L(s) = 1 | + (1.30 − 0.541i)2-s + 1.08i·3-s + (1.41 − 1.41i)4-s − 0.821i·5-s + (0.589 + 1.42i)6-s − 7-s + (1.08 − 2.61i)8-s + 1.81·9-s + (−0.444 − 1.07i)10-s + 4.25i·11-s + (1.54 + 1.53i)12-s − i·13-s + (−1.30 + 0.541i)14-s + 0.894·15-s + (−0.00272 − 3.99i)16-s + 7.72·17-s + ⋯ |
L(s) = 1 | + (0.923 − 0.382i)2-s + 0.628i·3-s + (0.706 − 0.707i)4-s − 0.367i·5-s + (0.240 + 0.580i)6-s − 0.377·7-s + (0.382 − 0.924i)8-s + 0.604·9-s + (−0.140 − 0.339i)10-s + 1.28i·11-s + (0.444 + 0.444i)12-s − 0.277i·13-s + (−0.349 + 0.144i)14-s + 0.230·15-s + (−0.000682 − 0.999i)16-s + 1.87·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.924 + 0.382i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.924 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.74805 - 0.545892i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.74805 - 0.545892i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.30 + 0.541i)T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 - 1.08iT - 3T^{2} \) |
| 5 | \( 1 + 0.821iT - 5T^{2} \) |
| 11 | \( 1 - 4.25iT - 11T^{2} \) |
| 17 | \( 1 - 7.72T + 17T^{2} \) |
| 19 | \( 1 + 6.99iT - 19T^{2} \) |
| 23 | \( 1 - 1.19T + 23T^{2} \) |
| 29 | \( 1 - 4.38iT - 29T^{2} \) |
| 31 | \( 1 + 7.30T + 31T^{2} \) |
| 37 | \( 1 + 1.17iT - 37T^{2} \) |
| 41 | \( 1 + 7.88T + 41T^{2} \) |
| 43 | \( 1 + 4.44iT - 43T^{2} \) |
| 47 | \( 1 + 7.93T + 47T^{2} \) |
| 53 | \( 1 - 2.16iT - 53T^{2} \) |
| 59 | \( 1 - 2.66iT - 59T^{2} \) |
| 61 | \( 1 - 4.10iT - 61T^{2} \) |
| 67 | \( 1 - 13.5iT - 67T^{2} \) |
| 71 | \( 1 - 12.9T + 71T^{2} \) |
| 73 | \( 1 + 5.93T + 73T^{2} \) |
| 79 | \( 1 + 9.85T + 79T^{2} \) |
| 83 | \( 1 + 0.116iT - 83T^{2} \) |
| 89 | \( 1 + 7.88T + 89T^{2} \) |
| 97 | \( 1 - 3.65T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26679322363327986644331318831, −9.820726169691805404185628227326, −8.955267522863131981035106125953, −7.33571368794075502610900915809, −6.89167118272583046210880374936, −5.36226447044484395812445933684, −4.92322161813646082158733468045, −3.89581850213422494424418177312, −2.93291984143925848997069350077, −1.39725593137716549449608020454,
1.55787893248016376484597352790, 3.14362375156268040611170028359, 3.75825537710333854320186694108, 5.24867092518772475543537999142, 6.08347401601862449899772213838, 6.75574262634541141784447577364, 7.74516980800171270468780041408, 8.247764264831616296711021654153, 9.714331884724367881585799613384, 10.59145236070773369090660348529