Properties

Label 728.2.c.a.365.17
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.17
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.a.365.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.182514 - 1.40239i) q^{2} -0.275879i q^{3} +(-1.93338 - 0.511911i) q^{4} -3.61620i q^{5} +(-0.386890 - 0.0503520i) q^{6} -1.00000 q^{7} +(-1.07077 + 2.61791i) q^{8} +2.92389 q^{9} +(-5.07131 - 0.660008i) q^{10} -5.52552i q^{11} +(-0.141226 + 0.533379i) q^{12} -1.00000i q^{13} +(-0.182514 + 1.40239i) q^{14} -0.997636 q^{15} +(3.47589 + 1.97944i) q^{16} +3.52124 q^{17} +(0.533652 - 4.10043i) q^{18} +1.10679i q^{19} +(-1.85117 + 6.99148i) q^{20} +0.275879i q^{21} +(-7.74891 - 1.00849i) q^{22} -7.91353 q^{23} +(0.722228 + 0.295403i) q^{24} -8.07691 q^{25} +(-1.40239 - 0.182514i) q^{26} -1.63428i q^{27} +(1.93338 + 0.511911i) q^{28} +10.0364i q^{29} +(-0.182083 + 1.39907i) q^{30} -5.12736 q^{31} +(3.41033 - 4.51327i) q^{32} -1.52438 q^{33} +(0.642678 - 4.93815i) q^{34} +3.61620i q^{35} +(-5.65298 - 1.49677i) q^{36} +3.62244i q^{37} +(1.55215 + 0.202005i) q^{38} -0.275879 q^{39} +(9.46689 + 3.87211i) q^{40} +1.03995 q^{41} +(0.386890 + 0.0503520i) q^{42} -8.73661i q^{43} +(-2.82857 + 10.6829i) q^{44} -10.5734i q^{45} +(-1.44433 + 11.0978i) q^{46} +13.4664 q^{47} +(0.546086 - 0.958928i) q^{48} +1.00000 q^{49} +(-1.47415 + 11.3269i) q^{50} -0.971439i q^{51} +(-0.511911 + 1.93338i) q^{52} -2.23708i q^{53} +(-2.29189 - 0.298279i) q^{54} -19.9814 q^{55} +(1.07077 - 2.61791i) q^{56} +0.305341 q^{57} +(14.0749 + 1.83178i) q^{58} +4.78728i q^{59} +(1.92881 + 0.510701i) q^{60} +0.861749i q^{61} +(-0.935817 + 7.19054i) q^{62} -2.92389 q^{63} +(-5.70692 - 5.60634i) q^{64} -3.61620 q^{65} +(-0.278221 + 2.13777i) q^{66} -4.23522i q^{67} +(-6.80789 - 1.80257i) q^{68} +2.18318i q^{69} +(5.07131 + 0.660008i) q^{70} +0.866345 q^{71} +(-3.13080 + 7.65449i) q^{72} -5.70186 q^{73} +(5.08007 + 0.661148i) q^{74} +2.22825i q^{75} +(0.566578 - 2.13984i) q^{76} +5.52552i q^{77} +(-0.0503520 + 0.386890i) q^{78} -7.29555 q^{79} +(7.15804 - 12.5695i) q^{80} +8.32081 q^{81} +(0.189806 - 1.45841i) q^{82} -7.27650i q^{83} +(0.141226 - 0.533379i) q^{84} -12.7335i q^{85} +(-12.2521 - 1.59456i) q^{86} +2.76883 q^{87} +(14.4653 + 5.91654i) q^{88} +7.66208 q^{89} +(-14.8280 - 1.92979i) q^{90} +1.00000i q^{91} +(15.2998 + 4.05103i) q^{92} +1.41453i q^{93} +(2.45781 - 18.8851i) q^{94} +4.00238 q^{95} +(-1.24512 - 0.940841i) q^{96} +12.7857 q^{97} +(0.182514 - 1.40239i) q^{98} -16.1560i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 2 q^{2} - 2 q^{4} - 6 q^{6} - 34 q^{7} + 8 q^{8} - 26 q^{9} - 4 q^{12} - 2 q^{14} - 8 q^{15} - 6 q^{16} - 20 q^{17} + 14 q^{18} - 4 q^{20} - 10 q^{22} - 20 q^{23} + 10 q^{24} - 22 q^{25} + 2 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.182514 1.40239i 0.129057 0.991637i
\(3\) 0.275879i 0.159279i −0.996824 0.0796395i \(-0.974623\pi\)
0.996824 0.0796395i \(-0.0253769\pi\)
\(4\) −1.93338 0.511911i −0.966689 0.255956i
\(5\) 3.61620i 1.61721i −0.588349 0.808607i \(-0.700222\pi\)
0.588349 0.808607i \(-0.299778\pi\)
\(6\) −0.386890 0.0503520i −0.157947 0.0205561i
\(7\) −1.00000 −0.377964
\(8\) −1.07077 + 2.61791i −0.378573 + 0.925571i
\(9\) 2.92389 0.974630
\(10\) −5.07131 0.660008i −1.60369 0.208713i
\(11\) 5.52552i 1.66601i −0.553269 0.833003i \(-0.686620\pi\)
0.553269 0.833003i \(-0.313380\pi\)
\(12\) −0.141226 + 0.533379i −0.0407684 + 0.153973i
\(13\) 1.00000i 0.277350i
\(14\) −0.182514 + 1.40239i −0.0487790 + 0.374804i
\(15\) −0.997636 −0.257588
\(16\) 3.47589 + 1.97944i 0.868973 + 0.494859i
\(17\) 3.52124 0.854027 0.427014 0.904245i \(-0.359566\pi\)
0.427014 + 0.904245i \(0.359566\pi\)
\(18\) 0.533652 4.10043i 0.125783 0.966479i
\(19\) 1.10679i 0.253915i 0.991908 + 0.126958i \(0.0405212\pi\)
−0.991908 + 0.126958i \(0.959479\pi\)
\(20\) −1.85117 + 6.99148i −0.413935 + 1.56334i
\(21\) 0.275879i 0.0602018i
\(22\) −7.74891 1.00849i −1.65207 0.215010i
\(23\) −7.91353 −1.65009 −0.825043 0.565070i \(-0.808849\pi\)
−0.825043 + 0.565070i \(0.808849\pi\)
\(24\) 0.722228 + 0.295403i 0.147424 + 0.0602988i
\(25\) −8.07691 −1.61538
\(26\) −1.40239 0.182514i −0.275031 0.0357940i
\(27\) 1.63428i 0.314517i
\(28\) 1.93338 + 0.511911i 0.365374 + 0.0967421i
\(29\) 10.0364i 1.86371i 0.362833 + 0.931854i \(0.381809\pi\)
−0.362833 + 0.931854i \(0.618191\pi\)
\(30\) −0.182083 + 1.39907i −0.0332436 + 0.255434i
\(31\) −5.12736 −0.920901 −0.460450 0.887685i \(-0.652312\pi\)
−0.460450 + 0.887685i \(0.652312\pi\)
\(32\) 3.41033 4.51327i 0.602868 0.797841i
\(33\) −1.52438 −0.265360
\(34\) 0.642678 4.93815i 0.110218 0.846885i
\(35\) 3.61620i 0.611249i
\(36\) −5.65298 1.49677i −0.942164 0.249462i
\(37\) 3.62244i 0.595526i 0.954640 + 0.297763i \(0.0962405\pi\)
−0.954640 + 0.297763i \(0.903760\pi\)
\(38\) 1.55215 + 0.202005i 0.251792 + 0.0327695i
\(39\) −0.275879 −0.0441761
\(40\) 9.46689 + 3.87211i 1.49685 + 0.612234i
\(41\) 1.03995 0.162413 0.0812064 0.996697i \(-0.474123\pi\)
0.0812064 + 0.996697i \(0.474123\pi\)
\(42\) 0.386890 + 0.0503520i 0.0596984 + 0.00776948i
\(43\) 8.73661i 1.33232i −0.745809 0.666160i \(-0.767937\pi\)
0.745809 0.666160i \(-0.232063\pi\)
\(44\) −2.82857 + 10.6829i −0.426424 + 1.61051i
\(45\) 10.5734i 1.57619i
\(46\) −1.44433 + 11.0978i −0.212955 + 1.63629i
\(47\) 13.4664 1.96427 0.982136 0.188171i \(-0.0602559\pi\)
0.982136 + 0.188171i \(0.0602559\pi\)
\(48\) 0.546086 0.958928i 0.0788207 0.138409i
\(49\) 1.00000 0.142857
\(50\) −1.47415 + 11.3269i −0.208476 + 1.60187i
\(51\) 0.971439i 0.136029i
\(52\) −0.511911 + 1.93338i −0.0709893 + 0.268111i
\(53\) 2.23708i 0.307286i −0.988126 0.153643i \(-0.950899\pi\)
0.988126 0.153643i \(-0.0491006\pi\)
\(54\) −2.29189 0.298279i −0.311887 0.0405907i
\(55\) −19.9814 −2.69429
\(56\) 1.07077 2.61791i 0.143087 0.349833i
\(57\) 0.305341 0.0404434
\(58\) 14.0749 + 1.83178i 1.84812 + 0.240525i
\(59\) 4.78728i 0.623251i 0.950205 + 0.311626i \(0.100873\pi\)
−0.950205 + 0.311626i \(0.899127\pi\)
\(60\) 1.92881 + 0.510701i 0.249008 + 0.0659312i
\(61\) 0.861749i 0.110336i 0.998477 + 0.0551678i \(0.0175694\pi\)
−0.998477 + 0.0551678i \(0.982431\pi\)
\(62\) −0.935817 + 7.19054i −0.118849 + 0.913200i
\(63\) −2.92389 −0.368376
\(64\) −5.70692 5.60634i −0.713365 0.700793i
\(65\) −3.61620 −0.448534
\(66\) −0.278221 + 2.13777i −0.0342466 + 0.263141i
\(67\) 4.23522i 0.517414i −0.965956 0.258707i \(-0.916704\pi\)
0.965956 0.258707i \(-0.0832965\pi\)
\(68\) −6.80789 1.80257i −0.825578 0.218593i
\(69\) 2.18318i 0.262824i
\(70\) 5.07131 + 0.660008i 0.606138 + 0.0788861i
\(71\) 0.866345 0.102816 0.0514081 0.998678i \(-0.483629\pi\)
0.0514081 + 0.998678i \(0.483629\pi\)
\(72\) −3.13080 + 7.65449i −0.368969 + 0.902090i
\(73\) −5.70186 −0.667352 −0.333676 0.942688i \(-0.608289\pi\)
−0.333676 + 0.942688i \(0.608289\pi\)
\(74\) 5.08007 + 0.661148i 0.590546 + 0.0768569i
\(75\) 2.22825i 0.257297i
\(76\) 0.566578 2.13984i 0.0649910 0.245457i
\(77\) 5.52552i 0.629691i
\(78\) −0.0503520 + 0.386890i −0.00570124 + 0.0438066i
\(79\) −7.29555 −0.820814 −0.410407 0.911902i \(-0.634613\pi\)
−0.410407 + 0.911902i \(0.634613\pi\)
\(80\) 7.15804 12.5695i 0.800293 1.40532i
\(81\) 8.32081 0.924534
\(82\) 0.189806 1.45841i 0.0209605 0.161054i
\(83\) 7.27650i 0.798700i −0.916799 0.399350i \(-0.869236\pi\)
0.916799 0.399350i \(-0.130764\pi\)
\(84\) 0.141226 0.533379i 0.0154090 0.0581964i
\(85\) 12.7335i 1.38115i
\(86\) −12.2521 1.59456i −1.32118 0.171945i
\(87\) 2.76883 0.296850
\(88\) 14.4653 + 5.91654i 1.54201 + 0.630705i
\(89\) 7.66208 0.812178 0.406089 0.913833i \(-0.366892\pi\)
0.406089 + 0.913833i \(0.366892\pi\)
\(90\) −14.8280 1.92979i −1.56300 0.203418i
\(91\) 1.00000i 0.104828i
\(92\) 15.2998 + 4.05103i 1.59512 + 0.422349i
\(93\) 1.41453i 0.146680i
\(94\) 2.45781 18.8851i 0.253503 1.94785i
\(95\) 4.00238 0.410635
\(96\) −1.24512 0.940841i −0.127079 0.0960242i
\(97\) 12.7857 1.29819 0.649097 0.760706i \(-0.275147\pi\)
0.649097 + 0.760706i \(0.275147\pi\)
\(98\) 0.182514 1.40239i 0.0184367 0.141662i
\(99\) 16.1560i 1.62374i
\(100\) 15.6157 + 4.13466i 1.56157 + 0.413466i
\(101\) 9.46158i 0.941462i −0.882277 0.470731i \(-0.843990\pi\)
0.882277 0.470731i \(-0.156010\pi\)
\(102\) −1.36233 0.177302i −0.134891 0.0175555i
\(103\) 0.503322 0.0495938 0.0247969 0.999693i \(-0.492106\pi\)
0.0247969 + 0.999693i \(0.492106\pi\)
\(104\) 2.61791 + 1.07077i 0.256707 + 0.104997i
\(105\) 0.997636 0.0973593
\(106\) −3.13725 0.408299i −0.304716 0.0396575i
\(107\) 3.29814i 0.318843i 0.987211 + 0.159422i \(0.0509629\pi\)
−0.987211 + 0.159422i \(0.949037\pi\)
\(108\) −0.836606 + 3.15968i −0.0805025 + 0.304040i
\(109\) 17.1603i 1.64366i −0.569735 0.821829i \(-0.692954\pi\)
0.569735 0.821829i \(-0.307046\pi\)
\(110\) −3.64689 + 28.0216i −0.347717 + 2.67176i
\(111\) 0.999358 0.0948548
\(112\) −3.47589 1.97944i −0.328441 0.187039i
\(113\) 4.38117 0.412146 0.206073 0.978537i \(-0.433932\pi\)
0.206073 + 0.978537i \(0.433932\pi\)
\(114\) 0.0557290 0.428206i 0.00521950 0.0401051i
\(115\) 28.6169i 2.66854i
\(116\) 5.13773 19.4041i 0.477027 1.80163i
\(117\) 2.92389i 0.270314i
\(118\) 6.71362 + 0.873748i 0.618039 + 0.0804350i
\(119\) −3.52124 −0.322792
\(120\) 1.06823 2.61172i 0.0975161 0.238416i
\(121\) −19.5313 −1.77558
\(122\) 1.20851 + 0.157282i 0.109413 + 0.0142396i
\(123\) 0.286901i 0.0258689i
\(124\) 9.91312 + 2.62475i 0.890224 + 0.235710i
\(125\) 11.1267i 0.995204i
\(126\) −0.533652 + 4.10043i −0.0475415 + 0.365295i
\(127\) −0.951245 −0.0844094 −0.0422047 0.999109i \(-0.513438\pi\)
−0.0422047 + 0.999109i \(0.513438\pi\)
\(128\) −8.90386 + 6.98007i −0.786997 + 0.616957i
\(129\) −2.41025 −0.212211
\(130\) −0.660008 + 5.07131i −0.0578866 + 0.444783i
\(131\) 6.18131i 0.540063i 0.962851 + 0.270032i \(0.0870342\pi\)
−0.962851 + 0.270032i \(0.912966\pi\)
\(132\) 2.94719 + 0.780346i 0.256520 + 0.0679204i
\(133\) 1.10679i 0.0959709i
\(134\) −5.93942 0.772988i −0.513087 0.0667760i
\(135\) −5.90988 −0.508642
\(136\) −3.77043 + 9.21831i −0.323312 + 0.790463i
\(137\) 2.69492 0.230242 0.115121 0.993351i \(-0.463274\pi\)
0.115121 + 0.993351i \(0.463274\pi\)
\(138\) 3.06166 + 0.398462i 0.260626 + 0.0339193i
\(139\) 10.0486i 0.852314i 0.904649 + 0.426157i \(0.140133\pi\)
−0.904649 + 0.426157i \(0.859867\pi\)
\(140\) 1.85117 6.99148i 0.156453 0.590888i
\(141\) 3.71510i 0.312868i
\(142\) 0.158120 1.21495i 0.0132692 0.101956i
\(143\) −5.52552 −0.462067
\(144\) 10.1631 + 5.78765i 0.846928 + 0.482304i
\(145\) 36.2936 3.01402
\(146\) −1.04067 + 7.99621i −0.0861266 + 0.661771i
\(147\) 0.275879i 0.0227542i
\(148\) 1.85437 7.00355i 0.152428 0.575688i
\(149\) 11.6165i 0.951664i −0.879536 0.475832i \(-0.842147\pi\)
0.879536 0.475832i \(-0.157853\pi\)
\(150\) 3.12487 + 0.406688i 0.255145 + 0.0332059i
\(151\) 4.16990 0.339342 0.169671 0.985501i \(-0.445730\pi\)
0.169671 + 0.985501i \(0.445730\pi\)
\(152\) −2.89748 1.18511i −0.235017 0.0961254i
\(153\) 10.2957 0.832361
\(154\) 7.74891 + 1.00849i 0.624425 + 0.0812661i
\(155\) 18.5416i 1.48929i
\(156\) 0.533379 + 0.141226i 0.0427045 + 0.0113071i
\(157\) 19.3608i 1.54516i −0.634918 0.772580i \(-0.718966\pi\)
0.634918 0.772580i \(-0.281034\pi\)
\(158\) −1.33154 + 10.2312i −0.105932 + 0.813950i
\(159\) −0.617164 −0.0489443
\(160\) −16.3209 12.3325i −1.29028 0.974966i
\(161\) 7.91353 0.623674
\(162\) 1.51867 11.6690i 0.119318 0.916802i
\(163\) 10.0263i 0.785320i −0.919684 0.392660i \(-0.871555\pi\)
0.919684 0.392660i \(-0.128445\pi\)
\(164\) −2.01061 0.532362i −0.157003 0.0415705i
\(165\) 5.51245i 0.429144i
\(166\) −10.2045 1.32807i −0.792020 0.103078i
\(167\) 15.3016 1.18407 0.592037 0.805911i \(-0.298324\pi\)
0.592037 + 0.805911i \(0.298324\pi\)
\(168\) −0.722228 0.295403i −0.0557211 0.0227908i
\(169\) −1.00000 −0.0769231
\(170\) −17.8573 2.32405i −1.36959 0.178247i
\(171\) 3.23613i 0.247473i
\(172\) −4.47237 + 16.8912i −0.341015 + 1.28794i
\(173\) 12.8175i 0.974498i −0.873263 0.487249i \(-0.838000\pi\)
0.873263 0.487249i \(-0.162000\pi\)
\(174\) 0.505351 3.88297i 0.0383106 0.294367i
\(175\) 8.07691 0.610557
\(176\) 10.9374 19.2061i 0.824438 1.44771i
\(177\) 1.32071 0.0992709
\(178\) 1.39844 10.7452i 0.104817 0.805386i
\(179\) 7.47709i 0.558864i 0.960165 + 0.279432i \(0.0901462\pi\)
−0.960165 + 0.279432i \(0.909854\pi\)
\(180\) −5.41263 + 20.4423i −0.403434 + 1.52368i
\(181\) 22.4833i 1.67117i 0.549360 + 0.835585i \(0.314871\pi\)
−0.549360 + 0.835585i \(0.685129\pi\)
\(182\) 1.40239 + 0.182514i 0.103952 + 0.0135289i
\(183\) 0.237739 0.0175742
\(184\) 8.47355 20.7169i 0.624678 1.52727i
\(185\) 13.0995 0.963093
\(186\) 1.98372 + 0.258173i 0.145454 + 0.0189301i
\(187\) 19.4567i 1.42281i
\(188\) −26.0356 6.89359i −1.89884 0.502767i
\(189\) 1.63428i 0.118876i
\(190\) 0.730491 5.61288i 0.0529954 0.407201i
\(191\) −11.6789 −0.845057 −0.422528 0.906350i \(-0.638857\pi\)
−0.422528 + 0.906350i \(0.638857\pi\)
\(192\) −1.54668 + 1.57442i −0.111622 + 0.113624i
\(193\) −11.6391 −0.837800 −0.418900 0.908032i \(-0.637584\pi\)
−0.418900 + 0.908032i \(0.637584\pi\)
\(194\) 2.33358 17.9305i 0.167541 1.28734i
\(195\) 0.997636i 0.0714422i
\(196\) −1.93338 0.511911i −0.138098 0.0365651i
\(197\) 5.59686i 0.398760i 0.979922 + 0.199380i \(0.0638927\pi\)
−0.979922 + 0.199380i \(0.936107\pi\)
\(198\) −22.6570 2.94870i −1.61016 0.209555i
\(199\) 20.2542 1.43578 0.717890 0.696156i \(-0.245108\pi\)
0.717890 + 0.696156i \(0.245108\pi\)
\(200\) 8.64848 21.1446i 0.611540 1.49515i
\(201\) −1.16841 −0.0824133
\(202\) −13.2688 1.72687i −0.933589 0.121502i
\(203\) 10.0364i 0.704415i
\(204\) −0.497291 + 1.87816i −0.0348173 + 0.131497i
\(205\) 3.76066i 0.262656i
\(206\) 0.0918635 0.705852i 0.00640043 0.0491790i
\(207\) −23.1383 −1.60822
\(208\) 1.97944 3.47589i 0.137249 0.241010i
\(209\) 6.11559 0.423024
\(210\) 0.182083 1.39907i 0.0125649 0.0965451i
\(211\) 12.3571i 0.850695i −0.905030 0.425347i \(-0.860152\pi\)
0.905030 0.425347i \(-0.139848\pi\)
\(212\) −1.14519 + 4.32511i −0.0786516 + 0.297050i
\(213\) 0.239007i 0.0163765i
\(214\) 4.62527 + 0.601958i 0.316177 + 0.0411490i
\(215\) −31.5933 −2.15465
\(216\) 4.27840 + 1.74993i 0.291108 + 0.119068i
\(217\) 5.12736 0.348068
\(218\) −24.0654 3.13200i −1.62991 0.212126i
\(219\) 1.57303i 0.106295i
\(220\) 38.6315 + 10.2287i 2.60454 + 0.689618i
\(221\) 3.52124i 0.236865i
\(222\) 0.182397 1.40149i 0.0122417 0.0940616i
\(223\) 14.7408 0.987120 0.493560 0.869712i \(-0.335695\pi\)
0.493560 + 0.869712i \(0.335695\pi\)
\(224\) −3.41033 + 4.51327i −0.227863 + 0.301556i
\(225\) −23.6160 −1.57440
\(226\) 0.799627 6.14410i 0.0531904 0.408700i
\(227\) 0.323771i 0.0214894i −0.999942 0.0107447i \(-0.996580\pi\)
0.999942 0.0107447i \(-0.00342021\pi\)
\(228\) −0.590339 0.156307i −0.0390961 0.0103517i
\(229\) 22.2035i 1.46725i −0.679556 0.733624i \(-0.737827\pi\)
0.679556 0.733624i \(-0.262173\pi\)
\(230\) 40.1320 + 5.22300i 2.64622 + 0.344394i
\(231\) 1.52438 0.100297
\(232\) −26.2743 10.7466i −1.72499 0.705550i
\(233\) 17.2053 1.12716 0.563579 0.826062i \(-0.309424\pi\)
0.563579 + 0.826062i \(0.309424\pi\)
\(234\) −4.10043 0.533652i −0.268053 0.0348859i
\(235\) 48.6971i 3.17665i
\(236\) 2.45066 9.25562i 0.159525 0.602490i
\(237\) 2.01269i 0.130738i
\(238\) −0.642678 + 4.93815i −0.0416586 + 0.320093i
\(239\) −14.0545 −0.909112 −0.454556 0.890718i \(-0.650202\pi\)
−0.454556 + 0.890718i \(0.650202\pi\)
\(240\) −3.46768 1.97476i −0.223837 0.127470i
\(241\) 14.8607 0.957262 0.478631 0.878016i \(-0.341133\pi\)
0.478631 + 0.878016i \(0.341133\pi\)
\(242\) −3.56475 + 27.3905i −0.229151 + 1.76073i
\(243\) 7.19838i 0.461776i
\(244\) 0.441139 1.66609i 0.0282410 0.106660i
\(245\) 3.61620i 0.231031i
\(246\) −0.402345 0.0523635i −0.0256526 0.00333857i
\(247\) 1.10679 0.0704234
\(248\) 5.49021 13.4230i 0.348628 0.852360i
\(249\) −2.00744 −0.127216
\(250\) 15.6040 + 2.03079i 0.986881 + 0.128438i
\(251\) 25.9434i 1.63753i 0.574128 + 0.818766i \(0.305341\pi\)
−0.574128 + 0.818766i \(0.694659\pi\)
\(252\) 5.65298 + 1.49677i 0.356104 + 0.0942878i
\(253\) 43.7263i 2.74905i
\(254\) −0.173616 + 1.33401i −0.0108936 + 0.0837035i
\(255\) −3.51292 −0.219988
\(256\) 8.16367 + 13.7606i 0.510230 + 0.860038i
\(257\) 18.1892 1.13461 0.567306 0.823507i \(-0.307985\pi\)
0.567306 + 0.823507i \(0.307985\pi\)
\(258\) −0.439905 + 3.38010i −0.0273873 + 0.210436i
\(259\) 3.62244i 0.225088i
\(260\) 6.99148 + 1.85117i 0.433593 + 0.114805i
\(261\) 29.3453i 1.81643i
\(262\) 8.66858 + 1.12818i 0.535547 + 0.0696990i
\(263\) −26.5683 −1.63827 −0.819135 0.573601i \(-0.805546\pi\)
−0.819135 + 0.573601i \(0.805546\pi\)
\(264\) 1.63225 3.99068i 0.100458 0.245610i
\(265\) −8.08972 −0.496948
\(266\) −1.55215 0.202005i −0.0951683 0.0123857i
\(267\) 2.11381i 0.129363i
\(268\) −2.16806 + 8.18828i −0.132435 + 0.500179i
\(269\) 25.0750i 1.52885i 0.644713 + 0.764425i \(0.276977\pi\)
−0.644713 + 0.764425i \(0.723023\pi\)
\(270\) −1.07864 + 8.28794i −0.0656438 + 0.504388i
\(271\) 2.65065 0.161016 0.0805079 0.996754i \(-0.474346\pi\)
0.0805079 + 0.996754i \(0.474346\pi\)
\(272\) 12.2395 + 6.97008i 0.742127 + 0.422623i
\(273\) 0.275879 0.0166970
\(274\) 0.491861 3.77931i 0.0297144 0.228317i
\(275\) 44.6291i 2.69123i
\(276\) 1.11760 4.22091i 0.0672713 0.254069i
\(277\) 18.7189i 1.12471i 0.826895 + 0.562356i \(0.190105\pi\)
−0.826895 + 0.562356i \(0.809895\pi\)
\(278\) 14.0921 + 1.83402i 0.845186 + 0.109997i
\(279\) −14.9918 −0.897538
\(280\) −9.46689 3.87211i −0.565755 0.231403i
\(281\) −14.3291 −0.854803 −0.427402 0.904062i \(-0.640571\pi\)
−0.427402 + 0.904062i \(0.640571\pi\)
\(282\) −5.21000 0.678058i −0.310251 0.0403778i
\(283\) 14.4237i 0.857400i −0.903447 0.428700i \(-0.858972\pi\)
0.903447 0.428700i \(-0.141028\pi\)
\(284\) −1.67497 0.443492i −0.0993912 0.0263164i
\(285\) 1.10417i 0.0654056i
\(286\) −1.00849 + 7.74891i −0.0596330 + 0.458203i
\(287\) −1.03995 −0.0613862
\(288\) 9.97144 13.1963i 0.587573 0.777600i
\(289\) −4.60084 −0.270637
\(290\) 6.62409 50.8976i 0.388980 2.98881i
\(291\) 3.52732i 0.206775i
\(292\) 11.0238 + 2.91885i 0.645122 + 0.170813i
\(293\) 4.97250i 0.290497i 0.989395 + 0.145248i \(0.0463981\pi\)
−0.989395 + 0.145248i \(0.953602\pi\)
\(294\) −0.386890 0.0503520i −0.0225639 0.00293659i
\(295\) 17.3118 1.00793
\(296\) −9.48323 3.87879i −0.551202 0.225450i
\(297\) −9.03024 −0.523988
\(298\) −16.2909 2.12019i −0.943706 0.122819i
\(299\) 7.91353i 0.457651i
\(300\) 1.14067 4.30805i 0.0658565 0.248726i
\(301\) 8.73661i 0.503570i
\(302\) 0.761066 5.84781i 0.0437944 0.336504i
\(303\) −2.61026 −0.149955
\(304\) −2.19082 + 3.84708i −0.125652 + 0.220645i
\(305\) 3.11626 0.178436
\(306\) 1.87912 14.4386i 0.107422 0.825400i
\(307\) 2.53252i 0.144539i 0.997385 + 0.0722693i \(0.0230241\pi\)
−0.997385 + 0.0722693i \(0.976976\pi\)
\(308\) 2.82857 10.6829i 0.161173 0.608715i
\(309\) 0.138856i 0.00789925i
\(310\) 26.0024 + 3.38410i 1.47684 + 0.192204i
\(311\) 21.4305 1.21521 0.607607 0.794238i \(-0.292129\pi\)
0.607607 + 0.794238i \(0.292129\pi\)
\(312\) 0.295403 0.722228i 0.0167239 0.0408881i
\(313\) −31.4457 −1.77742 −0.888708 0.458473i \(-0.848397\pi\)
−0.888708 + 0.458473i \(0.848397\pi\)
\(314\) −27.1513 3.53362i −1.53224 0.199414i
\(315\) 10.5734i 0.595742i
\(316\) 14.1051 + 3.73468i 0.793471 + 0.210092i
\(317\) 20.0491i 1.12607i −0.826433 0.563036i \(-0.809633\pi\)
0.826433 0.563036i \(-0.190367\pi\)
\(318\) −0.112641 + 0.865502i −0.00631661 + 0.0485349i
\(319\) 55.4562 3.10495
\(320\) −20.2737 + 20.6374i −1.13333 + 1.15366i
\(321\) 0.909889 0.0507851
\(322\) 1.44433 11.0978i 0.0804895 0.618458i
\(323\) 3.89728i 0.216850i
\(324\) −16.0873 4.25952i −0.893737 0.236640i
\(325\) 8.07691i 0.448026i
\(326\) −14.0607 1.82994i −0.778752 0.101351i
\(327\) −4.73417 −0.261800
\(328\) −1.11354 + 2.72249i −0.0614851 + 0.150325i
\(329\) −13.4664 −0.742425
\(330\) 7.73059 + 1.00610i 0.425555 + 0.0553841i
\(331\) 25.2112i 1.38573i 0.721065 + 0.692867i \(0.243653\pi\)
−0.721065 + 0.692867i \(0.756347\pi\)
\(332\) −3.72492 + 14.0682i −0.204432 + 0.772094i
\(333\) 10.5916i 0.580417i
\(334\) 2.79276 21.4588i 0.152813 1.17417i
\(335\) −15.3154 −0.836770
\(336\) −0.546086 + 0.958928i −0.0297914 + 0.0523138i
\(337\) −16.0856 −0.876236 −0.438118 0.898918i \(-0.644355\pi\)
−0.438118 + 0.898918i \(0.644355\pi\)
\(338\) −0.182514 + 1.40239i −0.00992747 + 0.0762798i
\(339\) 1.20868i 0.0656463i
\(340\) −6.51844 + 24.6187i −0.353512 + 1.33514i
\(341\) 28.3313i 1.53423i
\(342\) 4.53831 + 0.590641i 0.245404 + 0.0319382i
\(343\) −1.00000 −0.0539949
\(344\) 22.8717 + 9.35487i 1.23316 + 0.504381i
\(345\) 7.89482 0.425043
\(346\) −17.9751 2.33938i −0.966348 0.125766i
\(347\) 5.29694i 0.284355i −0.989841 0.142177i \(-0.954590\pi\)
0.989841 0.142177i \(-0.0454104\pi\)
\(348\) −5.35319 1.41740i −0.286961 0.0759804i
\(349\) 19.0084i 1.01749i 0.860916 + 0.508747i \(0.169891\pi\)
−0.860916 + 0.508747i \(0.830109\pi\)
\(350\) 1.47415 11.3269i 0.0787967 0.605451i
\(351\) −1.63428 −0.0872314
\(352\) −24.9382 18.8439i −1.32921 1.00438i
\(353\) 2.67801 0.142536 0.0712680 0.997457i \(-0.477295\pi\)
0.0712680 + 0.997457i \(0.477295\pi\)
\(354\) 0.241049 1.85215i 0.0128116 0.0984407i
\(355\) 3.13288i 0.166276i
\(356\) −14.8137 3.92230i −0.785123 0.207882i
\(357\) 0.971439i 0.0514140i
\(358\) 10.4858 + 1.36468i 0.554190 + 0.0721254i
\(359\) 22.7147 1.19884 0.599418 0.800436i \(-0.295399\pi\)
0.599418 + 0.800436i \(0.295399\pi\)
\(360\) 27.6802 + 11.3216i 1.45887 + 0.596702i
\(361\) 17.7750 0.935527
\(362\) 31.5303 + 4.10353i 1.65720 + 0.215677i
\(363\) 5.38829i 0.282812i
\(364\) 0.511911 1.93338i 0.0268314 0.101336i
\(365\) 20.6191i 1.07925i
\(366\) 0.0433907 0.333402i 0.00226807 0.0174272i
\(367\) −3.18895 −0.166462 −0.0832310 0.996530i \(-0.526524\pi\)
−0.0832310 + 0.996530i \(0.526524\pi\)
\(368\) −27.5066 15.6643i −1.43388 0.816559i
\(369\) 3.04070 0.158292
\(370\) 2.39084 18.3705i 0.124294 0.955039i
\(371\) 2.23708i 0.116143i
\(372\) 0.724116 2.73483i 0.0375436 0.141794i
\(373\) 22.8764i 1.18450i −0.805756 0.592248i \(-0.798240\pi\)
0.805756 0.592248i \(-0.201760\pi\)
\(374\) −27.2858 3.55113i −1.41092 0.183624i
\(375\) 3.06963 0.158515
\(376\) −14.4193 + 35.2538i −0.743621 + 1.81807i
\(377\) 10.0364 0.516900
\(378\) 2.29189 + 0.298279i 0.117882 + 0.0153418i
\(379\) 14.0537i 0.721891i 0.932587 + 0.360946i \(0.117546\pi\)
−0.932587 + 0.360946i \(0.882454\pi\)
\(380\) −7.73810 2.04886i −0.396956 0.105104i
\(381\) 0.262429i 0.0134446i
\(382\) −2.13157 + 16.3784i −0.109061 + 0.837990i
\(383\) −5.29338 −0.270479 −0.135239 0.990813i \(-0.543180\pi\)
−0.135239 + 0.990813i \(0.543180\pi\)
\(384\) 1.92566 + 2.45639i 0.0982683 + 0.125352i
\(385\) 19.9814 1.01835
\(386\) −2.12430 + 16.3225i −0.108124 + 0.830794i
\(387\) 25.5449i 1.29852i
\(388\) −24.7196 6.54516i −1.25495 0.332280i
\(389\) 21.1015i 1.06989i −0.844887 0.534945i \(-0.820332\pi\)
0.844887 0.534945i \(-0.179668\pi\)
\(390\) 1.39907 + 0.182083i 0.0708447 + 0.00922012i
\(391\) −27.8655 −1.40922
\(392\) −1.07077 + 2.61791i −0.0540819 + 0.132224i
\(393\) 1.70530 0.0860208
\(394\) 7.84896 + 1.02151i 0.395425 + 0.0514628i
\(395\) 26.3822i 1.32743i
\(396\) −8.27044 + 31.2356i −0.415605 + 1.56965i
\(397\) 28.3687i 1.42378i 0.702289 + 0.711892i \(0.252162\pi\)
−0.702289 + 0.711892i \(0.747838\pi\)
\(398\) 3.69668 28.4042i 0.185298 1.42377i
\(399\) −0.305341 −0.0152862
\(400\) −28.0745 15.9877i −1.40372 0.799386i
\(401\) −29.0290 −1.44964 −0.724819 0.688940i \(-0.758077\pi\)
−0.724819 + 0.688940i \(0.758077\pi\)
\(402\) −0.213252 + 1.63856i −0.0106360 + 0.0817241i
\(403\) 5.12736i 0.255412i
\(404\) −4.84349 + 18.2928i −0.240973 + 0.910101i
\(405\) 30.0897i 1.49517i
\(406\) −14.0749 1.83178i −0.698525 0.0909098i
\(407\) 20.0159 0.992150
\(408\) 2.54314 + 1.04018i 0.125904 + 0.0514968i
\(409\) −34.4641 −1.70414 −0.852069 0.523429i \(-0.824652\pi\)
−0.852069 + 0.523429i \(0.824652\pi\)
\(410\) −5.27390 0.686375i −0.260460 0.0338976i
\(411\) 0.743472i 0.0366728i
\(412\) −0.973111 0.257656i −0.0479417 0.0126938i
\(413\) 4.78728i 0.235567i
\(414\) −4.22307 + 32.4488i −0.207553 + 1.59477i
\(415\) −26.3133 −1.29167
\(416\) −4.51327 3.41033i −0.221281 0.167205i
\(417\) 2.77221 0.135756
\(418\) 1.11618 8.57642i 0.0545943 0.419486i
\(419\) 4.27902i 0.209044i −0.994523 0.104522i \(-0.966669\pi\)
0.994523 0.104522i \(-0.0333312\pi\)
\(420\) −1.92881 0.510701i −0.0941161 0.0249197i
\(421\) 7.01406i 0.341844i −0.985285 0.170922i \(-0.945325\pi\)
0.985285 0.170922i \(-0.0546747\pi\)
\(422\) −17.3294 2.25534i −0.843581 0.109788i
\(423\) 39.3742 1.91444
\(424\) 5.85647 + 2.39539i 0.284415 + 0.116330i
\(425\) −28.4408 −1.37958
\(426\) −0.335180 0.0436222i −0.0162395 0.00211350i
\(427\) 0.861749i 0.0417029i
\(428\) 1.68836 6.37655i 0.0816097 0.308222i
\(429\) 1.52438i 0.0735976i
\(430\) −5.76623 + 44.3061i −0.278073 + 2.13663i
\(431\) −29.6150 −1.42651 −0.713253 0.700906i \(-0.752779\pi\)
−0.713253 + 0.700906i \(0.752779\pi\)
\(432\) 3.23495 5.68058i 0.155642 0.273307i
\(433\) 11.8181 0.567939 0.283970 0.958833i \(-0.408348\pi\)
0.283970 + 0.958833i \(0.408348\pi\)
\(434\) 0.935817 7.19054i 0.0449206 0.345157i
\(435\) 10.0126i 0.480070i
\(436\) −8.78455 + 33.1773i −0.420703 + 1.58890i
\(437\) 8.75862i 0.418982i
\(438\) 2.20599 + 0.287100i 0.105406 + 0.0137182i
\(439\) 15.2077 0.725822 0.362911 0.931824i \(-0.381783\pi\)
0.362911 + 0.931824i \(0.381783\pi\)
\(440\) 21.3954 52.3095i 1.01999 2.49376i
\(441\) 2.92389 0.139233
\(442\) −4.93815 0.642678i −0.234884 0.0305691i
\(443\) 14.9404i 0.709842i 0.934896 + 0.354921i \(0.115492\pi\)
−0.934896 + 0.354921i \(0.884508\pi\)
\(444\) −1.93214 0.511582i −0.0916951 0.0242786i
\(445\) 27.7076i 1.31347i
\(446\) 2.69041 20.6724i 0.127395 0.978865i
\(447\) −3.20477 −0.151580
\(448\) 5.70692 + 5.60634i 0.269627 + 0.264875i
\(449\) 29.9678 1.41427 0.707133 0.707081i \(-0.249988\pi\)
0.707133 + 0.707081i \(0.249988\pi\)
\(450\) −4.31026 + 33.1188i −0.203187 + 1.56123i
\(451\) 5.74625i 0.270581i
\(452\) −8.47046 2.24277i −0.398417 0.105491i
\(453\) 1.15039i 0.0540500i
\(454\) −0.454052 0.0590928i −0.0213097 0.00277336i
\(455\) 3.61620 0.169530
\(456\) −0.326949 + 0.799355i −0.0153108 + 0.0374332i
\(457\) 11.0522 0.517001 0.258501 0.966011i \(-0.416772\pi\)
0.258501 + 0.966011i \(0.416772\pi\)
\(458\) −31.1379 4.05245i −1.45498 0.189359i
\(459\) 5.75470i 0.268606i
\(460\) 14.6493 55.3273i 0.683028 2.57965i
\(461\) 41.6333i 1.93906i 0.244977 + 0.969529i \(0.421220\pi\)
−0.244977 + 0.969529i \(0.578780\pi\)
\(462\) 0.278221 2.13777i 0.0129440 0.0994578i
\(463\) 36.3379 1.68877 0.844384 0.535739i \(-0.179967\pi\)
0.844384 + 0.535739i \(0.179967\pi\)
\(464\) −19.8664 + 34.8854i −0.922272 + 1.61951i
\(465\) 5.11524 0.237213
\(466\) 3.14022 24.1285i 0.145468 1.11773i
\(467\) 8.62570i 0.399150i 0.979883 + 0.199575i \(0.0639561\pi\)
−0.979883 + 0.199575i \(0.936044\pi\)
\(468\) −1.49677 + 5.65298i −0.0691883 + 0.261309i
\(469\) 4.23522i 0.195564i
\(470\) −68.2922 8.88792i −3.15008 0.409969i
\(471\) −5.34124 −0.246112
\(472\) −12.5327 5.12606i −0.576863 0.235946i
\(473\) −48.2743 −2.21965
\(474\) 2.82257 + 0.367345i 0.129645 + 0.0168727i
\(475\) 8.93944i 0.410170i
\(476\) 6.80789 + 1.80257i 0.312039 + 0.0826204i
\(477\) 6.54097i 0.299490i
\(478\) −2.56515 + 19.7099i −0.117327 + 0.901509i
\(479\) 14.0769 0.643191 0.321595 0.946877i \(-0.395781\pi\)
0.321595 + 0.946877i \(0.395781\pi\)
\(480\) −3.40227 + 4.50260i −0.155292 + 0.205515i
\(481\) 3.62244 0.165169
\(482\) 2.71229 20.8404i 0.123541 0.949256i
\(483\) 2.18318i 0.0993382i
\(484\) 37.7614 + 9.99831i 1.71643 + 0.454469i
\(485\) 46.2358i 2.09946i
\(486\) −10.0949 1.31381i −0.457915 0.0595955i
\(487\) 30.9096 1.40065 0.700324 0.713826i \(-0.253039\pi\)
0.700324 + 0.713826i \(0.253039\pi\)
\(488\) −2.25598 0.922732i −0.102124 0.0417701i
\(489\) −2.76605 −0.125085
\(490\) −5.07131 0.660008i −0.229099 0.0298161i
\(491\) 30.4626i 1.37476i 0.726300 + 0.687378i \(0.241238\pi\)
−0.726300 + 0.687378i \(0.758762\pi\)
\(492\) −0.146868 + 0.554687i −0.00662130 + 0.0250072i
\(493\) 35.3405i 1.59166i
\(494\) 0.202005 1.55215i 0.00908864 0.0698344i
\(495\) −58.4234 −2.62593
\(496\) −17.8222 10.1493i −0.800238 0.455716i
\(497\) −0.866345 −0.0388609
\(498\) −0.366386 + 2.81520i −0.0164182 + 0.126152i
\(499\) 9.18401i 0.411133i 0.978643 + 0.205566i \(0.0659036\pi\)
−0.978643 + 0.205566i \(0.934096\pi\)
\(500\) 5.69589 21.5121i 0.254728 0.962052i
\(501\) 4.22140i 0.188598i
\(502\) 36.3826 + 4.73504i 1.62384 + 0.211335i
\(503\) 3.80294 0.169565 0.0847824 0.996399i \(-0.472980\pi\)
0.0847824 + 0.996399i \(0.472980\pi\)
\(504\) 3.13080 7.65449i 0.139457 0.340958i
\(505\) −34.2150 −1.52255
\(506\) 61.3212 + 7.98068i 2.72606 + 0.354785i
\(507\) 0.275879i 0.0122522i
\(508\) 1.83912 + 0.486953i 0.0815976 + 0.0216051i
\(509\) 28.6024i 1.26778i −0.773423 0.633890i \(-0.781457\pi\)
0.773423 0.633890i \(-0.218543\pi\)
\(510\) −0.641158 + 4.92647i −0.0283910 + 0.218148i
\(511\) 5.70186 0.252235
\(512\) 20.7877 8.93712i 0.918695 0.394969i
\(513\) 1.80880 0.0798607
\(514\) 3.31979 25.5083i 0.146430 1.12512i
\(515\) 1.82011i 0.0802038i
\(516\) 4.65992 + 1.23383i 0.205142 + 0.0543165i
\(517\) 74.4087i 3.27249i
\(518\) −5.08007 0.661148i −0.223205 0.0290492i
\(519\) −3.53609 −0.155217
\(520\) 3.87211 9.46689i 0.169803 0.415151i
\(521\) 20.2308 0.886327 0.443164 0.896441i \(-0.353856\pi\)
0.443164 + 0.896441i \(0.353856\pi\)
\(522\) 41.1534 + 5.35593i 1.80124 + 0.234423i
\(523\) 25.8242i 1.12921i −0.825360 0.564607i \(-0.809028\pi\)
0.825360 0.564607i \(-0.190972\pi\)
\(524\) 3.16428 11.9508i 0.138232 0.522073i
\(525\) 2.22825i 0.0972489i
\(526\) −4.84909 + 37.2590i −0.211430 + 1.62457i
\(527\) −18.0547 −0.786475
\(528\) −5.29857 3.01740i −0.230591 0.131316i
\(529\) 39.6240 1.72278
\(530\) −1.47649 + 11.3449i −0.0641346 + 0.492792i
\(531\) 13.9975i 0.607439i
\(532\) −0.566578 + 2.13984i −0.0245643 + 0.0927739i
\(533\) 1.03995i 0.0450452i
\(534\) −2.96438 0.385800i −0.128281 0.0166952i
\(535\) 11.9267 0.515638
\(536\) 11.0874 + 4.53493i 0.478904 + 0.195879i
\(537\) 2.06278 0.0890154
\(538\) 35.1648 + 4.57655i 1.51606 + 0.197309i
\(539\) 5.52552i 0.238001i
\(540\) 11.4260 + 3.02534i 0.491698 + 0.130190i
\(541\) 7.96843i 0.342589i 0.985220 + 0.171295i \(0.0547950\pi\)
−0.985220 + 0.171295i \(0.945205\pi\)
\(542\) 0.483782 3.71724i 0.0207802 0.159669i
\(543\) 6.20268 0.266183
\(544\) 12.0086 15.8923i 0.514865 0.681378i
\(545\) −62.0550 −2.65815
\(546\) 0.0503520 0.386890i 0.00215486 0.0165574i
\(547\) 14.9906i 0.640953i 0.947256 + 0.320477i \(0.103843\pi\)
−0.947256 + 0.320477i \(0.896157\pi\)
\(548\) −5.21029 1.37956i −0.222572 0.0589318i
\(549\) 2.51966i 0.107536i
\(550\) 62.5872 + 8.14545i 2.66873 + 0.347323i
\(551\) −11.1082 −0.473224
\(552\) −5.71537 2.33768i −0.243262 0.0994982i
\(553\) 7.29555 0.310238
\(554\) 26.2512 + 3.41647i 1.11531 + 0.145152i
\(555\) 3.61388i 0.153401i
\(556\) 5.14401 19.4278i 0.218155 0.823922i
\(557\) 4.35114i 0.184364i −0.995742 0.0921819i \(-0.970616\pi\)
0.995742 0.0921819i \(-0.0293841\pi\)
\(558\) −2.73623 + 21.0244i −0.115834 + 0.890032i
\(559\) −8.73661 −0.369519
\(560\) −7.15804 + 12.5695i −0.302482 + 0.531160i
\(561\) −5.36770 −0.226625
\(562\) −2.61527 + 20.0950i −0.110318 + 0.847654i
\(563\) 19.3697i 0.816334i −0.912907 0.408167i \(-0.866168\pi\)
0.912907 0.408167i \(-0.133832\pi\)
\(564\) −1.90180 + 7.18268i −0.0800802 + 0.302445i
\(565\) 15.8432i 0.666529i
\(566\) −20.2276 2.63253i −0.850230 0.110654i
\(567\) −8.32081 −0.349441
\(568\) −0.927653 + 2.26801i −0.0389235 + 0.0951637i
\(569\) 37.1682 1.55817 0.779087 0.626916i \(-0.215683\pi\)
0.779087 + 0.626916i \(0.215683\pi\)
\(570\) −1.54848 0.201527i −0.0648586 0.00844106i
\(571\) 21.5095i 0.900143i −0.892992 0.450072i \(-0.851398\pi\)
0.892992 0.450072i \(-0.148602\pi\)
\(572\) 10.6829 + 2.82857i 0.446675 + 0.118269i
\(573\) 3.22197i 0.134600i
\(574\) −0.189806 + 1.45841i −0.00792233 + 0.0608729i
\(575\) 63.9169 2.66552
\(576\) −16.6864 16.3923i −0.695267 0.683014i
\(577\) −15.0168 −0.625159 −0.312579 0.949892i \(-0.601193\pi\)
−0.312579 + 0.949892i \(0.601193\pi\)
\(578\) −0.839718 + 6.45215i −0.0349277 + 0.268374i
\(579\) 3.21099i 0.133444i
\(580\) −70.1691 18.5791i −2.91361 0.771454i
\(581\) 7.27650i 0.301880i
\(582\) −4.94667 0.643786i −0.205046 0.0266858i
\(583\) −12.3610 −0.511941
\(584\) 6.10536 14.9270i 0.252642 0.617682i
\(585\) −10.5734 −0.437155
\(586\) 6.97337 + 0.907552i 0.288067 + 0.0374906i
\(587\) 16.8666i 0.696161i −0.937465 0.348080i \(-0.886834\pi\)
0.937465 0.348080i \(-0.113166\pi\)
\(588\) −0.141226 + 0.533379i −0.00582406 + 0.0219962i
\(589\) 5.67491i 0.233831i
\(590\) 3.15965 24.2778i 0.130081 0.999502i
\(591\) 1.54406 0.0635141
\(592\) −7.17039 + 12.5912i −0.294701 + 0.517496i
\(593\) −24.9466 −1.02443 −0.512217 0.858856i \(-0.671176\pi\)
−0.512217 + 0.858856i \(0.671176\pi\)
\(594\) −1.64815 + 12.6639i −0.0676243 + 0.519606i
\(595\) 12.7335i 0.522024i
\(596\) −5.94664 + 22.4592i −0.243584 + 0.919963i
\(597\) 5.58771i 0.228690i
\(598\) 11.0978 + 1.44433i 0.453824 + 0.0590632i
\(599\) 18.5685 0.758687 0.379343 0.925256i \(-0.376150\pi\)
0.379343 + 0.925256i \(0.376150\pi\)
\(600\) −5.83337 2.38594i −0.238146 0.0974056i
\(601\) −1.28859 −0.0525625 −0.0262813 0.999655i \(-0.508367\pi\)
−0.0262813 + 0.999655i \(0.508367\pi\)
\(602\) 12.2521 + 1.59456i 0.499358 + 0.0649893i
\(603\) 12.3833i 0.504288i
\(604\) −8.06199 2.13462i −0.328038 0.0868564i
\(605\) 70.6292i 2.87149i
\(606\) −0.476409 + 3.66059i −0.0193528 + 0.148701i
\(607\) 4.75102 0.192838 0.0964190 0.995341i \(-0.469261\pi\)
0.0964190 + 0.995341i \(0.469261\pi\)
\(608\) 4.99524 + 3.77452i 0.202584 + 0.153077i
\(609\) −2.76883 −0.112199
\(610\) 0.568762 4.37020i 0.0230285 0.176944i
\(611\) 13.4664i 0.544791i
\(612\) −19.9055 5.27050i −0.804634 0.213047i
\(613\) 10.0018i 0.403967i −0.979389 0.201984i \(-0.935261\pi\)
0.979389 0.201984i \(-0.0647388\pi\)
\(614\) 3.55158 + 0.462222i 0.143330 + 0.0186537i
\(615\) −1.03749 −0.0418356
\(616\) −14.4653 5.91654i −0.582824 0.238384i
\(617\) −13.2245 −0.532396 −0.266198 0.963918i \(-0.585768\pi\)
−0.266198 + 0.963918i \(0.585768\pi\)
\(618\) −0.194730 0.0253432i −0.00783319 0.00101945i
\(619\) 23.6609i 0.951011i 0.879713 + 0.475506i \(0.157735\pi\)
−0.879713 + 0.475506i \(0.842265\pi\)
\(620\) 9.49164 35.8478i 0.381193 1.43968i
\(621\) 12.9329i 0.518980i
\(622\) 3.91138 30.0539i 0.156832 1.20505i
\(623\) −7.66208 −0.306975
\(624\) −0.958928 0.546086i −0.0383878 0.0218609i
\(625\) −0.148100 −0.00592399
\(626\) −5.73929 + 44.0990i −0.229388 + 1.76255i
\(627\) 1.68716i 0.0673789i
\(628\) −9.91101 + 37.4317i −0.395492 + 1.49369i
\(629\) 12.7555i 0.508595i
\(630\) 14.8280 + 1.92979i 0.590760 + 0.0768848i
\(631\) 14.7571 0.587469 0.293735 0.955887i \(-0.405102\pi\)
0.293735 + 0.955887i \(0.405102\pi\)
\(632\) 7.81184 19.0991i 0.310738 0.759722i
\(633\) −3.40906 −0.135498
\(634\) −28.1166 3.65925i −1.11665 0.145328i
\(635\) 3.43989i 0.136508i
\(636\) 1.19321 + 0.315933i 0.0473139 + 0.0125276i
\(637\) 1.00000i 0.0396214i
\(638\) 10.1215 77.7710i 0.400716 3.07898i
\(639\) 2.53310 0.100208
\(640\) 25.2413 + 32.1981i 0.997751 + 1.27274i
\(641\) −13.7361 −0.542542 −0.271271 0.962503i \(-0.587444\pi\)
−0.271271 + 0.962503i \(0.587444\pi\)
\(642\) 0.166068 1.27602i 0.00655417 0.0503604i
\(643\) 25.9351i 1.02278i 0.859349 + 0.511390i \(0.170869\pi\)
−0.859349 + 0.511390i \(0.829131\pi\)
\(644\) −15.2998 4.05103i −0.602898 0.159633i
\(645\) 8.71595i 0.343190i
\(646\) 5.46549 + 0.711309i 0.215037 + 0.0279861i
\(647\) 12.2027 0.479737 0.239868 0.970805i \(-0.422896\pi\)
0.239868 + 0.970805i \(0.422896\pi\)
\(648\) −8.90964 + 21.7831i −0.350004 + 0.855722i
\(649\) 26.4522 1.03834
\(650\) 11.3269 + 1.47415i 0.444279 + 0.0578210i
\(651\) 1.41453i 0.0554399i
\(652\) −5.13257 + 19.3846i −0.201007 + 0.759160i
\(653\) 11.5584i 0.452316i 0.974091 + 0.226158i \(0.0726166\pi\)
−0.974091 + 0.226158i \(0.927383\pi\)
\(654\) −0.864054 + 6.63914i −0.0337872 + 0.259611i
\(655\) 22.3528 0.873398
\(656\) 3.61475 + 2.05851i 0.141132 + 0.0803714i
\(657\) −16.6716 −0.650422
\(658\) −2.45781 + 18.8851i −0.0958153 + 0.736216i
\(659\) 30.8839i 1.20307i 0.798848 + 0.601533i \(0.205443\pi\)
−0.798848 + 0.601533i \(0.794557\pi\)
\(660\) 2.82189 10.6576i 0.109842 0.414848i
\(661\) 29.5707i 1.15017i −0.818094 0.575084i \(-0.804969\pi\)
0.818094 0.575084i \(-0.195031\pi\)
\(662\) 35.3559 + 4.60141i 1.37415 + 0.178839i
\(663\) −0.971439 −0.0377276
\(664\) 19.0492 + 7.79143i 0.739254 + 0.302366i
\(665\) −4.00238 −0.155205
\(666\) 14.8536 + 1.93312i 0.575564 + 0.0749070i
\(667\) 79.4232i 3.07528i
\(668\) −29.5838 7.83307i −1.14463 0.303070i
\(669\) 4.06670i 0.157228i
\(670\) −2.79528 + 21.4781i −0.107991 + 0.829772i
\(671\) 4.76161 0.183820
\(672\) 1.24512 + 0.940841i 0.0480315 + 0.0362937i
\(673\) −40.3299 −1.55460 −0.777301 0.629128i \(-0.783412\pi\)
−0.777301 + 0.629128i \(0.783412\pi\)
\(674\) −2.93584 + 22.5582i −0.113084 + 0.868908i
\(675\) 13.1999i 0.508065i
\(676\) 1.93338 + 0.511911i 0.0743607 + 0.0196889i
\(677\) 29.4826i 1.13311i −0.824025 0.566553i \(-0.808277\pi\)
0.824025 0.566553i \(-0.191723\pi\)
\(678\) −1.69503 0.220601i −0.0650973 0.00847212i
\(679\) −12.7857 −0.490671
\(680\) 33.3352 + 13.6346i 1.27835 + 0.522864i
\(681\) −0.0893217 −0.00342282
\(682\) 39.7314 + 5.17087i 1.52140 + 0.198003i
\(683\) 6.90366i 0.264161i −0.991239 0.132081i \(-0.957834\pi\)
0.991239 0.132081i \(-0.0421658\pi\)
\(684\) 1.65661 6.25667i 0.0633422 0.239230i
\(685\) 9.74535i 0.372351i
\(686\) −0.182514 + 1.40239i −0.00696843 + 0.0535434i
\(687\) −6.12549 −0.233702
\(688\) 17.2935 30.3675i 0.659310 1.15775i
\(689\) −2.23708 −0.0852258
\(690\) 1.44092 11.0716i 0.0548548 0.421488i
\(691\) 48.0500i 1.82791i −0.405816 0.913955i \(-0.633012\pi\)
0.405816 0.913955i \(-0.366988\pi\)
\(692\) −6.56143 + 24.7811i −0.249428 + 0.942036i
\(693\) 16.1560i 0.613716i
\(694\) −7.42836 0.966768i −0.281977 0.0366980i
\(695\) 36.3379 1.37837
\(696\) −2.96477 + 7.24855i −0.112379 + 0.274756i
\(697\) 3.66191 0.138705
\(698\) 26.6571 + 3.46930i 1.00898 + 0.131315i
\(699\) 4.74659i 0.179533i
\(700\) −15.6157 4.13466i −0.590218 0.156275i
\(701\) 1.98674i 0.0750381i −0.999296 0.0375190i \(-0.988055\pi\)
0.999296 0.0375190i \(-0.0119455\pi\)
\(702\) −0.298279 + 2.29189i −0.0112578 + 0.0865019i
\(703\) −4.00928 −0.151213
\(704\) −30.9779 + 31.5337i −1.16753 + 1.18847i
\(705\) −13.4345 −0.505974
\(706\) 0.488775 3.75560i 0.0183953 0.141344i
\(707\) 9.46158i 0.355839i
\(708\) −2.55344 0.676088i −0.0959640 0.0254089i
\(709\) 16.3537i 0.614175i 0.951681 + 0.307087i \(0.0993544\pi\)
−0.951681 + 0.307087i \(0.900646\pi\)
\(710\) −4.39350 0.571795i −0.164885 0.0214591i
\(711\) −21.3314 −0.799990
\(712\) −8.20429 + 20.0586i −0.307469 + 0.751729i
\(713\) 40.5755 1.51957
\(714\) 1.36233 + 0.177302i 0.0509840 + 0.00663534i
\(715\) 19.9814i 0.747261i
\(716\) 3.82761 14.4560i 0.143044 0.540248i
\(717\) 3.87736i 0.144803i
\(718\) 4.14576 31.8548i 0.154718 1.18881i
\(719\) −42.8271 −1.59718 −0.798590 0.601875i \(-0.794421\pi\)
−0.798590 + 0.601875i \(0.794421\pi\)
\(720\) 20.9293 36.7519i 0.779989 1.36966i
\(721\) −0.503322 −0.0187447
\(722\) 3.24419 24.9274i 0.120736 0.927703i
\(723\) 4.09976i 0.152472i
\(724\) 11.5095 43.4687i 0.427746 1.61550i
\(725\) 81.0629i 3.01060i
\(726\) 7.55647 + 0.983441i 0.280447 + 0.0364989i
\(727\) 13.1739 0.488594 0.244297 0.969700i \(-0.421443\pi\)
0.244297 + 0.969700i \(0.421443\pi\)
\(728\) −2.61791 1.07077i −0.0970262 0.0396853i
\(729\) 22.9765 0.850983
\(730\) 28.9159 + 3.76328i 1.07023 + 0.139285i
\(731\) 30.7637i 1.13784i
\(732\) −0.459639 0.121701i −0.0169887 0.00449821i
\(733\) 6.15717i 0.227420i −0.993514 0.113710i \(-0.963726\pi\)
0.993514 0.113710i \(-0.0362735\pi\)
\(734\) −0.582030 + 4.47215i −0.0214831 + 0.165070i
\(735\) −0.997636 −0.0367983
\(736\) −26.9878 + 35.7159i −0.994783 + 1.31651i
\(737\) −23.4018 −0.862015
\(738\) 0.554971 4.26423i 0.0204288 0.156969i
\(739\) 10.2396i 0.376669i 0.982105 + 0.188334i \(0.0603088\pi\)
−0.982105 + 0.188334i \(0.939691\pi\)
\(740\) −25.3262 6.70577i −0.931011 0.246509i
\(741\) 0.305341i 0.0112170i
\(742\) 3.13725 + 0.408299i 0.115172 + 0.0149891i
\(743\) 19.4710 0.714321 0.357161 0.934043i \(-0.383745\pi\)
0.357161 + 0.934043i \(0.383745\pi\)
\(744\) −3.70312 1.51464i −0.135763 0.0555292i
\(745\) −42.0077 −1.53904
\(746\) −32.0816 4.17528i −1.17459 0.152868i
\(747\) 21.2757i 0.778437i
\(748\) −9.96010 + 37.6171i −0.364177 + 1.37542i
\(749\) 3.29814i 0.120511i
\(750\) 0.560252 4.30481i 0.0204575 0.157190i
\(751\) 22.0975 0.806350 0.403175 0.915123i \(-0.367907\pi\)
0.403175 + 0.915123i \(0.367907\pi\)
\(752\) 46.8077 + 26.6558i 1.70690 + 0.972038i
\(753\) 7.15725 0.260825
\(754\) 1.83178 14.0749i 0.0667096 0.512577i
\(755\) 15.0792i 0.548788i
\(756\) 0.836606 3.15968i 0.0304271 0.114916i
\(757\) 1.15259i 0.0418916i −0.999781 0.0209458i \(-0.993332\pi\)
0.999781 0.0209458i \(-0.00666775\pi\)
\(758\) 19.7088 + 2.56501i 0.715854 + 0.0931652i
\(759\) 12.0632 0.437866
\(760\) −4.28561 + 10.4779i −0.155455 + 0.380072i
\(761\) 52.0968 1.88851 0.944253 0.329220i \(-0.106786\pi\)
0.944253 + 0.329220i \(0.106786\pi\)
\(762\) 0.368027 + 0.0478971i 0.0133322 + 0.00173513i
\(763\) 17.1603i 0.621244i
\(764\) 22.5798 + 5.97857i 0.816907 + 0.216297i
\(765\) 37.2314i 1.34611i
\(766\) −0.966117 + 7.42336i −0.0349072 + 0.268217i
\(767\) 4.78728 0.172859
\(768\) 3.79627 2.25219i 0.136986 0.0812689i
\(769\) −3.53413 −0.127444 −0.0637220 0.997968i \(-0.520297\pi\)
−0.0637220 + 0.997968i \(0.520297\pi\)
\(770\) 3.64689 28.0216i 0.131425 1.00983i
\(771\) 5.01804i 0.180720i
\(772\) 22.5028 + 5.95819i 0.809892 + 0.214440i
\(773\) 32.9280i 1.18434i −0.805814 0.592168i \(-0.798272\pi\)
0.805814 0.592168i \(-0.201728\pi\)
\(774\) −35.8238 4.66231i −1.28766 0.167583i
\(775\) 41.4132 1.48761
\(776\) −13.6905 + 33.4719i −0.491461 + 1.20157i
\(777\) −0.999358 −0.0358518
\(778\) −29.5925 3.85133i −1.06094 0.138077i
\(779\) 1.15101i 0.0412390i
\(780\) 0.510701 1.92881i 0.0182860 0.0690623i
\(781\) 4.78700i 0.171292i
\(782\) −5.08585 + 39.0782i −0.181870 + 1.39743i
\(783\) 16.4022 0.586168
\(784\) 3.47589 + 1.97944i 0.124139 + 0.0706941i
\(785\) −70.0125 −2.49885
\(786\) 0.311241 2.39148i 0.0111016 0.0853014i
\(787\) 17.5105i 0.624182i −0.950052 0.312091i \(-0.898971\pi\)
0.950052 0.312091i \(-0.101029\pi\)
\(788\) 2.86509 10.8208i 0.102065 0.385476i
\(789\) 7.32964i 0.260942i
\(790\) 36.9980 + 4.81513i 1.31633 + 0.171315i
\(791\) −4.38117 −0.155777
\(792\) 42.2950 + 17.2993i 1.50289 + 0.614704i
\(793\) 0.861749 0.0306016
\(794\) 39.7839 + 5.17769i 1.41188 + 0.183749i
\(795\) 2.23179i 0.0791534i
\(796\) −39.1590 10.3683i −1.38795 0.367496i
\(797\) 33.4031i 1.18320i 0.806232 + 0.591600i \(0.201503\pi\)
−0.806232 + 0.591600i \(0.798497\pi\)
\(798\) −0.0557290 + 0.428206i −0.00197279 + 0.0151583i
\(799\) 47.4184 1.67754
\(800\) −27.5450 + 36.4533i −0.973861 + 1.28882i
\(801\) 22.4031 0.791574
\(802\) −5.29820 + 40.7098i −0.187086 + 1.43751i
\(803\) 31.5057i 1.11181i
\(804\) 2.25898 + 0.598122i 0.0796680 + 0.0210942i
\(805\) 28.6169i 1.00861i
\(806\) 7.19054 + 0.935817i 0.253276 + 0.0329627i
\(807\) 6.91768 0.243514
\(808\) 24.7696 + 10.1311i 0.871390 + 0.356412i
\(809\) 11.3668 0.399636 0.199818 0.979833i \(-0.435965\pi\)
0.199818 + 0.979833i \(0.435965\pi\)
\(810\) −42.1974 5.49180i −1.48267 0.192962i
\(811\) 32.5379i 1.14256i 0.820756 + 0.571279i \(0.193553\pi\)
−0.820756 + 0.571279i \(0.806447\pi\)
\(812\) −5.13773 + 19.4041i −0.180299 + 0.680950i
\(813\) 0.731261i 0.0256465i
\(814\) 3.65318 28.0700i 0.128044 0.983852i
\(815\) −36.2571 −1.27003
\(816\) 1.92290 3.37662i 0.0673150 0.118205i
\(817\) 9.66959 0.338296
\(818\) −6.29018 + 48.3319i −0.219931 + 1.68989i
\(819\) 2.92389i 0.102169i
\(820\) −1.92513 + 7.27078i −0.0672283 + 0.253907i
\(821\) 34.1067i 1.19033i 0.803603 + 0.595166i \(0.202914\pi\)
−0.803603 + 0.595166i \(0.797086\pi\)
\(822\) −1.04264 0.135694i −0.0363661 0.00473288i
\(823\) −35.0649 −1.22229 −0.611143 0.791520i \(-0.709290\pi\)
−0.611143 + 0.791520i \(0.709290\pi\)
\(824\) −0.538940 + 1.31765i −0.0187749 + 0.0459026i
\(825\) 12.3122 0.428657
\(826\) −6.71362 0.873748i −0.233597 0.0304016i
\(827\) 22.8625i 0.795006i 0.917601 + 0.397503i \(0.130123\pi\)
−0.917601 + 0.397503i \(0.869877\pi\)
\(828\) 44.7351 + 11.8448i 1.55465 + 0.411634i
\(829\) 45.9793i 1.59693i 0.602042 + 0.798464i \(0.294354\pi\)
−0.602042 + 0.798464i \(0.705646\pi\)
\(830\) −4.80255 + 36.9014i −0.166699 + 1.28087i
\(831\) 5.16417 0.179143
\(832\) −5.60634 + 5.70692i −0.194365 + 0.197852i
\(833\) 3.52124 0.122004
\(834\) 0.505969 3.88771i 0.0175203 0.134621i
\(835\) 55.3337i 1.91490i
\(836\) −11.8237 3.13064i −0.408932 0.108275i
\(837\) 8.37954i 0.289639i
\(838\) −6.00084 0.780983i −0.207296 0.0269786i
\(839\) −23.4652 −0.810108 −0.405054 0.914293i \(-0.632747\pi\)
−0.405054 + 0.914293i \(0.632747\pi\)
\(840\) −1.06823 + 2.61172i −0.0368576 + 0.0901129i
\(841\) −71.7288 −2.47341
\(842\) −9.83643 1.28017i −0.338986 0.0441175i
\(843\) 3.95311i 0.136152i
\(844\) −6.32572 + 23.8908i −0.217740 + 0.822357i
\(845\) 3.61620i 0.124401i
\(846\) 7.18636 55.2179i 0.247072 1.89843i
\(847\) 19.5313 0.671104
\(848\) 4.42815 7.77584i 0.152063 0.267024i
\(849\) −3.97920 −0.136566
\(850\) −5.19085 + 39.8850i −0.178045 + 1.36804i
\(851\) 28.6663i 0.982669i
\(852\) −0.122350 + 0.462090i −0.00419165 + 0.0158309i
\(853\) 1.79276i 0.0613831i −0.999529 0.0306915i \(-0.990229\pi\)
0.999529 0.0306915i \(-0.00977095\pi\)
\(854\) −1.20851 0.157282i −0.0413542 0.00538206i
\(855\) 11.7025 0.400217
\(856\) −8.63424 3.53154i −0.295112 0.120705i
\(857\) −22.0714 −0.753943 −0.376972 0.926225i \(-0.623035\pi\)
−0.376972 + 0.926225i \(0.623035\pi\)
\(858\) 2.13777 + 0.278221i 0.0729821 + 0.00949829i
\(859\) 4.52672i 0.154450i −0.997014 0.0772248i \(-0.975394\pi\)
0.997014 0.0772248i \(-0.0246059\pi\)
\(860\) 61.0818 + 16.1730i 2.08287 + 0.551494i
\(861\) 0.286901i 0.00977754i
\(862\) −5.40517 + 41.5317i −0.184101 + 1.41458i
\(863\) 51.4286 1.75065 0.875325 0.483534i \(-0.160647\pi\)
0.875325 + 0.483534i \(0.160647\pi\)
\(864\) −7.37595 5.57344i −0.250935 0.189612i
\(865\) −46.3507 −1.57597
\(866\) 2.15696 16.5735i 0.0732966 0.563190i
\(867\) 1.26928i 0.0431069i
\(868\) −9.91312 2.62475i −0.336473 0.0890899i
\(869\) 40.3117i 1.36748i
\(870\) −14.0416 1.82745i −0.476055 0.0619564i
\(871\) −4.23522 −0.143505
\(872\) 44.9241 + 18.3747i 1.52132 + 0.622245i
\(873\) 37.3841 1.26526
\(874\) −12.2830 1.59857i −0.415478 0.0540726i
\(875\) 11.1267i 0.376152i
\(876\) 0.805250 3.04125i 0.0272069 0.102754i
\(877\) 38.9877i 1.31652i 0.752791 + 0.658260i \(0.228707\pi\)
−0.752791 + 0.658260i \(0.771293\pi\)
\(878\) 2.77562 21.3270i 0.0936725 0.719752i
\(879\) 1.37181 0.0462700
\(880\) −69.4531 39.5518i −2.34126 1.33329i
\(881\) 36.2082 1.21989 0.609943 0.792445i \(-0.291192\pi\)
0.609943 + 0.792445i \(0.291192\pi\)
\(882\) 0.533652 4.10043i 0.0179690 0.138068i
\(883\) 49.4027i 1.66253i −0.555875 0.831266i \(-0.687617\pi\)
0.555875 0.831266i \(-0.312383\pi\)
\(884\) −1.80257 + 6.80789i −0.0606268 + 0.228974i
\(885\) 4.77596i 0.160542i
\(886\) 20.9523 + 2.72685i 0.703906 + 0.0916102i
\(887\) 27.1660 0.912146 0.456073 0.889942i \(-0.349256\pi\)
0.456073 + 0.889942i \(0.349256\pi\)
\(888\) −1.07008 + 2.61623i −0.0359095 + 0.0877949i
\(889\) 0.951245 0.0319037
\(890\) −38.8568 5.05703i −1.30248 0.169512i
\(891\) 45.9768i 1.54028i
\(892\) −28.4996 7.54600i −0.954237 0.252659i
\(893\) 14.9044i 0.498758i
\(894\) −0.584916 + 4.49432i −0.0195625 + 0.150313i
\(895\) 27.0387 0.903803
\(896\) 8.90386 6.98007i 0.297457 0.233188i
\(897\) 2.18318 0.0728943
\(898\) 5.46954 42.0264i 0.182521 1.40244i
\(899\) 51.4601i 1.71629i
\(900\) 45.6586 + 12.0893i 1.52195 + 0.402976i
\(901\) 7.87730i 0.262431i
\(902\) −8.05847 1.04877i −0.268318 0.0349203i
\(903\) 2.41025 0.0802081
\(904\) −4.69122 + 11.4695i −0.156028 + 0.381471i
\(905\) 81.3041 2.70264
\(906\) −1.61329 0.209963i −0.0535980 0.00697554i
\(907\) 22.3716i 0.742838i 0.928465 + 0.371419i \(0.121129\pi\)
−0.928465 + 0.371419i \(0.878871\pi\)
\(908\) −0.165742 + 0.625971i −0.00550034 + 0.0207736i
\(909\) 27.6646i 0.917577i
\(910\) 0.660008 5.07131i 0.0218791 0.168112i
\(911\) 9.55929 0.316713 0.158357 0.987382i \(-0.449380\pi\)
0.158357 + 0.987382i \(0.449380\pi\)
\(912\) 1.06133 + 0.604402i 0.0351442 + 0.0200138i
\(913\) −40.2064 −1.33064
\(914\) 2.01719 15.4995i 0.0667227 0.512677i
\(915\) 0.859711i 0.0284212i
\(916\) −11.3662 + 42.9277i −0.375550 + 1.41837i
\(917\) 6.18131i 0.204125i
\(918\) −8.07031 1.05032i −0.266360 0.0346656i
\(919\) −60.0820 −1.98192 −0.990961 0.134148i \(-0.957170\pi\)
−0.990961 + 0.134148i \(0.957170\pi\)
\(920\) −74.9166 30.6420i −2.46993 1.01024i
\(921\) 0.698671 0.0230220
\(922\) 58.3860 + 7.59868i 1.92284 + 0.250249i
\(923\) 0.866345i 0.0285161i
\(924\) −2.94719 0.780346i −0.0969556 0.0256715i
\(925\) 29.2581i 0.962002i
\(926\) 6.63219 50.9598i 0.217947 1.67464i
\(927\) 1.47166 0.0483356
\(928\) 45.2969 + 34.2274i 1.48694 + 1.12357i
\(929\) 10.2401 0.335966 0.167983 0.985790i \(-0.446275\pi\)
0.167983 + 0.985790i \(0.446275\pi\)
\(930\) 0.933604 7.17354i 0.0306141 0.235230i
\(931\) 1.10679i 0.0362736i
\(932\) −33.2644 8.80760i −1.08961 0.288502i
\(933\) 5.91225i 0.193558i
\(934\) 12.0966 + 1.57431i 0.395812 + 0.0515131i
\(935\) −70.3593 −2.30100
\(936\) 7.65449 + 3.13080i 0.250195 + 0.102334i
\(937\) 34.9995 1.14338 0.571692 0.820469i \(-0.306287\pi\)
0.571692 + 0.820469i \(0.306287\pi\)
\(938\) 5.93942 + 0.772988i 0.193929 + 0.0252390i
\(939\) 8.67523i 0.283105i
\(940\) −24.9286 + 94.1499i −0.813081 + 3.07083i
\(941\) 20.3362i 0.662941i 0.943466 + 0.331471i \(0.107545\pi\)
−0.943466 + 0.331471i \(0.892455\pi\)
\(942\) −0.974854 + 7.49049i −0.0317625 + 0.244053i
\(943\) −8.22967 −0.267995
\(944\) −9.47612 + 16.6401i −0.308421 + 0.541589i
\(945\) 5.90988 0.192249
\(946\) −8.81075 + 67.6992i −0.286462 + 2.20109i
\(947\) 19.1433i 0.622073i 0.950398 + 0.311036i \(0.100676\pi\)
−0.950398 + 0.311036i \(0.899324\pi\)
\(948\) 1.03032 3.89130i 0.0334633 0.126383i
\(949\) 5.70186i 0.185090i
\(950\) −12.5366 1.63158i −0.406740 0.0529353i
\(951\) −5.53114 −0.179360
\(952\) 3.77043 9.21831i 0.122200 0.298767i
\(953\) 41.8842 1.35676 0.678382 0.734710i \(-0.262682\pi\)
0.678382 + 0.734710i \(0.262682\pi\)
\(954\) −9.17297 1.19382i −0.296986 0.0386514i
\(955\) 42.2333i 1.36664i
\(956\) 27.1727 + 7.19467i 0.878828 + 0.232692i
\(957\) 15.2992i 0.494553i
\(958\) 2.56924 19.7413i 0.0830083 0.637812i
\(959\) −2.69492 −0.0870234
\(960\) 5.69342 + 5.59309i 0.183754 + 0.180516i
\(961\) −4.71019 −0.151941
\(962\) 0.661148 5.08007i 0.0213163 0.163788i
\(963\) 9.64340i 0.310754i
\(964\) −28.7313 7.60736i −0.925374 0.245017i
\(965\) 42.0893i 1.35490i
\(966\) −3.06166 0.398462i −0.0985074 0.0128203i
\(967\) −48.0006 −1.54360 −0.771798 0.635868i \(-0.780642\pi\)
−0.771798 + 0.635868i \(0.780642\pi\)
\(968\) 20.9135 51.1313i 0.672185 1.64342i
\(969\) 1.07518 0.0345397
\(970\) −64.8404 8.43869i −2.08190 0.270950i
\(971\) 2.14847i 0.0689477i −0.999406 0.0344739i \(-0.989024\pi\)
0.999406 0.0344739i \(-0.0109755\pi\)
\(972\) −3.68493 + 13.9172i −0.118194 + 0.446394i
\(973\) 10.0486i 0.322145i
\(974\) 5.64144 43.3472i 0.180763 1.38893i
\(975\) 2.22825 0.0713612
\(976\) −1.70578 + 2.99535i −0.0546006 + 0.0958787i
\(977\) 8.19821 0.262284 0.131142 0.991364i \(-0.458136\pi\)
0.131142 + 0.991364i \(0.458136\pi\)
\(978\) −0.504843 + 3.87907i −0.0161431 + 0.124039i
\(979\) 42.3369i 1.35309i
\(980\) −1.85117 + 6.99148i −0.0591336 + 0.223335i
\(981\) 50.1748i 1.60196i
\(982\) 42.7203 + 5.55985i 1.36326 + 0.177422i
\(983\) 7.16077 0.228393 0.114196 0.993458i \(-0.463571\pi\)
0.114196 + 0.993458i \(0.463571\pi\)
\(984\) 0.751080 + 0.307204i 0.0239436 + 0.00979329i
\(985\) 20.2394 0.644880
\(986\) 49.5611 + 6.45015i 1.57835 + 0.205415i
\(987\) 3.71510i 0.118253i
\(988\) −2.13984 0.566578i −0.0680775 0.0180253i
\(989\) 69.1374i 2.19844i
\(990\) −10.6631 + 81.9321i −0.338896 + 2.60397i
\(991\) 22.3913 0.711284 0.355642 0.934622i \(-0.384262\pi\)
0.355642 + 0.934622i \(0.384262\pi\)
\(992\) −17.4860 + 23.1412i −0.555181 + 0.734733i
\(993\) 6.95526 0.220719
\(994\) −0.158120 + 1.21495i −0.00501527 + 0.0385359i
\(995\) 73.2432i 2.32196i
\(996\) 3.88113 + 1.02763i 0.122978 + 0.0325617i
\(997\) 57.3479i 1.81623i 0.418725 + 0.908113i \(0.362477\pi\)
−0.418725 + 0.908113i \(0.637523\pi\)
\(998\) 12.8795 + 1.67621i 0.407694 + 0.0530596i
\(999\) 5.92008 0.187303
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.a.365.17 34
4.3 odd 2 2912.2.c.a.1457.19 34
8.3 odd 2 2912.2.c.a.1457.16 34
8.5 even 2 inner 728.2.c.a.365.18 yes 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.17 34 1.1 even 1 trivial
728.2.c.a.365.18 yes 34 8.5 even 2 inner
2912.2.c.a.1457.16 34 8.3 odd 2
2912.2.c.a.1457.19 34 4.3 odd 2