0.0671723 0.0335861 0.999436i \(-0.489307\pi\)
0.0335861 + 0.999436i \(0.489307\pi\)
\(840\) −0.0630780 + 1.21981i −0.00217640 + 0.0420873i
\(841\) 16.5549 0.570858
\(842\) −26.0158 46.9081i −0.896564 1.61656i
\(843\) 0.0227187i 0.000782475i
\(844\) −8.60484 5.37136i −0.296191 0.184890i
\(845\) 1.42871i 0.0491492i
\(846\) −17.2481 + 9.56601i −0.593002 + 0.328886i
\(847\) −6.53923 −0.224690
\(848\) 3.25839 1.59296i 0.111894 0.0547025i
\(849\) −6.74455 −0.231472
\(850\) −3.93450 + 2.18212i −0.134952 + 0.0748462i
\(851\) 58.8357i 2.01686i
\(852\) −0.459316 0.286717i −0.0157359 0.00982277i
\(853\) 3.26963i 0.111950i −0.998432 0.0559749i \(-0.982173\pi\)
0.998432 0.0559749i \(-0.0178267\pi\)
\(854\) 3.55681 + 6.41315i 0.121711 + 0.219453i
\(855\) 14.6373 0.500585
\(856\) −18.1901 0.940635i −0.621724 0.0321503i
\(857\) 49.4615 1.68957 0.844786 0.535104i \(-0.179728\pi\)
0.844786 + 0.535104i \(0.179728\pi\)
\(858\) −0.437879 0.789524i −0.0149489 0.0269539i
\(859\) 39.4168i 1.34489i 0.740149 + 0.672443i \(0.234755\pi\)
−0.740149 + 0.672443i \(0.765245\pi\)
\(860\) −13.6618 + 21.8860i −0.465863 + 0.746306i
\(861\) 2.92529i 0.0996935i
\(862\) 4.00643 2.22201i 0.136459 0.0756820i
\(863\) 1.05337 0.0358572 0.0179286 0.999839i \(-0.494293\pi\)
0.0179286 + 0.999839i \(0.494293\pi\)
\(864\) 5.78518 8.28247i 0.196816 0.281775i
\(865\) −32.7639 −1.11401
\(866\) 13.2049 7.32361i 0.448722 0.248866i
\(867\) 4.78899i 0.162642i
\(868\) 3.45284 5.53140i 0.117197 0.187748i
\(869\) 32.7455i 1.11082i
\(870\) −1.04494 1.88410i −0.0354269 0.0638770i
\(871\) 5.46202 0.185073
\(872\) 11.5477 + 0.597149i 0.391054 + 0.0202220i
\(873\) 12.4134 0.420131
\(874\) −13.2297 23.8540i −0.447502 0.806875i
\(875\) 11.3708i 0.384403i
\(876\) 7.40839 + 4.62451i 0.250306 + 0.156248i
\(877\) 13.9600i 0.471394i 0.971827 + 0.235697i \(0.0757373\pi\)
−0.971827 + 0.235697i \(0.924263\pi\)
\(878\) 9.78781 5.42844i 0.330323 0.183201i
\(879\) 4.58831 0.154760
\(880\) −5.30121 10.8436i −0.178704 0.365538i
\(881\) 23.8927 0.804967 0.402483 0.915427i \(-0.368147\pi\)
0.402483 + 0.915427i \(0.368147\pi\)
\(882\) −3.59723 + 1.99507i −0.121125 + 0.0671774i
\(883\) 36.0747i 1.21401i 0.794698 + 0.607005i \(0.207629\pi\)
−0.794698 + 0.607005i \(0.792371\pi\)
\(884\) 1.82421 + 1.13872i 0.0613547 + 0.0382992i
\(885\) 2.97118i 0.0998752i
\(886\) −0.334876 0.603802i −0.0112504 0.0202851i
\(887\) 16.9060 0.567647 0.283824 0.958877i \(-0.408397\pi\)
0.283824 + 0.958877i \(0.408397\pi\)
\(888\) 0.474370 9.17340i 0.0159188 0.307839i
\(889\) 14.5900 0.489334
\(890\) 17.0832 + 30.8022i 0.572631 + 1.03249i
\(891\) 17.2895i 0.579219i
\(892\) −8.58200 + 13.7482i −0.287347 + 0.460325i
\(893\) 16.8888i 0.565163i
\(894\) −1.95836 + 1.08613i −0.0654973 + 0.0363256i
\(895\) −31.7619 −1.06168
\(896\) −10.4071 + 4.43749i −0.347678 + 0.148246i
\(897\) 1.65516 0.0552640
\(898\) 40.5355 22.4815i 1.35269 0.750216i
\(899\) 11.5016i 0.383600i
\(900\) 9.11425 14.6009i 0.303808 0.486696i
\(901\) 0.974940i 0.0324800i
\(902\) −14.0204 25.2796i −0.466827 0.841719i
\(903\) 2.72915 0.0908203
\(904\) 1.52491 29.4889i 0.0507178 0.980785i
\(905\) −4.52541 −0.150430
\(906\) −3.71503 6.69844i −0.123424 0.222541i
\(907\) 22.2018i 0.737200i −0.929588 0.368600i \(-0.879837\pi\)
0.929588 0.368600i \(-0.120163\pi\)
\(908\) 37.7365 + 23.5561i 1.25233 + 0.781736i
\(909\) 21.7779i 0.722327i
\(910\) 1.76694 0.979968i 0.0585737 0.0324856i
\(911\) 43.7053 1.44802 0.724011 0.689788i \(-0.242296\pi\)
0.724011 + 0.689788i \(0.242296\pi\)
\(912\) −1.87040 3.82588i −0.0619350 0.126688i
\(913\) −19.0707 −0.631147
\(914\) −12.9319 + 7.17218i −0.427749 + 0.237235i
\(915\) 2.23933i 0.0740300i
\(916\) 1.16700 + 0.728471i 0.0385587 + 0.0240694i
\(917\) 8.54709i 0.282250i
\(918\) 1.31715 + 2.37490i 0.0434724 + 0.0783834i
\(919\) −44.9547 −1.48292 −0.741459 0.670998i \(-0.765866\pi\)
−0.741459 + 0.670998i \(0.765866\pi\)
\(920\) 22.0987 + 1.14276i 0.728573 + 0.0376756i
\(921\) −3.23958 −0.106748
\(922\) 12.5002 + 22.5386i 0.411672 + 0.742270i
\(923\) 0.895683i 0.0294818i
\(924\) −0.676090 + 1.08309i −0.0222417 + 0.0356309i
\(925\) 31.7905i 1.04526i
\(926\) −15.6076 + 8.65614i −0.512897 + 0.284459i
\(927\) −7.40263 −0.243134
\(928\) 11.4274 16.3603i 0.375122 0.537052i
\(929\) 11.1318 0.365222 0.182611 0.983185i \(-0.441545\pi\)
0.182611 + 0.983185i \(0.441545\pi\)
\(930\) −1.74126 + 0.965724i −0.0570982 + 0.0316673i
\(931\) 3.52230i 0.115439i
\(932\) 23.0541 36.9323i 0.755162 1.20976i
\(933\) 5.18871i 0.169871i
\(934\) −3.34661 6.03415i −0.109504 0.197443i
\(935\) 3.24450 0.106107
\(936\) −8.21589 0.424856i −0.268545 0.0138869i
\(937\) 20.9629 0.684827 0.342413 0.939549i \(-0.388756\pi\)
0.342413 + 0.939549i \(0.388756\pi\)
\(938\) −3.74646 6.75510i −0.122326 0.220562i
\(939\) 3.50609i 0.114417i
\(940\) −11.6223 7.25497i −0.379079 0.236631i
\(941\) 0.215532i 0.00702615i 0.999994 + 0.00351308i \(0.00111825\pi\)
−0.999994 + 0.00351308i \(0.998882\pi\)
\(942\) 0.00317666 0.00176181i 0.000103501 5.74029e-5i
\(943\) 52.9961 1.72579
\(944\) 24.7245 12.0873i 0.804713 0.393408i
\(945\) 2.55161 0.0830037
\(946\) −23.5846 + 13.0803i −0.766802 + 0.425278i
\(947\) 53.2972i 1.73193i −0.500108 0.865963i \(-0.666706\pi\)
0.500108 0.865963i \(-0.333294\pi\)
\(948\) −7.95068 4.96302i −0.258226 0.161191i
\(949\) 14.4466i 0.468957i
\(950\) −7.14837 12.8890i −0.231924 0.418173i
\(951\) −2.33520 −0.0757240
\(952\) 0.157055 3.03713i 0.00509017 0.0984339i
\(953\) −56.7114 −1.83706 −0.918531 0.395349i \(-0.870624\pi\)
−0.918531 + 0.395349i \(0.870624\pi\)
\(954\) −1.80899 3.26173i −0.0585683 0.105602i
\(955\) 4.44091i 0.143704i
\(956\) −13.1441 + 21.0566i −0.425109 + 0.681018i
\(957\) 2.25209i 0.0727998i
\(958\) 22.3080 12.3723i 0.720738 0.399730i
\(959\) 4.83312 0.156070
\(960\) 3.43632 + 0.356347i 0.110907 + 0.0115011i
\(961\) −20.3704 −0.657108
\(962\) −13.2881 + 7.36973i −0.428425 + 0.237609i
\(963\) 18.7309i 0.603595i
\(964\) 10.4514 16.7431i 0.336618 0.539257i
\(965\) 12.1658i 0.391630i
\(966\) −1.13529 2.04700i −0.0365273 0.0658611i
\(967\) 23.7485 0.763699 0.381850 0.924224i \(-0.375287\pi\)
0.381850 + 0.924224i \(0.375287\pi\)
\(968\) −0.955165 + 18.4710i −0.0307002 + 0.593682i
\(969\) 1.14474 0.0367743
\(970\) 4.18229 + 7.54094i 0.134285 + 0.242125i
\(971\) 28.6064i 0.918022i −0.888431 0.459011i \(-0.848204\pi\)
0.888431 0.459011i \(-0.151796\pi\)
\(972\) −13.2880 8.29469i −0.426212 0.266052i
\(973\) 20.7091i 0.663903i
\(974\) −28.1509 + 15.6128i −0.902013 + 0.500267i
\(975\) 0.894324 0.0286413
\(976\) 18.6344 9.10999i 0.596474 0.291604i
\(977\) 18.5455 0.593323 0.296661 0.954983i \(-0.404127\pi\)
0.296661 + 0.954983i \(0.404127\pi\)
\(978\) −0.809129 + 0.448752i −0.0258731 + 0.0143495i
\(979\) 36.8183i 1.17672i
\(980\) −2.42393 1.51308i −0.0774297 0.0483336i
\(981\) 11.8910i 0.379652i
\(982\) 15.3656 + 27.7051i 0.490336 + 0.884107i
\(983\) −57.1876 −1.82400 −0.912001 0.410188i \(-0.865463\pi\)
−0.912001 + 0.410188i \(0.865463\pi\)
\(984\) 8.26292 + 0.427288i 0.263412 + 0.0136214i
\(985\) 20.4118 0.650374
\(986\) 2.60175 + 4.69112i 0.0828565 + 0.149396i
\(987\) 1.44929i 0.0461314i
\(988\) −3.73030 + 5.97589i −0.118677 + 0.190118i
\(989\) 49.4427i 1.57219i
\(990\) −10.8547 + 6.02014i −0.344985 + 0.191333i
\(991\) −0.0362040 −0.00115006 −0.000575029 1.00000i \(-0.500183\pi\)
−0.000575029 1.00000i \(0.500183\pi\)
\(992\) −15.1199 10.5610i −0.480059 0.335313i
\(993\) 2.36807 0.0751484
\(994\) 1.10773 0.614359i 0.0351350 0.0194863i
\(995\) 37.4748i 1.18803i
\(996\) 2.89041 4.63040i 0.0915862 0.146720i
\(997\) 22.5909i 0.715462i 0.933825 + 0.357731i \(0.116450\pi\)
−0.933825 + 0.357731i \(0.883550\pi\)
\(998\) −4.50604 8.12467i −0.142636 0.257182i
\(999\) −19.1890 −0.607114
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.a.365.4 yes 34
4.3 odd 2 2912.2.c.a.1457.20 34
8.3 odd 2 2912.2.c.a.1457.15 34
8.5 even 2 inner 728.2.c.a.365.3 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.3 34 8.5 even 2 inner
728.2.c.a.365.4 yes 34 1.1 even 1 trivial
2912.2.c.a.1457.15 34 8.3 odd 2
2912.2.c.a.1457.20 34 4.3 odd 2