Properties

Label 728.2.c.a.365.29
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.29
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.a.365.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30647 - 0.541419i) q^{2} +1.08909i q^{3} +(1.41373 - 1.41470i) q^{4} -0.821018i q^{5} +(0.589655 + 1.42287i) q^{6} -1.00000 q^{7} +(1.08106 - 2.61368i) q^{8} +1.81388 q^{9} +(-0.444514 - 1.07264i) q^{10} +4.25242i q^{11} +(1.54073 + 1.53968i) q^{12} -1.00000i q^{13} +(-1.30647 + 0.541419i) q^{14} +0.894163 q^{15} +(-0.00272822 - 4.00000i) q^{16} +7.72310 q^{17} +(2.36978 - 0.982069i) q^{18} -6.99637i q^{19} +(-1.16149 - 1.16070i) q^{20} -1.08909i q^{21} +(2.30234 + 5.55567i) q^{22} +1.19971 q^{23} +(2.84654 + 1.17737i) q^{24} +4.32593 q^{25} +(-0.541419 - 1.30647i) q^{26} +5.24276i q^{27} +(-1.41373 + 1.41470i) q^{28} +4.38610i q^{29} +(1.16820 - 0.484117i) q^{30} -7.30123 q^{31} +(-2.16924 - 5.22440i) q^{32} -4.63128 q^{33} +(10.0900 - 4.18143i) q^{34} +0.821018i q^{35} +(2.56434 - 2.56609i) q^{36} -1.17474i q^{37} +(-3.78797 - 9.14055i) q^{38} +1.08909 q^{39} +(-2.14588 - 0.887565i) q^{40} -7.88855 q^{41} +(-0.589655 - 1.42287i) q^{42} -4.44559i q^{43} +(6.01589 + 6.01178i) q^{44} -1.48923i q^{45} +(1.56739 - 0.649547i) q^{46} -7.93067 q^{47} +(4.35637 - 0.00297128i) q^{48} +1.00000 q^{49} +(5.65170 - 2.34214i) q^{50} +8.41116i q^{51} +(-1.41470 - 1.41373i) q^{52} +2.16908i q^{53} +(2.83853 + 6.84951i) q^{54} +3.49131 q^{55} +(-1.08106 + 2.61368i) q^{56} +7.61968 q^{57} +(2.37471 + 5.73030i) q^{58} +2.66321i q^{59} +(1.26411 - 1.26497i) q^{60} +4.10494i q^{61} +(-9.53884 + 3.95302i) q^{62} -1.81388 q^{63} +(-5.66264 - 5.65106i) q^{64} -0.821018 q^{65} +(-6.05063 + 2.50746i) q^{66} +13.5071i q^{67} +(10.9184 - 10.9258i) q^{68} +1.30660i q^{69} +(0.444514 + 1.07264i) q^{70} +12.9052 q^{71} +(1.96090 - 4.74090i) q^{72} -5.93625 q^{73} +(-0.636028 - 1.53477i) q^{74} +4.71133i q^{75} +(-9.89773 - 9.89098i) q^{76} -4.25242i q^{77} +(1.42287 - 0.589655i) q^{78} -9.85445 q^{79} +(-3.28407 + 0.00223992i) q^{80} -0.268202 q^{81} +(-10.3062 + 4.27101i) q^{82} -0.116619i q^{83} +(-1.54073 - 1.53968i) q^{84} -6.34080i q^{85} +(-2.40693 - 5.80803i) q^{86} -4.77686 q^{87} +(11.1145 + 4.59711i) q^{88} -7.88817 q^{89} +(-0.806296 - 1.94563i) q^{90} +1.00000i q^{91} +(1.69607 - 1.69723i) q^{92} -7.95170i q^{93} +(-10.3612 + 4.29381i) q^{94} -5.74414 q^{95} +(5.68985 - 2.36250i) q^{96} +3.65495 q^{97} +(1.30647 - 0.541419i) q^{98} +7.71338i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 2 q^{2} - 2 q^{4} - 6 q^{6} - 34 q^{7} + 8 q^{8} - 26 q^{9} - 4 q^{12} - 2 q^{14} - 8 q^{15} - 6 q^{16} - 20 q^{17} + 14 q^{18} - 4 q^{20} - 10 q^{22} - 20 q^{23} + 10 q^{24} - 22 q^{25} + 2 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30647 0.541419i 0.923814 0.382841i
\(3\) 1.08909i 0.628787i 0.949293 + 0.314394i \(0.101801\pi\)
−0.949293 + 0.314394i \(0.898199\pi\)
\(4\) 1.41373 1.41470i 0.706866 0.707348i
\(5\) 0.821018i 0.367170i −0.983004 0.183585i \(-0.941230\pi\)
0.983004 0.183585i \(-0.0587703\pi\)
\(6\) 0.589655 + 1.42287i 0.240726 + 0.580883i
\(7\) −1.00000 −0.377964
\(8\) 1.08106 2.61368i 0.382211 0.924075i
\(9\) 1.81388 0.604627
\(10\) −0.444514 1.07264i −0.140568 0.339197i
\(11\) 4.25242i 1.28215i 0.767477 + 0.641077i \(0.221512\pi\)
−0.767477 + 0.641077i \(0.778488\pi\)
\(12\) 1.54073 + 1.53968i 0.444771 + 0.444468i
\(13\) 1.00000i 0.277350i
\(14\) −1.30647 + 0.541419i −0.349169 + 0.144700i
\(15\) 0.894163 0.230872
\(16\) −0.00272822 4.00000i −0.000682056 1.00000i
\(17\) 7.72310 1.87313 0.936564 0.350498i \(-0.113988\pi\)
0.936564 + 0.350498i \(0.113988\pi\)
\(18\) 2.36978 0.982069i 0.558563 0.231476i
\(19\) 6.99637i 1.60508i −0.596601 0.802538i \(-0.703482\pi\)
0.596601 0.802538i \(-0.296518\pi\)
\(20\) −1.16149 1.16070i −0.259717 0.259540i
\(21\) 1.08909i 0.237659i
\(22\) 2.30234 + 5.55567i 0.490861 + 1.18447i
\(23\) 1.19971 0.250157 0.125079 0.992147i \(-0.460082\pi\)
0.125079 + 0.992147i \(0.460082\pi\)
\(24\) 2.84654 + 1.17737i 0.581047 + 0.240329i
\(25\) 4.32593 0.865186
\(26\) −0.541419 1.30647i −0.106181 0.256220i
\(27\) 5.24276i 1.00897i
\(28\) −1.41373 + 1.41470i −0.267170 + 0.267352i
\(29\) 4.38610i 0.814477i 0.913322 + 0.407239i \(0.133508\pi\)
−0.913322 + 0.407239i \(0.866492\pi\)
\(30\) 1.16820 0.484117i 0.213283 0.0883873i
\(31\) −7.30123 −1.31134 −0.655669 0.755048i \(-0.727613\pi\)
−0.655669 + 0.755048i \(0.727613\pi\)
\(32\) −2.16924 5.22440i −0.383471 0.923553i
\(33\) −4.63128 −0.806202
\(34\) 10.0900 4.18143i 1.73042 0.717110i
\(35\) 0.821018i 0.138777i
\(36\) 2.56434 2.56609i 0.427390 0.427681i
\(37\) 1.17474i 0.193127i −0.995327 0.0965633i \(-0.969215\pi\)
0.995327 0.0965633i \(-0.0307850\pi\)
\(38\) −3.78797 9.14055i −0.614489 1.48279i
\(39\) 1.08909 0.174394
\(40\) −2.14588 0.887565i −0.339293 0.140336i
\(41\) −7.88855 −1.23198 −0.615992 0.787752i \(-0.711245\pi\)
−0.615992 + 0.787752i \(0.711245\pi\)
\(42\) −0.589655 1.42287i −0.0909857 0.219553i
\(43\) 4.44559i 0.677946i −0.940796 0.338973i \(-0.889920\pi\)
0.940796 0.338973i \(-0.110080\pi\)
\(44\) 6.01589 + 6.01178i 0.906929 + 0.906311i
\(45\) 1.48923i 0.222001i
\(46\) 1.56739 0.649547i 0.231099 0.0957704i
\(47\) −7.93067 −1.15681 −0.578404 0.815751i \(-0.696324\pi\)
−0.578404 + 0.815751i \(0.696324\pi\)
\(48\) 4.35637 0.00297128i 0.628787 0.000428868i
\(49\) 1.00000 0.142857
\(50\) 5.65170 2.34214i 0.799271 0.331229i
\(51\) 8.41116i 1.17780i
\(52\) −1.41470 1.41373i −0.196183 0.196049i
\(53\) 2.16908i 0.297946i 0.988841 + 0.148973i \(0.0475968\pi\)
−0.988841 + 0.148973i \(0.952403\pi\)
\(54\) 2.83853 + 6.84951i 0.386275 + 0.932100i
\(55\) 3.49131 0.470769
\(56\) −1.08106 + 2.61368i −0.144462 + 0.349268i
\(57\) 7.61968 1.00925
\(58\) 2.37471 + 5.73030i 0.311815 + 0.752426i
\(59\) 2.66321i 0.346720i 0.984859 + 0.173360i \(0.0554624\pi\)
−0.984859 + 0.173360i \(0.944538\pi\)
\(60\) 1.26411 1.26497i 0.163195 0.163307i
\(61\) 4.10494i 0.525583i 0.964853 + 0.262792i \(0.0846432\pi\)
−0.964853 + 0.262792i \(0.915357\pi\)
\(62\) −9.53884 + 3.95302i −1.21143 + 0.502034i
\(63\) −1.81388 −0.228527
\(64\) −5.66264 5.65106i −0.707830 0.706383i
\(65\) −0.821018 −0.101835
\(66\) −6.05063 + 2.50746i −0.744781 + 0.308647i
\(67\) 13.5071i 1.65016i 0.565019 + 0.825078i \(0.308869\pi\)
−0.565019 + 0.825078i \(0.691131\pi\)
\(68\) 10.9184 10.9258i 1.32405 1.32495i
\(69\) 1.30660i 0.157296i
\(70\) 0.444514 + 1.07264i 0.0531296 + 0.128204i
\(71\) 12.9052 1.53156 0.765782 0.643100i \(-0.222352\pi\)
0.765782 + 0.643100i \(0.222352\pi\)
\(72\) 1.96090 4.74090i 0.231095 0.558720i
\(73\) −5.93625 −0.694786 −0.347393 0.937720i \(-0.612933\pi\)
−0.347393 + 0.937720i \(0.612933\pi\)
\(74\) −0.636028 1.53477i −0.0739367 0.178413i
\(75\) 4.71133i 0.544018i
\(76\) −9.89773 9.89098i −1.13535 1.13457i
\(77\) 4.25242i 0.484609i
\(78\) 1.42287 0.589655i 0.161108 0.0667652i
\(79\) −9.85445 −1.10871 −0.554356 0.832279i \(-0.687035\pi\)
−0.554356 + 0.832279i \(0.687035\pi\)
\(80\) −3.28407 + 0.00223992i −0.367170 + 0.000250431i
\(81\) −0.268202 −0.0298002
\(82\) −10.3062 + 4.27101i −1.13812 + 0.471654i
\(83\) 0.116619i 0.0128006i −0.999980 0.00640032i \(-0.997963\pi\)
0.999980 0.00640032i \(-0.00203730\pi\)
\(84\) −1.54073 1.53968i −0.168108 0.167993i
\(85\) 6.34080i 0.687757i
\(86\) −2.40693 5.80803i −0.259545 0.626296i
\(87\) −4.77686 −0.512133
\(88\) 11.1145 + 4.59711i 1.18481 + 0.490053i
\(89\) −7.88817 −0.836144 −0.418072 0.908414i \(-0.637294\pi\)
−0.418072 + 0.908414i \(0.637294\pi\)
\(90\) −0.806296 1.94563i −0.0849910 0.205088i
\(91\) 1.00000i 0.104828i
\(92\) 1.69607 1.69723i 0.176828 0.176948i
\(93\) 7.95170i 0.824553i
\(94\) −10.3612 + 4.29381i −1.06867 + 0.442873i
\(95\) −5.74414 −0.589336
\(96\) 5.68985 2.36250i 0.580718 0.241122i
\(97\) 3.65495 0.371104 0.185552 0.982634i \(-0.440593\pi\)
0.185552 + 0.982634i \(0.440593\pi\)
\(98\) 1.30647 0.541419i 0.131973 0.0546916i
\(99\) 7.71338i 0.775224i
\(100\) 6.11570 6.11987i 0.611570 0.611987i
\(101\) 10.9128i 1.08587i −0.839776 0.542934i \(-0.817313\pi\)
0.839776 0.542934i \(-0.182687\pi\)
\(102\) 4.55396 + 10.9889i 0.450910 + 1.08807i
\(103\) −8.82041 −0.869101 −0.434551 0.900647i \(-0.643093\pi\)
−0.434551 + 0.900647i \(0.643093\pi\)
\(104\) −2.61368 1.08106i −0.256292 0.106006i
\(105\) −0.894163 −0.0872614
\(106\) 1.17438 + 2.83384i 0.114066 + 0.275247i
\(107\) 9.16243i 0.885765i −0.896580 0.442883i \(-0.853956\pi\)
0.896580 0.442883i \(-0.146044\pi\)
\(108\) 7.41690 + 7.41185i 0.713692 + 0.713205i
\(109\) 18.8507i 1.80557i 0.430090 + 0.902786i \(0.358482\pi\)
−0.430090 + 0.902786i \(0.641518\pi\)
\(110\) 4.56130 1.89026i 0.434903 0.180230i
\(111\) 1.27940 0.121436
\(112\) 0.00272822 + 4.00000i 0.000257793 + 0.377964i
\(113\) −13.2466 −1.24613 −0.623067 0.782169i \(-0.714114\pi\)
−0.623067 + 0.782169i \(0.714114\pi\)
\(114\) 9.95489 4.12544i 0.932361 0.386383i
\(115\) 0.984985i 0.0918503i
\(116\) 6.20499 + 6.20076i 0.576119 + 0.575726i
\(117\) 1.81388i 0.167693i
\(118\) 1.44191 + 3.47940i 0.132739 + 0.320305i
\(119\) −7.72310 −0.707975
\(120\) 0.966640 2.33706i 0.0882418 0.213343i
\(121\) −7.08311 −0.643919
\(122\) 2.22249 + 5.36298i 0.201215 + 0.485541i
\(123\) 8.59135i 0.774656i
\(124\) −10.3220 + 10.3290i −0.926940 + 0.927573i
\(125\) 7.65675i 0.684841i
\(126\) −2.36978 + 0.982069i −0.211117 + 0.0874896i
\(127\) −8.59668 −0.762832 −0.381416 0.924403i \(-0.624563\pi\)
−0.381416 + 0.924403i \(0.624563\pi\)
\(128\) −10.4577 4.31709i −0.924336 0.381580i
\(129\) 4.84165 0.426284
\(130\) −1.07264 + 0.444514i −0.0940764 + 0.0389865i
\(131\) 8.07506i 0.705522i 0.935714 + 0.352761i \(0.114757\pi\)
−0.935714 + 0.352761i \(0.885243\pi\)
\(132\) −6.54738 + 6.55185i −0.569877 + 0.570265i
\(133\) 6.99637i 0.606662i
\(134\) 7.31300 + 17.6466i 0.631747 + 1.52444i
\(135\) 4.30439 0.370463
\(136\) 8.34910 20.1857i 0.715929 1.73091i
\(137\) 4.82257 0.412020 0.206010 0.978550i \(-0.433952\pi\)
0.206010 + 0.978550i \(0.433952\pi\)
\(138\) 0.707416 + 1.70703i 0.0602192 + 0.145312i
\(139\) 6.48741i 0.550255i 0.961408 + 0.275127i \(0.0887200\pi\)
−0.961408 + 0.275127i \(0.911280\pi\)
\(140\) 1.16149 + 1.16070i 0.0981638 + 0.0980969i
\(141\) 8.63722i 0.727386i
\(142\) 16.8603 6.98712i 1.41488 0.586346i
\(143\) 4.25242 0.355606
\(144\) −0.00494867 7.25552i −0.000412389 0.604626i
\(145\) 3.60106 0.299052
\(146\) −7.75554 + 3.21400i −0.641853 + 0.265992i
\(147\) 1.08909i 0.0898268i
\(148\) −1.66190 1.66077i −0.136608 0.136515i
\(149\) 15.4727i 1.26758i −0.773507 0.633788i \(-0.781499\pi\)
0.773507 0.633788i \(-0.218501\pi\)
\(150\) 2.55081 + 6.15522i 0.208272 + 0.502572i
\(151\) −14.8617 −1.20943 −0.604713 0.796443i \(-0.706712\pi\)
−0.604713 + 0.796443i \(0.706712\pi\)
\(152\) −18.2863 7.56346i −1.48321 0.613478i
\(153\) 14.0088 1.13254
\(154\) −2.30234 5.55567i −0.185528 0.447688i
\(155\) 5.99443i 0.481485i
\(156\) 1.53968 1.54073i 0.123273 0.123357i
\(157\) 6.42693i 0.512925i 0.966554 + 0.256463i \(0.0825570\pi\)
−0.966554 + 0.256463i \(0.917443\pi\)
\(158\) −12.8746 + 5.33539i −1.02424 + 0.424461i
\(159\) −2.36233 −0.187345
\(160\) −4.28933 + 1.78098i −0.339101 + 0.140799i
\(161\) −1.19971 −0.0945505
\(162\) −0.350398 + 0.145209i −0.0275298 + 0.0114087i
\(163\) 10.7127i 0.839082i 0.907736 + 0.419541i \(0.137809\pi\)
−0.907736 + 0.419541i \(0.862191\pi\)
\(164\) −11.1523 + 11.1599i −0.870848 + 0.871442i
\(165\) 3.80236i 0.296013i
\(166\) −0.0631399 0.152360i −0.00490061 0.0118254i
\(167\) −7.05570 −0.545987 −0.272993 0.962016i \(-0.588014\pi\)
−0.272993 + 0.962016i \(0.588014\pi\)
\(168\) −2.84654 1.17737i −0.219615 0.0908359i
\(169\) −1.00000 −0.0769231
\(170\) −3.43303 8.28407i −0.263301 0.635359i
\(171\) 12.6906i 0.970472i
\(172\) −6.28915 6.28487i −0.479544 0.479217i
\(173\) 2.38643i 0.181437i −0.995877 0.0907185i \(-0.971084\pi\)
0.995877 0.0907185i \(-0.0289164\pi\)
\(174\) −6.24083 + 2.58628i −0.473116 + 0.196066i
\(175\) −4.32593 −0.327010
\(176\) 17.0097 0.0116016i 1.28215 0.000874500i
\(177\) −2.90047 −0.218013
\(178\) −10.3057 + 4.27080i −0.772442 + 0.320110i
\(179\) 6.02899i 0.450628i −0.974286 0.225314i \(-0.927659\pi\)
0.974286 0.225314i \(-0.0723408\pi\)
\(180\) −2.10680 2.10537i −0.157032 0.156925i
\(181\) 22.5931i 1.67933i −0.543105 0.839665i \(-0.682751\pi\)
0.543105 0.839665i \(-0.317249\pi\)
\(182\) 0.541419 + 1.30647i 0.0401326 + 0.0968420i
\(183\) −4.47065 −0.330480
\(184\) 1.29695 3.13566i 0.0956128 0.231164i
\(185\) −0.964485 −0.0709103
\(186\) −4.30520 10.3887i −0.315673 0.761734i
\(187\) 32.8419i 2.40164i
\(188\) −11.2118 + 11.2195i −0.817707 + 0.818265i
\(189\) 5.24276i 0.381354i
\(190\) −7.50455 + 3.10999i −0.544437 + 0.225622i
\(191\) 20.2866 1.46789 0.733945 0.679209i \(-0.237677\pi\)
0.733945 + 0.679209i \(0.237677\pi\)
\(192\) 6.15453 6.16713i 0.444165 0.445074i
\(193\) −19.3385 −1.39201 −0.696007 0.718035i \(-0.745042\pi\)
−0.696007 + 0.718035i \(0.745042\pi\)
\(194\) 4.77508 1.97886i 0.342831 0.142074i
\(195\) 0.894163i 0.0640324i
\(196\) 1.41373 1.41470i 0.100981 0.101050i
\(197\) 2.07075i 0.147535i 0.997275 + 0.0737675i \(0.0235023\pi\)
−0.997275 + 0.0737675i \(0.976498\pi\)
\(198\) 4.17617 + 10.0773i 0.296788 + 0.716163i
\(199\) 16.7149 1.18489 0.592445 0.805611i \(-0.298163\pi\)
0.592445 + 0.805611i \(0.298163\pi\)
\(200\) 4.67657 11.3066i 0.330683 0.799497i
\(201\) −14.7105 −1.03760
\(202\) −5.90841 14.2573i −0.415715 1.00314i
\(203\) 4.38610i 0.307844i
\(204\) 11.8992 + 11.8911i 0.833113 + 0.832545i
\(205\) 6.47664i 0.452348i
\(206\) −11.5236 + 4.77554i −0.802888 + 0.332728i
\(207\) 2.17613 0.151252
\(208\) −4.00000 + 0.00272822i −0.277350 + 0.000189168i
\(209\) 29.7515 2.05796
\(210\) −1.16820 + 0.484117i −0.0806133 + 0.0334072i
\(211\) 14.8809i 1.02444i −0.858853 0.512222i \(-0.828823\pi\)
0.858853 0.512222i \(-0.171177\pi\)
\(212\) 3.06859 + 3.06650i 0.210752 + 0.210608i
\(213\) 14.0549i 0.963028i
\(214\) −4.96071 11.9704i −0.339107 0.818283i
\(215\) −3.64991 −0.248922
\(216\) 13.7029 + 5.66771i 0.932363 + 0.385639i
\(217\) 7.30123 0.495639
\(218\) 10.2061 + 24.6279i 0.691247 + 1.66801i
\(219\) 6.46512i 0.436873i
\(220\) 4.93578 4.93915i 0.332770 0.332997i
\(221\) 7.72310i 0.519512i
\(222\) 1.67150 0.692693i 0.112184 0.0464905i
\(223\) 23.9546 1.60412 0.802058 0.597246i \(-0.203738\pi\)
0.802058 + 0.597246i \(0.203738\pi\)
\(224\) 2.16924 + 5.22440i 0.144938 + 0.349070i
\(225\) 7.84672 0.523114
\(226\) −17.3063 + 7.17195i −1.15120 + 0.477071i
\(227\) 16.1148i 1.06958i 0.844985 + 0.534790i \(0.179609\pi\)
−0.844985 + 0.534790i \(0.820391\pi\)
\(228\) 10.7722 10.7795i 0.713405 0.713892i
\(229\) 17.0059i 1.12378i −0.827211 0.561892i \(-0.810074\pi\)
0.827211 0.561892i \(-0.189926\pi\)
\(230\) −0.533289 1.28685i −0.0351641 0.0848526i
\(231\) 4.63128 0.304716
\(232\) 11.4638 + 4.74161i 0.752638 + 0.311302i
\(233\) 6.93047 0.454030 0.227015 0.973891i \(-0.427103\pi\)
0.227015 + 0.973891i \(0.427103\pi\)
\(234\) −0.982069 2.36978i −0.0641998 0.154917i
\(235\) 6.51122i 0.424745i
\(236\) 3.76762 + 3.76506i 0.245251 + 0.245084i
\(237\) 10.7324i 0.697144i
\(238\) −10.0900 + 4.18143i −0.654038 + 0.271042i
\(239\) 24.7719 1.60236 0.801179 0.598424i \(-0.204206\pi\)
0.801179 + 0.598424i \(0.204206\pi\)
\(240\) −0.00243948 3.57665i −0.000157468 0.230872i
\(241\) −12.7922 −0.824015 −0.412008 0.911180i \(-0.635172\pi\)
−0.412008 + 0.911180i \(0.635172\pi\)
\(242\) −9.25387 + 3.83493i −0.594861 + 0.246519i
\(243\) 15.4362i 0.990231i
\(244\) 5.80724 + 5.80328i 0.371770 + 0.371517i
\(245\) 0.821018i 0.0524529i
\(246\) −4.65152 11.2244i −0.296570 0.715638i
\(247\) −6.99637 −0.445168
\(248\) −7.89303 + 19.0831i −0.501208 + 1.21178i
\(249\) 0.127009 0.00804888
\(250\) −4.14551 10.0033i −0.262185 0.632666i
\(251\) 21.0744i 1.33021i 0.746751 + 0.665104i \(0.231613\pi\)
−0.746751 + 0.665104i \(0.768387\pi\)
\(252\) −2.56434 + 2.56609i −0.161538 + 0.161648i
\(253\) 5.10168i 0.320740i
\(254\) −11.2313 + 4.65441i −0.704715 + 0.292043i
\(255\) 6.90571 0.432453
\(256\) −16.0000 + 0.0218258i −0.999999 + 0.00136411i
\(257\) −27.6467 −1.72455 −0.862277 0.506437i \(-0.830962\pi\)
−0.862277 + 0.506437i \(0.830962\pi\)
\(258\) 6.32548 2.62136i 0.393807 0.163199i
\(259\) 1.17474i 0.0729950i
\(260\) −1.16070 + 1.16149i −0.0719834 + 0.0720326i
\(261\) 7.95585i 0.492455i
\(262\) 4.37199 + 10.5498i 0.270103 + 0.651771i
\(263\) −20.1422 −1.24202 −0.621012 0.783801i \(-0.713278\pi\)
−0.621012 + 0.783801i \(0.713278\pi\)
\(264\) −5.00667 + 12.1047i −0.308139 + 0.744991i
\(265\) 1.78085 0.109397
\(266\) 3.78797 + 9.14055i 0.232255 + 0.560443i
\(267\) 8.59094i 0.525757i
\(268\) 19.1084 + 19.0954i 1.16723 + 1.16644i
\(269\) 1.78279i 0.108699i −0.998522 0.0543494i \(-0.982692\pi\)
0.998522 0.0543494i \(-0.0173085\pi\)
\(270\) 5.62357 2.33048i 0.342239 0.141829i
\(271\) 20.6554 1.25473 0.627363 0.778727i \(-0.284134\pi\)
0.627363 + 0.778727i \(0.284134\pi\)
\(272\) −0.0210703 30.8924i −0.00127758 1.87313i
\(273\) −1.08909 −0.0659148
\(274\) 6.30054 2.61103i 0.380630 0.157738i
\(275\) 18.3957i 1.10930i
\(276\) 1.84844 + 1.84718i 0.111263 + 0.111187i
\(277\) 14.7007i 0.883279i 0.897193 + 0.441639i \(0.145603\pi\)
−0.897193 + 0.441639i \(0.854397\pi\)
\(278\) 3.51241 + 8.47561i 0.210660 + 0.508333i
\(279\) −13.2435 −0.792870
\(280\) 2.14588 + 0.887565i 0.128241 + 0.0530422i
\(281\) 25.0168 1.49237 0.746187 0.665736i \(-0.231882\pi\)
0.746187 + 0.665736i \(0.231882\pi\)
\(282\) −4.67636 11.2843i −0.278473 0.671969i
\(283\) 3.36082i 0.199780i −0.994998 0.0998901i \(-0.968151\pi\)
0.994998 0.0998901i \(-0.0318491\pi\)
\(284\) 18.2445 18.2569i 1.08261 1.08335i
\(285\) 6.25589i 0.370567i
\(286\) 5.55567 2.30234i 0.328513 0.136140i
\(287\) 7.88855 0.465646
\(288\) −3.93474 9.47644i −0.231857 0.558405i
\(289\) 42.6463 2.50861
\(290\) 4.70468 1.94968i 0.276268 0.114489i
\(291\) 3.98058i 0.233345i
\(292\) −8.39227 + 8.39799i −0.491120 + 0.491455i
\(293\) 5.58713i 0.326404i −0.986593 0.163202i \(-0.947818\pi\)
0.986593 0.163202i \(-0.0521822\pi\)
\(294\) 0.589655 + 1.42287i 0.0343894 + 0.0829832i
\(295\) 2.18654 0.127305
\(296\) −3.07040 1.26996i −0.178463 0.0738150i
\(297\) −22.2944 −1.29365
\(298\) −8.37723 20.2147i −0.485280 1.17100i
\(299\) 1.19971i 0.0693811i
\(300\) 6.66510 + 6.66056i 0.384810 + 0.384548i
\(301\) 4.44559i 0.256239i
\(302\) −19.4164 + 8.04640i −1.11729 + 0.463018i
\(303\) 11.8851 0.682780
\(304\) −27.9855 + 0.0190876i −1.60508 + 0.00109475i
\(305\) 3.37022 0.192978
\(306\) 18.3021 7.58462i 1.04626 0.433584i
\(307\) 10.4066i 0.593936i −0.954888 0.296968i \(-0.904025\pi\)
0.954888 0.296968i \(-0.0959754\pi\)
\(308\) −6.01589 6.01178i −0.342787 0.342553i
\(309\) 9.60624i 0.546480i
\(310\) 3.24550 + 7.83155i 0.184332 + 0.444802i
\(311\) 12.9836 0.736231 0.368116 0.929780i \(-0.380003\pi\)
0.368116 + 0.929780i \(0.380003\pi\)
\(312\) 1.17737 2.84654i 0.0666553 0.161153i
\(313\) 4.51505 0.255206 0.127603 0.991825i \(-0.459272\pi\)
0.127603 + 0.991825i \(0.459272\pi\)
\(314\) 3.47966 + 8.39660i 0.196369 + 0.473848i
\(315\) 1.48923i 0.0839084i
\(316\) −13.9315 + 13.9411i −0.783711 + 0.784245i
\(317\) 11.5339i 0.647808i −0.946090 0.323904i \(-0.895005\pi\)
0.946090 0.323904i \(-0.104995\pi\)
\(318\) −3.08631 + 1.27901i −0.173072 + 0.0717233i
\(319\) −18.6515 −1.04429
\(320\) −4.63962 + 4.64913i −0.259363 + 0.259894i
\(321\) 9.97872 0.556958
\(322\) −1.56739 + 0.649547i −0.0873471 + 0.0361978i
\(323\) 54.0336i 3.00651i
\(324\) −0.379165 + 0.379424i −0.0210647 + 0.0210791i
\(325\) 4.32593i 0.239959i
\(326\) 5.80005 + 13.9958i 0.321235 + 0.775156i
\(327\) −20.5302 −1.13532
\(328\) −8.52796 + 20.6181i −0.470878 + 1.13845i
\(329\) 7.93067 0.437232
\(330\) 2.05867 + 4.96767i 0.113326 + 0.273461i
\(331\) 32.4444i 1.78330i −0.452721 0.891652i \(-0.649547\pi\)
0.452721 0.891652i \(-0.350453\pi\)
\(332\) −0.164981 0.164868i −0.00905450 0.00904833i
\(333\) 2.13084i 0.116769i
\(334\) −9.21807 + 3.82009i −0.504390 + 0.209026i
\(335\) 11.0896 0.605888
\(336\) −4.35637 + 0.00297128i −0.237659 + 0.000162097i
\(337\) 0.473846 0.0258120 0.0129060 0.999917i \(-0.495892\pi\)
0.0129060 + 0.999917i \(0.495892\pi\)
\(338\) −1.30647 + 0.541419i −0.0710626 + 0.0294493i
\(339\) 14.4267i 0.783553i
\(340\) −8.97031 8.96419i −0.486483 0.486151i
\(341\) 31.0479i 1.68134i
\(342\) −6.87091 16.5799i −0.371536 0.896536i
\(343\) −1.00000 −0.0539949
\(344\) −11.6193 4.80593i −0.626473 0.259118i
\(345\) 1.07274 0.0577543
\(346\) −1.29206 3.11780i −0.0694615 0.167614i
\(347\) 23.2227i 1.24666i −0.781959 0.623330i \(-0.785779\pi\)
0.781959 0.623330i \(-0.214221\pi\)
\(348\) −6.75319 + 6.75780i −0.362009 + 0.362256i
\(349\) 30.4602i 1.63050i 0.579111 + 0.815249i \(0.303400\pi\)
−0.579111 + 0.815249i \(0.696600\pi\)
\(350\) −5.65170 + 2.34214i −0.302096 + 0.125193i
\(351\) 5.24276 0.279838
\(352\) 22.2164 9.22452i 1.18414 0.491669i
\(353\) 28.9690 1.54186 0.770932 0.636917i \(-0.219791\pi\)
0.770932 + 0.636917i \(0.219791\pi\)
\(354\) −3.78938 + 1.57037i −0.201403 + 0.0834643i
\(355\) 10.5954i 0.562345i
\(356\) −11.1518 + 11.1594i −0.591042 + 0.591445i
\(357\) 8.41116i 0.445166i
\(358\) −3.26421 7.87670i −0.172519 0.416297i
\(359\) −9.56825 −0.504993 −0.252496 0.967598i \(-0.581252\pi\)
−0.252496 + 0.967598i \(0.581252\pi\)
\(360\) −3.89236 1.60994i −0.205145 0.0848511i
\(361\) −29.9491 −1.57627
\(362\) −12.2323 29.5172i −0.642916 1.55139i
\(363\) 7.71415i 0.404888i
\(364\) 1.41470 + 1.41373i 0.0741502 + 0.0740996i
\(365\) 4.87377i 0.255105i
\(366\) −5.84077 + 2.42049i −0.305302 + 0.126521i
\(367\) −0.357031 −0.0186369 −0.00931844 0.999957i \(-0.502966\pi\)
−0.00931844 + 0.999957i \(0.502966\pi\)
\(368\) −0.00327308 4.79885i −0.000170621 0.250157i
\(369\) −14.3089 −0.744891
\(370\) −1.26007 + 0.522190i −0.0655080 + 0.0271474i
\(371\) 2.16908i 0.112613i
\(372\) −11.2492 11.2416i −0.583246 0.582848i
\(373\) 5.79194i 0.299895i −0.988694 0.149948i \(-0.952089\pi\)
0.988694 0.149948i \(-0.0479105\pi\)
\(374\) 17.7812 + 42.9070i 0.919445 + 2.21867i
\(375\) 8.33890 0.430619
\(376\) −8.57349 + 20.7282i −0.442144 + 1.06898i
\(377\) 4.38610 0.225895
\(378\) −2.83853 6.84951i −0.145998 0.352301i
\(379\) 8.23433i 0.422969i −0.977381 0.211485i \(-0.932170\pi\)
0.977381 0.211485i \(-0.0678298\pi\)
\(380\) −8.12067 + 8.12621i −0.416582 + 0.416866i
\(381\) 9.36257i 0.479659i
\(382\) 26.5039 10.9836i 1.35606 0.561968i
\(383\) −4.13473 −0.211275 −0.105637 0.994405i \(-0.533688\pi\)
−0.105637 + 0.994405i \(0.533688\pi\)
\(384\) 4.70171 11.3894i 0.239933 0.581211i
\(385\) −3.49131 −0.177934
\(386\) −25.2652 + 10.4702i −1.28596 + 0.532920i
\(387\) 8.06376i 0.409904i
\(388\) 5.16712 5.17064i 0.262321 0.262500i
\(389\) 28.7869i 1.45955i 0.683685 + 0.729777i \(0.260376\pi\)
−0.683685 + 0.729777i \(0.739624\pi\)
\(390\) −0.484117 1.16820i −0.0245142 0.0591540i
\(391\) 9.26550 0.468576
\(392\) 1.08106 2.61368i 0.0546015 0.132011i
\(393\) −8.79448 −0.443623
\(394\) 1.12114 + 2.70538i 0.0564824 + 0.136295i
\(395\) 8.09068i 0.407086i
\(396\) 10.9121 + 10.9047i 0.548353 + 0.547979i
\(397\) 28.7694i 1.44389i 0.691948 + 0.721947i \(0.256753\pi\)
−0.691948 + 0.721947i \(0.743247\pi\)
\(398\) 21.8376 9.04978i 1.09462 0.453624i
\(399\) −7.61968 −0.381461
\(400\) −0.0118021 17.3037i −0.000590105 0.865186i
\(401\) 27.5367 1.37512 0.687559 0.726128i \(-0.258682\pi\)
0.687559 + 0.726128i \(0.258682\pi\)
\(402\) −19.2188 + 7.96453i −0.958547 + 0.397235i
\(403\) 7.30123i 0.363700i
\(404\) −15.4383 15.4278i −0.768086 0.767562i
\(405\) 0.220198i 0.0109417i
\(406\) −2.37471 5.73030i −0.117855 0.284390i
\(407\) 4.99550 0.247618
\(408\) 21.9841 + 9.09293i 1.08837 + 0.450167i
\(409\) 6.83003 0.337723 0.168862 0.985640i \(-0.445991\pi\)
0.168862 + 0.985640i \(0.445991\pi\)
\(410\) 3.50657 + 8.46154i 0.173177 + 0.417886i
\(411\) 5.25222i 0.259073i
\(412\) −12.4697 + 12.4782i −0.614338 + 0.614757i
\(413\) 2.66321i 0.131048i
\(414\) 2.84305 1.17820i 0.139728 0.0579053i
\(415\) −0.0957465 −0.00470001
\(416\) −5.22440 + 2.16924i −0.256147 + 0.106356i
\(417\) −7.06538 −0.345993
\(418\) 38.8695 16.1080i 1.90117 0.787870i
\(419\) 16.0140i 0.782335i −0.920319 0.391168i \(-0.872071\pi\)
0.920319 0.391168i \(-0.127929\pi\)
\(420\) −1.26411 + 1.26497i −0.0616821 + 0.0617242i
\(421\) 35.1473i 1.71298i 0.516167 + 0.856488i \(0.327358\pi\)
−0.516167 + 0.856488i \(0.672642\pi\)
\(422\) −8.05680 19.4415i −0.392199 0.946396i
\(423\) −14.3853 −0.699436
\(424\) 5.66929 + 2.34490i 0.275325 + 0.113878i
\(425\) 33.4096 1.62060
\(426\) 7.60961 + 18.3624i 0.368687 + 0.889659i
\(427\) 4.10494i 0.198652i
\(428\) −12.9620 12.9532i −0.626544 0.626117i
\(429\) 4.63128i 0.223600i
\(430\) −4.76850 + 1.97613i −0.229957 + 0.0952974i
\(431\) −21.8328 −1.05165 −0.525825 0.850593i \(-0.676243\pi\)
−0.525825 + 0.850593i \(0.676243\pi\)
\(432\) 20.9710 0.0143034i 1.00897 0.000688173i
\(433\) −3.97693 −0.191119 −0.0955595 0.995424i \(-0.530464\pi\)
−0.0955595 + 0.995424i \(0.530464\pi\)
\(434\) 9.53884 3.95302i 0.457879 0.189751i
\(435\) 3.92189i 0.188040i
\(436\) 26.6680 + 26.6499i 1.27717 + 1.27630i
\(437\) 8.39362i 0.401521i
\(438\) −3.50034 8.44649i −0.167253 0.403589i
\(439\) 11.5199 0.549815 0.274907 0.961471i \(-0.411353\pi\)
0.274907 + 0.961471i \(0.411353\pi\)
\(440\) 3.77430 9.12518i 0.179933 0.435026i
\(441\) 1.81388 0.0863752
\(442\) −4.18143 10.0900i −0.198890 0.479933i
\(443\) 1.93978i 0.0921616i −0.998938 0.0460808i \(-0.985327\pi\)
0.998938 0.0460808i \(-0.0146732\pi\)
\(444\) 1.80873 1.80997i 0.0858386 0.0858972i
\(445\) 6.47633i 0.307007i
\(446\) 31.2959 12.9695i 1.48191 0.614121i
\(447\) 16.8512 0.797035
\(448\) 5.66264 + 5.65106i 0.267535 + 0.266988i
\(449\) −7.31339 −0.345140 −0.172570 0.984997i \(-0.555207\pi\)
−0.172570 + 0.984997i \(0.555207\pi\)
\(450\) 10.2515 4.24836i 0.483261 0.200270i
\(451\) 33.5455i 1.57959i
\(452\) −18.7271 + 18.7399i −0.880849 + 0.881450i
\(453\) 16.1857i 0.760472i
\(454\) 8.72488 + 21.0536i 0.409479 + 0.988093i
\(455\) 0.821018 0.0384899
\(456\) 8.23730 19.9154i 0.385747 0.932625i
\(457\) −40.3816 −1.88897 −0.944486 0.328553i \(-0.893439\pi\)
−0.944486 + 0.328553i \(0.893439\pi\)
\(458\) −9.20733 22.2177i −0.430230 1.03817i
\(459\) 40.4903i 1.88993i
\(460\) −1.39345 1.39250i −0.0649701 0.0649258i
\(461\) 37.1316i 1.72939i −0.502298 0.864695i \(-0.667512\pi\)
0.502298 0.864695i \(-0.332488\pi\)
\(462\) 6.05063 2.50746i 0.281501 0.116658i
\(463\) 17.4641 0.811625 0.405813 0.913956i \(-0.366989\pi\)
0.405813 + 0.913956i \(0.366989\pi\)
\(464\) 17.5444 0.0119662i 0.814477 0.000555519i
\(465\) −6.52849 −0.302751
\(466\) 9.05446 3.75229i 0.419440 0.173821i
\(467\) 21.0788i 0.975412i 0.873008 + 0.487706i \(0.162166\pi\)
−0.873008 + 0.487706i \(0.837834\pi\)
\(468\) −2.56609 2.56434i −0.118617 0.118537i
\(469\) 13.5071i 0.623700i
\(470\) 3.52530 + 8.50672i 0.162610 + 0.392386i
\(471\) −6.99952 −0.322521
\(472\) 6.96076 + 2.87907i 0.320395 + 0.132520i
\(473\) 18.9045 0.869231
\(474\) −5.81072 14.0216i −0.266895 0.644032i
\(475\) 30.2658i 1.38869i
\(476\) −10.9184 + 10.9258i −0.500444 + 0.500785i
\(477\) 3.93445i 0.180146i
\(478\) 32.3637 13.4120i 1.48028 0.613449i
\(479\) 16.2733 0.743547 0.371774 0.928323i \(-0.378750\pi\)
0.371774 + 0.928323i \(0.378750\pi\)
\(480\) −1.93965 4.67147i −0.0885327 0.213222i
\(481\) −1.17474 −0.0535637
\(482\) −16.7126 + 6.92591i −0.761237 + 0.315467i
\(483\) 1.30660i 0.0594522i
\(484\) −10.0136 + 10.0204i −0.455164 + 0.455475i
\(485\) 3.00078i 0.136258i
\(486\) 8.35743 + 20.1669i 0.379101 + 0.914789i
\(487\) −5.02285 −0.227607 −0.113804 0.993503i \(-0.536303\pi\)
−0.113804 + 0.993503i \(0.536303\pi\)
\(488\) 10.7290 + 4.43766i 0.485678 + 0.200884i
\(489\) −11.6671 −0.527604
\(490\) −0.444514 1.07264i −0.0200811 0.0484567i
\(491\) 6.90139i 0.311456i 0.987800 + 0.155728i \(0.0497723\pi\)
−0.987800 + 0.155728i \(0.950228\pi\)
\(492\) −12.1542 12.1459i −0.547951 0.547578i
\(493\) 33.8743i 1.52562i
\(494\) −9.14055 + 3.78797i −0.411253 + 0.170429i
\(495\) 6.33282 0.284639
\(496\) 0.0199194 + 29.2049i 0.000894406 + 1.31134i
\(497\) −12.9052 −0.578877
\(498\) 0.165934 0.0687651i 0.00743567 0.00308144i
\(499\) 29.0123i 1.29877i 0.760460 + 0.649385i \(0.224973\pi\)
−0.760460 + 0.649385i \(0.775027\pi\)
\(500\) −10.8320 10.8246i −0.484421 0.484090i
\(501\) 7.68431i 0.343310i
\(502\) 11.4101 + 27.5332i 0.509258 + 1.22886i
\(503\) 11.1548 0.497366 0.248683 0.968585i \(-0.420002\pi\)
0.248683 + 0.968585i \(0.420002\pi\)
\(504\) −1.96090 + 4.74090i −0.0873456 + 0.211176i
\(505\) −8.95963 −0.398698
\(506\) 2.76215 + 6.66520i 0.122792 + 0.296304i
\(507\) 1.08909i 0.0483683i
\(508\) −12.1534 + 12.1617i −0.539220 + 0.539588i
\(509\) 2.26769i 0.100514i 0.998736 + 0.0502569i \(0.0160040\pi\)
−0.998736 + 0.0502569i \(0.983996\pi\)
\(510\) 9.02211 3.73888i 0.399506 0.165561i
\(511\) 5.93625 0.262604
\(512\) −20.8917 + 8.69121i −0.923291 + 0.384101i
\(513\) 36.6802 1.61947
\(514\) −36.1196 + 14.9684i −1.59317 + 0.660230i
\(515\) 7.24171i 0.319108i
\(516\) 6.84480 6.84947i 0.301325 0.301531i
\(517\) 33.7246i 1.48320i
\(518\) 0.636028 + 1.53477i 0.0279455 + 0.0674338i
\(519\) 2.59904 0.114085
\(520\) −0.887565 + 2.14588i −0.0389223 + 0.0941029i
\(521\) 1.86299 0.0816190 0.0408095 0.999167i \(-0.487006\pi\)
0.0408095 + 0.999167i \(0.487006\pi\)
\(522\) 4.30745 + 10.3941i 0.188532 + 0.454937i
\(523\) 25.6906i 1.12337i 0.827351 + 0.561685i \(0.189847\pi\)
−0.827351 + 0.561685i \(0.810153\pi\)
\(524\) 11.4238 + 11.4160i 0.499049 + 0.498709i
\(525\) 4.71133i 0.205619i
\(526\) −26.3152 + 10.9054i −1.14740 + 0.475497i
\(527\) −56.3881 −2.45630
\(528\) 0.0126352 + 18.5251i 0.000549875 + 0.806202i
\(529\) −21.5607 −0.937421
\(530\) 2.32663 0.964188i 0.101063 0.0418817i
\(531\) 4.83073i 0.209636i
\(532\) 9.89773 + 9.89098i 0.429121 + 0.428828i
\(533\) 7.88855i 0.341691i
\(534\) −4.65130 11.2238i −0.201281 0.485702i
\(535\) −7.52251 −0.325227
\(536\) 35.3032 + 14.6019i 1.52487 + 0.630707i
\(537\) 6.56613 0.283349
\(538\) −0.965238 2.32917i −0.0416144 0.100418i
\(539\) 4.25242i 0.183165i
\(540\) 6.08526 6.08941i 0.261868 0.262046i
\(541\) 15.3945i 0.661860i 0.943655 + 0.330930i \(0.107362\pi\)
−0.943655 + 0.330930i \(0.892638\pi\)
\(542\) 26.9856 11.1832i 1.15913 0.480360i
\(543\) 24.6059 1.05594
\(544\) −16.7533 40.3486i −0.718290 1.72993i
\(545\) 15.4768 0.662952
\(546\) −1.42287 + 0.589655i −0.0608930 + 0.0252349i
\(547\) 39.7381i 1.69908i −0.527526 0.849539i \(-0.676880\pi\)
0.527526 0.849539i \(-0.323120\pi\)
\(548\) 6.81781 6.82247i 0.291243 0.291441i
\(549\) 7.44586i 0.317782i
\(550\) 9.95977 + 24.0334i 0.424686 + 1.02479i
\(551\) 30.6867 1.30730
\(552\) 3.41502 + 1.41250i 0.145353 + 0.0601201i
\(553\) 9.85445 0.419054
\(554\) 7.95923 + 19.2060i 0.338155 + 0.815985i
\(555\) 1.05041i 0.0445875i
\(556\) 9.17771 + 9.17145i 0.389222 + 0.388956i
\(557\) 2.97439i 0.126029i 0.998013 + 0.0630144i \(0.0200714\pi\)
−0.998013 + 0.0630144i \(0.979929\pi\)
\(558\) −17.3023 + 7.17031i −0.732465 + 0.303543i
\(559\) −4.44559 −0.188028
\(560\) 3.28407 0.00223992i 0.138777 9.46539e-5i
\(561\) −35.7678 −1.51012
\(562\) 32.6837 13.5445i 1.37868 0.571342i
\(563\) 31.4342i 1.32479i −0.749153 0.662397i \(-0.769539\pi\)
0.749153 0.662397i \(-0.230461\pi\)
\(564\) −12.2190 12.2107i −0.514515 0.514164i
\(565\) 10.8757i 0.457543i
\(566\) −1.81961 4.39082i −0.0764840 0.184560i
\(567\) 0.268202 0.0112634
\(568\) 13.9512 33.7300i 0.585381 1.41528i
\(569\) −3.44231 −0.144309 −0.0721545 0.997393i \(-0.522987\pi\)
−0.0721545 + 0.997393i \(0.522987\pi\)
\(570\) −3.38706 8.17314i −0.141868 0.342335i
\(571\) 19.1352i 0.800783i −0.916344 0.400392i \(-0.868874\pi\)
0.916344 0.400392i \(-0.131126\pi\)
\(572\) 6.01178 6.01589i 0.251365 0.251537i
\(573\) 22.0940i 0.922990i
\(574\) 10.3062 4.27101i 0.430171 0.178269i
\(575\) 5.18987 0.216433
\(576\) −10.2713 10.2503i −0.427973 0.427098i
\(577\) −11.2596 −0.468744 −0.234372 0.972147i \(-0.575303\pi\)
−0.234372 + 0.972147i \(0.575303\pi\)
\(578\) 55.7161 23.0895i 2.31749 0.960397i
\(579\) 21.0614i 0.875281i
\(580\) 5.09093 5.09441i 0.211389 0.211534i
\(581\) 0.116619i 0.00483819i
\(582\) 2.15516 + 5.20050i 0.0893342 + 0.215568i
\(583\) −9.22386 −0.382013
\(584\) −6.41742 + 15.5155i −0.265555 + 0.642034i
\(585\) −1.48923 −0.0615720
\(586\) −3.02498 7.29943i −0.124961 0.301536i
\(587\) 20.2292i 0.834950i −0.908688 0.417475i \(-0.862915\pi\)
0.908688 0.417475i \(-0.137085\pi\)
\(588\) 1.54073 + 1.53968i 0.0635388 + 0.0634954i
\(589\) 51.0821i 2.10480i
\(590\) 2.85665 1.18383i 0.117606 0.0487376i
\(591\) −2.25524 −0.0927681
\(592\) −4.69897 + 0.00320496i −0.193126 + 0.000131723i
\(593\) 0.885697 0.0363712 0.0181856 0.999835i \(-0.494211\pi\)
0.0181856 + 0.999835i \(0.494211\pi\)
\(594\) −29.1270 + 12.0706i −1.19510 + 0.495263i
\(595\) 6.34080i 0.259948i
\(596\) −21.8892 21.8743i −0.896617 0.896005i
\(597\) 18.2041i 0.745043i
\(598\) −0.649547 1.56739i −0.0265619 0.0640953i
\(599\) 4.00642 0.163698 0.0818489 0.996645i \(-0.473918\pi\)
0.0818489 + 0.996645i \(0.473918\pi\)
\(600\) 12.3139 + 5.09321i 0.502713 + 0.207930i
\(601\) 21.7314 0.886441 0.443220 0.896413i \(-0.353836\pi\)
0.443220 + 0.896413i \(0.353836\pi\)
\(602\) 2.40693 + 5.80803i 0.0980990 + 0.236718i
\(603\) 24.5003i 0.997728i
\(604\) −21.0104 + 21.0248i −0.854902 + 0.855485i
\(605\) 5.81536i 0.236428i
\(606\) 15.5275 6.43480i 0.630762 0.261396i
\(607\) −15.5334 −0.630482 −0.315241 0.949012i \(-0.602085\pi\)
−0.315241 + 0.949012i \(0.602085\pi\)
\(608\) −36.5518 + 15.1768i −1.48237 + 0.615500i
\(609\) 4.77686 0.193568
\(610\) 4.40310 1.82470i 0.178276 0.0738801i
\(611\) 7.93067i 0.320841i
\(612\) 19.8046 19.8182i 0.800555 0.801101i
\(613\) 43.1992i 1.74480i −0.488792 0.872401i \(-0.662562\pi\)
0.488792 0.872401i \(-0.337438\pi\)
\(614\) −5.63433 13.5959i −0.227383 0.548686i
\(615\) −7.05365 −0.284431
\(616\) −11.1145 4.59711i −0.447815 0.185223i
\(617\) −29.6410 −1.19330 −0.596651 0.802501i \(-0.703502\pi\)
−0.596651 + 0.802501i \(0.703502\pi\)
\(618\) −5.20100 12.5503i −0.209215 0.504846i
\(619\) 26.9298i 1.08240i −0.840893 0.541201i \(-0.817970\pi\)
0.840893 0.541201i \(-0.182030\pi\)
\(620\) 8.48030 + 8.47452i 0.340577 + 0.340345i
\(621\) 6.28980i 0.252401i
\(622\) 16.9627 7.02956i 0.680141 0.281860i
\(623\) 7.88817 0.316033
\(624\) −0.00297128 4.35637i −0.000118947 0.174394i
\(625\) 15.3433 0.613733
\(626\) 5.89878 2.44453i 0.235763 0.0977032i
\(627\) 32.4021i 1.29402i
\(628\) 9.09216 + 9.08596i 0.362817 + 0.362569i
\(629\) 9.07266i 0.361751i
\(630\) 0.806296 + 1.94563i 0.0321236 + 0.0775158i
\(631\) −18.9779 −0.755497 −0.377749 0.925908i \(-0.623302\pi\)
−0.377749 + 0.925908i \(0.623302\pi\)
\(632\) −10.6532 + 25.7564i −0.423762 + 1.02453i
\(633\) 16.2067 0.644157
\(634\) −6.24466 15.0687i −0.248007 0.598454i
\(635\) 7.05803i 0.280089i
\(636\) −3.33970 + 3.34198i −0.132428 + 0.132518i
\(637\) 1.00000i 0.0396214i
\(638\) −24.3677 + 10.0983i −0.964726 + 0.399795i
\(639\) 23.4085 0.926025
\(640\) −3.54441 + 8.58593i −0.140105 + 0.339389i
\(641\) 17.0366 0.672907 0.336453 0.941700i \(-0.390773\pi\)
0.336453 + 0.941700i \(0.390773\pi\)
\(642\) 13.0369 5.40267i 0.514526 0.213226i
\(643\) 12.9266i 0.509774i 0.966971 + 0.254887i \(0.0820383\pi\)
−0.966971 + 0.254887i \(0.917962\pi\)
\(644\) −1.69607 + 1.69723i −0.0668345 + 0.0668801i
\(645\) 3.97508i 0.156519i
\(646\) −29.2548 70.5934i −1.15102 2.77746i
\(647\) −9.64399 −0.379144 −0.189572 0.981867i \(-0.560710\pi\)
−0.189572 + 0.981867i \(0.560710\pi\)
\(648\) −0.289941 + 0.700993i −0.0113900 + 0.0275376i
\(649\) −11.3251 −0.444548
\(650\) −2.34214 5.65170i −0.0918663 0.221678i
\(651\) 7.95170i 0.311652i
\(652\) 15.1552 + 15.1449i 0.593523 + 0.593118i
\(653\) 33.5932i 1.31460i 0.753628 + 0.657301i \(0.228302\pi\)
−0.753628 + 0.657301i \(0.771698\pi\)
\(654\) −26.8221 + 11.1154i −1.04883 + 0.434647i
\(655\) 6.62977 0.259047
\(656\) 0.0215217 + 31.5542i 0.000840282 + 1.23198i
\(657\) −10.7676 −0.420086
\(658\) 10.3612 4.29381i 0.403921 0.167390i
\(659\) 14.5740i 0.567722i −0.958865 0.283861i \(-0.908385\pi\)
0.958865 0.283861i \(-0.0916154\pi\)
\(660\) 5.37918 + 5.37552i 0.209384 + 0.209242i
\(661\) 42.0869i 1.63699i 0.574513 + 0.818496i \(0.305192\pi\)
−0.574513 + 0.818496i \(0.694808\pi\)
\(662\) −17.5660 42.3876i −0.682722 1.64744i
\(663\) 8.41116 0.326663
\(664\) −0.304806 0.126072i −0.0118288 0.00489254i
\(665\) 5.74414 0.222748
\(666\) −1.15368 2.78388i −0.0447041 0.107873i
\(667\) 5.26205i 0.203747i
\(668\) −9.97487 + 9.98168i −0.385939 + 0.386203i
\(669\) 26.0887i 1.00865i
\(670\) 14.4882 6.00410i 0.559728 0.231959i
\(671\) −17.4559 −0.673879
\(672\) −5.68985 + 2.36250i −0.219491 + 0.0911354i
\(673\) −22.5349 −0.868655 −0.434327 0.900755i \(-0.643014\pi\)
−0.434327 + 0.900755i \(0.643014\pi\)
\(674\) 0.619066 0.256549i 0.0238455 0.00988191i
\(675\) 22.6798i 0.872946i
\(676\) −1.41373 + 1.41470i −0.0543743 + 0.0544114i
\(677\) 26.7445i 1.02787i 0.857828 + 0.513937i \(0.171813\pi\)
−0.857828 + 0.513937i \(0.828187\pi\)
\(678\) −7.81091 18.8481i −0.299976 0.723858i
\(679\) −3.65495 −0.140264
\(680\) −16.5728 6.85476i −0.635539 0.262868i
\(681\) −17.5505 −0.672538
\(682\) −16.8099 40.5632i −0.643685 1.55324i
\(683\) 42.1268i 1.61194i −0.591957 0.805969i \(-0.701645\pi\)
0.591957 0.805969i \(-0.298355\pi\)
\(684\) −17.9533 17.9411i −0.686461 0.685993i
\(685\) 3.95941i 0.151281i
\(686\) −1.30647 + 0.541419i −0.0498813 + 0.0206715i
\(687\) 18.5210 0.706621
\(688\) −17.7823 + 0.0121286i −0.677946 + 0.000462397i
\(689\) 2.16908 0.0826355
\(690\) 1.40150 0.580801i 0.0533542 0.0221107i
\(691\) 11.2462i 0.427826i 0.976853 + 0.213913i \(0.0686209\pi\)
−0.976853 + 0.213913i \(0.931379\pi\)
\(692\) −3.37607 3.37377i −0.128339 0.128252i
\(693\) 7.71338i 0.293007i
\(694\) −12.5732 30.3398i −0.477272 1.15168i
\(695\) 5.32628 0.202037
\(696\) −5.16405 + 12.4852i −0.195743 + 0.473249i
\(697\) −60.9241 −2.30766
\(698\) 16.4917 + 39.7954i 0.624221 + 1.50628i
\(699\) 7.54792i 0.285489i
\(700\) −6.11570 + 6.11987i −0.231152 + 0.231310i
\(701\) 29.6423i 1.11958i 0.828636 + 0.559788i \(0.189117\pi\)
−0.828636 + 0.559788i \(0.810883\pi\)
\(702\) 6.84951 2.83853i 0.258518 0.107133i
\(703\) −8.21893 −0.309983
\(704\) 24.0307 24.0799i 0.905692 0.907547i
\(705\) −7.09131 −0.267074
\(706\) 37.8471 15.6844i 1.42440 0.590289i
\(707\) 10.9128i 0.410419i
\(708\) −4.10049 + 4.10329i −0.154106 + 0.154211i
\(709\) 28.6567i 1.07622i −0.842873 0.538112i \(-0.819138\pi\)
0.842873 0.538112i \(-0.180862\pi\)
\(710\) −5.73654 13.8426i −0.215289 0.519502i
\(711\) −17.8748 −0.670357
\(712\) −8.52755 + 20.6171i −0.319583 + 0.772660i
\(713\) −8.75937 −0.328041
\(714\) −4.55396 10.9889i −0.170428 0.411251i
\(715\) 3.49131i 0.130568i
\(716\) −8.52919 8.52338i −0.318751 0.318534i
\(717\) 26.9788i 1.00754i
\(718\) −12.5006 + 5.18043i −0.466520 + 0.193332i
\(719\) 13.9213 0.519177 0.259589 0.965719i \(-0.416413\pi\)
0.259589 + 0.965719i \(0.416413\pi\)
\(720\) −5.95691 + 0.00406294i −0.222001 + 0.000151417i
\(721\) 8.82041 0.328489
\(722\) −39.1277 + 16.2150i −1.45618 + 0.603461i
\(723\) 13.9318i 0.518130i
\(724\) −31.9623 31.9405i −1.18787 1.18706i
\(725\) 18.9739i 0.704674i
\(726\) −4.17659 10.0783i −0.155008 0.374041i
\(727\) −16.2755 −0.603625 −0.301813 0.953367i \(-0.597592\pi\)
−0.301813 + 0.953367i \(0.597592\pi\)
\(728\) 2.61368 + 1.08106i 0.0968694 + 0.0400666i
\(729\) −17.6160 −0.652445
\(730\) 2.63875 + 6.36744i 0.0976645 + 0.235669i
\(731\) 34.3337i 1.26988i
\(732\) −6.32030 + 6.32461i −0.233605 + 0.233764i
\(733\) 27.6119i 1.01987i 0.860213 + 0.509934i \(0.170330\pi\)
−0.860213 + 0.509934i \(0.829670\pi\)
\(734\) −0.466451 + 0.193304i −0.0172170 + 0.00713496i
\(735\) 0.894163 0.0329817
\(736\) −2.60246 6.26778i −0.0959280 0.231033i
\(737\) −57.4379 −2.11575
\(738\) −18.6941 + 7.74710i −0.688141 + 0.285175i
\(739\) 13.5632i 0.498931i 0.968384 + 0.249465i \(0.0802549\pi\)
−0.968384 + 0.249465i \(0.919745\pi\)
\(740\) −1.36352 + 1.36445i −0.0501241 + 0.0501583i
\(741\) 7.61968i 0.279916i
\(742\) −1.17438 2.83384i −0.0431129 0.104034i
\(743\) 39.1021 1.43452 0.717258 0.696808i \(-0.245397\pi\)
0.717258 + 0.696808i \(0.245397\pi\)
\(744\) −20.7832 8.59623i −0.761949 0.315153i
\(745\) −12.7034 −0.465416
\(746\) −3.13586 7.56700i −0.114812 0.277047i
\(747\) 0.211533i 0.00773960i
\(748\) 46.4613 + 46.4296i 1.69879 + 1.69763i
\(749\) 9.16243i 0.334788i
\(750\) 10.8945 4.51484i 0.397812 0.164859i
\(751\) −34.5592 −1.26108 −0.630542 0.776155i \(-0.717167\pi\)
−0.630542 + 0.776155i \(0.717167\pi\)
\(752\) 0.0216366 + 31.7227i 0.000789007 + 1.15681i
\(753\) −22.9520 −0.836418
\(754\) 5.73030 2.37471i 0.208685 0.0864820i
\(755\) 12.2017i 0.444065i
\(756\) −7.41690 7.41185i −0.269750 0.269566i
\(757\) 3.50638i 0.127442i 0.997968 + 0.0637208i \(0.0202967\pi\)
−0.997968 + 0.0637208i \(0.979703\pi\)
\(758\) −4.45822 10.7579i −0.161930 0.390745i
\(759\) −5.55620 −0.201677
\(760\) −6.20973 + 15.0133i −0.225251 + 0.544591i
\(761\) 40.0802 1.45290 0.726452 0.687217i \(-0.241168\pi\)
0.726452 + 0.687217i \(0.241168\pi\)
\(762\) −5.06907 12.2319i −0.183633 0.443116i
\(763\) 18.8507i 0.682442i
\(764\) 28.6799 28.6994i 1.03760 1.03831i
\(765\) 11.5015i 0.415836i
\(766\) −5.40191 + 2.23862i −0.195179 + 0.0808847i
\(767\) 2.66321 0.0961628
\(768\) −0.0237703 17.4254i −0.000857736 0.628787i
\(769\) −18.5422 −0.668648 −0.334324 0.942458i \(-0.608508\pi\)
−0.334324 + 0.942458i \(0.608508\pi\)
\(770\) −4.56130 + 1.89026i −0.164378 + 0.0681204i
\(771\) 30.1098i 1.08438i
\(772\) −27.3394 + 27.3581i −0.983967 + 0.984639i
\(773\) 51.9228i 1.86753i −0.357884 0.933766i \(-0.616502\pi\)
0.357884 0.933766i \(-0.383498\pi\)
\(774\) −4.36587 10.5351i −0.156928 0.378675i
\(775\) −31.5846 −1.13455
\(776\) 3.95120 9.55287i 0.141840 0.342928i
\(777\) −1.27940 −0.0458983
\(778\) 15.5858 + 37.6093i 0.558777 + 1.34836i
\(779\) 55.1912i 1.97743i
\(780\) −1.26497 1.26411i −0.0452932 0.0452623i
\(781\) 54.8783i 1.96370i
\(782\) 12.1051 5.01651i 0.432877 0.179390i
\(783\) −22.9952 −0.821782
\(784\) −0.00272822 4.00000i −9.74365e−5 0.142857i
\(785\) 5.27663 0.188331
\(786\) −11.4897 + 4.76150i −0.409825 + 0.169837i
\(787\) 8.88891i 0.316855i −0.987371 0.158428i \(-0.949358\pi\)
0.987371 0.158428i \(-0.0506425\pi\)
\(788\) 2.92948 + 2.92749i 0.104359 + 0.104287i
\(789\) 21.9367i 0.780969i
\(790\) 4.38045 + 10.5702i 0.155849 + 0.376072i
\(791\) 13.2466 0.470994
\(792\) 20.1603 + 8.33860i 0.716366 + 0.296299i
\(793\) 4.10494 0.145771
\(794\) 15.5763 + 37.5864i 0.552782 + 1.33389i
\(795\) 1.93951i 0.0687875i
\(796\) 23.6304 23.6465i 0.837558 0.838129i
\(797\) 47.5450i 1.68413i 0.539377 + 0.842065i \(0.318660\pi\)
−0.539377 + 0.842065i \(0.681340\pi\)
\(798\) −9.95489 + 4.12544i −0.352399 + 0.146039i
\(799\) −61.2494 −2.16685
\(800\) −9.38398 22.6004i −0.331774 0.799045i
\(801\) −14.3082 −0.505555
\(802\) 35.9759 14.9089i 1.27035 0.526452i
\(803\) 25.2435i 0.890822i
\(804\) −20.7967 + 20.8109i −0.733442 + 0.733942i
\(805\) 0.984985i 0.0347161i
\(806\) 3.95302 + 9.53884i 0.139239 + 0.335991i
\(807\) 1.94163 0.0683484
\(808\) −28.5226 11.7974i −1.00342 0.415030i
\(809\) 52.6686 1.85173 0.925865 0.377853i \(-0.123338\pi\)
0.925865 + 0.377853i \(0.123338\pi\)
\(810\) 0.119220 + 0.287683i 0.00418895 + 0.0101081i
\(811\) 36.7264i 1.28964i 0.764336 + 0.644819i \(0.223067\pi\)
−0.764336 + 0.644819i \(0.776933\pi\)
\(812\) −6.20499 6.20076i −0.217752 0.217604i
\(813\) 22.4956i 0.788955i
\(814\) 6.52648 2.70466i 0.228753 0.0947983i
\(815\) 8.79530 0.308086
\(816\) 33.6446 0.0229475i 1.17780 0.000803324i
\(817\) −31.1030 −1.08816
\(818\) 8.92324 3.69791i 0.311994 0.129294i
\(819\) 1.81388i 0.0633821i
\(820\) 9.16247 + 9.15623i 0.319967 + 0.319749i
\(821\) 33.7305i 1.17720i −0.808424 0.588601i \(-0.799679\pi\)
0.808424 0.588601i \(-0.200321\pi\)
\(822\) 2.84365 + 6.86187i 0.0991837 + 0.239335i
\(823\) −43.5137 −1.51679 −0.758396 0.651794i \(-0.774017\pi\)
−0.758396 + 0.651794i \(0.774017\pi\)
\(824\) −9.53535 + 23.0537i −0.332180 + 0.803115i
\(825\) −20.0346 −0.697515
\(826\) −1.44191 3.47940i −0.0501704 0.121064i
\(827\) 26.6864i 0.927976i −0.885841 0.463988i \(-0.846418\pi\)
0.885841 0.463988i \(-0.153582\pi\)
\(828\) 3.07647 3.07857i 0.106915 0.106988i
\(829\) 19.3566i 0.672284i −0.941811 0.336142i \(-0.890878\pi\)
0.941811 0.336142i \(-0.109122\pi\)
\(830\) −0.125090 + 0.0518390i −0.00434194 + 0.00179936i
\(831\) −16.0104 −0.555394
\(832\) −5.65106 + 5.66264i −0.195915 + 0.196317i
\(833\) 7.72310 0.267590
\(834\) −9.23071 + 3.82533i −0.319633 + 0.132460i
\(835\) 5.79286i 0.200470i
\(836\) 42.0606 42.0893i 1.45470 1.45569i
\(837\) 38.2785i 1.32310i
\(838\) −8.67028 20.9218i −0.299510 0.722732i
\(839\) −1.11024 −0.0383296 −0.0191648 0.999816i \(-0.506101\pi\)
−0.0191648 + 0.999816i \(0.506101\pi\)
\(840\) −0.966640 + 2.33706i −0.0333523 + 0.0806361i
\(841\) 9.76217 0.336626
\(842\) 19.0294 + 45.9190i 0.655797 + 1.58247i
\(843\) 27.2455i 0.938386i
\(844\) −21.0520 21.0376i −0.724638 0.724144i
\(845\) 0.821018i 0.0282439i
\(846\) −18.7939 + 7.78846i −0.646149 + 0.267773i
\(847\) 7.08311 0.243378
\(848\) 8.67633 0.00591774i 0.297946 0.000203216i
\(849\) 3.66024 0.125619
\(850\) 43.6487 18.0886i 1.49714 0.620433i
\(851\) 1.40935i 0.0483120i
\(852\) 19.8835 + 19.8699i 0.681196 + 0.680732i
\(853\) 21.8194i 0.747083i −0.927613 0.373542i \(-0.878143\pi\)
0.927613 0.373542i \(-0.121857\pi\)
\(854\) −2.22249 5.36298i −0.0760520 0.183517i
\(855\) −10.4192 −0.356328
\(856\) −23.9476 9.90509i −0.818514 0.338549i
\(857\) −3.19913 −0.109280 −0.0546401 0.998506i \(-0.517401\pi\)
−0.0546401 + 0.998506i \(0.517401\pi\)
\(858\) 2.50746 + 6.05063i 0.0856033 + 0.206565i
\(859\) 9.52963i 0.325147i −0.986696 0.162573i \(-0.948021\pi\)
0.986696 0.162573i \(-0.0519794\pi\)
\(860\) −5.15999 + 5.16351i −0.175954 + 0.176074i
\(861\) 8.59135i 0.292793i
\(862\) −28.5239 + 11.8207i −0.971529 + 0.402615i
\(863\) 20.7524 0.706420 0.353210 0.935544i \(-0.385090\pi\)
0.353210 + 0.935544i \(0.385090\pi\)
\(864\) 27.3903 11.3728i 0.931836 0.386910i
\(865\) −1.95930 −0.0666183
\(866\) −5.19574 + 2.15318i −0.176558 + 0.0731682i
\(867\) 46.4457i 1.57738i
\(868\) 10.3220 10.3290i 0.350351 0.350590i
\(869\) 41.9053i 1.42154i
\(870\) 2.12338 + 5.12383i 0.0719894 + 0.173714i
\(871\) 13.5071 0.457671
\(872\) 49.2698 + 20.3787i 1.66848 + 0.690109i
\(873\) 6.62964 0.224379
\(874\) −4.54447 10.9660i −0.153719 0.370931i
\(875\) 7.65675i 0.258845i
\(876\) −9.14618 9.13995i −0.309021 0.308810i
\(877\) 30.9871i 1.04636i 0.852222 + 0.523180i \(0.175255\pi\)
−0.852222 + 0.523180i \(0.824745\pi\)
\(878\) 15.0504 6.23709i 0.507927 0.210492i
\(879\) 6.08490 0.205239
\(880\) −0.00952508 13.9653i −0.000321091 0.470769i
\(881\) −48.5264 −1.63490 −0.817448 0.576002i \(-0.804612\pi\)
−0.817448 + 0.576002i \(0.804612\pi\)
\(882\) 2.36978 0.982069i 0.0797947 0.0330680i
\(883\) 4.37928i 0.147375i 0.997281 + 0.0736873i \(0.0234767\pi\)
−0.997281 + 0.0736873i \(0.976523\pi\)
\(884\) −10.9258 10.9184i −0.367476 0.367225i
\(885\) 2.38134i 0.0800479i
\(886\) −1.05023 2.53426i −0.0352832 0.0851402i
\(887\) −18.1514 −0.609466 −0.304733 0.952438i \(-0.598567\pi\)
−0.304733 + 0.952438i \(0.598567\pi\)
\(888\) 1.38310 3.34395i 0.0464140 0.112216i
\(889\) 8.59668 0.288323
\(890\) 3.50641 + 8.46113i 0.117535 + 0.283618i
\(891\) 1.14051i 0.0382084i
\(892\) 33.8653 33.8884i 1.13389 1.13467i
\(893\) 55.4859i 1.85676i
\(894\) 22.0156 9.12357i 0.736313 0.305138i
\(895\) −4.94991 −0.165457
\(896\) 10.4577 + 4.31709i 0.349366 + 0.144224i
\(897\) 1.30660 0.0436260
\(898\) −9.55473 + 3.95961i −0.318845 + 0.132134i
\(899\) 32.0239i 1.06806i
\(900\) 11.0931 11.1007i 0.369772 0.370024i
\(901\) 16.7520i 0.558091i
\(902\) −18.1621 43.8262i −0.604733 1.45925i
\(903\) −4.84165 −0.161120
\(904\) −14.3203 + 34.6223i −0.476286 + 1.15152i
\(905\) −18.5493 −0.616600
\(906\) −8.76326 21.1462i −0.291140 0.702535i
\(907\) 6.96024i 0.231111i 0.993301 + 0.115555i \(0.0368648\pi\)
−0.993301 + 0.115555i \(0.963135\pi\)
\(908\) 22.7976 + 22.7821i 0.756565 + 0.756049i
\(909\) 19.7946i 0.656544i
\(910\) 1.07264 0.444514i 0.0355575 0.0147355i
\(911\) 8.32596 0.275851 0.137926 0.990443i \(-0.455956\pi\)
0.137926 + 0.990443i \(0.455956\pi\)
\(912\) −0.0207882 30.4787i −0.000688366 1.00925i
\(913\) 0.495915 0.0164124
\(914\) −52.7574 + 21.8634i −1.74506 + 0.723176i
\(915\) 3.67048i 0.121342i
\(916\) −24.0582 24.0418i −0.794906 0.794364i
\(917\) 8.07506i 0.266662i
\(918\) 21.9222 + 52.8994i 0.723541 + 1.74594i
\(919\) 48.3183 1.59387 0.796937 0.604062i \(-0.206452\pi\)
0.796937 + 0.604062i \(0.206452\pi\)
\(920\) −2.57443 1.06482i −0.0848766 0.0351062i
\(921\) 11.3337 0.373459
\(922\) −20.1037 48.5113i −0.662081 1.59763i
\(923\) 12.9052i 0.424780i
\(924\) 6.54738 6.55185i 0.215393 0.215540i
\(925\) 5.08186i 0.167090i
\(926\) 22.8163 9.45539i 0.749791 0.310723i
\(927\) −15.9992 −0.525482
\(928\) 22.9147 9.51449i 0.752213 0.312328i
\(929\) 18.2137 0.597572 0.298786 0.954320i \(-0.403418\pi\)
0.298786 + 0.954320i \(0.403418\pi\)
\(930\) −8.52928 + 3.53465i −0.279686 + 0.115906i
\(931\) 6.99637i 0.229297i
\(932\) 9.79783 9.80451i 0.320938 0.321157i
\(933\) 14.1403i 0.462933i
\(934\) 11.4125 + 27.5389i 0.373428 + 0.901099i
\(935\) 26.9638 0.881810
\(936\) −4.74090 1.96090i −0.154961 0.0640942i
\(937\) 15.6386 0.510892 0.255446 0.966823i \(-0.417778\pi\)
0.255446 + 0.966823i \(0.417778\pi\)
\(938\) −7.31300 17.6466i −0.238778 0.576183i
\(939\) 4.91731i 0.160470i
\(940\) 9.21139 + 9.20511i 0.300443 + 0.300238i
\(941\) 15.5361i 0.506463i −0.967406 0.253231i \(-0.918507\pi\)
0.967406 0.253231i \(-0.0814934\pi\)
\(942\) −9.14467 + 3.78967i −0.297949 + 0.123474i
\(943\) −9.46399 −0.308190
\(944\) 10.6528 0.00726582i 0.346720 0.000236482i
\(945\) −4.30439 −0.140022
\(946\) 24.6982 10.2353i 0.803008 0.332777i
\(947\) 26.4154i 0.858387i 0.903213 + 0.429193i \(0.141202\pi\)
−0.903213 + 0.429193i \(0.858798\pi\)
\(948\) −15.1831 15.1727i −0.493124 0.492787i
\(949\) 5.93625i 0.192699i
\(950\) −16.3865 39.5414i −0.531647 1.28289i
\(951\) 12.5615 0.407333
\(952\) −8.34910 + 20.1857i −0.270596 + 0.654223i
\(953\) −5.50297 −0.178259 −0.0891293 0.996020i \(-0.528408\pi\)
−0.0891293 + 0.996020i \(0.528408\pi\)
\(954\) 2.13019 + 5.14025i 0.0689674 + 0.166422i
\(955\) 16.6557i 0.538965i
\(956\) 35.0208 35.0447i 1.13265 1.13343i
\(957\) 20.3132i 0.656633i
\(958\) 21.2606 8.81068i 0.686899 0.284660i
\(959\) −4.82257 −0.155729
\(960\) −5.06332 5.05297i −0.163418 0.163084i
\(961\) 22.3079 0.719610
\(962\) −1.53477 + 0.636028i −0.0494829 + 0.0205064i
\(963\) 16.6195i 0.535557i
\(964\) −18.0847 + 18.0970i −0.582468 + 0.582865i
\(965\) 15.8772i 0.511106i
\(966\) −0.707416 1.70703i −0.0227607 0.0549228i
\(967\) 46.1354 1.48362 0.741808 0.670613i \(-0.233969\pi\)
0.741808 + 0.670613i \(0.233969\pi\)
\(968\) −7.65723 + 18.5130i −0.246113 + 0.595029i
\(969\) 58.8476 1.89046
\(970\) −1.62468 3.92043i −0.0521653 0.125877i
\(971\) 32.6912i 1.04911i 0.851376 + 0.524555i \(0.175768\pi\)
−0.851376 + 0.524555i \(0.824232\pi\)
\(972\) 21.8375 + 21.8226i 0.700438 + 0.699960i
\(973\) 6.48741i 0.207977i
\(974\) −6.56221 + 2.71947i −0.210267 + 0.0871373i
\(975\) 4.71133 0.150883
\(976\) 16.4197 0.0111992i 0.525583 0.000358477i
\(977\) 11.2814 0.360925 0.180463 0.983582i \(-0.442241\pi\)
0.180463 + 0.983582i \(0.442241\pi\)
\(978\) −15.2427 + 6.31678i −0.487408 + 0.201989i
\(979\) 33.5438i 1.07207i
\(980\) −1.16149 1.16070i −0.0371024 0.0370771i
\(981\) 34.1929i 1.09170i
\(982\) 3.73655 + 9.01647i 0.119238 + 0.287727i
\(983\) 18.9215 0.603503 0.301751 0.953387i \(-0.402429\pi\)
0.301751 + 0.953387i \(0.402429\pi\)
\(984\) −22.4550 9.28773i −0.715841 0.296082i
\(985\) 1.70012 0.0541704
\(986\) 18.3402 + 44.2557i 0.584070 + 1.40939i
\(987\) 8.63722i 0.274926i
\(988\) −9.89098 + 9.89773i −0.314674 + 0.314889i
\(989\) 5.33342i 0.169593i
\(990\) 8.27365 3.42871i 0.262954 0.108972i
\(991\) 46.8572 1.48847 0.744235 0.667918i \(-0.232814\pi\)
0.744235 + 0.667918i \(0.232814\pi\)
\(992\) 15.8381 + 38.1446i 0.502860 + 1.21109i
\(993\) 35.3349 1.12132
\(994\) −16.8603 + 6.98712i −0.534775 + 0.221618i
\(995\) 13.7232i 0.435056i
\(996\) 0.179557 0.179679i 0.00568947 0.00569336i
\(997\) 21.7174i 0.687797i 0.939007 + 0.343898i \(0.111748\pi\)
−0.939007 + 0.343898i \(0.888252\pi\)
\(998\) 15.7078 + 37.9037i 0.497222 + 1.19982i
\(999\) 6.15889 0.194859
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.a.365.29 34
4.3 odd 2 2912.2.c.a.1457.13 34
8.3 odd 2 2912.2.c.a.1457.22 34
8.5 even 2 inner 728.2.c.a.365.30 yes 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.29 34 1.1 even 1 trivial
728.2.c.a.365.30 yes 34 8.5 even 2 inner
2912.2.c.a.1457.13 34 4.3 odd 2
2912.2.c.a.1457.22 34 8.3 odd 2