L(s) = 1 | + 0.302i·3-s − 1.42i·5-s + 7-s + 2.90·9-s − 2.11i·11-s + i·13-s + 0.431·15-s + 1.07·17-s − 3.52i·19-s + 0.302i·21-s − 5.47·23-s + 2.95·25-s + 1.78i·27-s − 3.52i·29-s + 3.26·31-s + ⋯ |
L(s) = 1 | + 0.174i·3-s − 0.638i·5-s + 0.377·7-s + 0.969·9-s − 0.636i·11-s + 0.277i·13-s + 0.111·15-s + 0.260·17-s − 0.808i·19-s + 0.0659i·21-s − 1.14·23-s + 0.591·25-s + 0.343i·27-s − 0.655i·29-s + 0.585·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.485 + 0.874i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.485 + 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.004260377\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.004260377\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 - iT \) |
good | 3 | \( 1 - 0.302iT - 3T^{2} \) |
| 5 | \( 1 + 1.42iT - 5T^{2} \) |
| 11 | \( 1 + 2.11iT - 11T^{2} \) |
| 17 | \( 1 - 1.07T + 17T^{2} \) |
| 19 | \( 1 + 3.52iT - 19T^{2} \) |
| 23 | \( 1 + 5.47T + 23T^{2} \) |
| 29 | \( 1 + 3.52iT - 29T^{2} \) |
| 31 | \( 1 - 3.26T + 31T^{2} \) |
| 37 | \( 1 + 10.7iT - 37T^{2} \) |
| 41 | \( 1 - 9.67T + 41T^{2} \) |
| 43 | \( 1 - 9.02iT - 43T^{2} \) |
| 47 | \( 1 + 4.79T + 47T^{2} \) |
| 53 | \( 1 - 0.906iT - 53T^{2} \) |
| 59 | \( 1 + 6.88iT - 59T^{2} \) |
| 61 | \( 1 - 5.18iT - 61T^{2} \) |
| 67 | \( 1 - 5.46iT - 67T^{2} \) |
| 71 | \( 1 + 0.895T + 71T^{2} \) |
| 73 | \( 1 + 14.4T + 73T^{2} \) |
| 79 | \( 1 + 15.5T + 79T^{2} \) |
| 83 | \( 1 + 9.02iT - 83T^{2} \) |
| 89 | \( 1 - 17.4T + 89T^{2} \) |
| 97 | \( 1 - 4.26T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.692761469955547399438977123151, −7.88823255732086070753451594962, −7.26109190094529282527197365338, −6.26713099568238755187602458594, −5.54729860069654963314210836972, −4.50807785708074038680856169638, −4.19842691693804675974265714179, −2.93589313078025810899015870871, −1.77410955643068577978395162802, −0.70580524097806115019026305704,
1.24817423986762065412165236371, 2.17690475088846209768517715707, 3.26183714606462721013575831511, 4.19758172805504599725461971195, 4.92544163074904767055554785673, 5.96902246869458252077790044072, 6.69358402132175575584261328778, 7.42439000506224329594560371513, 7.949585562425278905075820591180, 8.817717556627850381148366819168