Properties

Label 2912.2.c.a.1457.20
Level $2912$
Weight $2$
Character 2912.1457
Analytic conductor $23.252$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1457,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.20
Character \(\chi\) \(=\) 2912.1457
Dual form 2912.2.c.a.1457.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.302261i q^{3} -1.42871i q^{5} +1.00000 q^{7} +2.90864 q^{9} -2.11205i q^{11} +1.00000i q^{13} +0.431843 q^{15} +1.07522 q^{17} -3.52230i q^{19} +0.302261i q^{21} -5.47592 q^{23} +2.95878 q^{25} +1.78595i q^{27} -3.52776i q^{29} +3.26031 q^{31} +0.638391 q^{33} -1.42871i q^{35} -10.7444i q^{37} -0.302261 q^{39} +9.67803 q^{41} +9.02912i q^{43} -4.15560i q^{45} -4.79483 q^{47} +1.00000 q^{49} +0.324997i q^{51} +0.906733i q^{53} -3.01752 q^{55} +1.06465 q^{57} -6.88024i q^{59} +5.18552i q^{61} +2.90864 q^{63} +1.42871 q^{65} +5.46202i q^{67} -1.65516i q^{69} -0.895683 q^{71} -14.4466 q^{73} +0.894324i q^{75} -2.11205i q^{77} -15.5041 q^{79} +8.18609 q^{81} -9.02943i q^{83} -1.53618i q^{85} +1.06630 q^{87} +17.4324 q^{89} +1.00000i q^{91} +0.985464i q^{93} -5.03235 q^{95} +4.26779 q^{97} -6.14320i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 34 q^{7} - 26 q^{9} + 8 q^{15} - 20 q^{17} + 20 q^{23} - 22 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 34 q^{49} + 32 q^{55} + 8 q^{57} - 26 q^{63} - 20 q^{65} - 64 q^{71} - 20 q^{79}+ \cdots + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.302261i 0.174510i 0.996186 + 0.0872551i \(0.0278095\pi\)
−0.996186 + 0.0872551i \(0.972190\pi\)
\(4\) 0 0
\(5\) − 1.42871i − 0.638939i −0.947597 0.319470i \(-0.896495\pi\)
0.947597 0.319470i \(-0.103505\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 2.90864 0.969546
\(10\) 0 0
\(11\) − 2.11205i − 0.636808i −0.947955 0.318404i \(-0.896853\pi\)
0.947955 0.318404i \(-0.103147\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0.431843 0.111501
\(16\) 0 0
\(17\) 1.07522 0.260780 0.130390 0.991463i \(-0.458377\pi\)
0.130390 + 0.991463i \(0.458377\pi\)
\(18\) 0 0
\(19\) − 3.52230i − 0.808071i −0.914743 0.404036i \(-0.867607\pi\)
0.914743 0.404036i \(-0.132393\pi\)
\(20\) 0 0
\(21\) 0.302261i 0.0659587i
\(22\) 0 0
\(23\) −5.47592 −1.14181 −0.570904 0.821017i \(-0.693407\pi\)
−0.570904 + 0.821017i \(0.693407\pi\)
\(24\) 0 0
\(25\) 2.95878 0.591757
\(26\) 0 0
\(27\) 1.78595i 0.343706i
\(28\) 0 0
\(29\) − 3.52776i − 0.655089i −0.944836 0.327545i \(-0.893779\pi\)
0.944836 0.327545i \(-0.106221\pi\)
\(30\) 0 0
\(31\) 3.26031 0.585569 0.292785 0.956178i \(-0.405418\pi\)
0.292785 + 0.956178i \(0.405418\pi\)
\(32\) 0 0
\(33\) 0.638391 0.111130
\(34\) 0 0
\(35\) − 1.42871i − 0.241496i
\(36\) 0 0
\(37\) − 10.7444i − 1.76637i −0.469020 0.883187i \(-0.655393\pi\)
0.469020 0.883187i \(-0.344607\pi\)
\(38\) 0 0
\(39\) −0.302261 −0.0484004
\(40\) 0 0
\(41\) 9.67803 1.51145 0.755727 0.654887i \(-0.227284\pi\)
0.755727 + 0.654887i \(0.227284\pi\)
\(42\) 0 0
\(43\) 9.02912i 1.37693i 0.725271 + 0.688464i \(0.241715\pi\)
−0.725271 + 0.688464i \(0.758285\pi\)
\(44\) 0 0
\(45\) − 4.15560i − 0.619481i
\(46\) 0 0
\(47\) −4.79483 −0.699398 −0.349699 0.936862i \(-0.613716\pi\)
−0.349699 + 0.936862i \(0.613716\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.324997i 0.0455087i
\(52\) 0 0
\(53\) 0.906733i 0.124549i 0.998059 + 0.0622747i \(0.0198355\pi\)
−0.998059 + 0.0622747i \(0.980165\pi\)
\(54\) 0 0
\(55\) −3.01752 −0.406882
\(56\) 0 0
\(57\) 1.06465 0.141017
\(58\) 0 0
\(59\) − 6.88024i − 0.895731i −0.894101 0.447865i \(-0.852184\pi\)
0.894101 0.447865i \(-0.147816\pi\)
\(60\) 0 0
\(61\) 5.18552i 0.663938i 0.943290 + 0.331969i \(0.107713\pi\)
−0.943290 + 0.331969i \(0.892287\pi\)
\(62\) 0 0
\(63\) 2.90864 0.366454
\(64\) 0 0
\(65\) 1.42871 0.177210
\(66\) 0 0
\(67\) 5.46202i 0.667292i 0.942699 + 0.333646i \(0.108279\pi\)
−0.942699 + 0.333646i \(0.891721\pi\)
\(68\) 0 0
\(69\) − 1.65516i − 0.199257i
\(70\) 0 0
\(71\) −0.895683 −0.106298 −0.0531490 0.998587i \(-0.516926\pi\)
−0.0531490 + 0.998587i \(0.516926\pi\)
\(72\) 0 0
\(73\) −14.4466 −1.69085 −0.845425 0.534094i \(-0.820653\pi\)
−0.845425 + 0.534094i \(0.820653\pi\)
\(74\) 0 0
\(75\) 0.894324i 0.103268i
\(76\) 0 0
\(77\) − 2.11205i − 0.240691i
\(78\) 0 0
\(79\) −15.5041 −1.74435 −0.872175 0.489195i \(-0.837291\pi\)
−0.872175 + 0.489195i \(0.837291\pi\)
\(80\) 0 0
\(81\) 8.18609 0.909566
\(82\) 0 0
\(83\) − 9.02943i − 0.991109i −0.868577 0.495555i \(-0.834965\pi\)
0.868577 0.495555i \(-0.165035\pi\)
\(84\) 0 0
\(85\) − 1.53618i − 0.166622i
\(86\) 0 0
\(87\) 1.06630 0.114320
\(88\) 0 0
\(89\) 17.4324 1.84783 0.923917 0.382592i \(-0.124968\pi\)
0.923917 + 0.382592i \(0.124968\pi\)
\(90\) 0 0
\(91\) 1.00000i 0.104828i
\(92\) 0 0
\(93\) 0.985464i 0.102188i
\(94\) 0 0
\(95\) −5.03235 −0.516308
\(96\) 0 0
\(97\) 4.26779 0.433328 0.216664 0.976246i \(-0.430482\pi\)
0.216664 + 0.976246i \(0.430482\pi\)
\(98\) 0 0
\(99\) − 6.14320i − 0.617415i
\(100\) 0 0
\(101\) − 7.48731i − 0.745015i −0.928029 0.372508i \(-0.878498\pi\)
0.928029 0.372508i \(-0.121502\pi\)
\(102\) 0 0
\(103\) 2.54505 0.250771 0.125386 0.992108i \(-0.459983\pi\)
0.125386 + 0.992108i \(0.459983\pi\)
\(104\) 0 0
\(105\) 0.431843 0.0421436
\(106\) 0 0
\(107\) − 6.43975i − 0.622554i −0.950319 0.311277i \(-0.899243\pi\)
0.950319 0.311277i \(-0.100757\pi\)
\(108\) 0 0
\(109\) − 4.08818i − 0.391577i −0.980646 0.195788i \(-0.937273\pi\)
0.980646 0.195788i \(-0.0627266\pi\)
\(110\) 0 0
\(111\) 3.24762 0.308251
\(112\) 0 0
\(113\) −10.4398 −0.982095 −0.491048 0.871133i \(-0.663386\pi\)
−0.491048 + 0.871133i \(0.663386\pi\)
\(114\) 0 0
\(115\) 7.82351i 0.729546i
\(116\) 0 0
\(117\) 2.90864i 0.268904i
\(118\) 0 0
\(119\) 1.07522 0.0985655
\(120\) 0 0
\(121\) 6.53923 0.594475
\(122\) 0 0
\(123\) 2.92529i 0.263764i
\(124\) 0 0
\(125\) − 11.3708i − 1.01704i
\(126\) 0 0
\(127\) 14.5900 1.29466 0.647328 0.762212i \(-0.275886\pi\)
0.647328 + 0.762212i \(0.275886\pi\)
\(128\) 0 0
\(129\) −2.72915 −0.240288
\(130\) 0 0
\(131\) − 8.54709i − 0.746763i −0.927678 0.373381i \(-0.878198\pi\)
0.927678 0.373381i \(-0.121802\pi\)
\(132\) 0 0
\(133\) − 3.52230i − 0.305422i
\(134\) 0 0
\(135\) 2.55161 0.219607
\(136\) 0 0
\(137\) −4.83312 −0.412921 −0.206461 0.978455i \(-0.566195\pi\)
−0.206461 + 0.978455i \(0.566195\pi\)
\(138\) 0 0
\(139\) − 20.7091i − 1.75652i −0.478180 0.878262i \(-0.658703\pi\)
0.478180 0.878262i \(-0.341297\pi\)
\(140\) 0 0
\(141\) − 1.44929i − 0.122052i
\(142\) 0 0
\(143\) 2.11205 0.176619
\(144\) 0 0
\(145\) −5.04016 −0.418562
\(146\) 0 0
\(147\) 0.302261i 0.0249300i
\(148\) 0 0
\(149\) 5.23881i 0.429180i 0.976704 + 0.214590i \(0.0688415\pi\)
−0.976704 + 0.214590i \(0.931159\pi\)
\(150\) 0 0
\(151\) 17.9190 1.45823 0.729113 0.684393i \(-0.239933\pi\)
0.729113 + 0.684393i \(0.239933\pi\)
\(152\) 0 0
\(153\) 3.12743 0.252838
\(154\) 0 0
\(155\) − 4.65805i − 0.374143i
\(156\) 0 0
\(157\) − 0.00849787i 0 0.000678204i −1.00000 0.000339102i \(-0.999892\pi\)
1.00000 0.000339102i \(-0.000107939\pi\)
\(158\) 0 0
\(159\) −0.274070 −0.0217351
\(160\) 0 0
\(161\) −5.47592 −0.431563
\(162\) 0 0
\(163\) − 2.16450i − 0.169537i −0.996401 0.0847684i \(-0.972985\pi\)
0.996401 0.0847684i \(-0.0270150\pi\)
\(164\) 0 0
\(165\) − 0.912076i − 0.0710050i
\(166\) 0 0
\(167\) 3.67872 0.284668 0.142334 0.989819i \(-0.454539\pi\)
0.142334 + 0.989819i \(0.454539\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 10.2451i − 0.783462i
\(172\) 0 0
\(173\) − 22.9325i − 1.74353i −0.489927 0.871763i \(-0.662977\pi\)
0.489927 0.871763i \(-0.337023\pi\)
\(174\) 0 0
\(175\) 2.95878 0.223663
\(176\) 0 0
\(177\) 2.07962 0.156314
\(178\) 0 0
\(179\) 22.2311i 1.66163i 0.556546 + 0.830817i \(0.312126\pi\)
−0.556546 + 0.830817i \(0.687874\pi\)
\(180\) 0 0
\(181\) − 3.16747i − 0.235437i −0.993047 0.117718i \(-0.962442\pi\)
0.993047 0.117718i \(-0.0375580\pi\)
\(182\) 0 0
\(183\) −1.56738 −0.115864
\(184\) 0 0
\(185\) −15.3507 −1.12861
\(186\) 0 0
\(187\) − 2.27093i − 0.166067i
\(188\) 0 0
\(189\) 1.78595i 0.129909i
\(190\) 0 0
\(191\) −3.10833 −0.224911 −0.112455 0.993657i \(-0.535872\pi\)
−0.112455 + 0.993657i \(0.535872\pi\)
\(192\) 0 0
\(193\) −8.51520 −0.612938 −0.306469 0.951881i \(-0.599148\pi\)
−0.306469 + 0.951881i \(0.599148\pi\)
\(194\) 0 0
\(195\) 0.431843i 0.0309249i
\(196\) 0 0
\(197\) 14.2869i 1.01790i 0.860797 + 0.508948i \(0.169966\pi\)
−0.860797 + 0.508948i \(0.830034\pi\)
\(198\) 0 0
\(199\) 26.2298 1.85938 0.929689 0.368345i \(-0.120076\pi\)
0.929689 + 0.368345i \(0.120076\pi\)
\(200\) 0 0
\(201\) −1.65095 −0.116449
\(202\) 0 0
\(203\) − 3.52776i − 0.247600i
\(204\) 0 0
\(205\) − 13.8271i − 0.965727i
\(206\) 0 0
\(207\) −15.9275 −1.10704
\(208\) 0 0
\(209\) −7.43929 −0.514586
\(210\) 0 0
\(211\) 5.07186i 0.349161i 0.984643 + 0.174580i \(0.0558569\pi\)
−0.984643 + 0.174580i \(0.944143\pi\)
\(212\) 0 0
\(213\) − 0.270730i − 0.0185501i
\(214\) 0 0
\(215\) 12.9000 0.879773
\(216\) 0 0
\(217\) 3.26031 0.221324
\(218\) 0 0
\(219\) − 4.36665i − 0.295071i
\(220\) 0 0
\(221\) 1.07522i 0.0723273i
\(222\) 0 0
\(223\) 8.10346 0.542648 0.271324 0.962488i \(-0.412539\pi\)
0.271324 + 0.962488i \(0.412539\pi\)
\(224\) 0 0
\(225\) 8.60603 0.573736
\(226\) 0 0
\(227\) − 22.2426i − 1.47629i −0.674641 0.738146i \(-0.735702\pi\)
0.674641 0.738146i \(-0.264298\pi\)
\(228\) 0 0
\(229\) 0.687851i 0.0454545i 0.999742 + 0.0227272i \(0.00723493\pi\)
−0.999742 + 0.0227272i \(0.992765\pi\)
\(230\) 0 0
\(231\) 0.638391 0.0420030
\(232\) 0 0
\(233\) 21.7686 1.42611 0.713054 0.701109i \(-0.247311\pi\)
0.713054 + 0.701109i \(0.247311\pi\)
\(234\) 0 0
\(235\) 6.85043i 0.446873i
\(236\) 0 0
\(237\) − 4.68628i − 0.304407i
\(238\) 0 0
\(239\) 12.4111 0.802810 0.401405 0.915901i \(-0.368522\pi\)
0.401405 + 0.915901i \(0.368522\pi\)
\(240\) 0 0
\(241\) 9.86867 0.635697 0.317848 0.948142i \(-0.397040\pi\)
0.317848 + 0.948142i \(0.397040\pi\)
\(242\) 0 0
\(243\) 7.83218i 0.502435i
\(244\) 0 0
\(245\) − 1.42871i − 0.0912770i
\(246\) 0 0
\(247\) 3.52230 0.224119
\(248\) 0 0
\(249\) 2.72924 0.172959
\(250\) 0 0
\(251\) − 12.2813i − 0.775187i −0.921830 0.387593i \(-0.873306\pi\)
0.921830 0.387593i \(-0.126694\pi\)
\(252\) 0 0
\(253\) 11.5654i 0.727113i
\(254\) 0 0
\(255\) 0.464327 0.0290773
\(256\) 0 0
\(257\) −8.06646 −0.503172 −0.251586 0.967835i \(-0.580952\pi\)
−0.251586 + 0.967835i \(0.580952\pi\)
\(258\) 0 0
\(259\) − 10.7444i − 0.667627i
\(260\) 0 0
\(261\) − 10.2610i − 0.635139i
\(262\) 0 0
\(263\) −16.3897 −1.01063 −0.505316 0.862934i \(-0.668624\pi\)
−0.505316 + 0.862934i \(0.668624\pi\)
\(264\) 0 0
\(265\) 1.29546 0.0795795
\(266\) 0 0
\(267\) 5.26914i 0.322466i
\(268\) 0 0
\(269\) 25.7500i 1.57001i 0.619491 + 0.785004i \(0.287339\pi\)
−0.619491 + 0.785004i \(0.712661\pi\)
\(270\) 0 0
\(271\) −3.70858 −0.225280 −0.112640 0.993636i \(-0.535931\pi\)
−0.112640 + 0.993636i \(0.535931\pi\)
\(272\) 0 0
\(273\) −0.302261 −0.0182936
\(274\) 0 0
\(275\) − 6.24911i − 0.376836i
\(276\) 0 0
\(277\) 3.54833i 0.213199i 0.994302 + 0.106599i \(0.0339962\pi\)
−0.994302 + 0.106599i \(0.966004\pi\)
\(278\) 0 0
\(279\) 9.48307 0.567737
\(280\) 0 0
\(281\) −0.0751627 −0.00448383 −0.00224192 0.999997i \(-0.500714\pi\)
−0.00224192 + 0.999997i \(0.500714\pi\)
\(282\) 0 0
\(283\) 22.3137i 1.32641i 0.748437 + 0.663205i \(0.230804\pi\)
−0.748437 + 0.663205i \(0.769196\pi\)
\(284\) 0 0
\(285\) − 1.52108i − 0.0901011i
\(286\) 0 0
\(287\) 9.67803 0.571276
\(288\) 0 0
\(289\) −15.8439 −0.931994
\(290\) 0 0
\(291\) 1.28998i 0.0756202i
\(292\) 0 0
\(293\) 15.1800i 0.886825i 0.896318 + 0.443412i \(0.146232\pi\)
−0.896318 + 0.443412i \(0.853768\pi\)
\(294\) 0 0
\(295\) −9.82987 −0.572317
\(296\) 0 0
\(297\) 3.77202 0.218875
\(298\) 0 0
\(299\) − 5.47592i − 0.316681i
\(300\) 0 0
\(301\) 9.02912i 0.520430i
\(302\) 0 0
\(303\) 2.26312 0.130013
\(304\) 0 0
\(305\) 7.40862 0.424216
\(306\) 0 0
\(307\) 10.7178i 0.611699i 0.952080 + 0.305850i \(0.0989405\pi\)
−0.952080 + 0.305850i \(0.901060\pi\)
\(308\) 0 0
\(309\) 0.769269i 0.0437622i
\(310\) 0 0
\(311\) −17.1663 −0.973413 −0.486707 0.873565i \(-0.661802\pi\)
−0.486707 + 0.873565i \(0.661802\pi\)
\(312\) 0 0
\(313\) −11.5995 −0.655645 −0.327823 0.944739i \(-0.606315\pi\)
−0.327823 + 0.944739i \(0.606315\pi\)
\(314\) 0 0
\(315\) − 4.15560i − 0.234142i
\(316\) 0 0
\(317\) − 7.72578i − 0.433923i −0.976180 0.216962i \(-0.930385\pi\)
0.976180 0.216962i \(-0.0696146\pi\)
\(318\) 0 0
\(319\) −7.45083 −0.417166
\(320\) 0 0
\(321\) 1.94648 0.108642
\(322\) 0 0
\(323\) − 3.78726i − 0.210729i
\(324\) 0 0
\(325\) 2.95878i 0.164124i
\(326\) 0 0
\(327\) 1.23570 0.0683342
\(328\) 0 0
\(329\) −4.79483 −0.264348
\(330\) 0 0
\(331\) − 7.83452i − 0.430624i −0.976545 0.215312i \(-0.930923\pi\)
0.976545 0.215312i \(-0.0690769\pi\)
\(332\) 0 0
\(333\) − 31.2517i − 1.71258i
\(334\) 0 0
\(335\) 7.80365 0.426359
\(336\) 0 0
\(337\) −6.71021 −0.365528 −0.182764 0.983157i \(-0.558504\pi\)
−0.182764 + 0.983157i \(0.558504\pi\)
\(338\) 0 0
\(339\) − 3.15554i − 0.171386i
\(340\) 0 0
\(341\) − 6.88596i − 0.372896i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −2.36474 −0.127313
\(346\) 0 0
\(347\) − 28.7053i − 1.54098i −0.637450 0.770492i \(-0.720011\pi\)
0.637450 0.770492i \(-0.279989\pi\)
\(348\) 0 0
\(349\) 31.5592i 1.68933i 0.535298 + 0.844663i \(0.320199\pi\)
−0.535298 + 0.844663i \(0.679801\pi\)
\(350\) 0 0
\(351\) −1.78595 −0.0953269
\(352\) 0 0
\(353\) −32.1482 −1.71108 −0.855538 0.517741i \(-0.826773\pi\)
−0.855538 + 0.517741i \(0.826773\pi\)
\(354\) 0 0
\(355\) 1.27967i 0.0679180i
\(356\) 0 0
\(357\) 0.324997i 0.0172007i
\(358\) 0 0
\(359\) 0.201990 0.0106606 0.00533032 0.999986i \(-0.498303\pi\)
0.00533032 + 0.999986i \(0.498303\pi\)
\(360\) 0 0
\(361\) 6.59340 0.347021
\(362\) 0 0
\(363\) 1.97655i 0.103742i
\(364\) 0 0
\(365\) 20.6401i 1.08035i
\(366\) 0 0
\(367\) −12.2350 −0.638659 −0.319330 0.947644i \(-0.603458\pi\)
−0.319330 + 0.947644i \(0.603458\pi\)
\(368\) 0 0
\(369\) 28.1499 1.46542
\(370\) 0 0
\(371\) 0.906733i 0.0470753i
\(372\) 0 0
\(373\) 30.5414i 1.58138i 0.612220 + 0.790688i \(0.290277\pi\)
−0.612220 + 0.790688i \(0.709723\pi\)
\(374\) 0 0
\(375\) 3.43695 0.177483
\(376\) 0 0
\(377\) 3.52776 0.181689
\(378\) 0 0
\(379\) 23.3843i 1.20117i 0.799560 + 0.600586i \(0.205066\pi\)
−0.799560 + 0.600586i \(0.794934\pi\)
\(380\) 0 0
\(381\) 4.40999i 0.225931i
\(382\) 0 0
\(383\) 25.5623 1.30617 0.653085 0.757285i \(-0.273474\pi\)
0.653085 + 0.757285i \(0.273474\pi\)
\(384\) 0 0
\(385\) −3.01752 −0.153787
\(386\) 0 0
\(387\) 26.2624i 1.33500i
\(388\) 0 0
\(389\) 18.4359i 0.934735i 0.884063 + 0.467367i \(0.154797\pi\)
−0.884063 + 0.467367i \(0.845203\pi\)
\(390\) 0 0
\(391\) −5.88783 −0.297760
\(392\) 0 0
\(393\) 2.58345 0.130318
\(394\) 0 0
\(395\) 22.1509i 1.11453i
\(396\) 0 0
\(397\) − 24.1909i − 1.21411i −0.794662 0.607053i \(-0.792352\pi\)
0.794662 0.607053i \(-0.207648\pi\)
\(398\) 0 0
\(399\) 1.06465 0.0532993
\(400\) 0 0
\(401\) 27.3572 1.36615 0.683076 0.730347i \(-0.260642\pi\)
0.683076 + 0.730347i \(0.260642\pi\)
\(402\) 0 0
\(403\) 3.26031i 0.162408i
\(404\) 0 0
\(405\) − 11.6956i − 0.581157i
\(406\) 0 0
\(407\) −22.6928 −1.12484
\(408\) 0 0
\(409\) −11.9361 −0.590204 −0.295102 0.955466i \(-0.595354\pi\)
−0.295102 + 0.955466i \(0.595354\pi\)
\(410\) 0 0
\(411\) − 1.46086i − 0.0720590i
\(412\) 0 0
\(413\) − 6.88024i − 0.338554i
\(414\) 0 0
\(415\) −12.9005 −0.633258
\(416\) 0 0
\(417\) 6.25955 0.306531
\(418\) 0 0
\(419\) 2.55111i 0.124630i 0.998057 + 0.0623150i \(0.0198484\pi\)
−0.998057 + 0.0623150i \(0.980152\pi\)
\(420\) 0 0
\(421\) 37.9289i 1.84854i 0.381740 + 0.924270i \(0.375325\pi\)
−0.381740 + 0.924270i \(0.624675\pi\)
\(422\) 0 0
\(423\) −13.9464 −0.678099
\(424\) 0 0
\(425\) 3.18135 0.154318
\(426\) 0 0
\(427\) 5.18552i 0.250945i
\(428\) 0 0
\(429\) 0.638391i 0.0308218i
\(430\) 0 0
\(431\) 3.23951 0.156041 0.0780207 0.996952i \(-0.475140\pi\)
0.0780207 + 0.996952i \(0.475140\pi\)
\(432\) 0 0
\(433\) −10.6772 −0.513114 −0.256557 0.966529i \(-0.582588\pi\)
−0.256557 + 0.966529i \(0.582588\pi\)
\(434\) 0 0
\(435\) − 1.52344i − 0.0730434i
\(436\) 0 0
\(437\) 19.2878i 0.922662i
\(438\) 0 0
\(439\) 7.91420 0.377724 0.188862 0.982004i \(-0.439520\pi\)
0.188862 + 0.982004i \(0.439520\pi\)
\(440\) 0 0
\(441\) 2.90864 0.138507
\(442\) 0 0
\(443\) − 0.488220i − 0.0231960i −0.999933 0.0115980i \(-0.996308\pi\)
0.999933 0.0115980i \(-0.00369185\pi\)
\(444\) 0 0
\(445\) − 24.9059i − 1.18065i
\(446\) 0 0
\(447\) −1.58348 −0.0748962
\(448\) 0 0
\(449\) −32.7761 −1.54680 −0.773399 0.633919i \(-0.781445\pi\)
−0.773399 + 0.633919i \(0.781445\pi\)
\(450\) 0 0
\(451\) − 20.4405i − 0.962506i
\(452\) 0 0
\(453\) 5.41620i 0.254475i
\(454\) 0 0
\(455\) 1.42871 0.0669790
\(456\) 0 0
\(457\) 10.4564 0.489131 0.244566 0.969633i \(-0.421355\pi\)
0.244566 + 0.969633i \(0.421355\pi\)
\(458\) 0 0
\(459\) 1.92029i 0.0896315i
\(460\) 0 0
\(461\) − 18.2242i − 0.848786i −0.905478 0.424393i \(-0.860487\pi\)
0.905478 0.424393i \(-0.139513\pi\)
\(462\) 0 0
\(463\) −12.6199 −0.586498 −0.293249 0.956036i \(-0.594736\pi\)
−0.293249 + 0.956036i \(0.594736\pi\)
\(464\) 0 0
\(465\) 1.40794 0.0652918
\(466\) 0 0
\(467\) − 4.87907i − 0.225777i −0.993608 0.112888i \(-0.963990\pi\)
0.993608 0.112888i \(-0.0360102\pi\)
\(468\) 0 0
\(469\) 5.46202i 0.252213i
\(470\) 0 0
\(471\) 0.00256857 0.000118353 0
\(472\) 0 0
\(473\) 19.0700 0.876839
\(474\) 0 0
\(475\) − 10.4217i − 0.478182i
\(476\) 0 0
\(477\) 2.63736i 0.120756i
\(478\) 0 0
\(479\) 18.0377 0.824165 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(480\) 0 0
\(481\) 10.7444 0.489904
\(482\) 0 0
\(483\) − 1.65516i − 0.0753122i
\(484\) 0 0
\(485\) − 6.09743i − 0.276870i
\(486\) 0 0
\(487\) −22.7622 −1.03145 −0.515726 0.856753i \(-0.672478\pi\)
−0.515726 + 0.856753i \(0.672478\pi\)
\(488\) 0 0
\(489\) 0.654243 0.0295859
\(490\) 0 0
\(491\) 22.4017i 1.01098i 0.862833 + 0.505488i \(0.168688\pi\)
−0.862833 + 0.505488i \(0.831312\pi\)
\(492\) 0 0
\(493\) − 3.79313i − 0.170834i
\(494\) 0 0
\(495\) −8.77686 −0.394491
\(496\) 0 0
\(497\) −0.895683 −0.0401769
\(498\) 0 0
\(499\) − 6.56942i − 0.294088i −0.989130 0.147044i \(-0.953024\pi\)
0.989130 0.147044i \(-0.0469758\pi\)
\(500\) 0 0
\(501\) 1.11193i 0.0496775i
\(502\) 0 0
\(503\) 28.0909 1.25251 0.626256 0.779617i \(-0.284586\pi\)
0.626256 + 0.779617i \(0.284586\pi\)
\(504\) 0 0
\(505\) −10.6972 −0.476019
\(506\) 0 0
\(507\) − 0.302261i − 0.0134239i
\(508\) 0 0
\(509\) − 30.4909i − 1.35149i −0.737137 0.675744i \(-0.763823\pi\)
0.737137 0.675744i \(-0.236177\pi\)
\(510\) 0 0
\(511\) −14.4466 −0.639081
\(512\) 0 0
\(513\) 6.29065 0.277739
\(514\) 0 0
\(515\) − 3.63614i − 0.160228i
\(516\) 0 0
\(517\) 10.1269i 0.445383i
\(518\) 0 0
\(519\) 6.93160 0.304263
\(520\) 0 0
\(521\) −45.5582 −1.99594 −0.997970 0.0636820i \(-0.979716\pi\)
−0.997970 + 0.0636820i \(0.979716\pi\)
\(522\) 0 0
\(523\) 6.33191i 0.276875i 0.990371 + 0.138438i \(0.0442080\pi\)
−0.990371 + 0.138438i \(0.955792\pi\)
\(524\) 0 0
\(525\) 0.894324i 0.0390315i
\(526\) 0 0
\(527\) 3.50556 0.152705
\(528\) 0 0
\(529\) 6.98571 0.303727
\(530\) 0 0
\(531\) − 20.0121i − 0.868452i
\(532\) 0 0
\(533\) 9.67803i 0.419202i
\(534\) 0 0
\(535\) −9.20055 −0.397774
\(536\) 0 0
\(537\) −6.71960 −0.289972
\(538\) 0 0
\(539\) − 2.11205i − 0.0909726i
\(540\) 0 0
\(541\) − 22.2376i − 0.956068i −0.878341 0.478034i \(-0.841350\pi\)
0.878341 0.478034i \(-0.158650\pi\)
\(542\) 0 0
\(543\) 0.957403 0.0410861
\(544\) 0 0
\(545\) −5.84083 −0.250194
\(546\) 0 0
\(547\) 21.1582i 0.904658i 0.891851 + 0.452329i \(0.149407\pi\)
−0.891851 + 0.452329i \(0.850593\pi\)
\(548\) 0 0
\(549\) 15.0828i 0.643719i
\(550\) 0 0
\(551\) −12.4258 −0.529359
\(552\) 0 0
\(553\) −15.5041 −0.659302
\(554\) 0 0
\(555\) − 4.63991i − 0.196953i
\(556\) 0 0
\(557\) − 0.896820i − 0.0379995i −0.999819 0.0189997i \(-0.993952\pi\)
0.999819 0.0189997i \(-0.00604817\pi\)
\(558\) 0 0
\(559\) −9.02912 −0.381891
\(560\) 0 0
\(561\) 0.686412 0.0289803
\(562\) 0 0
\(563\) − 5.18352i − 0.218459i −0.994017 0.109230i \(-0.965162\pi\)
0.994017 0.109230i \(-0.0348384\pi\)
\(564\) 0 0
\(565\) 14.9155i 0.627499i
\(566\) 0 0
\(567\) 8.18609 0.343784
\(568\) 0 0
\(569\) −16.6719 −0.698924 −0.349462 0.936951i \(-0.613636\pi\)
−0.349462 + 0.936951i \(0.613636\pi\)
\(570\) 0 0
\(571\) 16.4548i 0.688611i 0.938858 + 0.344306i \(0.111886\pi\)
−0.938858 + 0.344306i \(0.888114\pi\)
\(572\) 0 0
\(573\) − 0.939526i − 0.0392492i
\(574\) 0 0
\(575\) −16.2021 −0.675673
\(576\) 0 0
\(577\) 0.0663045 0.00276029 0.00138015 0.999999i \(-0.499561\pi\)
0.00138015 + 0.999999i \(0.499561\pi\)
\(578\) 0 0
\(579\) − 2.57381i − 0.106964i
\(580\) 0 0
\(581\) − 9.02943i − 0.374604i
\(582\) 0 0
\(583\) 1.91507 0.0793141
\(584\) 0 0
\(585\) 4.15560 0.171813
\(586\) 0 0
\(587\) 23.6255i 0.975127i 0.873087 + 0.487564i \(0.162114\pi\)
−0.873087 + 0.487564i \(0.837886\pi\)
\(588\) 0 0
\(589\) − 11.4838i − 0.473182i
\(590\) 0 0
\(591\) −4.31836 −0.177633
\(592\) 0 0
\(593\) −1.66405 −0.0683342 −0.0341671 0.999416i \(-0.510878\pi\)
−0.0341671 + 0.999416i \(0.510878\pi\)
\(594\) 0 0
\(595\) − 1.53618i − 0.0629773i
\(596\) 0 0
\(597\) 7.92822i 0.324481i
\(598\) 0 0
\(599\) 4.60064 0.187977 0.0939885 0.995573i \(-0.470038\pi\)
0.0939885 + 0.995573i \(0.470038\pi\)
\(600\) 0 0
\(601\) −13.2087 −0.538794 −0.269397 0.963029i \(-0.586824\pi\)
−0.269397 + 0.963029i \(0.586824\pi\)
\(602\) 0 0
\(603\) 15.8870i 0.646970i
\(604\) 0 0
\(605\) − 9.34267i − 0.379833i
\(606\) 0 0
\(607\) −12.3140 −0.499811 −0.249905 0.968270i \(-0.580399\pi\)
−0.249905 + 0.968270i \(0.580399\pi\)
\(608\) 0 0
\(609\) 1.06630 0.0432088
\(610\) 0 0
\(611\) − 4.79483i − 0.193978i
\(612\) 0 0
\(613\) 35.6977i 1.44182i 0.693030 + 0.720909i \(0.256276\pi\)
−0.693030 + 0.720909i \(0.743724\pi\)
\(614\) 0 0
\(615\) 4.17939 0.168529
\(616\) 0 0
\(617\) −11.9160 −0.479720 −0.239860 0.970808i \(-0.577102\pi\)
−0.239860 + 0.970808i \(0.577102\pi\)
\(618\) 0 0
\(619\) 36.8286i 1.48027i 0.672460 + 0.740134i \(0.265238\pi\)
−0.672460 + 0.740134i \(0.734762\pi\)
\(620\) 0 0
\(621\) − 9.77971i − 0.392446i
\(622\) 0 0
\(623\) 17.4324 0.698416
\(624\) 0 0
\(625\) −1.45168 −0.0580671
\(626\) 0 0
\(627\) − 2.24860i − 0.0898006i
\(628\) 0 0
\(629\) − 11.5527i − 0.460635i
\(630\) 0 0
\(631\) −37.1252 −1.47793 −0.738966 0.673743i \(-0.764686\pi\)
−0.738966 + 0.673743i \(0.764686\pi\)
\(632\) 0 0
\(633\) −1.53302 −0.0609322
\(634\) 0 0
\(635\) − 20.8449i − 0.827206i
\(636\) 0 0
\(637\) 1.00000i 0.0396214i
\(638\) 0 0
\(639\) −2.60522 −0.103061
\(640\) 0 0
\(641\) 6.56797 0.259419 0.129710 0.991552i \(-0.458595\pi\)
0.129710 + 0.991552i \(0.458595\pi\)
\(642\) 0 0
\(643\) − 1.39342i − 0.0549511i −0.999622 0.0274755i \(-0.991253\pi\)
0.999622 0.0274755i \(-0.00874684\pi\)
\(644\) 0 0
\(645\) 3.89916i 0.153529i
\(646\) 0 0
\(647\) 35.5340 1.39699 0.698493 0.715617i \(-0.253854\pi\)
0.698493 + 0.715617i \(0.253854\pi\)
\(648\) 0 0
\(649\) −14.5314 −0.570409
\(650\) 0 0
\(651\) 0.985464i 0.0386234i
\(652\) 0 0
\(653\) − 13.3350i − 0.521839i −0.965361 0.260920i \(-0.915974\pi\)
0.965361 0.260920i \(-0.0840258\pi\)
\(654\) 0 0
\(655\) −12.2113 −0.477136
\(656\) 0 0
\(657\) −42.0200 −1.63936
\(658\) 0 0
\(659\) 32.7598i 1.27614i 0.769978 + 0.638070i \(0.220267\pi\)
−0.769978 + 0.638070i \(0.779733\pi\)
\(660\) 0 0
\(661\) 42.2267i 1.64243i 0.570620 + 0.821214i \(0.306703\pi\)
−0.570620 + 0.821214i \(0.693297\pi\)
\(662\) 0 0
\(663\) −0.324997 −0.0126218
\(664\) 0 0
\(665\) −5.03235 −0.195146
\(666\) 0 0
\(667\) 19.3178i 0.747986i
\(668\) 0 0
\(669\) 2.44936i 0.0946976i
\(670\) 0 0
\(671\) 10.9521 0.422801
\(672\) 0 0
\(673\) −9.96162 −0.383992 −0.191996 0.981396i \(-0.561496\pi\)
−0.191996 + 0.981396i \(0.561496\pi\)
\(674\) 0 0
\(675\) 5.28424i 0.203390i
\(676\) 0 0
\(677\) − 5.80056i − 0.222934i −0.993768 0.111467i \(-0.964445\pi\)
0.993768 0.111467i \(-0.0355549\pi\)
\(678\) 0 0
\(679\) 4.26779 0.163783
\(680\) 0 0
\(681\) 6.72306 0.257628
\(682\) 0 0
\(683\) 11.3291i 0.433494i 0.976228 + 0.216747i \(0.0695447\pi\)
−0.976228 + 0.216747i \(0.930455\pi\)
\(684\) 0 0
\(685\) 6.90513i 0.263832i
\(686\) 0 0
\(687\) −0.207910 −0.00793227
\(688\) 0 0
\(689\) −0.906733 −0.0345438
\(690\) 0 0
\(691\) 28.0266i 1.06618i 0.846058 + 0.533092i \(0.178970\pi\)
−0.846058 + 0.533092i \(0.821030\pi\)
\(692\) 0 0
\(693\) − 6.14320i − 0.233361i
\(694\) 0 0
\(695\) −29.5873 −1.12231
\(696\) 0 0
\(697\) 10.4060 0.394156
\(698\) 0 0
\(699\) 6.57979i 0.248871i
\(700\) 0 0
\(701\) 36.2401i 1.36877i 0.729121 + 0.684384i \(0.239929\pi\)
−0.729121 + 0.684384i \(0.760071\pi\)
\(702\) 0 0
\(703\) −37.8451 −1.42736
\(704\) 0 0
\(705\) −2.07062 −0.0779839
\(706\) 0 0
\(707\) − 7.48731i − 0.281589i
\(708\) 0 0
\(709\) − 22.1194i − 0.830710i −0.909659 0.415355i \(-0.863657\pi\)
0.909659 0.415355i \(-0.136343\pi\)
\(710\) 0 0
\(711\) −45.0959 −1.69123
\(712\) 0 0
\(713\) −17.8532 −0.668608
\(714\) 0 0
\(715\) − 3.01752i − 0.112849i
\(716\) 0 0
\(717\) 3.75140i 0.140099i
\(718\) 0 0
\(719\) 19.9640 0.744531 0.372265 0.928126i \(-0.378581\pi\)
0.372265 + 0.928126i \(0.378581\pi\)
\(720\) 0 0
\(721\) 2.54505 0.0947826
\(722\) 0 0
\(723\) 2.98291i 0.110936i
\(724\) 0 0
\(725\) − 10.4379i − 0.387653i
\(726\) 0 0
\(727\) −4.84254 −0.179600 −0.0897999 0.995960i \(-0.528623\pi\)
−0.0897999 + 0.995960i \(0.528623\pi\)
\(728\) 0 0
\(729\) 22.1909 0.821886
\(730\) 0 0
\(731\) 9.70831i 0.359075i
\(732\) 0 0
\(733\) − 8.88437i − 0.328152i −0.986448 0.164076i \(-0.947536\pi\)
0.986448 0.164076i \(-0.0524642\pi\)
\(734\) 0 0
\(735\) 0.431843 0.0159288
\(736\) 0 0
\(737\) 11.5361 0.424937
\(738\) 0 0
\(739\) 10.4639i 0.384922i 0.981305 + 0.192461i \(0.0616469\pi\)
−0.981305 + 0.192461i \(0.938353\pi\)
\(740\) 0 0
\(741\) 1.06465i 0.0391110i
\(742\) 0 0
\(743\) 39.6855 1.45592 0.727960 0.685620i \(-0.240469\pi\)
0.727960 + 0.685620i \(0.240469\pi\)
\(744\) 0 0
\(745\) 7.48474 0.274220
\(746\) 0 0
\(747\) − 26.2634i − 0.960926i
\(748\) 0 0
\(749\) − 6.43975i − 0.235303i
\(750\) 0 0
\(751\) 33.4376 1.22016 0.610078 0.792342i \(-0.291138\pi\)
0.610078 + 0.792342i \(0.291138\pi\)
\(752\) 0 0
\(753\) 3.71214 0.135278
\(754\) 0 0
\(755\) − 25.6011i − 0.931718i
\(756\) 0 0
\(757\) 45.0370i 1.63690i 0.574581 + 0.818448i \(0.305165\pi\)
−0.574581 + 0.818448i \(0.694835\pi\)
\(758\) 0 0
\(759\) −3.49578 −0.126889
\(760\) 0 0
\(761\) 13.7077 0.496905 0.248452 0.968644i \(-0.420078\pi\)
0.248452 + 0.968644i \(0.420078\pi\)
\(762\) 0 0
\(763\) − 4.08818i − 0.148002i
\(764\) 0 0
\(765\) − 4.46820i − 0.161548i
\(766\) 0 0
\(767\) 6.88024 0.248431
\(768\) 0 0
\(769\) 23.3751 0.842929 0.421464 0.906845i \(-0.361516\pi\)
0.421464 + 0.906845i \(0.361516\pi\)
\(770\) 0 0
\(771\) − 2.43817i − 0.0878087i
\(772\) 0 0
\(773\) 23.7114i 0.852838i 0.904526 + 0.426419i \(0.140225\pi\)
−0.904526 + 0.426419i \(0.859775\pi\)
\(774\) 0 0
\(775\) 9.64656 0.346515
\(776\) 0 0
\(777\) 3.24762 0.116508
\(778\) 0 0
\(779\) − 34.0889i − 1.22136i
\(780\) 0 0
\(781\) 1.89173i 0.0676915i
\(782\) 0 0
\(783\) 6.30040 0.225158
\(784\) 0 0
\(785\) −0.0121410 −0.000433331 0
\(786\) 0 0
\(787\) 46.6267i 1.66206i 0.556227 + 0.831030i \(0.312249\pi\)
−0.556227 + 0.831030i \(0.687751\pi\)
\(788\) 0 0
\(789\) − 4.95396i − 0.176366i
\(790\) 0 0
\(791\) −10.4398 −0.371197
\(792\) 0 0
\(793\) −5.18552 −0.184143
\(794\) 0 0
\(795\) 0.391567i 0.0138874i
\(796\) 0 0
\(797\) − 25.0129i − 0.886003i −0.896521 0.443001i \(-0.853914\pi\)
0.896521 0.443001i \(-0.146086\pi\)
\(798\) 0 0
\(799\) −5.15551 −0.182389
\(800\) 0 0
\(801\) 50.7047 1.79156
\(802\) 0 0
\(803\) 30.5121i 1.07675i
\(804\) 0 0
\(805\) 7.82351i 0.275743i
\(806\) 0 0
\(807\) −7.78322 −0.273982
\(808\) 0 0
\(809\) −6.23755 −0.219300 −0.109650 0.993970i \(-0.534973\pi\)
−0.109650 + 0.993970i \(0.534973\pi\)
\(810\) 0 0
\(811\) 30.5842i 1.07396i 0.843596 + 0.536978i \(0.180434\pi\)
−0.843596 + 0.536978i \(0.819566\pi\)
\(812\) 0 0
\(813\) − 1.12096i − 0.0393137i
\(814\) 0 0
\(815\) −3.09245 −0.108324
\(816\) 0 0
\(817\) 31.8033 1.11266
\(818\) 0 0
\(819\) 2.90864i 0.101636i
\(820\) 0 0
\(821\) 31.2474i 1.09054i 0.838260 + 0.545271i \(0.183573\pi\)
−0.838260 + 0.545271i \(0.816427\pi\)
\(822\) 0 0
\(823\) −57.0364 −1.98816 −0.994082 0.108628i \(-0.965354\pi\)
−0.994082 + 0.108628i \(0.965354\pi\)
\(824\) 0 0
\(825\) 1.88886 0.0657617
\(826\) 0 0
\(827\) 22.0341i 0.766200i 0.923707 + 0.383100i \(0.125143\pi\)
−0.923707 + 0.383100i \(0.874857\pi\)
\(828\) 0 0
\(829\) − 1.38481i − 0.0480963i −0.999711 0.0240482i \(-0.992344\pi\)
0.999711 0.0240482i \(-0.00765551\pi\)
\(830\) 0 0
\(831\) −1.07252 −0.0372053
\(832\) 0 0
\(833\) 1.07522 0.0372542
\(834\) 0 0
\(835\) − 5.25584i − 0.181886i
\(836\) 0 0
\(837\) 5.82275i 0.201264i
\(838\) 0 0
\(839\) −1.94568 −0.0671723 −0.0335861 0.999436i \(-0.510693\pi\)
−0.0335861 + 0.999436i \(0.510693\pi\)
\(840\) 0 0
\(841\) 16.5549 0.570858
\(842\) 0 0
\(843\) − 0.0227187i 0 0.000782475i
\(844\) 0 0
\(845\) 1.42871i 0.0491492i
\(846\) 0 0
\(847\) 6.53923 0.224690
\(848\) 0 0
\(849\) −6.74455 −0.231472
\(850\) 0 0
\(851\) 58.8357i 2.01686i
\(852\) 0 0
\(853\) − 3.26963i − 0.111950i −0.998432 0.0559749i \(-0.982173\pi\)
0.998432 0.0559749i \(-0.0178267\pi\)
\(854\) 0 0
\(855\) −14.6373 −0.500585
\(856\) 0 0
\(857\) 49.4615 1.68957 0.844786 0.535104i \(-0.179728\pi\)
0.844786 + 0.535104i \(0.179728\pi\)
\(858\) 0 0
\(859\) − 39.4168i − 1.34489i −0.740149 0.672443i \(-0.765245\pi\)
0.740149 0.672443i \(-0.234755\pi\)
\(860\) 0 0
\(861\) 2.92529i 0.0996935i
\(862\) 0 0
\(863\) −1.05337 −0.0358572 −0.0179286 0.999839i \(-0.505707\pi\)
−0.0179286 + 0.999839i \(0.505707\pi\)
\(864\) 0 0
\(865\) −32.7639 −1.11401
\(866\) 0 0
\(867\) − 4.78899i − 0.162642i
\(868\) 0 0
\(869\) 32.7455i 1.11082i
\(870\) 0 0
\(871\) −5.46202 −0.185073
\(872\) 0 0
\(873\) 12.4134 0.420131
\(874\) 0 0
\(875\) − 11.3708i − 0.384403i
\(876\) 0 0
\(877\) 13.9600i 0.471394i 0.971827 + 0.235697i \(0.0757373\pi\)
−0.971827 + 0.235697i \(0.924263\pi\)
\(878\) 0 0
\(879\) −4.58831 −0.154760
\(880\) 0 0
\(881\) 23.8927 0.804967 0.402483 0.915427i \(-0.368147\pi\)
0.402483 + 0.915427i \(0.368147\pi\)
\(882\) 0 0
\(883\) − 36.0747i − 1.21401i −0.794698 0.607005i \(-0.792371\pi\)
0.794698 0.607005i \(-0.207629\pi\)
\(884\) 0 0
\(885\) − 2.97118i − 0.0998752i
\(886\) 0 0
\(887\) −16.9060 −0.567647 −0.283824 0.958877i \(-0.591603\pi\)
−0.283824 + 0.958877i \(0.591603\pi\)
\(888\) 0 0
\(889\) 14.5900 0.489334
\(890\) 0 0
\(891\) − 17.2895i − 0.579219i
\(892\) 0 0
\(893\) 16.8888i 0.565163i
\(894\) 0 0
\(895\) 31.7619 1.06168
\(896\) 0 0
\(897\) 1.65516 0.0552640
\(898\) 0 0
\(899\) − 11.5016i − 0.383600i
\(900\) 0 0
\(901\) 0.974940i 0.0324800i
\(902\) 0 0
\(903\) −2.72915 −0.0908203
\(904\) 0 0
\(905\) −4.52541 −0.150430
\(906\) 0 0
\(907\) 22.2018i 0.737200i 0.929588 + 0.368600i \(0.120163\pi\)
−0.929588 + 0.368600i \(0.879837\pi\)
\(908\) 0 0
\(909\) − 21.7779i − 0.722327i
\(910\) 0 0
\(911\) −43.7053 −1.44802 −0.724011 0.689788i \(-0.757704\pi\)
−0.724011 + 0.689788i \(0.757704\pi\)
\(912\) 0 0
\(913\) −19.0707 −0.631147
\(914\) 0 0
\(915\) 2.23933i 0.0740300i
\(916\) 0 0
\(917\) − 8.54709i − 0.282250i
\(918\) 0 0
\(919\) 44.9547 1.48292 0.741459 0.670998i \(-0.234134\pi\)
0.741459 + 0.670998i \(0.234134\pi\)
\(920\) 0 0
\(921\) −3.23958 −0.106748
\(922\) 0 0
\(923\) − 0.895683i − 0.0294818i
\(924\) 0 0
\(925\) − 31.7905i − 1.04526i
\(926\) 0 0
\(927\) 7.40263 0.243134
\(928\) 0 0
\(929\) 11.1318 0.365222 0.182611 0.983185i \(-0.441545\pi\)
0.182611 + 0.983185i \(0.441545\pi\)
\(930\) 0 0
\(931\) − 3.52230i − 0.115439i
\(932\) 0 0
\(933\) − 5.18871i − 0.169871i
\(934\) 0 0
\(935\) −3.24450 −0.106107
\(936\) 0 0
\(937\) 20.9629 0.684827 0.342413 0.939549i \(-0.388756\pi\)
0.342413 + 0.939549i \(0.388756\pi\)
\(938\) 0 0
\(939\) − 3.50609i − 0.114417i
\(940\) 0 0
\(941\) 0.215532i 0.00702615i 0.999994 + 0.00351308i \(0.00111825\pi\)
−0.999994 + 0.00351308i \(0.998882\pi\)
\(942\) 0 0
\(943\) −52.9961 −1.72579
\(944\) 0 0
\(945\) 2.55161 0.0830037
\(946\) 0 0
\(947\) 53.2972i 1.73193i 0.500108 + 0.865963i \(0.333294\pi\)
−0.500108 + 0.865963i \(0.666706\pi\)
\(948\) 0 0
\(949\) − 14.4466i − 0.468957i
\(950\) 0 0
\(951\) 2.33520 0.0757240
\(952\) 0 0
\(953\) −56.7114 −1.83706 −0.918531 0.395349i \(-0.870624\pi\)
−0.918531 + 0.395349i \(0.870624\pi\)
\(954\) 0 0
\(955\) 4.44091i 0.143704i
\(956\) 0 0
\(957\) − 2.25209i − 0.0727998i
\(958\) 0 0
\(959\) −4.83312 −0.156070
\(960\) 0 0
\(961\) −20.3704 −0.657108
\(962\) 0 0
\(963\) − 18.7309i − 0.603595i
\(964\) 0 0
\(965\) 12.1658i 0.391630i
\(966\) 0 0
\(967\) −23.7485 −0.763699 −0.381850 0.924224i \(-0.624713\pi\)
−0.381850 + 0.924224i \(0.624713\pi\)
\(968\) 0 0
\(969\) 1.14474 0.0367743
\(970\) 0 0
\(971\) 28.6064i 0.918022i 0.888431 + 0.459011i \(0.151796\pi\)
−0.888431 + 0.459011i \(0.848204\pi\)
\(972\) 0 0
\(973\) − 20.7091i − 0.663903i
\(974\) 0 0
\(975\) −0.894324 −0.0286413
\(976\) 0 0
\(977\) 18.5455 0.593323 0.296661 0.954983i \(-0.404127\pi\)
0.296661 + 0.954983i \(0.404127\pi\)
\(978\) 0 0
\(979\) − 36.8183i − 1.17672i
\(980\) 0 0
\(981\) − 11.8910i − 0.379652i
\(982\) 0 0
\(983\) 57.1876 1.82400 0.912001 0.410188i \(-0.134537\pi\)
0.912001 + 0.410188i \(0.134537\pi\)
\(984\) 0 0
\(985\) 20.4118 0.650374
\(986\) 0 0
\(987\) − 1.44929i − 0.0461314i
\(988\) 0 0
\(989\) − 49.4427i − 1.57219i
\(990\) 0 0
\(991\) 0.0362040 0.00115006 0.000575029 1.00000i \(-0.499817\pi\)
0.000575029 1.00000i \(0.499817\pi\)
\(992\) 0 0
\(993\) 2.36807 0.0751484
\(994\) 0 0
\(995\) − 37.4748i − 1.18803i
\(996\) 0 0
\(997\) 22.5909i 0.715462i 0.933825 + 0.357731i \(0.116450\pi\)
−0.933825 + 0.357731i \(0.883550\pi\)
\(998\) 0 0
\(999\) 19.1890 0.607114
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.c.a.1457.20 34
4.3 odd 2 728.2.c.a.365.4 yes 34
8.3 odd 2 728.2.c.a.365.3 34
8.5 even 2 inner 2912.2.c.a.1457.15 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.3 34 8.3 odd 2
728.2.c.a.365.4 yes 34 4.3 odd 2
2912.2.c.a.1457.15 34 8.5 even 2 inner
2912.2.c.a.1457.20 34 1.1 even 1 trivial